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Numerical inversion of the Laplace–Carson transform applied
to homogenization of randomly reinforced linear viscoelastic media

Martin Lévesque, Michael D. Gilchrist,
Nicolas Bouleau, Katell Derrien, Didier Baptiste

Abstract Homogenization of linear viscoelastic
materials is possible using the viscoelastic correspon-
dence principle (VCP) and homogenization solutions
obtained for linear elastic materials. The VCP involves a
Laplace–Carson Transform (LCT) of the material
phases constitutive theories and in most cases, the time
domain solution must be obtained through numerical
inversion of the LCT. The objective of this paper is to de-
velop and test numerical algorithms to invert LCT which
are encountered in the context of homogenization of lin-
ear viscoelastic materials. The homogenized properties,
as well as the stress concentration and strain localization
tensors, are considered. The algorithms suggested have
the following two key features: (1) an acceptance cri-
terion which allows to reject solutions of unacceptable
accuracy and (2) some algorithms lead to solutions for
the homogenized properties where the thermodynamics
restrictions imposed on linear viscoelastic materials are
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encountered. These two features are an improvement
over the previous algorithms. The algorithms are tested
on many examples and the accuracy of the inversion is
excellent in most cases.
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1 Introduction

Homogenization allows the global mechanical proper-
ties of heterogeneous materials to be predicted based on
knowledge of the microstructure. Numerical approaches
such as finite element simulations of the microstruc-
ture or analytical models exist to accomplish this task.
Analytical models have the advantage of rapid
execution (when compared to numerical methods) but
have mostly been applied to materials with random
microstructures. Such models are based on Eshelby’s
ellipsoidal inclusion problem [1] and use various hypoth-
eses to calculate the homogenized properties of the
whole material. The earliest results were obtained for
linear elastic materials (see for example [2]). Thanks
to the Viscoelastic correspondence principle (VCP),
such results can be extended to linear viscoelastic
problems (see [3–8] for examples) and to non linear
viscoelastic problems (see [9–13] a for examples). The
VCP involves a Laplace–Carson transformation of the
linear viscoelastic constitutive theories of the constit-
uent phases. Then, the homogenized properties of the
heterogeneous viscoelastic material are obtained
in the Laplace–Carson space. The time domain solu-
tion is then obtained by the inverse Laplace–Carson
transformation.
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Except for very particular cases, this inverse transfor-
mation has to be carried out numerically. The objective
of this paper is to develop algorithms to perform this
task which improve on existing algorithms.

To the knowledge of the authors, most of the previous
algorithms did not suggest an acceptance criterion for
the result of the inversion. It is therefore possible with
these algorithms to obtain a solution with unacceptable
accuracy. When the effective properties are considered,
it might be required that the result of the inversion meets
the thermodynamics requirements imposed on linear
viscoelastic materials. This might be the case, for exam-
ple, if the homogenized properties are to be used in
a commercial Finite Element package or in other con-
tinuum mechanics problems. To the knowledge of the
authors, none of the previous algorithms addressed this
issue. So, the contribution of this paper is the develop-
ment of numerical Laplace–Carson algorithms for which
the solution meets the requirements of thermodynamics
(for the homogenized properties) as well as acceptance
criteria to ensure the quality of the inversion. Algo-
rithms are suggested for the effective properties as well
as for the stress concentration and strain localization
functions. Algorithms that do and that do not enforce
the thermodynamics requirements are also presented.
Finally, the performance of the algorithms are studied
on many simulations. Since the algorithms introduced in
this paper have different features, their results were not
compared with those obtained with the previous algo-
rithms. Our objective was to only validate the quality of
the inversions obtained with the algorithms introduced
in this paper.

The paper is divided as follows. First, background
information related to the homogenization of viscoelas-
tic materials and the existing inverse Laplace–Carson
transformation algorithms are presented. This section
serves to define the required features of the algorithms
proposed in this paper. Next, the algorithms are devel-
oped. Finally, the algorithms are validated for selected
cases and their performance is discussed.

2 Background

2.1 Linear viscoelastic constitutive theories

The thermodynamics of irreversible processes has been
used by many authors to derive constitutive laws for
linear viscoelastic materials. The theory developed by
Biot [14] leads to a linear system of differential equa-
tions the solution of which leads to the constitutive law.
The behaviour of a linear viscoelastic material is given,
in the most general form, by a convolution integral

of the type:

σ (t) =
t

∫

0

C(t − τ) : dε(τ ) (1a)

ε(t) =
t

∫

0

S(t − τ) : dσ (τ ) (1b)

where C(t) is the relaxation modulus and S(t) is the creep
compliance. When the set of state variables considered
by Biot [14] is considered as a continuum set, then the
most general shape of C(t) and S(t) are given by [15,16]:

Cij(t) =
∞
∫

0+

exp [−τ t] dČij(τ ) + C′
ijδ(t) + C′′

ij (2a)

Sij(t) =
∞
∫

0+

(1 − exp [−τ t]) dŠij(τ ) + S′
ijt + S′′

ij (2b)

where C′,C′′,S′, and S′′ are constant positive semi-defi-
nite matrices, dČ(τ ) and dŠ(τ ) are positive semi-definite
matrices of σ -finite measures on R

∗
+, and δ(t) is the Di-

rac delta function. In addition, thermodynamics imposes
that dČ(τ ) and dŠ(τ ) be such that [15,16]:

∞
∫

0

1
1 + τ

|dČij|(τ ) ≤ +∞ (3a)

∞
∫

0

τ

1 + τ
|dŠij|(τ ) ≤ +∞ (3b)

Many constitutive theories fulfilling these conditions
can be generated. For simplicity, let’s consider the creep
compliance s(t) of a 1D material where s′ = s′′ = 0. If
dš(τ ) is considered as a finite series of Dirac impulses,
then:

dš1(τ ) =
N
∑

n=1

anδ(τ − τn) leads to

s1(t) =
N
∑

n=1

an

(

1 − exp[−tτn]
)

(4)

which is the classical Prony series. Continuous measures
can also be used, for example:

dš2(τ ) = a

b2 exp
[

−τ

b

]

dτ � s2(t) = at

1 + bt
(5)

dš3(τ ) = c

τ
exp

[

−τ

d

]

dτ � s3(t) = c log (1 + dt) (6)

where a, b, c, d > 0. It is interesting here to note that
s2(t) is bounded while s3(t) is not. The functions, like the
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si, obtained here are called Bernstein functions and have
the following property [16]: If ϕ and ψ are Bernstein
and ψ(0) = 0 then the function composition ϕ ◦ ψ : t →
ϕ(ψ(t)) is Bernstein. For example:

s4 = s3(s2(t)) = c log

(

1 + d
at

1 + bt

)

(7)

This last property shows how new behaviour laws can
be created. There are a wide range of possible combi-
nations; far more than those modelled with a finite, or
even infinite, number Dirac impulses.

2.2 Homogenization

In the case of linear elastic materials where the prop-
erties are constant in a given phase, the homogenized
stiffness C̄ and compliance S̄ are given by:

C̄ =
R−1
∑

r=0

crCr : Br (8a)

S̄ =
R−1
∑

r=0

crSr : Ar (8b)

where the subscript r refers to a given phase, c is a
volume fraction, R is the total number of phases, C

and S are stiffnesses and compliances and A and B are
the so called strain localization and stress concentra-
tion tensors. These two tensors are, in fact, functions
of the mechanical properties, shape and orientation of
each phase. Different theories, called homogenization

schemes (e.g. Self-Consistent [17], Mori-Tanaka [18],
etc.), lead to different expressions of A and B. These
tensors are also used for computing the spatial average
stress σ̄ r and deformation ε̄r in a given phase from:

σ̄ r = Br : σ (9a)

ε̄r = Ar : E (9b)

where σ and E are the applied macroscopic stress and
strain tensors on the heterogeneous material.

2.3 Material symmetry

When a material exhibits material symmetry, relation-
ships exist between the components of C or S. In the
general case, a material has 21 independent components.
This number is reduced to 5 in the case of transverse
isotropy, to three in the case of cubic symmetry and
to two in the case of isotropy. For these material sym-
metries, it is possible to derive expressions greatly sim-
plifying the calculations involved in the homogenization
problem. When developing the algorithms of the present

work, advantage is taken of such simplifications and it is
convenient, therefore, to list them here.

2.3.1 Isotropy or cubic symmetry

In the case of isotropy, any tensor can be described using
Hill’s short hand notation so that we have [19,20]:

G = αJ + βK with J = 1
3

i ⊗ i and K = I − J (10)

where i and I are the second and fourth order identity
tensors. In the case of cubic symmetry, we have:

G = αJ + βKa + γ Kb with 	iiii = 1, Ka = � − J

and Kb = I − � (11)

Simple calculation rules follow from these definitions
which means that the result of homogenization is given
in terms of {α, β, γ }. For thermodynamics stability, G

must be positive semi-definite (i.e. all its eigenvalues are
positive). We denote such a condition by G ≥ 0. For
these material symmetries, having G ≥ 0 implies that
α, β, γ ≥ 0.

2.3.2 Transverse isotropy

As with isotropy or cubic symmetry, a transversely
isotropic tensor can be written using a short hand nota-
tion. Let’s introduce [19,20]:

iT = i − h ⊗ h, EL =h ⊗ h ⊗ h ⊗ h, JT = 1
2

iT ⊗ iT ,

KE = 1
6
(2h ⊗ h − iT) ⊗ (2h ⊗ h − iT), KT = IT − JT,

KL = K−KT−KE, and F = 1√
2

iT ⊗ h ⊗ h (12)

where h is a vector along the axis of transverse isotropy
and IT is the fourth order identity tensor in the trans-
verse plane.1 Then, a fourth order, symmetric, trans-
versely isotropic tensor is given by:

G = αEL + βJT + γ (F + FT) + δKT + δ′KL (13)

In order to have G ≥ 0, it is necessary that α, β, δ, δ′ ≥ 0
and γ 2 ≤ αβ.

2.3.3 General anisotropy

A definite semi-positive matrix is a matrix for which all
its eigenvalues are positives. We recall that any symmet-
ric positive semi-definite matrix in a particular base can

1 This extracts the components of a second order tensor which
are in the plane perpendicular to the axis of transverse isotropy.
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be given by:

G = RTDR (14)

where D is a diagonal matrix containing the eigenvalues
of G and R is an orthogonal matrix containing the eigen-
vectors of G. R is a rotation matrix, which in our case,
has 6 dimensions. It can be shown in n dimensions that
a general rotation matrix can be given as a sequence of
simple rotations in a plane. For example,

R(θ1) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

cos θ1 sin θ1 0 0 0 0
− sin θ1 cos θ1 0 0 0 0

0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(15)

is a rotation in the 1–2 plane. In 6 dimensions, there can
be 15 different plane rotations and the general rotation
matrix is given by:

R =
15
∏

n=1

R(θn) (16)

In total, we have 15 rotation angles and 6 eigenvalues
for a total of 21 independent components. Randomly
generating fourth order symmetric anisotropic tensors
to meet the condition G ≥ 0 can be achieved by gener-
ating the 15 angles randomly, the 6 positive eigenvalues,
assembling the rotation matrices and computing the ten-
sor according to Eq. (14).

2.4 Viscoelastic correspondence principle

The Laplace–Carson transform (LCT) of a function is
defined by:

g∗(p) ≡ p

t
∫

−∞

g(t) exp[−pt]dt (17)

When definition (17) is applied to the behaviour laws in
Eq. (1) then:

σ
∗(p) = C∗(p) : ε

∗(p) (18a)

ε
∗(p) = S∗(p) : σ

∗(p) (18b)

which is analogous to a linear elastic behaviour law. Con-
sider two problems where the geometry, area of applica-
tion and type of boundary conditions are identical, but
in one case the material is linear elastic and in the other
case, the material is linear viscoelastic. If the LCT is
applied to the viscoelastic problem, it becomes similar to
the elastic problem in the Laplace–Carson space. There-
fore, if the solution is known for the elastic problem, the
solution of the viscoelastic problem can be obtained in

the Laplace–Carson space by replacing the elastic prop-
erties with the LCT of the viscoelastic properties and
by replacing the loadings by their corresponding LCT
[3–8]. In order to obtain the time domain solution, the
inverse LCT must be applied. The correspondence prin-
ciple can also be invoked to calculate the relaxation
modulus when the creep compliance is known (and vice
versa).

Many authors have used this correspondence prin-
ciple to solve the homogenization problem for linear
viscoelastic materials (for example [3–8]. Equations (8)
become:

C̄∗ =
R−1
∑

r=0

crC
∗
r : B∗

r (19a)

S̄∗ =
R−1
∑

r=0

crS
∗
r : A∗

r (19b)

For some very particular cases, analytical expressions for
C̄(t) or S̄(t) can be obtained. However, most of the time,
situations arise when the analytical LCT inversion of
C̄∗(p) or S̄∗(p) is difficult. When the microstructure be-
comes more complicated (anisotropic phases, different
orientations of reinforcements, etc.), Eshelby’s solution
must be evaluated numerically (see, for example, Gav-
azzi and Lagoudas [21]). In such cases, C̄∗(p) and S̄∗(p)

are only known numerically and consequently their time
domain expressions can only be obtained numerically.
Stresses and strains within a given phase are required
when homogenizing non linear viscoelastic materials to
perform a relevant linearization [9–13]. Therefore, the
time expressions of Ar and Br may also be required.

2.5 Existing algorithms

Consider a one-dimensional function g(t). The analytical
expression of the inverse LCT is given by:

g(t) = 1
2π i

c+i∞
∫

c−i∞

1
p

g∗(p) exp[pt]dp (20)

which is an integral in the complex plane. For simple
analytical expressions for g∗(p) the integration can be
carried out analytically (see [6,8] for example).

As pointed out by Davies and Martin [22] there seems
to be two approaches to calculating the inverse LCT,
namely (i)those where the integration in Eq. (20) is car-
ried out numerically and (ii)those where g(t) is approxi-
mated by an appropriate series of functions. This
second approach can be quite useful, especially when
some information is known regarding the shape of g(t).
In addition, this approach can be computationally
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efficient if the approximate function is used many times
in subsequent calculations because the computational
effort is spent only once on its evaluation. In common
with many other authors (see [4,5,11] for example), we
have used such an approach.

Assume for simplicity that g̃(t) represents the tran-
sient part of one ij component of C̄(t) or S̄(t). Under the
assumption that the homogenization scheme leads to a
thermodynamically acceptable material,

g̃(t) =
∞
∫

0+

ζ exp[−τ t]dǧ(τ ) (21)

where ζ = 1 for a relaxation modulus and ζ = −1 for a
creep compliance (see Eq. (2)). Let ĝ(t) be an approxi-
mate of the function g̃(t). When defining:

ĝ(t) =
N
∑

n=1

gn exp[−tτn] (22)

and

Err2 =
∞
∫

0

[

g̃(t) − ĝ(t)
]2 dt (23)

Shapery [23] has shown that Err2 is minimized when:

g̃∗(p = τn) = ĝ∗(p = τn) for n = {1, 2, . . . , N} (24)

With this result, he introduced his collocation method

where the τn are determined a priori and the gn are
determined so that the N equations at Eq. (24) are
satisfied. So far, to the knowledge of the authors, this
method has been the most popular for homogenization
problems.

Shapery has also shown that (with ĝ(t) defined as per
Eq. (22)):

if g̃L(Re(p)) = ĝL(Re(p)) ∀ Re(p) > 0 then

g̃(t) = ĝ(t) ∀ t ≥ 0 (25)

where g̃L is the Laplace transform of g̃(t) and Re(p)

extracts the real part of p. Due to its definition, this
result is also valid for the LCT. Following similar argu-
ments, Cost and Becker [24] introduced their multida-

ta method. They assumed the same form for ĝ(t) and
also fixed the τn a priori. Rather than collocating ĝ∗(p)

at specific values of p , the authors performed a least
squares fit of ĝ∗(p) on known values of g̃∗(p). The gn thus
obtained are those minimizing the sum of the squared
differences between ĝ∗(p) and g̃∗(p) at a total number S

of points ps.
It is worthwhile mentioning the direct inversion

method also introduced by Schapery [23]. By a relevant
change of variables and assuming that g(t) is smooth and

varies slowly with time, the time response of g can be
directly approximated with:

g(t) ≃ g∗
(

p = 10w0

t

)

(26)

where w0 is a parameter chosen according to the type of
function g(t). This method is computationally efficient
since it establishes a direct correspondence between the
values of t and p. Brenner et al. [12] used such a proce-
dure for the creep response of polycrystals and obtained
very good results.

There are drawbacks associated with each of these
algorithms:

1. For the collocation and direct methods, it is not
possible to estimate a priori the accuracy of the
inversion. For the multidata method it is possible to
calculate a coefficient of determination, R2, which
gives an indication of the quality of the inversion in
the Laplace–Carson space.

2. For the collocation and multidata methods, the τn

are chosen a priori. The quality of the inversion
will be affected by this choice. Authors who have
used the collocation method ([4,5,11] for example)
suggested different numbers of τn and different dis-
tributions (the τn are equally distributed or equally
distributed on a log scale, etc.). These suggestions
were derived by a trial and error and not from a
systematic study.

3. For the multidata and the collocation methods, there
is no constraint on the values of the gn parameters
(see Eq. (22)) of ĝ(t). The gn can therefore take
negative or positive values which can lead to oscil-
latory ĝ(t). From a thermodynamic point of view,
this would not be acceptable if g(t) represents a
shear creep compliance for an isotropic material,
for example.

The algorithms that are introduced in this paper ad-
dress these issues. Some enforce the thermodynamics
restrictions while others do not. Algorithms where the
thermodynamics restrictions are not enforced are gen-
erally less computationally demanding. The algorithms
are applied to the homogenized properties as well as
to the stress concentration and deformation localization
tensors.

3 Suggested algorithms

The algorithms proposed in this paper are presented
in this section. Those for the homogenized properties
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and for tensors A and B are presented in two different
sections. For the homogenized properties, algorithms
that do and that do not enforce the thermodynamics
requirements are presented. All these algorithms share
common characteristics which are presented first.

It should be noted that this section presents the algo-
rithms for generating an inversion. The algorithms used
to accept or reject a solution are presented in Sect. 4.

3.1 Common characteristics

All the algorithms share the following characteristics:

1. The permanent part of the time response is first eval-
uated by limit values theorems. The transient part
is then extracted and the algorithms aim to approx-
imate this transient part. If g(t) is the function to be
inverted then g̃(t) is its transient part.

2. They involve a least squares curve fit in the Laplace–
Carson space for each independent transient com-
ponents of C̄∗, S̄∗, A∗ and B∗. g denotes a given
independent component of these tensors. The least
squares curve fit aims to find the function ĝ(t) min-
imizing the (discrete) square of the error between
g̃∗(p) and ĝ∗(p). The following problem has to be
solved:

inf
ĝ∗

E2 = inf
ĝ∗

S
∑

s=1

[

g̃∗(ps) − ĝ∗(ps)
]2 (27)

3. The points ps used to compute E2 are carefully
chosen.

4. The approximate function is of the type:

ĝ(t) =
N
∑

n=1

gn exp[−tτn] (28)

5. The τn are chosen a priori. The gn are the unknowns
and they minimize E2. They are determined by each
algorithm. Attempts were made to also optimize the
τn but this led to numerical difficulties and was sub-
sequently abandoned.

The algorithms can be regarded as an improved mul-
tidata method where the points used in the curve fit and
the τn are carefully chosen.

3.1.1 Determination of the LCT of the transient part

of C̄(t) and S̄(t)

The algorithms introduced in this paper aim to approx-
imate the transient part of the function that is to be

inverted. Assuming that the homogenized properties
meet the thermodynamics requirements, the permanent
parts of Eq. (2) are the viscous flow and the elastic re-
sponse. When considering a relaxation modulus and us-
ing the limit value theorem, the following result can be
obtained:

lim
t→∞

C̄(t) = lim
p→0

C̄∗(p) = C̄′′ (29)

It should be noted that we assumed C̄′ = 0. The case
where C̄′ = 0 leads to an infinite stress when a strain
is suddenly applied. Real materials do not exhibit such
behavior and this hypothesis, although it limits the do-
main of application of our algorithm, is reasonable.

When considering a creep compliance, the following
results can be obtained:

lim
t→0

S̄(t) = S̄′′ = lim
p→∞

S̄∗(p) (30a)

lim
t→∞

d
dt

S̄(t) = S̄′ = lim
p→0

pS̄(p) − pS̄′′ (30b)

lim
t→∞

S̄(t) − tS̄′ − S̄′′ = lim
p→0

S̄∗(p) − S̄′

p
− S̄′′ =

∞
∫

0+

d ˇ̄S(τ )

(30c)

The transient parts can be obtained from Equations
(29) and (30) as:

⎡

⎣

∞
∫

0+

exp [−tτ ] d ˇ̄C(τ )

⎤

⎦

∗

= C̄∗(p) − C̄′′ = ˜̄C∗(p) (31a)

⎡

⎣

∞
∫

0+

exp [−tτ ] d ˇ̄S(τ )

⎤

⎦

∗

= S̄′′ +
∞
∫

0+

ˇ̄S(dτ)

+ S̄′

p
− S̄∗(p) = ˜̄S∗(p) (31b)

In the sequel, g̃∗(p) refers to an ij component of ˜̄C∗(p)

or ˜̄S∗(p).

3.1.2 Determination of the points ps used

for the algorithms

The objective of this part of the algorithm is to choose
the points ps used in the least squares fit. These points
should be such that g̃∗(ps) represents adequately the
variation of g̃∗(p) for p ∈ [0, ∞[.

In the case of the homogenized properties, due to the
definition of the transient part (see Eq. (21)), we make
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the assumption that:

lim
t→∞

g̃(t) = 0 (32)

Due to the limit value theorem, we have that
limp→0 g̃∗(p) = 0. If g̃(t) represents an ii (i.e. diagonal)

component of ˜̄C(t) or ˜̄S(t) then g̃(t) will decrease mono-
tonically from g̃(0) ≥ 0 to 0 for t going from 0 to ∞ (this
property comes from the thermodynamics restrictions).
Due to the definition of the LCT, g̃∗(p) will increase
monotonically from 0 to limp→∞ g̃∗(p) =  for p going
from 0 to ∞. Figure 1 shows a typical plot for such a
function. The points ps are such that the entire variation
domain of the function (i.e. the y axis) to be inverted has
an influence on the computation of E2. Figure 1 shows
the distribution of these points.

For the other components of C̄(t) and S̄(t) or for the
tensors A(t) and B(t), g̃(t) is not necessarily positive or
monotonic. Figure 2 shows a possible plot for g̃∗(p) for
such components. From the figure, it can be seen that
the function is negative and shows a point where the

Fig. 1 Typical LCT of a diagonal term of ˜̄C(t) or ˜̄S(t). The sym-

bols represent the points used in the least squares fit

Fig. 2 A possible LCT of a off-diagonal term of ˜̄C(t) or ˜̄S(t) or
any transient component of A(t) or B(t). The symbols represent
the points used in the least squares fit

sign of the slope of the curve changes (i.e. the bump
on the curve). In order to obtain an adequate discrete
representation of g̃∗(p) it is necessary to take into ac-
count these curvature changes. Figure 2 shows a set of
points ps which leads to a discrete representation of
g̃∗(p) where the curve segment between each bump is
discretized with ρ points. The algorithm used to calculate
these points is given below as Algorithm 1. Equations
(33–35) are non linear problems requiring numerical
methods. When g̃∗ is known analytically, these equa-
tions can be solved by standard bracketing algorithms
[25] since there is only one unknown for each prob-
lem. When g̃∗(p) is only known numerically, Equations

Algorithm 1 Computation of the ps used in
Equation (27)
1: Calculate the points by, with y = {1, 2, . . . , B} solving:

dg̃∗

dp
(by) = 0 for by ∈ [0, ∞[ (33)

The number of points meeting this condition is B.
2: if B = 0 then {when there is no oscillation}
3: S = 2ρ

4: for s = 1 to s = S do
5: ps solves the following equation:

g̃∗(ps) = s

S
( + κξ ||) for ps > 0 (34)

where 0 < ξ < 1 and where κ = 1 if limp→∞ g̃∗(p) =  is
approached from above and κ = −1 if  is approached
from below.

6: end for
7: else {when there is at least one oscillation}
8: {Computing the points representing the ordinate variation }
9: b0 = 0 and bB+1 solves g̃∗(bB+1) = g̃∗ (bB) + (1 − ξ)

(

 − g̃∗ (bB)
)

.
10: for y = 1 to y = B + 1 do
11: pρ×y = by

12: for z = 1 to z = ρ − 1 do
13: ps solves the following equation:

g̃∗(pρ×(y−1)+z) = g̃∗(by−1) + z

ρ

[

g̃∗(by) − g̃∗(by−1)
]

for pρ×(y−1)+z ∈ [by−1, by] (35)
14: end for
15: end for
16: {Computing the points representing the abscissa variation}
17: η = int

[

log pS

]

− int
[

log p1
]

+2 (int returns the integer part
of its argument).

18: for y = 1 to y = η × ϑ do

19: pρ×(B+1)+y = 10log p1+ y
η×ϑ+1 (log pρ×(B+1)−log p1)

20: end for
21: S = (B + 1) × ρ + η × ϑ is the total number of points.
22: end if
23: ρ represents the number of points between two bumps. If N

is the number of terms in ĝ(t) then we used:

ρ =
{

25 if N ≤ 15
2N if N > 15

(36)

24: We have used ξ = 0.02.
25: We have used ϑ = 10 (i.e. the number of points per decade

along the abscissa).
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(34, 35) pose no particular problem. On the other hand,
the homogenization does not lead to expressions for
the derivatives of g̃∗(p) with respect to p. In this case,
the derivative at Equation (33) can be approximated by
a centered difference and the problem can be solved
with a bracketing algorithm [26] (see p. 110). In addi-
tion to these points capturing the ordinate variation of
g̃∗(p), we added points capturing the abscissa variation
of g̃∗(p). As can be seen from Figure 1 there can be a
large distance between two consecutive ps along the ab-
scissa axis when g̃∗(p) approaches its asymptotic value.
In some cases the approximate function oscillated be-
tween these points and one possible explanation was
that there were not enough points in the least squares
computation to attract ĝ∗(p) toward g̃∗(p). It was found
that adding a certain number of points per decade be-
tween p1 and pρ×(B+1) (see Algorithm 1) improved the
performance of the inversions.

3.2 Algorithms for the homogenized properties
when the thermodynamics restrictions
are not enforced

When thermodynamics restrictions are not enforced,
each independent component of C̄ or S̄ can be treated
individually. For an isotropic material, only two quanti-
ties have to be treated whilst for a general anisotropic
material 21 components have to be treated.

The first step of the algorithm is to identify the perma-
nent regime quantities of the function to be inverted, as
detailed in Sect. 3.1.1. Then, it is possible to define the
transient part g̃∗(p) for each independent component.
Once this is done, the points ps can be computed for
each independent component as explained in Sect. 3.1.2.

The next step is to define the fitting function ĝ(t) (see
Eq. (28)). As mentioned before, the τn are determined
a priori. If N represents the number of terms in ĝ(t), the
τn we used were defined as follows:

τn = 10log[(1+θ)τmin]+n
log[(1−θ)τmax]−log[(1+θ)τmin]

N−1

for n = {0, 1, . . . , N − 1} (37)

Equation (37) distributes uniformly, on a logarithmic
scale, the τn between (1 + θ)τmin and (1 − θ)τmax. This
choice of logarithmic distribution is motivated by the
fact that real materials are usually defined by series of
exponentials with one term per decade. The parameter
θ controls the range over which the τn are distributed
between two bounding values τmin and τmax. The choice
of these bounds is motivated by the principles of the col-
location method. With the collocation method, one sure
way to obtain an approximate function which represents
adequately the function to be inverted in the LC space

is to choose collocation times (i.e. the τn) so that they
discretize adequately the function to be inverted over
all its variation range. This comes from the fact that the
collocation method can be interpreted as an interpola-
tion of the approximate function on the function that
is being inverted. If increasingly more collocation times
are used then ĝ∗(p) will pass by more and more points
of g̃∗(p). The points ps were calculated so that they pro-
vide a relevant discretization of g̃∗(p) over all its range
of variation. Therefore, p1 and max{ps}, would seem an
appropriate choice for τmin and τmax.

With this choice, we can define the least squares prob-
lem to be solved as:

inf
gn

E2 = inf
gn

S
∑

s=1

[

g̃∗(ps) − ĝ∗(ps)
]2 with

N
∑

n=1

gn = lim
p→∞

g̃∗(p) (38)

The constraint forces limp→∞ ĝ∗(p) = limp→∞ g̃∗(p).
Due to the limit value theorem, this forces limt→0 ĝ(t) =
limt→0 g̃(t). It was found by trial and error that this con-
straint improved the quality of the inversion. It should
be noted that Masson [27] used such a constraint in his
modified collocation algorithm. This optimization prob-
lem can be solved by a Lagrange Multiplier technique
[26] or with a penalty function (this is the method used
in this paper). Owing to the nature of ĝ(t), this opti-
mization problem is linear and can be solved at little
computational cost.

This algorithm has only two parameters that can be
varied: N the number of terms in ĝ(t) and θ which con-
trols the range over which the τn are distributed.

3.3 Algorithms for the homogenized properties
when the thermodynamics restrictions
are enforced

When thermodynamics restrictions are enforced, the
problem becomes more complex because the indepen-

dent components of ˜̄C(t) or ˜̄S(t) cannot be treated sepa-
rately. The approximate function ĝ(t) becomes a tensor
function Ĝ(t):

Ĝ(t) =
N
∑

n=1

Gn exp[−τnt] (39)

where, according to the thermodynamics restrictions, Gn

is positive semi-definite. Therefore, a relationship that
must be satisfied exists between each component of Gn.
When the material exhibits material symmetry, very sim-
ple relationships can be derived, which simplify greatly
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the whole problem. The series of algorithms that we
develop here are for specific degrees of material symme-
try and take advantage of such simplifications. It should
be noted that algorithms for orthotropic materials are
not developed here. Algorithms for this degree symme-
try can be developed by following the same reasoning
as is done for transverse isotropy, once the relationships
between the independent components are established.

3.3.1 Isotropy or cubic symmetry

As was shown at Sect. 2.3.1, for isotropy or cubic sym-
metry, a tensor can be expressed as a function of 2 or
3 parameters: {α, β, γ } and the only restriction is that
these constants must be positive. They are not related to
each other and can therefore be treated independently.
Let g̃(t) be any of these components. Using ĝ(t) defined
by Eq. (28) leads to the following optimization problem:

inf
gn

S
∑

s=1

[

g̃∗(ps) − ĝ(ps)
]2 with gn ≥ 0

and
N
∑

n=1

gn = lim
p→∞

g̃∗(p) (40)

This constraint optimization problem can be simplified
by defining:

ĝ(t) =
N
∑

n=1

g2
n exp [−tτn] (41)

and becomes:

inf
gn

S
∑

s=1

[

g̃∗(ps)−ĝ∗(ps)
]2 with

N
∑

n=1

g2
n = lim

p→∞
g̃∗(p)

(42)

This problem can be solved with classical optimization
tools and the constraint can be imposed with Lagrange
Multipliers or with a penalty function.

3.3.2 Transverse isotropy

As shown in Sect. 2.3.2 a transversely isotropic mate-
rial can be defined by 5 independent constants: α, β, γ , δ
and δ′. δ and δ′ are not related to any other constant
and they only need to be positive. These components
can therefore be treated in the same way as for the
isotropic constants. On the other hand, there is a rela-
tionship between α, β and γ and these components must
be treated simultaneously.

We define:

λ̂(t) =
N
∑

n=1

λn exp[−tτn] (43)

for the approximate functions and:

R2
λ = 1 − S − 1

S − N − 1

∑S
s=1

[

λ̃∗(pλ
s ) − λ̂∗(pλ

s )
]2

∑S
s=1

[

λ̃∗(pλ
s ) −

〈

λ̃∗
〉]2 (44)

where λ is any of {α, β, γ }, the pλ
s represent the ps points

associated with a λ component and 〈λ〉 represents the
average of λ(ps). It can be observed that the approx-
imate functions share the same τn. R2 is the classical
coefficient of determination and it is a normalized mea-
sure of the discrete differences between the approximate
function and the function to be inverted.

The first step here is the determination of the τn. We
used:

τmin = min{pα
1 , p

β

1 , p
γ

1 } and τmax = max{pα
s , p

β
s , p

γ
s }
(45)

and the τn were calculated according to Eq. (37).
The optimization problem that identifies the {αn, βn,

γn} is:

sup
{αn,βn,γn}

R2
α +R2

β +R2
γ with αn ≥0; βn ≥0; γ 2

n ≤αnβn

and
n
∑

n=1

λn = lim
p→∞

λ̃∗(p) for λ={αn,βn,γn}
(46)

This constraint optimization problem can be simpli-
fied with the following change of variables:

αn = x2
n ; βn = y2

n and γn = 2
π

√

x2
ny2

n arctan vn (47)

where the variables {xn, yn, vn} are those being opti-
mized. When a penalty function is used for the last
constraints of Eq. (46) the optimization problem (46)
becomes unconstrained and can be solved with classical
optimization algorithms. This also leads to an algorithm
where two parameters can be adjusted: N and θ .

3.3.3 General anisotropy

The case of general anisotropy is a complex case since
the 21 independent components of G̃ must be optimized
simultaneously. It is possible to define an optimization
problem as that of Eq. (46) where the 15 angles and the 6
eigenvalues are optimized. When using Ĝ(t) as defined
by Eq. (39) with 15 terms, this leads to 315 variables
to be optimized. This requires considerable computa-
tional effort. We have tested an earlier version of our
algorithm [26] (see pages 112 and following) on a very
simple case. The results obtained were promising. The
emphasis of this paper is on testing the performance of
our algorithms for a wide range of situations as possible.
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Because of the time required for more complex LCT
inversions involving a general anisotropic material
where the thermodynamics restrictions are enforced,
this paper does not deal with this specific case. Such a
situation would more suitably be the focus of a separate
publication.

3.4 Algorithms for A(t) and B(t)

Unlike for the homogenized properties, we could not
infer the mathematical shape of A(t) or B(t). In addi-
tion, no thermodynamics restriction is imposed on these
functions and therefore, each independent component
of these tensors can be treated independently. Expe-
rience has shown that using a series of exponentials to
approximate the transient part of these tensors is a good
choice. Nonetheless, this transient part has to be com-
puted. We have developed in this paper algorithms for
relaxation modulus and creep compliance for which the
general shapes are given at Eqs. (1, 2). Here, we make
the assumption that A(t) and B(t) obey Eq. (2b). Since
we do not impose any constraint on the sign of the gn,
either form is acceptable. Form (2b) is more general
since it contains a viscous term. The algorithm for the
inversion of A(t) and B(t) is therefore very similar to
the one for the inversion of the homogenized properties
when thermodynamics restrictions are not enforced.

4 Validation against selected cases

Validation of our algorithms was carried out in two ways:
where possible, the approximate function ĝ(t) was com-
pared with the exact solution g̃(t) for each independent
component. This was done only for isotropic materials
when the analytical solution was known. When the solu-
tion was not known analytically, artificial materials were
generated and the algorithm tried to invert the LCT of
these materials. This allowed comparison with the time
domain function for transverse isotropic materials as
well as for general anisotropic materials.

We also investigated the correlation between the
coefficient of determination R2 (see Eq. (44)) and a
measure of the error (which we define later) in the time
domain between the approximate and exact functions.
Recall that all our algorithms have two parameters that
can be varied: the number N of terms in the approximate
function and θ which controls the range over which the
τn are distributed. The objective here is to introduce
an acceptance test for an approximate function (i.e. R2

should be greater than a particular value) and a way to
improve it if it is not acceptable. Here again, the results
are shown as a function of material symmetry.

All the algorithms were implemented in the commer-
cial package Mathematica. The optimization problems
were solved with the NMinimize or NMaximize func-
tions within Mathematica.

4.1 Isotropy

4.1.1 Materials simulated

We have tested our algorithms against two homoge-
nization models for which an analytical solution can
be obtained: (a) The Mori-Tanaka scheme and (b) the
Self-consistent scheme. We also simulated an artificial
material obeying the law described by Eq. (5). For each
“material” we performed several inversions in order to
check the stability of our algorithm.

For the Mori-Tanaka scheme, we simulated a two-
phase material with spherical isotropic reinforcements
randomly distributed with a volume fraction of 0.3. The
solutions used are listed in Wang and Weng [5]. Both
phases were viscoelastic with the hydrostatic and devia-
toric parts of the compliance obeying:

s(t) = ζ s1 + ζ s2t + ζ s3(1 − exp[−tωs4]) (48)

where the si were random real numbers between 1.0
and 4.0. The parameters ζ and ω controlled the contrast
(in the sense of the mechanical properties) between the
constitutive phases. For the matrix phase, ζ = ω = 1 and
for the reinforcing phase ζ , ω = {10, 100, 1000}. This was
introduced because it was reported by Masson [27] that
the contrast between the phases had an influence on
the quality of the inversion when using the collocation
method. The deviatoric part of the creep compliance of
such material is of the form:

s̄(t) = s̄1 + s̄2t +
7
∑

i=3

s̄i(1 − exp[−ts̄i+5]) (49)

where the s̄i are positive constants. We recall that our
algorithms first evaluate s̄1 and s̄2 with limit value the-
orems and aim at approximating the transient part (i.e.
the sum of exponentials). A similar shape is obtained
for the hydrostatic part and the transient part is of the
same type for the relaxation modulii. Therefore, only
the deviatoric part of the creep compliance was studied.

For the Self-consistent scheme, we simulated a two-
phase material where the constitutive phases were
incompressible and isotropic. The volume fraction of
each phase was 0.5 and the morphology was such that
no phase played a special role. Each phase r was Max-
wellian and its deviatoric part obeyed:

dev(εr)(t) = ζardev(σ )(t) + ωTrdev(σ̇ )(t) (50)
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where dev( . ) extracts the deviatoric part of its argu-
ment and ar and Tr are random real numbers between
1.0 and 4.0. We have used ζ = ω = 1 for phase one and
ζ , ω = {10, 100, 1000} for phase two. Homogenization
of such a material leads to the following homogenized
shear relaxation modulus (for the transient part):

µ̄(t) = µ̄1 exp

[

− t

ωT1

]

+ µ̄2 exp

[

− t

ωT2

]

+
∞
∫

0

µ̌(τ ) exp

[

− t

τ

]

dτ (51)

where µ̌(τ )dτ is continuous and non-zero for τ ∈ [τ1, τ2]
and null elsewhere. In addition µ̌(τ )dτ meets the ther-
modynamics restrictions stated in Sect. 2.1. The whole
development leading to this result can be found in
Beurthey and Zaoui [8]. It is interesting to note here
that the homogenized material has a discrete and a con-
tinuous relaxation spectra.

For the artificial material, we used the following
constitutive theory:

s̄(t) = at

1 + ζbt
(52)

where again a, b are random real numbers between 1.0
and 4.0 and ζ = {10, 100, 1000}. This material was cho-
sen since it is described with a continuous compliance
sprectra for τ ∈ [0, ∞[ (see Eq. 5).

4.1.2 Simulations

For each material, we have analysed 9 inversions per
configuration. For example, for the Mori-Tanaka mate-
rial, there were two parameters controlling the contrast
and each parameter could take three values. This led to 9
configurations. The θ parameter could take 5 values and
N could take 4 values. The values used for θ can be found
in Table 2 and those for N in Table 3. So, for the Mori-
Tanaka scheme we performed 9 × 3 × 3 × 5 × 4 = 1,620
inversions. This number was the same for the Self-Con-
sistent scheme and for the artificial material we per-
formed 540 inversions (there is only one parameter
controlling the contrast). In total, we performed 3,780
inversions.

4.1.3 Evaluation of performance

In order to evaluate the performance of our algorithms
and to derive acceptance criteria, we define the follow-
ing quantity:

Ẽ2 =
∫∞

0

[

g̃(t) − ĝ(t)
]2 dt

∫∞
0 g̃(t)2dt

(53)

which can be interpreted as a normalized measure of the
distance between the approximate and exact solution.
This is a global indicator of the quality of the inversion.
An alternative would have been to use the relative error
between g̃(t) and ĝ(t). However, since limt→∞ g̃(t) = 0,
this could lead to large relative error even if the abso-
lute difference between the two functions is small. We
are interested in the relationship between this mea-
sure (which is available only when the exact solution
is known) in the coefficient of determination R2 as cal-
culated from Eq. (44). R2 is calculated at the end of
the inversion and it would be interesting to determine
a minimum value for R2 which would lead to an accep-
tance/refusal of the inversion thus obtained.

For both versions of the algorithm, a very strong rela-
tionship has been observed between R2 and Ẽ2. Figure 3
shows, as an example, the correlation between R2 and Ẽ2

for the Self-Consistent scheme for the algorithm where
the thermodynamics restrictions are enforced. The re-
sults for the other cases are not reported here since they
were similar and led to the same conclusions. From this
figure, it seems appropriate to use R2 to accept or reject
an inversion. From these observations, we have set an
acceptance criterion to R2 = 0.9999. Table 1 lists the
maximum and minimum values of Ẽ2 as well as its mean
value and a 95% confidence interval.

The worst value of Ẽ2 is 3.8 × 10−2, obtained for
the Self-consistent scheme when the thermodynamics
restrictions are enforced. For this specific case, the
approximate and exact functions are plotted in Fig. 4.
The results are remarkably good. It can generally be ob-
served that better results occur when thermodynamics
restrictions are not enforced. However, the difference is
not very significant. It can also be observed from Fig. 3
and from the width of the confidence intervals on the
mean value of Ẽ2 in Table 1 that the scatter in the qual-
ity of the inversion is considerable.

Fig. 3 Correlation between R2 and Ẽ2 for the Self-Consistent
scheme for the algorithm where the thermodynamics restrictions
are enforced
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Table 1 Average and extreme values of Ẽ2 obtained for the isotropic materials

Thermo. restrictions not enforced Thermo. restrictions enforced

MT SC Art. MT SC Art.

Max. value 2.9 × 10−2 2.4 × 10−2 2.5 × 10−3 1.91 × 10−2 3.8 × 10−2 1.3 × 10−2

Min. value 3.1 × 10−15 3.0 × 10−15 2.3 × 10−4 3.8 × 10−7 2.5 × 10−7 5.3 × 10−4

Sup. bound 2.6 × 10−4 4.2 × 10−4 1.1 × 10−3 6.3 × 10−4 2.3 × 10−3 2.0 × 10−3

Mean value 2.0 × 10−4 3.4 × 10−4 1.0 × 10−3 5.8 × 10−4 2.0 × 10−3 1.8 × 10−3

Inf. bound 1.4 × 10−4 2.6 × 10−4 1.0 × 10−3 5.2 × 10−4 1.8 × 10−3 1.7 × 10−3

Sup. and Inf. bounds refer to the upper and lower 95% confidence intervals on the mean value. MT refers to the Mori-Tanaka material,
SC to the Self-Consistent and Art. to the artificial material. The confidence intervals for MT and SC are based on 1620 observations and
on 540 for Art

Fig. 4 Comparison between the exact solution and the approx-
imate solution for the largest value of Ẽ2 obtained for the iso-
tropic cases simulated. This curve was obtained for a value of
Ẽ2 = 3.76 × 10−2 for the Self-consistent scheme when the ther-
modynamics restrictions are enforced

It is also of interest to study the influence of the
parameter θ and N on the quality of the inversion.
Tables 2 and 3 list the mean value of the inversions for
different values of θ and N. It should be noted here that
all the inversions were used to generate these estimates
(i.e., even those where R2 < 0.9999). This was done in

order to identify the parameters which are more likely
to lead to an acceptable inversion.

It is difficult to draw conclusions on the value of θ .
From one model to the next, any trends that are appar-
ent can be contradictory. For N, on the other hand, the
trends are more clear. It seems that the worse results
are obtained for 10 or 25 terms in the approximate func-
tion. It would seem that 10 terms, on average, are not
sufficient to capture the behavior of the whole material
with the actual algorithm. On the other hand, the same
reasoning cannot be applied to 25 terms since using 15
or 20 terms leads to better results. For the cases where
the thermodynamics restrictions are not enforced, we
have observed that those cases where 25 terms were
used showed oscillations in the time domain. This is due
to the fact that the gn can take either a positive or a
negative value. As the number of terms in the approx-
imate function increases, the possibility of obtaining
oscillations increases. For algorithms where the ther-
modynamics restrictions are enforced, such reasoning
does not apply and the reasons for this phenomenon are
not clear. One possible explanation is that the optimi-
zation algorithm finds a local optimum rather than an
absolute optimum. As the number of terms increases,

Table 2 Influence of the parameter θ on the quality of the inversion for the isotropic materials

Value of the parameter θ

1
100

5
100

9
100

13
100

17
100

N. enf.
MT (×10−4) 1.1 ± 0.5 0.8 ± 0.3 0.7 ± 0.3 1.5 ± 0.6 5.9 ± 2.7
SC (×10−4) 1.4 ± 0.7 1.8 ± 0.9 2.7 ± 1.2 4.2 ± 1.9 6.9 ± 2.9
Art. (×10−3) 0.68 ± 0.07 0.80 ± 0.08 0.96 ± 0.09 1.2 ± 0.1 1.6 ± 0.1

Enf.
MT (×10−2) 6.6 ± 4.6 3.9 ± 3.0 4.8 ± 4.0 3.9 ± 3.2 3.2 ± 2.2
SC (×10−2) 7.3 ± 4.2 6.7 ± 3.4 3.5 ± 1.8 3.5 ± 2.7 2.0 ± 1.2
Art. (×10−3) 1.4 ± 0.2 8.2 ± 13.1 2.1 ± 0.4 1.9 ± 0.2 2.3 ± 0.2

“N. enf” and “Enf.” refer to algorithms where the thermodynamics restrictions are not and are enforced, respectively. MT refers to the
Mori-Tanaka scheme, “SC” to the Self-Consistent scheme and “Art.” to the artificial material. The results are the mean value of Ẽ2 and
its 95% confidence interval. The confidence intervals for MT and SC are based on 324 observations and on 108 for Art
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Table 3 Influence of the parameter N on the quality of the inversion for the isotropic materials

Number of terms in the approximate function

10 15 20 25

N. enf.
MT (×10−4) 2.1 ± 0.5 0.27 ± 0.08 0.9 ± 0.4 4.7 ± 2.8
SC (×10−3) 1.0 ± 0.3 0.3 ± 0.1 0.04 ± 0.02 0.005 ± 0.004
Art. (×10−3) 1.76 ± 0.07 1.18 ± 0.06 0.73 ± 0.04 0.46 ± 0.02

Enf.
MT (×10−2) 1.8 ± 0.7 0.04 ± 0.006 1.0 ± 1.7 15.0 ± 5.8
SC (×10−2) 16.6 ± 4.6 0.4 ± 0.2 0.22 ± 0.05 1.1 ± 1.8
Art. (×10−3) 7.5 ± 10.4 2.1 ± 0.1 1.9 ± 0.3 1.3 ± 0.2

“N. enf” and “Enf.” refer to algorithms where the thermodynamics restrictions are not and are enforced, respectively. MT refers to the
Mori-Tanaka scheme, “SC” to the Self-consistent scheme and “Art.” to the artificial material. The results are the mean value of Ẽ2 and
its 95% confidence interval. The confidence intervals for MT and SC are based on 405 observations and on 135 for Art

the possibility of finding a local optimum also increases.
This problem is not present with the algorithm where
the thermodynamics restrictions are not enforced since
the optimization problem is linear (i.e. the optimum is
unique). From these observations, it would seem that
using 15 or 20 terms for the approximate function is a
good choice.

We have performed a similar analysis to study the
effect of the contrast (parameters ζ and ω). As for the
parameter θ , it was not possible to draw clear conclu-
sions regarding the influence of these parameters on the
quality of the inversion.

In conclusion, for the isotropic materials studied here,
it would seem appropriate to use R2 ≥ 0.9999 as an
acceptance criteria for the inversion. Algorithm 2 sum-
marizes the required steps.

4.2 Inversions for A and B

4.2.1 Simulations

We have applied our algorithms to the deviatoric part
of the strain localization tensor A and stress concentra-
tion tensor B for the matrix phase for the Mori-Tanaka
Scheme (these tensors are isotropic). The materials used
were the same as described in Sect. 4.1.1 and the sim-
ulations were similar to those described in Sect. 4.1.2:
we performed 8 repetitions per simulation instead of 9.
This led to 1, 440 inversions for each A and B.

The deviatoric part of A0 is of the type:

Ad
0(t) = s1 +

7
∑

i=2

si exp [−tzi] (54)

and the deviatoric part of B0 is of the type:

Bd
0(t) = s1 +

4
∑

i=2

si exp [−tzi] (55)

Algorithm 2 Inversion for isotropy or cubic symmetry
when thermodynamics restrictions are enforced
1: Obtain the permanent and transient parts according to

Eqs. (31).
2: for α, β, γ do
3: repeat
4: for all the Nτ different values of N do
5: Compute the ps according to Algorithm 1 (if required).
6: for all the Nθ different values of θ do
7: Compute the τn according to Equation (37).
8: Solve Equation (40).
9: Compute R2.

10: end for
11: end for
12: until R2 ≥ 0.9999
13: end for

where the si are real constants that can take either neg-
ative or positive values and the zi are positive constants.

4.2.2 Evaluation of performance

We recall that there is no thermodynamics restriction for
these tensors. Therefore, the function can take positive
as well as negative values and exhibit some oscillations.
It was found that R2 ≥ 0.9999 was not a good acceptance
criterion since when it was applied, solutions where Ẽ2

was unacceptable were kept. On the other hand, it was
found that it was a good criterion to reject solutions:
in other words, inversions where R2 < 0.9999 led to
unacceptable values of Ẽ2.

When observing the cases where a solution with an
unacceptable value of Ẽ2 were accepted, it was found
that the approximate and exact functions in the Laplace–
Carson space were almost identical. On the other hand,
in the time domain, the approximate function showed
more oscillations than the exact solution. For illustration

13



purposes, consider the simple function:

f (t) = −a exp[−bt] + c exp[−dt] (56)

where all the constants are positive. The point to where
this function will show oscillation is the point where its
slope is zero (besides at infinity). For this simple case,
this point is:

to = ln[ba] − ln[dc]
b − d

(57)

and depending on the value of the parameters, to can
either be positive or negative. With the same function,
the points po where the slope of its LCT is zero are the
roots of the following equation (this can be obtained by
very simple algebraic manipulations):

cdb2 − abd2 + 2 (bcd − abd) po + (cd − ab) p2
o = 0

(58)

again, depending on the values of the constants, po can
be positive, negative or complex. There is no direct rela-
tionship between to and po and therefore it is possible
to have a to > 0 and po < 0. This can explain why an
acceptable value of R2 could lead to an unacceptable
value of Ẽ2.

For each exact function for which the approximate
function was sought, 20 inversions were performed
(combinations of 5 values of θ and 4 values of N). It was
observed for each exact function being inverted that a
large number of these 20 inversions led to very similar
values of Ẽ2 and these values were very good values. In
other words, our algorithm, almost, leads to an accept-
able solution. The key issue is now how to eliminate the
unacceptable solutions from the acceptable solutions.

Since the acceptable solutions are similar, one possi-
ble way to distinguish them is to compare the following
quantity:

E∞ =
∞
∫

0

(

ĝ(t)
)2 dt =

N
∑

i=1

N
∑

j=1

gigj

τi + τj
(59)

E∞ can be obtained with very simple operations. If one
approximate solution presents some important oscilla-
tions, its value of E∞ will be different from the others.
So, the algorithm here would be to generate a number R

of inversions and compare them to each other and keep
the solutions which are close to each other. To accom-
plish this we defined the following comparison criterion:

�ij =

∣

∣

∣

∣

∣

∣

E∞
i − E∞

j

min
{

E∞
i , E∞

j

}

∣

∣

∣

∣

∣

∣

(60)

Fig. 5 log
[

max
{

Ẽ2
i , Ẽ2

j

}]

as a function of log �ij obtained for A0

Fig. 6 Comparison between the approximate and exact solution
for the transient deviatoric part of B0 for E2 = 4.9 × 10−3

This leads to R(R − 1) −
∑R−1

i=1 i comparisons. Figure 5

shows log
[

max
{

Ẽ2
i , Ẽ2

j

}]

as a function of log �ij for the

results obtained for A0. As can be seen, there is a strong
correlation between these two quantities and this shows
that �ij can be used as an acceptance criterion. We ac-
cepted a solution when �ij ≤ 10−5. A similar plot has
been obtained for B0 and is not reported here.

When this acceptance criterion is applied (in addi-
tion to the first screening with R2), the maximum value
of Ẽ2 we obtained for A0 was 7.0 × 10−4 and for B0 was
4.9 × 10−3. Figure 6 illustrates this last result. It should
be noted that for one case, it was not possible to find an
acceptable solution with this acceptance criterion (after
20 inversions). In that case, using the lowest value of �ij

led to an acceptable result (Ẽ2 = 4.1 × 10−5). The algo-
rithm for these tensors is summarized as Algorithm 3.

As for the homogenized properties, we have con-
ducted an analysis of the influence of the parameters
N and θ as well as the contrast between the phases on
the mean value of Ẽ2 for all the inversions. For both ten-
sors A0 and B0 only the parameter N had a statistically
significant influence on Ẽ2. Table 4 lists these results. All
the simulations were used to compute the mean values.
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Table 4 Effect of the number of terms in the approximate function on the mean value of Ẽ2

Number of terms in the approximate function

Tensor 10 15 20 25

A0 2.5 ± 1.7 × 10−2 4.7 ± 2.6 × 10−4 2.3 ± 1.1 × 10−5 9.9 ± 3.6 × 10−7

B0 4.5 ± 2.1 × 10−2 1.9 ± 1.0 × 10−3 1.2 ± 0.9 × 10−4 5.0 ± 3.1 × 10−6

The tolerance represents a 95% confidence interval. The confidence intervals are based on 360 observations

Algorithm 3 Inversion when thermodynamics restric-
tions are not enforced
1: Obtain the permanent and transient parts according to

Eqs. (31).
2: for all the independent components do
3: repeat
4: for all the Nτ different values of N do
5: Compute the ps according to Algorithm 1 (if required).
6: for all the Nθ different values of θ do
7: Compute the τn according to Eq. (37).
8: Solve Equation (38).
9: Compute R2 and E∞.

10: if R2 ≥ 0.9999 then
11: Store E∞ for this inversion.
12: Compute �ij for this new inversion with all the

other inversions stored at the preceeding steps.
13: end if
14: end for
15: end for
16: until �ij ≤ 10−5

17: end for

Again, it can be observed from Table 4 that the scat-
ter in the results is considerable since it leads to large
confidence intervals with respect to the mean value. It
should be noted that such an algorithm could be applied
to the homogenized properties of isotropic materials
when the thermodynamics restrictions are not enforced.
Even though it was observed for the cases simulated
that R2 ≥ 0.9999 is a relevant acceptance criterion, using
Algorithm 3 would diminish the possibility of accepting
an over-oscillating solution.

It should also be noted that this algorithm requires
many operations. The most computationally demand-
ing is the determination of the ps since it is a nonlinear
process. Computing the gn is equivalent to solving an
N × N linear system of equations which can be solved
very efficiently. So, once the ps are obtained, generating
many inversions by varying θ can be done in a very short
execution time.

4.3 Inversions for transverse isotropic tensors

4.3.1 Simulations

As stated in Sect. 2.3.2, the parameters δ and δ′ have the
same restrictions as the scalars used in the short hand

notation for isotropic tensors. Since we already devel-
oped and tested algorithms for similar components, δ

and δ′ were not tested here. The algorithms are then
tested only on the parameters α, β and γ since they are
related to each other.

We have simulated artificial homogenized materials
in order to test our algorithms. We have used materials
where the transient part was described with five trans-
versly isotropic tensors multiplying a decaying exponen-
tial, as in Eq. (39). We have generated the following
functions:

α(t) =
5
∑

i=1

si exp[−τit]

β(t) =
5
∑

i=1

zi exp[−τit] (61)

γ (t) =
3
∑

i=1

wi exp[−τit] +
5
∑

i=4

vi exp[−τit]

where si and zi are random numbers between 0 and
50.0, wi are random numbers between 0 and

√
sizi, vi

are random numbers between −√
sizi and

√
sizi and τi

are randomly distributed, on a log scale, between 0.01
and 100.0.

We have tested 40 different materials and used the
same θ and N parameters as in the case of isotropy.

4.3.2 Performance when the thermodynamics

restrictions are not enforced

We have applied the same acceptance criteria as devel-
oped for the tensors A(t) and B(t) for each of α̂, β̂ and
γ̂ . In total, 3 × 40 × 4 × 5 = 2, 400 separate inversions
were performed. The worst value of Ẽ2 accepted (after
the acceptance criterion as described at Algorithm 3)
was 4.56 × 10−3 (obtained for α(t)). A plot of this latter
inversion leads to a graph of comparable accuracy as
that of Fig. 6 and is not reported here.

As for the tensors A(t) and B(t), the number of terms
in the approximate function has a significant influence
on the quality of the inversion. This result could be ex-
pected since the shape of the exact function in both cases
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Table 5 Effect of the number of terms in the approximate func-
tion on the mean value of Ẽ2 for the a transversely isotropic mate-

rial where the thermodynamics restrictions are not enforced. The
tolerance represents a 95% confidence interval. The confidence
intervals are based on 200 observations

Number of terms in the approximate function

Component 10 15 20 25

α 4.9 ± 1.1 × 10−4 8.8 ± 3.1 × 10−6 1.7 ± 0.9 × 10−7 6.6 ± 1.5 × 10−8

β 5.4 ± 1.8 × 10−4 7.0 ± 2.7 × 10−6 1.3 ± 0.4 × 10−8 7.0 ± 1.4 × 10−8

γ 3.6 ± 1.2 × 10−3 1.2 ± 0.6 × 10−4 8.3 ± 7.4 × 10−6 3.6 ± 2.9 × 10−7

Table 6 Effect of the parameter θ on the mean value of Ẽ2 for a transversely isotropic material where the thermodynamics restrictions
are not enforced

Value of the parameter θ

Component 1/100 5/100 9/100 13/100 17/100

α(×10−4) 2.2 ± 1.0 1.5 ± 0.8 1.1 ± 0.7 0.8 ± 0.5 0.6 ± 0.3
β(×10−4) 3.1 ± 1.9 1.8 ± 1.2 1.0 ± 0.6 0.6 ± 0.3 0.4 ± 0.2
γ (×10−3) 1.6 ± 0.9 1.0 ± 0.8 0.8 ± 0.7 0.7 ± 0.6 0.6 ± 0.5

The tolerance represents a 95% confidence interval. The confidence intervals are based on 160 observations

is very similar. Table 5 lists the results. Again, the scatter
in the results is considerable.

We have also observed that the parameter θ , in these
cases, had a statistically significant influence on the
quality of the inversion for the parameters α and β but
not for γ . Table 6 lists these results. All the simulations
were used to compute the mean values.

4.3.3 Performance when the thermodynamics

restrictions are enforced

For this algorithm, it was not possible to obtain inver-
sions where R2 was superior to 0.9999 simultaneously for
all of α, β and γ , for all the 40 materials we have tested.
This suggests that the quality of the inversion for this
algorithm should be less than for the algorithm where
the thermodynamics restrictions were not enforced.

In order to accept a solution, we relaxed our toler-
ance on the value of R2 by rejecting inversions where
R2 was not superior to 0.999 simultaneously for all α,
β and γ . Then, as we have done for tensors A and B,
we only kept those solutions where �ij ≤ 10−2 for the
parameter γ . Then, from the remaining solutions, the
solution where the minimum value of R2 for α, β and
γ was the largest (for a given material) was chosen as
the final solution. Algorithm 4 lists the steps we have
followed.

When this process was applied, it was not possible to
obtain a solution for 3 of the 40 materials. It is possible
that performing more inversions for the same
material (using more values for θ or N) could have
improved the results. The largest value of Ẽ2 accepted

Algorithm 4 Inversion for transverse isotropy when the
thermodynamics restrictions are enforced
1: Obtain the permanent and transient parts according to

Eqs. (31).
2: for δ, δ′ do
3: Perform the inversion as per Algorithm 2.
4: end for
5: for all the Nτ different values of N do
6: Compute the ps according to Algorithm 1 (if required) for

α, β and γ .
7: for all the Nθ different values of θ do
8: Compute τmin and τmax according to Eq. (45).
9: Compute the τn according to Equation (37).

10: Solve Equation (46).
11: Compute R2 and E∞.
12: end for
13: end for
14: for all the Nτ × Nθ inversions do
15: Keep the inversions for which R2 ≥ 0.999 simultaneously

for α, β and γ .
16: end for
17: for the γ component of all the remaining inversions do
18: Keep the inversions for which �ij ≤ 10−2.
19: end for
20: Select as a solution the inversion for which the lowest value

of R2 associated with α, β and γ is the largest.

with this process was 0.13 (obtained for α), which is
quite large in comparison to the values obtained before.
Figure 7 shows an example of the difference between the
exact and approximate function that can be
obtained.

It was found that the parameter θ did not have a
statistically significant influence on the quality of the in-
version. On the other hand, the number of terms in the
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Fig. 7 Comparison between the approximate and exact func-
tions for γ for Ẽ2 = 5.4 × 10−2 for a transversly isotropic material
when the thermodynamics restrictions are enforced

approximate function had a statistically significant in-
fluence. This influence is, however, less important than
the one observed for the other cases studied so far.
Table 7 lists these results. All the simulations were used
to compute the mean values.

4.4 Inversions for anisotropic tensors

4.4.1 Simulations

We have generated artificial anisotropic materials from
Eqs. (14–16). We have simulated materials obeying the
general form of Eq. (39) with 5 terms. The τn of Eq. (39)
were randomly distributed, on a log scale, between 0.01
and 100.0. The θi of Eq. (15) were randomly generated
between 0 and 2π . The diagonal components of the ma-
trix D of Eq. (14) were random numbers between 0
and 100.

We have generated 20 different anisotropic materi-
als. Since each of the 21 components is treated indepen-
dently, we have in fact applied the algorithm to 420 1D
materials.

4.4.2 Evaluation of performance

We have applied Alogorithm 3 to all the 420 1D mate-
rials. In total, it was not possible to obtain a solution for
4 materials out of the 420 with the selection criteria of
Algorithm 3. However, for these four cases, selecting the
lowest value of �ij led to acceptable results. The maxi-
mum value of Ẽ2 accepted was Ẽ2 = 1.2 × 10−2, which
is acceptable (we have already shown plots for similar
values of Ẽ2).

As for the other algorithms, it was found that the
number of terms in the approximate function had a sta-
tistically significant influence on the value of Ẽ2. Table 8
lists the results. It was also found that the parameter θ

had a statistically significant influence on the value of Ẽ2.
However, this influence is not very strong. Table 9 lists
the results. All the simulations were used to compute
the mean values.

5 Discussion and conclusion

We have developed algorithms inverting the Laplace–
Carson transforms involved in the homogenization of
viscoelastic materials. The algorithms introduce accep-
tance criteria for the inversions and thus lead to solutions
of very good quality. This is a major improvement on
previously existing algorithms. We have also introduced
algorithms which allow homogenized properties to be
obtained whilst meeting the thermodynamics require-

Table 7 Effect of the number of terms in the approximate function on the mean value of the sum of Ẽ2 associated with α, β and γ for
the a transversely isotropic material where the thermodynamics restrictions are enforced

Number of terms in the approximate function

Component 10 15 20 25

α + β + γ (×10−2) 3.9 ± 1.3 2.1 ± 0.7 2.0 ± 0.4 2.1 ± 0.5

The tolerance represents a 95% confidence interval. The confidence intervals are based on 200 observations

Table 8 Effect of the number of terms in the approximate function on the mean value of Ẽ2 for the anisotropic materials where the
thermodynamics restrictions are not enforced

Number of terms in the approximate function

10 15 20 25

1.6 ± 0.5 × 10−2 5.5 ± 1.8 × 10−4 5.6 ± 2.5 × 10−5 3.6 ± 3.0 × 10−5

The tolerance represents a 95% confidence interval. The confidence intervals are based on 2, 100 observations
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Table 9 Effect of the parameter θ on the mean value of Ẽ2 for the anisotropic materials where the thermodynamics restrictions are not
enforced

Value of the parameter θ

1
100

5
100

9
100

13
100

17
100

(×10−3) (×10−3) (×10−3) (×10−3) (×10−3)

9.2 ± 5.3 5.4 ± 3.1 3.3 ± 1.9 2.0 ± 1.2 1.3 ± 0.7

The tolerance represents a 95% confidence interval. The confidence intervals are based on 1, 680 observations

ments. This is another improvement on previous algo-
rithms.

We have tested our algorithms on different homog-
enization schemes and on different materials. For all
the algorithms where thermodynamics restrictions were
not enforced, we obtained very good results. We also
obtained very good results for isotropic materials where
the thermodynamics restrictions were enforced. How-
ever, we obtained results that were only acceptable for
the transversely isotropic materials we have tested. This
might be due to the fact that the algorithm involves a
nonlinear optimization problem where the number of
variables is quite important. The quality of the inver-
sion depends on the optimization algorithm used. It can
be expected that such problems will be amplified for
anisotropic materials where the number of variables to
optimize is considerable. The choice of the best optimi-
zation algorithm for this class of problems has not been
studied in this paper. This matter should be studied if
our current algorithms enforcing the thermodynamics
restrictions are to be improved.

The algorithms suggested in this paper depend on two
parameters: N, the number of terms in the approximate
function and θ , which controls the range over which the
characteristic times (i.e. the τn) are distributed. For all
the cases we have studied, it was found that N had a
significant influence on the quality of the inversion and
usually, a larger N led to better results. It was found,
however, in some situations that using 25 terms in the
approximate function can lead to a large number of
oscillations and therefore to bad results. Based on our
observations, it would seem that N ∈ [15, 20] is a good
choice. It was observed for the parameter θ that, in some
circumstances, it had an influence on the quality of the
inversion and in some other cases it had not. Therefore,
based on our observations, it is not possible to draw
conclusions regarding the influence of this parameter.
The parameter θ can then be interpreted as a statisti-
cal variable which allow inversions to be generated (for
the same material) from which acceptable solutions are
chosen.

It should be recalled that the algorithms developed
here are based on the assumption that the transient part

of exact function vanished at infinity. If this condition
is not met, then our algorithms will fail to find appro-
priate solutions. In order to treat such cases with our
algorithms, it would be necessary to change the form of
the approximate function. This could also be done in
future work.

Finally, it should be pointed out that the scatter in
the quality of the inversion was important for each case
tested in this paper. We have obtained good results with
the acceptance criteria we have defined. Although it
would seem to be rare, considering the amount of testing
we have conducted, it could be possible that an unac-
ceptable solution be accepted with our algorithms. This
is a limitation of the work presented in this paper.
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