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SUMMARY

Background—Accurate non-invasive prediction of long-term hepatocellular carcinoma (HCC) 

risk in advanced liver fibrosis is urgently needed for cost-effective HCC screening; however, this 

currently remains an unmet need.

Methods—A serum-protein-based prognostic liver secretome signature (PLSec) was 

bioinformatically derived from previously validated hepatic transcriptome signatures and 

optimized in 79 patients with advanced liver fibrosis. We independently validated PLSec for HCC 

risk in 331 cirrhosis patients with mixed etiologies (validation set 1 [V1]) and thereafter developed 

a score with clinical prognostic variables. The score was then validated in two independent 

cohorts: validation set 2 (V2): 164 patients with advanced liver fibrosis due to hepatitis C virus 

(HCV) infection cured after direct-acting antiviral therapy; validation set 3 (V3): 146 patients with 

advanced liver fibrosis with successfully-treated HCC and cured HCV infection.

Findings—An 8-protein blood-based PLSec recapitulated transcriptome-based hepatic HCC 

risk status. In V1, PLSec was significantly associated with incident HCC risk (adjusted hazard 

ratio [aHR], 2.35; 95% confidence interval [CI], 1.30–4.23). A composite score with serum 

alpha-fetoprotein (PLSec-AFP) was defined in V1, and validated in V2 (adjusted odds ratio, 

3.80 [95%CI, 1.66–8.66]) and V3 (aHR, 3.08 [95%CI, 1.78–5.31]; c-index, 0.74). PLSec-AFP 

outperformed AFP alone (Brier score, 0.165 vs. 0.186 in V2; 0.196 vs. 0.206 in V3, respectively).

Conclusions—The blood-based PLSec-AFP can accurately stratify patients with advanced liver 

fibrosis for long-term HCC risk and thereby guide risk-based tailored HCC screening.

Graphical Abstract
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eTOC blurb

Fujiwara et al. developed a computational pipeline to translate tissue transcriptome to secretome 

signature, named TexSEC. TexSEC identified an 8-protein serum-based secretome signature 

predictive of liver cancer risk in patients with advanced liver fibrosis, which was validated in 

three independent cohorts with various clinical scenarios.

INTRODUCTION

Cirrhosis, the terminal stage of progressive liver fibrosis from viral and metabolic etiologies, 

affects 1–2% of the global population and leads to 1.32 million deaths annually with 

a 15% increase over the past decade.1,2 Reducing cirrhosis-related death was recently 

identified as a high priority in the Healthy People 2030 Initiative (health.gov/healthypeople). 

Hepatocellular carcinoma (HCC) is a major life-limiting complication of cirrhosis and 

represents the fastest-rising cause of cancer-related death in the U.S. and the fourth most 

common cancer mortality worldwide.3 Therapeutic clearance of hepatitis viruses does not 

eliminate HCC risk when advanced fibrosis is present, and there is no treatment for an 

emerging metabolic HCC etiology, non-alcoholic fatty liver disease (NAFLD).1

Given the strong association between early detection and improved survival, professional 

society guidelines recommend semi-annual HCC screening in all patients with advanced 

liver fibrosis and cirrhosis.4 However, with this “one-size-fits-all” strategy, the large at­

risk patient population overburdens limited medical resources, as evidenced by the low 

utilization of HCC screening (<25%).5 As a consequence, the majority of HCCs are 
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diagnosed at late stages, not amenable to curative treatment, which accounts for its overall 

poor prognosis (5-year survival <15%). Thus, precise prediction of future HCC risk could 

enable more effective HCC screening by identifying a subset of cirrhosis patients at higher 

HCC risk and allocating limited resources to high-risk patients.6

We previously identified and validated a hepatic-transcriptome-based Prognostic Liver 

Signature (PLS) that predicts long-term HCC risk in patients with cirrhosis across major 

liver disease etiologies and guides discovery of novel HCC chemoprevention strategies.7–13 

Despite the confirmed prognostic capability of the signature, the need for liver biopsy 

limits its widespread use in clinical practice. To address this important and long-standing 

challenge, we aimed to develop a blood-based surrogate of PLS, Prognostic Liver 

Secretome signature (PLSec), using our integrative bioinformatics pipeline to translate tissue 

transcriptome signatures into secretome markers, and externally validate its clinical utility 

in three independent patient cohorts that represent the major clinical scenarios of HCC risk 

prediction.

RESULTS

Computational pipeline to translate a gene signature to secretome signature

Transcriptome profiling of diseased organ tissue has been widely used as the first step 

to reliably identify pathogenic and prognostic molecular dysregulation. However, the need 

for invasive tissue biopsy generally limits its clinical applicability. On the other hand, 

direct biomarker discovery in circulation obscures the source organ that releases the 

biomolecules. To overcome the challenge and enable less-invasive monitoring of organ­

specific biological dysregulation, we developed a computational pipeline to systematically 

translate a tissue-transcriptome-based molecular signature into a list of proteins inferred to 

be released into circulation from an organ of interest, named Translation of gene expression 

to SECretome (TexSEC) (www.texsec-app.org). Briefly, this pipeline consists of two parts: 

(i) assembled proteome databases with an algorithm to infer organ specificity of proteins in 

circulation and (ii) a list of genes (i.e., gene signature) specific to a disease context. For (i), 

we integrated proteome databases that complementarily cover bioinformatically-predicted 

secretable proteins as well as empirically detected proteins in human body fluids. For (ii), 

we used our previously defined tissue-based PLS as well as proteins in associated molecular 

pathways (Data S1). By taking intersection of (i) and (ii), we derived prognostic liver 

secretome biomarker candidates. See STAR Methods and Supplementary Methods for the 

details.

Derivation of PLSec as a blood-based long-term HCC risk biomarker

Our computational pipeline identified 43 candidate serum proteins, for which validated 

antibodies are available for quantitative multiplex assessment (Figure 1). This preliminary 

panel included proteins that were previously reported as potential HCC risk biomarkers, e.g., 

interleukin 6 (IL-6), osteopontin, and midkine,14–16 supporting the validity of our unbiased 

secretome biomarker derivation pipeline. Based on association with the prognostic tissue 

transcriptome and the least information redundancy among the probes in the optimization 

set, we ultimately selected 6 high-risk-associated serum proteins, including vascular cell 
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adhesion molecule 1 (VCAM-1), insulin-like growth factor-binding protein 7 (IGFBP-7), 

gp130, matrilysin, IL-6, and C-C motif chemokine ligand 21 (CCL-21), and 2 low-risk­

associated serum proteins, including angiogenin and protein S. We observed high within­

plate reproducibility (r2 = 0.9997, p = 1.1×10-11), inter-plate/batch reproducibility (r2 = 

0.971, p = 7.7×10-6) of technical replicates, and sensitivity for positive control proteins 

(99.9% ± 2.5%), supporting the assay reliability as a clinical test. The normalized protein 

abundance measurements were converted into an aggregated score, named PLSec, and a 

cut-off of ≥4 was defined to identify patients with a high-risk prediction in the optimization 

set (See STAR Methods and Supplementary Methods for details). PLSec recapitulated 

93% of dysregulated molecular pathways and all involved cell types associated with the 

original tissue transcriptome signatures (Data S1), indicating that PLSec conveys equivalent 

biological information as the PLS.

Validation of PLSec assay in validation set 1: Incident HCC risk in patients with cirrhosis

Among 331 cirrhosis patients from various etiologies, PLSec was significantly associated 

with incident HCC (adjusted hazard ratio [aHR], 2.35; 95% confidence interval [CI], 1.30–

4.23, p=0.004) (Figure 2A, 2B; Figure S1A). The association with HCC risk remained 

similar when death and liver transplantation were considered as competing risks (adjusted 

sub-distribution HR, 1.91; 95% CI, 1.07–3.41). Annual HCC incidence rates in low-risk 

(n=208) and high-risk (n=123) patients were 1.5 and 3.6 per 100 person-years, respectively. 

HCC incidence at 5 and 10 years were 6.2% and 15.7% among low-risk patients, compared 

to 19.5% and 23.9% among high-risk patients, respectively.

Derivation of PLSec-AFP score in validation set 1

Among available clinical variables, AFP was also associated with HCC risk (aHR, 1.38; 

95% CI, 1.14–1.68) independent of PLSec (Table S1), consistent with evidence that AFP 

can be a future HCC risk marker (reflecting chronic hepatocyte injury and proliferation 

without HCC),17 especially after HCV cure1, as well as early detection marker.4 If elevated 

AFP is attributable to presence of malignant cells which are still clinically undetectable, it 

is expected that the very early subclinical HCC nodule grows and becomes detectable in 

a few years given the anticipated tumor doubling time around 5 months.18 In this cohort, 

proportion of HCC incidence is consistent throughout the 17 years of follow up irrespective 

of AFP levels, suggesting that AFP elevation in this cohort is more likely attributable to 

carcinogenesis-permissive hepatic tissue microenvironment (so-called “field effect”) rather 

than undetectable subclinical tumor (Figure S1B). High-risk PLSec was associated with 

HCC risk even in patients with low AFP (<5ng/mL) (n = 199, aHR, 3.49, 95% CI, 1.40–

8.72). The aHRs of high AFP (≥5ng/mL) for viral and non-viral etiologies were 1.52 

(95% CI, 0.64–3.61) and 3.50 (95% CI, 1.34–9.12), respectively. By incorporating AFP, 

we developed an integrated PLSec-AFP score (see STAR Methods, Figure S1C; Table S2), 

which was significantly associated with HCC risk (aHR, 2.71, 95% CI;1.69–4.33, p<0.001) 

and demonstrated better predictive performance than either variable alone (c-indices for 

PLSec-AFP, PLSec, and AFP were 0.73, 0.69, and 0.66, respectively) (Figure 2C; Table 2).

Subsequently, we defined a cut-off of 1.66 to classify low- vs. high-risk. Annual HCC 

incidence rates in low-risk (n=252) and high-risk (n=79) patients were 1.5 and 4.8 per 
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100 person-years, respectively. HCC incidence rates at 5 and 10 years were 8.8% and 

15.2% among low-risk patients, respectively, compared to 18.1% and 32.7% among high­

risk patients (aHR, 3.01, 95% CI;1.64–5.51, p<0.001, Figure 2D). PLSec-AFP was well­

calibrated over time (Figure 2E) and showed robust prognostic association after adjustment 

for other clinical variables (Table S3). Subgroup analyses suggested enhanced magnitude 

of association in patients with early-stage, i.e., compensated liver disease (Child-Pugh class 

A) as well as NAFLD or cryptogenic etiology (often associated with history of NAFLD19), 

a patient population in greatest need of HCC risk stratification (Figure 2F). We observed 

modest prognostic association in patients with active HCV infection, a vanishing population 

with widespread direct-acting antivirals (DAA) use. These data collectively supported 

successful independent validation of PLSec and warranted further validation of PLSec-AFP.

Validation set 2: Incident HCC risk after HCV cure

In contrast to the decrease of patients with active HCV infection, HCV-cured patients are 

sharply increasing. In this nested case-control series of patients after sustained virologic 

response (SVR) achievement (Table 1; Figure 3A), high-risk PLSec-AFP was significantly 

associated with future HCC occurrence (adjusted odds ratio [aOR], 3.80; 95% CI, 1.66–

8.66, p=0.002) (Figure 3B; Table S3 and S4). The association remained significant in 

the subset of patients with cirrhosis (aOR, 3.12; 95% CI, 1.27–7.65). Overall sensitivity 

and specificity of PLSec-AFP for long-term HCC risk were 56% and 72%, respectively. 

PLSec-AFP showed stable sensitivity and specificity and consistently improved prognostic 

association compared to AFP alone (time-dependent AUC is approximately 0.70 over time) 

(Figure 3C; Figure S1D). Additionally, PLSec-AFP showed better model performance and 

fitness compared to AFP alone (Brier score, 0.165 vs. 0.186; Akaike information criterion 

[AIC], 104 vs. 114; Bayesian information criterion [BIC], 106 vs. 116 for PLSec-AFP and 

AFP, respectively) (Table 2). Previous clinical studies reported the annual HCC incidence 

rate is 1% to 2% in cirrhosis patients after achieving SVR with DAA therapy, and 2% to 

3.5% in cirrhosis patients with a high FIB-4 index, a clinical indicator of liver fibrosis.20–22 

Based on results in the validation set 2, high-risk PLSec-AFP was estimated to identify a 

subgroup of patients with approximately 3-fold higher annual HCC incidence rate, up to 7% 

of the group (Figure 3D).

Among analyzed patients, time-series PLSec assessment was performed in 11 patients 

(5 cases and 6 controls) (Figure 3E). PLSec significantly declined after treatment in the 

controls, whereas it remained stably elevated among the cases, suggesting that the kinetic 

change of molecular HCC risk status measured by PLSec may also be used to monitor 

prognostic efficacy of anti-HCV or chemoprevention therapies.

Validation set 3: de novo HCC recurrence after complete HCC treatment response and HCV 
cure

DAA therapy is increasingly considered in conjunction with curative HCC treatment 

because of an observed survival benefit.23 However, these patients remain at risk of de 
novo HCC recurrence (i.e., newly initiated HCC in remnant diseased liver clonally unrelated 

to the initially treated tumor) 20,24 and therefore need HCC risk prediction. We evaluated 

PLSec-AFP in a cohort of 146 patients with history of treated HCC, with confirmed 
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complete response, and SVR after DAA therapy (Table 1; Figure 4A, 4B). At time of PLSec­

AFP assessment, patients were recurrence-free for a median of 1.5 years, indicating that 

observed HCC incidences during the follow-up were more likely de novo recurrence. High­

risk PLSec-AFP showed a significant association with recurrence (aHR, 3.08; 95% CI, 1.78–

5.31; p<0.001) (Table 2). The association remained significant in the subset of patients with 

cirrhosis (aHR, 3.44; 95% CI, 1.86–6.36), whereas presence of cirrhosis was not associated 

with HCC recurrence (aHR, 0.88, 95% CI, 0.46–1.68). Cumulative incidences of recurrent 

HCC at 1 and 3 years were 18.5% and 30.8% among 104 low-risk patients, and 38.2% 

and 69.7% among 42 high-risk patients, respectively (Figure 4C). Prognostic association 

and model fitness for PLSec-AFP were superior to AFP alone (integrated Brier score, 0.196 

vs. 0.206; c-index, 0.74 vs. 0.64; AIC, 590 vs. 602; BIC, 592 vs. 605 for PLSec-AFP and 

AFP, respectively) (Table 2; Figure S1E). Time-dependent AUC showed stably superior 

prognostic performance of PLSec-AFP over time (Figure 4D). Both high-risk PLSec-AFP 

and high AFP were comparably well calibrated (Figure 4E; Figure S1F). Interestingly, 

when DAA therapy was initiated >1 year after HCC cure, high-risk PLSec-AFP showed an 

enhanced association with recurrent HCC (aHR, 7.32; 95% CI, 2.86–18.8) (Figure S1G).

DISCUSSION

The rapid increase in the number of patients with NAFLD and cured HCV25 has created 

a pressing need for stratifying the vast patient population based on long-term HCC risk 

because their HCC incidence is relatively low. Long-term HCC risk biomarkers may 

identify those who benefit most from close monitoring for disease progression and emerging 

chemopreventive interventions.1,26,27 Our previous simulation-based study showed that 

HCC-risk-biomarker-based stratified HCC screening prolongs overall survival with minimal 

increase in net medical care costs when the biomarker identifies two-fold or higher HCC 

risk,6 which was achieved by our PLSec-AFP in this study. Furthermore, PLSec-AFP also 

predicts recurrence after curative HCC treatment. Such upfront risk stratification will enable 

individual-risk-based personalized HCC screening by guiding allocation of the limited 

medical resources for the semi-annual HCC screening (that accommodate only <25% of 

the guideline-recommended target patient population for the HCC screening5) to a subset 

of patients with elevated HCC risk. Moreover, the PLSec-based high-risk patients will 

be the rational target for HCC screening with new high-performance modalities (e.g., 

circulating cell-free methylated DNA associated with HCC occurrence within 8 months28) 

to improve early tumor detection and prolong patient survival. In fact, our previous Markov 

model-based simulation study demonstrated that such individual-risk-based personalized 

HCC screening strategies are substantially more cost-effective compared to the current 

“one-size-fits-all” HCC screening.6

Identification of low-risk patients is also important to avoid cancer screening with low 

likelihood of benefit given potential physical, psychological, and financial harms.29 PLSec­

AFP is a continuous score with linear correlation with time to incident HCC, and therefore 

a cut-off to define such distinctly low-risk patients should be explored in future clinical 

studies. Indeed, among patients within the lowest quintile of PLSec-AFP in the validation set 

1, annual HCC incidence rate was only 0.6% - well below the cost-effectiveness threshold 

from prior decision analyses.6,30
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There is also increased interest in HCC chemoprevention using generic agents such as 

aspirin and statins1. PLSec-AFP can refine assessment of risk-benefit ratio for these drugs, 

which can cause adverse events such as bleeding and hepatotoxicity, according to individual 

HCC risk. HCC chemoprevention clinical trials can also be made time- and cost-efficient 

by identifying and enrolling only high-risk patients using PLSec-AFP. Moreover, given 

that PLS can be therapeutically modulated,10,13 PLS/PLSec could also be considered 

as surrogate endpoints for HCC chemoprevention trials to estimate long-term prognostic 

benefit of the experimental therapies. This concept has been sought in our ongoing and 

planned trials with PLS/PLSec as companion biomarkers (NCT02273362, NCT04172779).

Several proteins in the PLSec have been acknowledged for their potential roles in 

hepatocarcinogenesis, and may serve as rational chemoprevention targets to be monitored by 

PLSec. For example, IL-6 has been known as an HCC driver, which is detectable in serum.31 

Soluble gp130 is a natural inhibitor of IL-6 signaling, but paradoxically associated with 

progressive liver disease in patients.32 Its association with elevated HCC risk may indicate 

counteracting response to activated IL-6 pathway. Soluble VCAM-1 is a chemotactic factor 

in the liver and associated with severity of chronic liver disease.33 CCL-21 is a member of 

the molecular signature of the ectopic lymphoid structure, which serves as micro-niches for 

hepatocarcinogenesis.34

In summary, our PLSec-based score shows the utility of individual-prognostic-risk­

based management of patients with advanced liver fibrosis for cost-effective care and 

transformative improvement of patient prognosis. This has a significant clinical and medical 

economic impact given the high prevalence of liver fibrosis and HCC that affect 1.5 billion 

people and account for 3.5% of all deaths globally.2,25 It also promises to introduce a 

precision-medicine approach to chronic liver disease management. Furthermore, our generic 

pipeline of translating prognostic tissue transcriptome signatures into surrogate circulating 

markers can facilitate non-invasive prognostic molecular biomarker discovery in other 

diseases.

Limitations of Study

Despite our promising results, we acknowledge several limitations. First, besides cured 

HCV, dedicated evaluation in patients with other major HCC etiologies, NAFLD and HBV 

infection, should be pursued in future studies. Second, previous studies have reported 

association of advanced fibrosis with post-SVR HCC risk.21,22 It is of interest to assess 

its joint prognostic performance with PLSec in future studies. Third, prospective evaluation 

of the PLSec-AFP-based risk-stratified HCC screening is still needed. Fourth, the time­

series PLSec assessment for its dynamic change over time warrants future evaluation 

in larger cohorts to further understanding of natural history of chronic liver disease and 

response to therapeutic intervention. Finally, we leveraged the PRoBE design with archived 

specimens,35 therefore other potential risk stratification variables/biomarkers were not 

available for comparison.
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STAR METHODS

RESOURCE AVAILABILITY

Lead Contact—Further information and requests for resources should be directed to and 

will be fulfilled by the Lead Contact, Yujin Hoshida (Yujin.Hoshida@UTSouthwestern.edu).

Materials Availability—This study did not generate new unique reagents.

Data and Code Availability—Serum protein abundance data are available from 

Mendeley Data at http://dx.doi.org/10.17632/5r7c48xkbw.1. The R codes for Gene Set 

Enrichment Index based on single-sample-based signature enrichment analysis (eseach 

algorithm)10 and TexSEC are available from the corresponding author upon reasonable 

request. The research team will provide an email address for communication once the 

information sharing is approved. The proposal should include detailed aims, statistical plan, 

and other information/materials to guarantee the rationality of requirement and the security 

of the data. The related patient data will be shared after review and approval of the submitted 

proposal and any related requested materials. Of note, data with patient names and other 

identifiers cannot be shared.

EXPERIMENTAL MODEL AND SUJECT DETAILS

Analysis of archived de-identified samples and clinical information was approved as an 

exempt study (category 4) by the institutional review board (approval numbers: STU 

062018–058, STU 082017–013).

Optimization set for PLSec—PLSec was optimized based on recapitulation of 

prognostic hepatic transcriptome and the least redundant information among the protein 

probes defined by the least absolute shrinkage and selection operator algorithm36 in a 

cohort of 79 chronic hepatitis/cirrhosis patients from our previous study7 (optimization set) 

(please refer to Supplementary Methods). The serum samples were collected approximately 

3 months (median 92 [IQR 75–107] days) after HCC resection to minimize the influence of 

surgical procedure and proteins released from HCC tumor. Late recurrence was defined as 

HCC tumor recurrence 2 years after the surgical resection of the primary HCC, which was 

shown to be clonally independent in our previous study.7 The follow-up time was defined as 

the interval between the date of blood collection and the primary endpoints (late recurrence) 

or the last observation date without the clinical events. For the time-to-HCC recurrence 

analyses, death without HCC recurrence was handled as a censoring.

Patients for validation of PLSec and a construction of PLSec-AFP—The 

optimized PLSec was first validated in an independent cohort of cirrhosis patients 

(validation set 1, cohort study) for its association with HCC risk. Subsequently, we 

developed a composite score with other clinical variables associated with HCC risk, 

which was further validated in two independent cohorts (validation set 2 [nested case­

control series] and 3 [cohort study]) (Figure 1; Table 1), utilizing a prospective specimen 

collection, retrospective blinded evaluation (PRoBE) design.35 HCC was diagnosed based on 

histological or imaging-based examinations according to practice guidelines.4,37
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Validation set 1 (prospective–retrospective cohort):  A total of 331 cirrhosis patients 

with mixed etiologies were consecutively and prospectively enrolled at University of 

Michigan between January 2004 and September 2006, and regularly followed up using 

ultrasonography with AFP every 6 months for incident HCC for a median of 4.5 years 

(IQR, 1.9–11.4 years). During the clinical follow-up, 46 patients developed HCC. Time 

to HCC development was defined as the interval between the dates of PLSec assessment 

and HCC diagnosis or the last follow-up or death as a censored observation. HCC 

was diagnosed based on histological or imaging-based (contrast-enhanced multiphase 

CT and/or MRI) examinations according to the American Association of the Study of 

Liver Disease (AASLD) practice guideline.4 Liver disease etiology was defined for each 

patient following the AASLD guidelines (www.aasld.org/publications/practice-guidelines). 

Diagnosis of cirrhosis was based on liver histology or clinical-, laboratory-, and/or imaging­

based evidence. Obesity was defined as body mass index (BMI) ≥ 30 kg/m2 according to 

WHO criteria.38 Diabetes was based on medical history or a 75-gram oral glucose tolerance 

test. Active hazardous alcohol drinking was defined as alcohol consumption of ≥ 48 grams 

per day for men and ≥ 24 grams per day for women.39

Validation sets for PLSec-AFP

Validation set 2 (nested case-control series):  A total of 1,705 patients were consecutively 

treated with DAA for chronic hepatitis C and achieved SVR, defined as no HCV RNA 

detection at 24 weeks after DAA treatment, at Toranomon Hospital, Tokyo between 

September 2014 and October 2017.40 Serum samples collected at 4 weeks after DAA 

treatment completion from 1,688 patients were available for the PLSec assessment. All 

patients were regularly screened for incident HCC with ultrasonography along with AFP and 

des-gamma-carboxy prothrombin every 3–6 months after completion of DAA treatment. 

Time to HCC development was defined as the interval between the dates of PLSec 

assessment and HCC diagnosis or the last follow-up or death as a censored observation. 

During a median follow-up of 4.3 years (IQR, 4.0–4.6 years), 41 patients developed 

HCC and were designated as cases. From the rest of the patients, 123 patients were 

selected as controls (HCC-free for at least 3.7 years) using the propensity score matching 

for age at DAA initiation, sex, and presence of cirrhosis using MatchIt R package (1:3 

matching) (Table 1). HCC diagnosis was based on the Japan Society for Hepatology practice 

guidelines.37 Obesity was defined as BMI ≥ 25 kg/m2 according to the Asian-Pacific 

criteria.41 Active hazardous alcohol drinking was defined by alcohol consumption at the 

PLSec assessment of ≥ 40 grams per day for men and ≥ 20 grams per day for women.42 

High AFP was defined by ≥ 5.5 ng/mL.43,44

Validation set 3 (prospective–retrospective cohort):  A total of 146 patients were 

consecutively treated with DAA and achieved SVR after confirming complete response to 

HCC treatment at Toranomon Hospital between November 2014 and January 2018.45 The 

patients were diagnosed for early-stage HCC (American Joint Committee of Cancer, T1/2 

tumor without extrahepatic lesion) and received HCC treatment (surgical resection, thermal 

ablation, transarterial chemoembolization, or stereotactic body radiation therapy). The 

absence of residual tumor was histologically (as no microscopic tumor cells at/near surgical 

resection margin) and/or radiologically (as no enhanced lesion with contrast-enhanced 
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multiphase CT and/or MRI) confirmed before initiating DAA therapy. Patients who had 

HCC recurrence during DAA treatment were excluded. Blood samples were collected at 

4 weeks after DAA treatment completion and used for the PLSec assessment. All patients 

were regularly followed up for HCC recurrence with multiphase CT and/or MRI every 3–4 

months. Time to HCC development was defined as the interval between the dates of PLSec 

assessment and HCC diagnosis or the last follow-up or death as a censored observation. 

During a median follow-up of 2.9 years (IQR, 0.9–4.1 years), 65 patients developed HCC 

recurrence. At the date of PLSec assessment, the patients were already recurrence-free for 

a median of 1.5 years (IQR, 0.9–3.2 years) since the previous HCC treatment, therefore 

the observed recurrences are assumed to be dominantly de novo HCC recurrence. HCC 

diagnosis as well as the determination of cirrhosis, obesity, diabetes, active hazardous 

alcohol drinking, and high AFP was similarly performed as in the validation set 2.

METHOD DETAILS

Computational derivation of Prognostic Liver Secretome signature (PLSec) – overview

Transcriptome profiling of diseased organ tissue has been widely used as the first step to 

reliably identify pathogenic and prognostic molecular dysregulation. However, as a clinical 

biomarker, the need for invasive tissue biopsy generally limits its clinical applicability 

especially in the setting of risk assessment for the future emergence of adverse outcomes 

in asymptomatic individuals. On the other hand, direct biomarker discovery in circulation 

obscures the source organ that releases the biomolecules. To overcome the challenge and 

enable less-invasive monitoring of organ-specific biological dysregulation, we developed a 

computational pipeline to systematically translate a tissue-transcriptome-based molecular 

signature into a list of proteins inferred to be released into circulation from an organ of 

interest. A previous proof-of-concept study demonstrated the feasibility of this approach by 

integrating proteome databases in ovarian cancer.46 We have streamlined the strategy by 

integrating (i) assembled proteome databases with an algorithm to infer organ specificity 

of proteins in circulation (liver secretome biomarker candidates), and (ii) a list of genes 

(i.e., gene signature) specific to a disease context, e.g., hepatocellular carcinoma (HCC) 

risk prediction in cirrhosis (prognostic liver proteome biomarker candidates) to identify a 

list of circulating proteins for prognostic prediction (prognostic liver secretome biomarker 
candidates) (please refer to Supplementary Methods) as detailed in the following sections.

Derivation of liver secretome biomarker candidates

We developed a versatile pipeline to infer a list of proteins that are likely secreted 

into circulation from an organ of interest, called Translation of tissue gene expression 
to secretome (TexSEC) (www.texsec-app.org). The pipeline consists of two components: 

(i) computational derivation of secretome biomarker candidates, and (ii) organ specificity/

ambiguity assessment. First, the secretome biomarker candidates were derived as follows 

(please refer to Supplementary Methods). Circulating proteins include actively secreted 

proteins with functional roles outside their source cells/organs (at high abundance 

for housekeeping purposes, e.g., albumin, or with occasional secretion when needed, 

e.g., cytokines) and leaked proteins from injured cells. To broadly survey these types 

of proteins as candidate circulating biomarkers, we integrated proteome databases 
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that complementarily cover bioinformatically-predicted secretable proteins as well as 

empirically detected proteins in human body fluids. The following three algorithms 

to predict extracellular secretion based on signal peptide sequences were applied to 

a total of 20,431 non-redundant proteins encoded by 20,103 genes from UniProtKB 

(www.uniprot.org)47. SignalP-5.048 is an algorithm that predicts secretory signal peptides 

transported by the Sec translocon and cleaved by Signal Peptidase I using a deep 

neural network (www.cbs.dtu.dk/services/SignalP-5.0/) and identified 3,528 proteins. 

DeepSig v.1.049 focuses on signal peptide sequences located at N-terminus in the 

membrane and other proteins (deepsig.biocomp.unibo.it) and identified 3,133 proteins. 

TOPCONS250 is a topology-based method combining five algorithms, OCTOPUS, Philius, 

PolyPhobius, SCAMPI, and SPOCTOPUS (topcons.cbr.su.se) and identified 3,772 proteins. 

The intersection of the three prediction methods, including 2,875 proteins, was further 

considered as secretome biomarker candidates.

As complementary wet-lab-based experimental evidence of detection in human body 

fluids, we integrated the following three proteome databases. A list of mass-spectrometry­

based human plasma proteins was retrieved from Human Plasma Protein Project 

PeptideAltas database51 (www.peptideatlas.org/hupo/c-hppp), including 3,485 “evidence 

level 1” proteins. Plasma Protein Database52 is a literature-based collection of human 

plasma and serum proteins (www.plasmaproteomedatabase.org), in which 3,742 proteins 

reported in two or more studies were included. Protein Abundance Across Organisms 

(PAXdb) v.4.153 is a database of human protein abundance measured in 15 organs, plasma, 

and urine (pax-db.org), from which 4,312 proteins were retrieved. A total of 3,274 proteins 

detected in at least two of the three databases were included in subsequent analysis. Finally, 

the union of the two types of proteins, i.e., computationally-inferred and experimentally­

detected proteins, were regarded as a pool of secretome biomarker candidates that includes 

5,134 proteins encoded by 5,044 genes.

Organ specificity/ambiguity of the candidate proteins was estimated as follows (please 

refer to Supplementary Methods). Proteins released from non-target organs especially at 

high baseline levels will obscure pathogenic change in abundance of proteins released 

from the target organ of interest (i.e., liver in this study).54,55 To maximize the chance 

to identify candidate biomarker proteins to monitor the target organ, we used the PAXdb, 

a comprehensive database of human proteins quantified in 15 organs (liver, brain, colon, 

rectum, esophagus, female gonad, gallbladder, heart, kidney, lung, pancreas, prostate, skin, 

testis, and uterus), plasma, and urine from healthy individuals, in which quantitative protein 

abundance data are available for 4,491 out of the 5,134 proteins.53 Among the proteins, 211 

proteins (5%) in plasma + urine are substantially more abundant compared to the sum of 

the 15 organs (at least 5-fold higher), suggesting that these proteins are released from other 

organ(s) not covered in the database or immediately released from source organ(s) among 

the 15 organs. These proteins were regarded as released from “unknown origin” as a pseudo 

organ (e.g., leptin secreted from adipose tissues), and the rest of the proteins were assessed 

for their association with the 15 organs. The proteins were classified into the following three 

categories based on their relative abundance across the organs: organ-specific, i.e., > 5-fold 

higher in one organ compared to the rest; organ-group-specific, > 5-fold higher in two to 

five organ (median) compared to the rest; non-specific. We retained proteins excessively 
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secreted into urine and absent or scarce in plasma, defined by urine-to-plasma ratio > 

10-fold, regardless of organ specificity because such proteins may still serve as liver-related 

biomarkers in case pathogenic secretion from liver exceeds the excretion into urine and 

becomes detectable in plasma (such as a prostate-specific protein, growth/differentiation 

factor 15 [GDF-15], associated with chronic liver disease and HCC when detected in 

blood56,57). These parameters are modifiable for an organ of user’s interest in the TexSEC 

web application. We kept 643 secretome biomarker candidates unavailable in the PAXdb 

for the organ specificity/ambiguity assessment and finally selected 4,125 proteins as liver 
secretome biomarker candidates to be merged with the list of proteins specifically related to 

the prognostic tissue transcriptome gene signatures described in the next section.

Derivation of prognostic liver proteome biomarker candidates

As the source of tissue transcriptome signatures to be translated into blood secretome panel, 

we used our previously defined 186-gene prognostic liver signature (PLS) and 132-gene late 

recurrence signature (LRS).7 In addition to proteins encoded by the signature member genes, 

we considered proteins in molecular pathways associated with the tissue transcriptome 

signature as follows. To systematically identify relevant pathways in an unbiased manner 

across the major liver disease etiologies, we surveyed 1,316 gene sets of well-defined 

molecular pathways from Molecular Signature Database (MSigDB, v6.2)58 using gene 

set enrichment analysis59 in the training data sets, including four independent cohorts of 

523 chronic liver disease patients affected with hepatitis B virus (HBV), hepatitis C virus 

(HCV) (including resolved HCV), alcohol-related liver disease (ARLD), and non-alcoholic 

fatty liver disease (NAFLD) (please refer to Supplementary Methods). Enrichment of each 

pathway gene set in each cohort was assessed on rank-ordered genes by correlation with 

that of the prognostic gene signature in each patient. The enrichment of each pathway gene 

set across the cohorts was synthesized using Fisher’s inverse chi-square statistic,60 and 466 

pathways showed association in the same direction with statistical significance (random 

permutation test-based false discovery rate <0.25) (Data S1). For each of the associated 

pathways, proteins encoded by leading-edge genes59 contributing to the enrichment as well 

as their putative upstream signals were added to the list of candidate proteins. With proteins 

encoded by the tissue transcriptome signature genes themselves, we identified 1,631 proteins 

(1,020 high- and 611 low-risk-associated proteins) as prognostic liver proteome biomarker 
candidates, which were validated for their association with tissue PLS/LRS status in the 

validation data sets of 16 cohorts of 1,034 chronic liver disease patients (please refer to 

Supplementary Methods).

Identification of prognostic liver secretome biomarker candidates

Finally, we took the intersection of the two lists of proteins, i.e., liver secretome biomarker 
candidates and prognostic liver proteome biomarker candidates, and derived prognostic 
liver secretome biomarker candidates, including 697 proteins (431 high- and 266 low-risk­

associated proteins) proteins, for subsequent assay implementation.

Implementation and optimization of PLSec assay

Among the 697 prognostic liver secretome biomarker candidates, validated antibodies 

are available for multiplex assay for 43 proteins (41 high- and 2 low-risk-associated 
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proteins), which were implemented in an FDA-approved multiplex clinical diagnostic 

technology, xMAP platform (Luminex), as a preliminary version of the Prognostic Liver 

Secretome signature (PLSec) assay, and run on the Bio-Plex 200 systems (Bio-Rad) at 

UT Southwestern BioCenter according to the manufacturer’s protocol. The abundance of 

each protein was measured as median fluorescent intensity (MFI) corrected for background 

signals from negative control probes and normalized to built-in dilution series of positive 

control probes as the standards in each 96-well assay plate, with which plate-to-plate 

adjustment of MFI values was performed. Please see Supplementary Methods.

We first assessed the correlation between serum protein abundance and tissue gene signature 

status (not expression level of genes that encode the proteins, but collective induction or 

suppression of each of high- or low-risk-associated signature genes quantified by gene-set­

enrichment-based statistic as a measure of the molecular status of the liver as detailed 

below) in the optimization set. Among the 43 assayed proteins, the abundance of 27 

proteins (63%) was significantly correlated with modulation of each of the high- or low­

risk-associated genes in the hepatic transcriptome signatures (i.e., PLS and LRS) measured 

by Gene Set Enrichment Index based on single-sample-based signature enrichment analysis 

(eseach algorithm)10 (Spearman correlation test, false discovery rate < 0.25). Next, we 

evaluated correlation across the 27 proteins in a correlation matrix, which revealed that 

there are several groups of proteins sharing a highly similar pattern of abundance across 

the patients (i.e. redundancy in captured information) in the optimization set (please refer 

to Supplementary Methods). Because a larger number of assay probes generally makes the 

development of clinical diagnostic assay more complex and costly due to increased burden 

of developing and validating the assay probes, we attempted to perform dimensionality 

reduction to shave the redundant probes without sacrificing the prognostic association 

by using the least absolute shrinkage and selection operator (LASSO) algorithm.36,61 We 

analyzed high- and low-risk-associated proteins separately to resolve the redundancy within 

each direction of the prognostic association. We repeated the feature selection based on 10­

fold cross-validation scheme 1,000 times and chose the most frequently selected 8 features, 

i.e., 6 high-risk-associated proteins (vascular cell adhesion molecule 1 [VCAM-1], insulin­

like growth factor-binding protein 7 [IGFBP-7], gp130, matrilysin, interleukin-6 [IL-6], and 

C-C motif chemokine ligand 21 [CCL-21]), and 2 low-risk-associated proteins (angiogenin 

and protein S). We finally termed the 8-protein secretome signature as PLSec. We also 

evaluated the technical validity of the assay. We observed high within-plate reproducibility 

(r2 = 0.9997, p = 1.1×10-11), inter-plate/batch reproducibility (r2 = 0.971, p = 7.7×10-6) of 

technical replicates, and sensitivity of positive control proteins (99.9% ± 2.5%), supporting 

reliable protein quantification with the assay platform as a clinical diagnostic test (please 

refer to Supplementary Methods).

To use the PLSec assay to assist clinical decision making according to the predicted 

prognosis, we converted the multi-analyte measurements into a single value as follows. 

In general, antibody-based protein quantification is sensitive to change in experimental 

conditions such as lot of antibody reagents, and it makes assay calibration more challenging, 

especially in the clinical setting. To minimize the influence of the potential variation in the 

measurements and ensure the robust prognostic performance of the assay in a clinic, we 

converted the continuous protein abundance values (i.e., normalized MFI) into high or low 
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abundance by top quartile cut-off in the optimization set, and calculated a semi-quantitative 

score as follows:

2 + ∑i = 1
8

1 for ℎigℎ abundance of ℎigℎ risk protein
−1 for ℎigℎ abundance of low risk protein

0 otℎerwise
for probe i

The cut-off value for the PLSec of 4 was chosen to maximize prognostic association for 

late recurrence based on log-rank test p-value in the optimization set. Assessment of area 

under receiver operating characteristic curve (AUC) to the risk prediction by the tissue­

based PLS showed that the selection of the 27 proteins out of the 43 all assayed proteins 

improved performance of the panel as expected, and the reduction to 8 proteins with LASSO 

maintained the panel’s performance. More importantly, significant prognostic associations 

for late recurrence were maintained. Please refer to Supplementary Methods.

Lastly, we assessed whether the finally optimized 8-protein PLSec panel recapitulated the 

full biological information associated with the original tissue-transcriptome-based gene 

signatures with regard to involved molecular pathways and cell types present in the liver. 

For the derivation of prognostic liver proteome biomarker candidates, we identified 466 

molecular pathway gene sets associated with the tissue transcriptome signatures. We asked 

how many of these gene sets are dysregulated in association with the PLSec-based outcome 

prediction as we observed for the tissue transcriptome signatures. In the genome-wide 

transcriptome dataset of the optimization set, genes were rank-ordered by Spearman’s rank 

correlation (rho) with the PLSec score, and enrichment of the gene sets was assessed by 

Gene Set Enrichment Analysis (GSEA)59. We confirmed that 435 gene sets (93%) were 

enriched as observed for the tissue transcriptome signatures (Data S1). Besides, in single­

cell transcriptome data of three human cirrhotic livers (NCBI Gene Expression Omnibus, 

GSE136103)62, induction of the 466 pathways across the cell types present in each liver 

was assessed by the eseach algorithm, which depicted involvement of diverse cell types, 

covering parenchymal, stromal, and infiltrating cell types (please refer to Supplementary 

Methods). We could also confirm that all of the involved cell types were recapitulated by 

the 8-protein PLSec panel. Thus, we could technically validate and optimize the 8-protein 

PLSec assay, maintaining association with prognosis and relevant biological information for 

the original tissue-based transcriptome signatures. These results collectively support that the 

PLSec assay is ready for subsequent clinical utility validation.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analysis—All statistical analyses were performed using the R statistical 

language (www.r-project.org). For time-to-event analyses (validation sets 1 and 3), 

prognostic associations of the clinical variables and PLSec were assessed using Kaplan­

Meier curves and uni/multivariable Cox regression modeling. Annual incidence rates were 

calculated per 100 person-years, and cumulative incidences at certain time points were 

estimated by Kaplan-Meier method. Proportional-hazards assumption was confirmed by 

using cox.zph function in R survival package (Table S2). Sample size to detect hazard ratio 

of 3 as statistically significant is 232 under assumption that 25% of the patients show high­
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risk score and 15% of the patients develop HCC at statistical power of 0.8 and alpha error 

of 0.05. The case-control series (validation set 2) was analyzed by multivariable conditional 

logistic regression. To develop a composite prognostic score combining PLSec and clinical 

variables in the validation set 1, PLSec and AFP were chosen based on multivariable Cox 

regression p-value less than 0.05 (Table S1).

It is clinically known that AFP can increase at low level in association with non­

malignant conditions such as chronic hepatic inflammation accompanied with hepatocyte 

regeneration.63 Even with the clinically used cut-off of > 20 ng/mL, HCC is present only in 

up to 60% of the patients.4 In this cohort, vast majority of the patients (93%) showed AFP 

levels even below the cut-off. If a high AFP is indicative of already existing HCC in the 

cohort, the tumor nodule should be clinically diagnosed in 2–3 years given the tumor volume 

doubling time is 4.7 months according to a recent meta-analysis.64 This is not the case in 

majority of our cohort as shown by consistent incidence rates over time (Figure S1B) and 

proportional hazard of incident HCC irrespective of AFP levels (Table S2). Collectively, we 

assume that AFP in this cohort reflected more likely tumor initiating microenvironment in 

liver (so-called “field effect”) rather than an existing but undetected tumor.

Both PLSec and AFP are linearly correlated with time to HCC development according to 

non-linearity test on log relative risk plot (Figure S1C) and are independently associated 

with time to HCC development (p = 0.548 for their interaction term in multivariable 

Cox regression). The composite PLSec-AFP score was derived by using regression 

coefficients from multivariable Cox regression as follows: PLSec-AFP = 0.175×PLSec + 
0.325×log2(1+AFP). The risk-predictive performance of the PLSec-AFP score was assessed 

and compared to that of AFP alone using integrated Brier score65 and c-indix66 calculated 

by pec R package,67 and time-dependent AUCs in validation set 1 and 3, and Brier score 

and covariate-adjusted AUC68 in the validation set 2 (Table 2). Fitness of the models was 

assessed by Akaike information criterion (AIC) and Bayesian information criterion (BIC). 

The confidence intervals were estimated by bootstrapping of the samples (n=1,000). A 

predefined subgroup analysis was performed in patients with cirrhosis in the validation set 2 

and 3.

The cut-off of 1.66 was defined to determine high-risk patients based on maximally selected 

rank statistics using maxstat R package.69 Hazard ratios in validation set 1 and 3 were 

primarily adjusted for known clinical variables that influence liver disease prognosis, i.e., 

age (as continuous), sex, obesity, diabetes, and active hazardous alcohol drinking as defined 

above. The odds ratios in validation set 2 were adjusted for obesity, diabetes, and active 

hazardous alcohol drinking with conditioning on the pairs of cases and the matched controls. 

Besides, the hazard ratios and odds ratios were also adjusted for liver function reserve 

(Child-Pugh class A vs. the rest), a liver fibrosis indicator, FIB-4 index (≥3.25 vs. <3.25),21 

and all variables used in each model as sensitivity analyses in all validation cohorts (Table 

S3). Missing data on the covariates used in multivariable adjustments were imputed using 

classification and regression trees.70,71 For each incomplete case, we identified five sets 

of imputed values. The incomplete case’s missing value was replaced with median of the 

five values for continuous variables and the most frequent value for categorical variables. 

Proportion of missing values in each variable was ≤10%.72
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In a matched case-control study, the receiver operating characteristic curve is substantially 

biased when the data does not acknowledge covariate matching.68 Therefore, we evaluated 

the performance of high-risk PLSec-AFP in validation set 2 using covariate-adjusted AUCs, 

including variables used in the matching, i.e., age, sex, and presence of cirrhosis, with 

semiparametric Bayesian inference, calculated by AROC R package (Figure 3C). Besides, 

covariate-adjusted AUC was used to compare a performance of PLSec-AFP to that of AFP 

alone in validation set 2.

In the validation set 2, the effect of PLSec-AFP on HCC risk discrimination was estimated 

according to Bayes’ theorem as follows:

Post‐test annual HCC risk in high‐risk patients % = Sensitivity × x
Sensitivity × x + 100 − Specificity × 100 − x × 100

Post‐test annual HCC risk in low‐risk patients % = 1 − Specificity × 100 − x
100 − Sensitivity × x + Specificity × 100 − x

× 100

,where x (%) denotes pre-test annual HCC risk, based on sensitivity (%) and specificity 

(%) for incident HCC within 3 years after PLSec-APF assessment based on their confirmed 

stability over time (Figure S1D).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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INCLUSION AND DIVERSITY STATEMENT

We worked to ensure gender balance in the recruitment of human subjects. We worked 

to ensure ethnic or other types of diversity in the recruitment of human subjects. One or 

more of the authors of this paper self-identifies as an underrepresented ethnic minority 

in science. While citing references scientifically relevant for this work, we also actively 

worked to promote gender balance in our reference list.
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Highlights

• Pipeline to translate tissue mRNA to secretome signature (TexSEC) is 

developed

• TexSEC identified a secretome signature (PLSec) predictive of liver cancer 

risk

• PLSec together with AFP (PLSec-AFP) predicts liver cancer risk in cirrhosis

• PLSec-AFP predicts liver cancer risk even after curing chronic hepatitis C
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Context and Significance

Accurate non-invasive prediction of long-term hepatocellular carcinoma (HCC) risk in 

advanced liver fibrosis is urgently needed for early tumor detection to improve the 

poor HCC prognosis. Hepatic transcriptome signatures have been validated for their 

HCC risk-predictive capability, but the need for liver biopsy limits their applicability in 

clinic. Fujiwara et al. developed a computational pipeline to translate tissue transcriptome 

into secretome signature, TexSEC, which identified an 8-protein blood-based prognostic 

liver secretome signature (PLSec). PLSec predicts long-term HCC risk in patients with 

advanced liver fibrosis, and a composite score with alpha-fetoprotein (PLSec-AFP) 

predicts HCC risk even after curing chronic hepatitis C. The PLSec-AFP will enable 

individual-risk-based personalized HCC screening to optimize allocation of limited 

medical resources and maximize likelihood of early HCC detection.
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Figure 1. Study design.
See also Supplementary Methods, and Data S1.

PLSec, Prognostic Liver Secretome signature; HCC, hepatocellular carcinoma; AFP, alpha­

fetoprotein; HCV, hepatitis C virus; DAA, direct-acting antiviral.
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Figure 2. Clinical utility validation 1: cirrhosis with mixed HCC etiologies (prospective­
retrospective cohort).
(A) Study design. (B) Patten of the PLSec protein abundance and associated clinical 

variables. (C) Time-dependent AUC of PLSec-AFP score, PLSec alone, and AFP alone. 

(D) Association of PLSec-AFP with incident HCC. (E) Calibration plot of PLSec-AFP 

at various time points. The grey dash line indicates ideal calibration. (F) Association of 

PLSec-AFP with incident HCC in various subgroups.

See also Figure S1 and Table S1–3.

PLSec, prognostic liver secretome signature; HCC, hepatocellular carcinoma; IQR, 

interquartile range; AFP, alpha-fetoprotein; HCV, hepatitis C virus; HBV, hepatitis B virus; 

ARLD, alcohol-related liver disease; NAFLD, non-alcoholic fatty liver disease; AUC, area 

under the receiver operating characteristic curve; HR, hazard ratio; CI, confidence interval.
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Figure 3. Clinical utility validation 2: HCC risk after HCV cure by DAA (nested case-control 
series).
(A) Study design. (B) Patten of the PLSec protein abundance and associated clinical 

variables. (C) Adjusted AUC of PLSec-AFP score (≥ 1.66) and AFP (≥ 5.5 ng/mL) over 

time. (D) Pre- and post-test annual HCC incidence rate estimated based on the performance 

of PLSec-AFP in validation set 2. Widths of light green and yellow boxes indicate ranges 

of reported annual HCC incidence in all HCV-cured cirrhosis patients and their subset 

with high FIB-4 index, respectively. (E) Change in PLSec over the course of DAA-based 

anti-HCV treatment and post-treatment follow-up. Trend of change in PLSec over time was 

tested by Jonckheere-Terpstra test (p=0.43 for the cases; p <0.001 for the controls). PLSec 

values at week 48 were lower in the controls compared to the cases (Wilcoxon rank-sum 

test, p=0.013).

See also Figure S1 and Table S2, 3.
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HCC, hepatocellular carcinoma; DAA, direct-acting antivirals; SVR, sustained virologic 

response; IQR, interquartile range; PLSec, prognostic liver secretome signature; AFP, alpha­

fetoprotein; AUC, area under receiver operating characteristic curve; CI, confidence interval; 

HCV, hepatitis C virus.
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Figure 4. Clinical utility validation 3: HCC risk after complete response to HCC therapies and 
HCV cure by DAA (prospective-retrospective cohort).
(A) Study design (B) Patten of the PLSec protein abundance and associated clinical 

variables. (C) Association of PLSec-AFP with HCC recurrence. (D) Time-dependent AUC 

of high-risk PLSec-AFP and high AFP (≥ 5.5 ng/mL). (E) Calibration plots of high-risk 

PLSec-AFP at various time points. The grey dash line indicates ideal calibration.

See also Figure S1 and Table S3, 4.

HCC, hepatocellular carcinoma; DAA, direct-acting antivirals; PLSec, prognostic liver 

secretome signature; IQR, interquartile range; AFP, alpha-fetoprotein; HR, hazard ratio; CI, 

confidence interval; AUC; area under receiver operating characteristic curve.
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Table 1.

Clinical demographic of validation sets

Variable

Validation set 1 
(n=331): Cirrhosis with 

mixed etiology (prospective–
retrospective cohort)

Validation set 2 (n=41:123): Cured 
HCV hepatitis/cirrhosis (nested case­

control series)*

Validation set 3 (n=146): 
Cured HCV hepatitis/cirrhosis 

after HCC therapies 
(prospective– retrospective 

cohort)

Age (y) 52 (47 – 57) 72 (62 – 77) : 72 (64 – 76) 73 (66 – 78)

Male sex 195 (59%) 23 (56%) : 69 (56%) 66 (45%)

Cirrhosis 331 (100%) 30 (73%) : 92 (75%) 117 (80%)

Etiology: 
HCV/HBV/ARLD/
NAFLD/cryptogenic/
others

123/13/60/20/39/76 
(37%/4%/18%/6%/12%/23%)

164/0/0/0/0/0** 
(100%/0%/0%/0%/0%/0%)

 146/0/0/0/0/0** 
(100%/0%/0%/0%/0%/0%)

Race/ethnicity: white/
black/Hispanic/Asian/
others

311/9/8/1/2 (94%/3%/2%/
0.3%/1%) 0/0/0/164/0 (0%/0%/0%/100%/0%)  0/0/0/146/0 (0%/0%/0%/

100%/0%)

besity 140 (42%) 10 (24%) : 30 (25%) 20 (14%)

Diabetes 76 (23%) 5 (12%) : 18 (15%) 25 (18%)

Active hazardous alcohol 
drink 34 (11%) 5 (14%):7 (6%) 12 (9%)

Albumin (g/dL) 3.4 (2.9 – 3.8) 3.5 (3.4 – 3.7) : 3.5 (3.3 – 3.8) 3.6 (3.2 – 3.7)

Total bilirubin (mg/dL) 1.2 (0.8 – 1.9) 0.9 (0.8 – 1.2) : 0.9 (0.8 – 1.3) 0.9 (0.7 – 1.1)

ALT (IU/L) 49 (34 – 79) 20 (17 – 28) : 20 (15 – 28) 18 (14 – 24)

Platelet count (×103/uL) 95 (67 – 136) 116 (83 – 152) : 128 (97 – 162) 115 (91 – 163)

AFP (ng/mL) 3.9 (2.3 – 7.9) 7 (4–12) : 6 (4–8) 6 (4 – 10)

HCV genotype 1 n.a. 36 (88%) : 103 (84%) 134 (92%)

DAA regimen: sofosbuvir­
based - 11 (27%) : 48 (39%) 30 (21%)

HCC AJCC stage I - - 101 (69%)

HCC therapy: resection/
ablation/TACE/SRBT - -  43/100/3/2 

(29%/68%/2%/1%)

Child-Pugh class (A/B/C) 122/179/25 (37%/55%/8%)  35/6/0 (85%/15%/0%): 109/14/0 
(87%/13%/0%) 132/14/0 (90%/10%/0%)

Follow-up time (y) 4.5 (1.9 – 11.4) 1.1 (0.5 – 2.1) : 4.3 (4.0 – 4.6) 2.9 (0.9–4.1)

Categorical variables are shown as n (%). Continuous variables are shown as median (IQR).

*
Case:control.

**
All patients achieved sustained virologic response with direct-acting antiviral therapy.

HCV, hepatitis C virus; HBV, hepatitis B virus; ARLD, alcohol-related liver disease; NAFLD, non-alcoholic fatty liver disease; ALT, alanine 
transaminase; AFP, alpha-fetoprotein; DAA, direct acting antiviral; HCC, hepatocellular carcinoma; AJCC, American Joint Committee of Cancer; 
TACE, transarterial chemoembolization; SRBT, stereotactic body radiation therapy; IQR, interquartile range; HCC, hepatocellular carcinoma.
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KEY RESOURCES

REAGENT or RESOURCE SOURCE IDENTIFIER

Biological Samples

Serum from patients who underwent curative HCC resection 
(optimization set)

Toranomon Hospital N/A

Serum from patients with cirrhosis (validation set 1) University of Michigan N/A

Serum from patients with or without HCC after hepatitis C virus cure 
(validation set 2)

Toranomon Hospital N/A

Serum from patients with HCV-related liver fibrosis consecutively 
treated with DAA and achieving SVR after curative HCC treatment 
(validation set 3)

Toranomon Hospital N/A

Critical Commercial Assays

Human Magnetic Luminex Assay R&D Cat No. LXSAHM

Bio-Plex 200 systems BioRad 171000201

Deposited Data

Serum protein abundance data This manuscript http://dx.doi.org/
10.17632/5r7c48xkbw.1

Human liver biopsy specimens from HCV, early-stage liver cirrhosis, 
microarray

Hoshida et al. GEO Accession GSE15654

Human non-tumor liver tissues from patients with HBV-related HCC 
undergoing surgical resection, microarray

Roessler et al. GEO Accession GSE14520

Human liver biopsy specimens from NASH, microarray Moylan et al. GEO Accession GSE49541

Human liver biopsy specimens from alcohol-related cirrhosis, 
microarray

Trepo et al. GEO Accession GSE94417

Human non-tumor liver tissues from patients with HCV-related HCC 
undergoing surgical resection, microarray

Tsuchiya et al. GEO Accession GSE17856

Human liver specimens from patients with HCV infection, microarray Archer et al. GEO Accession GSE17967

Human liver biopsy specimens after HCV cure with DAA, microarray Meissner et al. GEO Accession GSE51699

Human liver biopsy specimens after hepatitis virus cure with direct­
acting antivirals, microarray

Meissner et al. GEO Accession GSE70779

Human non-tumor liver tissues from patients with HCC undergoing 
surgical resection, microarray

Kim et al. GEO Accession GSE39791

Human non-tumor liver tissues from patients with HBV-related HCC 
undergoing surgical resection, microarray

Halgand et al. GEO Accession GSE47197

Human non-tumor liver tissues from patients with HCC undergoing 
surgical resection, microarray

Chaisaingmongkol et al. GEO Accession GSE76297

Human non-tumor liver tissues from patients with HCC undergoing 
surgical resection, microarray

Grinchuk et al. GEO Accession GSE76427

Human non-tumor liver tissues from patients with HBV-related HCC 
undergoing surgical resection, microarray

Zhou et al. GEO Accession GSE83148

Human non-tumor liver tissues from patients with HCC undergoing 
surgical resection, microarray

Wang et al. GEO Accession GSE84044

Human non-tumor liver tissues from patients with HBV-related HCC 
undergoing surgical resection, microarray

Hui et al. GEO Accession GSE121248

Human liver biopsy specimens of different phases from control to 
NASH, microarray

Ahrens et al. GEO Accession GSE48452

Human liver biopsy specimens from adolescents undergoing bariatric 
surgery, microarray

Xanthakos et al. GEO Accession GSE66676
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REAGENT or RESOURCE SOURCE IDENTIFIER

Human liver biopsy specimens of different phases from control to 
NAFLD, microarray

Arendt et al. GEO Accession GSE89632

Human liver biopsy specimens from obese patients, microarray Francque et al. GEO Accession GSE83452

Human non-tumor liver tissues from patients with HCC undergoing 
surgical resection, microarray

Makowska et al. GEO Accession GSE64041

Software and Algorithms

R (ver. 3.6.1) CRAN https://cran.r-project.org/

MSigDB v6.2 Broad Institute https://www.gsea-msigdb.org/gsea/
msigdb/

TexSEC (Translation of tissue gene expression to secretome) This manuscript www.texsec-app.org

eseach Nakagawa et al. http://www.gparc.org/
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