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uniquely complemented nondistributive lattices
(a historical and epistemological note about a

mathematical mystery)

Daniel Parrochia

University of Lyon (France)

Abstract.

Complemented lattices and uniquely complemented lattices are very important, not
only in mathematics, but also in physics, biology, and even in social sciences. They
have been investigated for a long time, especially by Huntington, Birkhoff, Dilworth
and others. And yet, on some of these structures - namely, uniquely complemented
nondistributive lattices -, despite the many existing articles concerning them, we
basically know very little. In this article, we situate these lattest structures in the
context of complemented and uniquely complemented lattices, offering a general
overview of the links between these lattices and others, close to them, such as the
orthocomplemented lattices of physics as well as various other partially ordered sets.
We finally show how uniquely complemented nondistributive lattices have been con-
structed with the technique of free lattices.

Key words. Complemented lattices, uniquely complemented lattices, uniquely com-
plemented nondistributive lattices, Huntington, Birkhoff, Dilworth, Salĭı.

1 Introduction
Let us start with a non mathematical problem. Suppose we want to define an object
or an entity O whose set of properties P are not accessible to us. Suppose however
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that there exists correlatively a set of properties E such that P ⊂ E. Depending on
the structure of E, it may seem possible to access P from the subset of properties
of E which are known to us and which define, by hypothesis, an object M . For
example, if E is a Boolean lattice, where every element has a unique complement,
then it is clear that for any property p′ ∈ E − P there exists a property p ∈ P
such that (p′)′ = p. We can thus hope to be able to define the object O, from the
properties of the object M1.

Due to a result of Dilworth (see [Dilworth 45]) obtained in 1945, which asserts that
any lattice - including nondistributive lattices - can be embedded in a uniquely
complemented lattice, a question may nevertheless arise: the condition of being
boolean can’t be weakened? If so, what is the general form of the E-lattice of
properties and can it be precisely described?

E. V. Huntington, in his 1904 paper (see [Huntington 04], 305)2, posed a similar
problem which, in modern terms, may be expressed as follows: is every uniquely com-
plemented lattice distributive or must one add, for that, additional conditions?

2 Huntington’s conjecture
Huntington himself have conjectured3 that the property of being "uniquely comple-
mented" was sufficient to cause distributivity, and thus, define a Boolean lattice. As
Grätzer has shown (see [Grätzer 03]; [Grätzer 07]), the conjecture was still widely
accepted in the 1930s, reinforced - as it seemed to be - by a number of results of the
following form:

if a lattice L is uniquely complemented and has property X, then L is boolean. (1)
1Philosophically, this was the approach of negative theologians (see [Parrochia 23], 196-199). But

this could also be the approach of physicists when, for example, it comes to describing a particle
that they do not yet know, from the properties (mass, energy level, spin, etc.) of a few others.

2For a historical commentary on Huntington’s axiomatics (see [Barnett 11]).
3The conjecture is not explicit, but, at the end of the passage quoted from page 305 of his

article, where the problem is stated, Huntington referred to postulate 19 of the second series of his
postulates describing the Boolean algebra, which effectively characterizes this one: if a ≤ b then
conversely b̄ ≤ ā.
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X could mean different things: for example, to be modular, or to be relatively com-
plemented (see [Bergman 29])4 or even to be orthocomplemented5 , results known to
Birkhoff and Von Neumann since the end of the 1930s (see [Birkhoff-von Neumann 36])
and exposed in [Birkhoff 40].

But X could still mean "to be of finite dimension" (see [Dilworth 40]) or even "to
be complete, atomic and dually atomic" (see [Birkhoff and Ward 39])6.

Huntington had himself initiated this series of restrictions by showing (in modern
terms) that if (B,∧,∨,′ ) is a uniquely complemented lattice, then, by adding to it
the property x ∧ y = 0⇒ y ≤ x′, i.e. by making the complementation a bit special,
(B,∧,∨,′ ) becomes a Boolean algebra, solution at the origin of many other proposals
of the same kind.

In 1945 however, R. P. Dilworth (see [Dilworth 45]) showed that the "Huntington
conjecture" was wrong. Through a very long and technical article, he proved, on the
one hand, that there exists a uniquely complemented nondistributive lattice and, on
the other hand, a much more general result:

Every lattice can be embedded into a uniquely complemented lattice. (2)

So it is a fact: a uniquely complemented and yet nondistributive lattice can exist.
However, as Grätzer wrote (see [Grätzer 07], 701), three problems remain:

1. As all known examples of nondistributive uniquely complemented lattices are
freely generated one way or another, a first question could be: is there a con-
struction of a nondistributive uniquely complemented lattice that is different?

2. In the same vein, we could also ask : is there a "natural" example of a nondis-
tributive uniquely complemented lattice from geometry, topology, or whatever
else?

3. And finally, we would like - if possible - to answer this crucial question: is there
a complete example of a nondistributive uniquely complemented lattice?

4Let us roughly say, for the moment - a more precise definition will come later - that "relatively
complemented" means: for all a ≤ b ≤ c, there is a unique d with b ∧ d = a and b ∨ d = c.

5"Orthocomplementation" is the name of complementation when applied to subspaces of a vector
space (see def. 3.11).

6A lattice L is complete if
∧
X and

∨
X ′ exist for any subset X of L; a lattice L is atomic if

L has an element 0 and if, for all a ∈ L, 0 < a, there is an element p such that p ≤ a and p is
an atom, that is, if 0 < p. A dual atom is a meet-irreducible element whose upper cover is 1. A
lattice is called dually atomic (or dually atomistic) if each of its elements is a meet of dual atoms
(see [Stern 91]).
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We would like to advance a little on these three questions.

3 Some definitions
Let us first recall some definitions:

Definition 3.1 (Poset). A partially ordered set (or poset) (P,≤) consists of a nonempty
set P and a binary relation ≤ on P such that ≤ satisfies the following properties:

1. x ≤ x (Reflexivity);

2. x ≤ y and y ≤ x implies that x ≤ x (Antisymmetry);

3. x ≤ y and y ≤ z implies that x ≤ z (Transitivity).

If ≤ satisfies also:

4. x ≤ y or y ≤ x (Linearity)

then P is a chain.

Definition 3.2 (Bounded poset). A bounded poset is one that has both a bottom
element 0 and a top element 1.

Definition 3.3 (Bounds). Let H ⊆ P and x ∈ P . A bound x of H is the least upper
bound of H iff, for any upper bound y of H, we have x ≤ y. Similarly, a bound w of
H is the greatest lower bound of H iff, for any lower bound z of H, we have z ≥ w.

Definition 3.4 (Lattice). A poset (L,≤) is a lattice if the great lower bound inf(x, y)
and the upper lower bound sup(x, y) exist for all x, y ∈ L.

Definition 3.5 (Modular lattice). A lattice L is said to be modular if:

∀x, y, z ∈ L : (x ≤ z)⇒ (x ∨ (y ∧ z) = (x ∨ y) ∧ z)

Definition 3.6 (Orthomodular lattice). A lattice with a zero 0 and a one 1 in which
for any element x there is an orthocomplement x⊥, i.e. an element such that;

1) x ∨ x⊥ = 1, x ∧ x⊥ = 0, (x⊥)⊥ = x,

2) x ≤ y ⇒ x⊥ ≥ y⊥,

and such that the orthomodular law:

3) x ≤ y ⇒ y = x ∨ (y ∧ x⊥)

4



is satisfied, is said to be orthomodular.

Definition 3.7 (Distributive lattice). A lattice L is said to be distributive if:

∀x, y, z ∈ L, x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z)

and/or:
x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z).

Definition 3.8 (Bounded lattice). A bounded poset which is a lattice is a bounded
lattice.

Definition 3.9 (Complement of an element). If L is a bounded lattice, then we
say that y ∈ L is a complement of x ∈ L if x ∧ y = 0 and x ∨ y = 1. In this
case, we say that x is a complemented element of L. Clearly, every complement of a
complemented element is itsef complemented.

Definition 3.10 (Complemented lattice). A lattice L is a complemented lattice if
every element of L is complemented.

Definition 3.11 (Orthocomplemented lattice). An orthocomplemented lattice is
a complemented lattice in which every element has a distinguished complement,
called an orthocomplement. This orthocomplement behaves like the complementary
subspace of a subspace in a vector space.

Formally, let L be a complemented lattice and denote M the set of complements of
elements of L. M is clearly a subposet of L, with ≤ inherited from L. For each a ∈ L
let Ma ⊆ M be the set of complements of a. L is said to be orthocomplemented
if there is a function ⊥: L → M , called an orthocomplementation, whose image is
written a⊥ for any a ∈ L, such that:

1. a⊥ ∈Ma,

2. (a⊥)⊥ = a and

3. ⊥ is order-reversing; that is, for any a, b ∈ L, a ≤ b implies b⊥ ≤ a⊥.

The element a⊥ is called an orthocomplement of a (via ⊥).

Definition 3.12 (Relatively complemented lattice). A lattice L is a relatively com-
plemented lattice if every interval [x, y] of L is complemented. A complement in
[x, y] of a ∈ [x, y] is called a relative complement of a.
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Definition 3.13 (Uniquely complemented lattice). A complemented lattice L in
which complements are unique (that is, for all x ∈ L there exist x′ ∈ L such that
(x′)′ = x) is called a uniquely complemented lattice.

Definition 3.14 (Residuated lattice). A residuated lattice7 is an ordered algebraic
structure 〈L,∧,∨, �, e, \, /〉 such that 〈L,∧,∨〉 is a lattice, 〈L, �, e〉 is a monoid, and
\ and / are binary operations for which the equivalences

a.b ≤ c⇔ a ≤ c/b⇔ b ≤ a \ c

hold for all a, b, c ∈ L.

Definition 3.15 (Atom). If L is a lattice with bottom element 0, then by an atom
of L we mean an element a such that 0 ≤ a. If for every x ∈ L\{0} there is an atom
a such that a ≤ x, then we say that L is atomic.

4 Some well-known theorems
We present here, without their proofs, some well-known theorems which will be useful
later.

Theorem 4.1 ([Birkhoff 40]). Any distributive lattice is modular.

The two following theorems come from ([Grätzer 07], 62):

Theorem 4.2. In a bounded distributive lattice, an element can have only one com-
plement (so a bounded distributive lattice is a boolean lattice).

Theorem 4.3. In a bounded distributive lattice, if a has a complement, then it also
has a relative complement in any interval containing it.

Theorem 4.4 ([Blyth 05], 78). In a distributive lattice, all complements and relative
complements that exist are unique.

Theorem 4.5 ([Birkhoff and Ward 39]). Every uniquely complemented atomic lat-
tice is distributive.

7This structure has been introduced by Morgan Ward and Robert Palmer Dilworth is 1939 (see
[Ward and Dilworth 39]). It is helpful to think of the last two operations as left and right division
and thus the equivalences can be seen as "dividing" on the right by b and "dividing" on the left
by a. The study of such objects originated in the context of the theory of ring ideals in the 1930s.
The collection of all two-sided ideals of a ring forms a lattice upon which one can impose a natural
monoid structure making this object into a residuated lattice.
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Theorem 4.6 ([Birkhoff 34]). A lattice L is distributive if and only if there exists
no sublattice A ⊆ L isomorphic to either M3 or N5.

5 Non distributivity and complementation
A lattice in which each element has at most one complement may have elements with
no complement at all. It is rather easy to come up with nondistributive lattices with
that property, even if we require that there is at least one pair of elements which are
complements of one another.

A trivial example is a bounded nondistributive lattice in which no element except 0
and 1 has a complement.

For less trivial cases - some in which there are other pairs of complements - we can
take the following examples:

5.1 Example 1

We begin wit a complemented nonmodular lattice (see Fig. 1).

1

0

a

c

b

1

Figure 1: The complemented nonmodular lattice N5

In this lattice, we can verify that a ∧ b = 0 and a ∨ b = 1, so ā1 = b, b̄1 = a.
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We also have: b ∧ c = 0 and b ∨ c = 1, so b̄2 = c, c̄1 = b.

Besides, we obviously have: 0 ∧ 1 = 0 and 0 ∨ 1 = 1, so 0̄ = 1 and 1̄ = 0.

This lattice is therefore complemented. But we can show that it is not modular:

b ≤ d : b ∨ (c ∧ d) = b ∨ a = b,

(b ∨ c) ∧ d = e ∧ d = d.

So it is not distributive.

5.2 Example 2

Consider now the lattice of Fig. 2:

   1


    d


     

      b


   0

     a	 	 	 	 	    c

1

Figure 2: A complemented but nondistributive lattice

As before, 0 is the complement of 1 and vice versa. Let’s move on to the other
elements. We have, in particular:

a ∧ b = 0 and a ∨ b = 1, so ā1 = b, b̄1 = a,

a ∧ c = 0 and a ∨ c = 1, so ā2 = c, c̄1 = a,

a ∧ d = 0 and a ∨ d = 1, so ā3 = d, d̄1 = a.
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The lattice is complemented (a has three complements). But it is not distributive.
It is easy to see that:

a ∨ (b ∧ c) = a ∨ 0 = a 6= (a ∨ b) ∧ a ∨ c) = 1 ∧ 1 = 1,

and:
c ∧ (a ∨ b) = c ∧ 1 = c 6= (c ∧ a) ∨ (c ∧ b) = 0 ∨ 0 = 0.

5.3 Example 3

Let us now give an example of a complemented modular but nondistributive lattice.
This is the famous lattice M3 (see Fig. 3).

    1

        a                       b        c

      0

Figure 3: The nondistributive lattice M3

We have, in particular:

a ∧ b = 0, a ∨ b = 1, so ā1 = b and b̄1 = a,

a ∧ c = 0, a ∨ c = 1, so ā2 = c and c̄1 = a,

b ∧ c = 0, b ∨ c = 1, so b̄2 = c and c̄1 = a.

As before, we also have obviously: 0̄ = 1 and 1̄ = 0.

5.4 Example 4

In Fig. 4, (0, 1) and (a, b) are the only pairs of complements, and the lattice is not
distributive, since it has M3 as a sublattice.
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1

Figure 4: A nondistributive lattice with M3 as sublattice

5.5 Example 5

The orthocomplemented lattices or, as we sometimes say, the ortholattices (used
in quantum mechanics) are generally nondistributive. The non-distributivity results
from the inclusion relations between vector subspaces of the three-dimensional vector
space, which lead to a nondistributive lattice. Now the logical relations between the
propositions of quantum mechanics - for example, those which describe the spin
of a particle - fit into a lattice analogous to the lattice of the vector subspaces of
three-dimensional space. Fig. 5 (B) gives an example of an orthocomplemented
nondistributive lattice.

Orthocomplemented lattices are always complemented, but not necessarily uniquely
complemented. Orthocomplemented lattices that are uniquely complemented are
also distributive, and so Boolean (see Fig. 5 (A)). This kind of lattices is associated
with classical mechanics, not with quantum mechanics.

6 Graph of interactions between some of the main
lattices

If we recapitulate what we know about the previous lattices, we obtain the following
propositions (most of them can be found in [Rutherford 65], if not in [Birkhoff 40]).

1. A Boolean algebra (BA) is a complemented distributive lattice (DL) (this is the
definition). It is also a Heyting algebra (HA) and an orthocomplemented lattice
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(A)	 	 	 	 	 	 	 	 	 (B)

   0

    1

       a	 	 	 	 	      a      
⊥ 

     1

   0

⊥        a	 	 	 	 	 	 	 	 	 	 	    a

        b	 	  	 	      c

d                         d

⊥ 

⊥ 

    c	 	 	 	     b⊥ 

1

Figure 5: Orthocomplemented distributive (A) and nondistributive (B) lattices

(OCL).

2. A distributive orthocomplemented lattice (DOL) is orthomodular (OML) (so a
Boolean algebra is orthomodular).

3. An orthomodular lattice (OML) is orthocomplemented and an orthocomple-
mented lattice (OCL) is complemented (CL). So an orthomodular lattice is com-
plemented (but not necessarily uniquely complemented).

4. A complemented lattice (CL) is bounded (BL).

5. A Heyting algebra (HA) is bounded (BL) and residuated (RL).

6. A distributive lattice (DL) is modular (ML).

7. A modular complemented lattice (MCL) is relatively complemented (RCL) (so a
Boolean algebra is relatively complemented).

8. A Heyting algebra (HA) is a distributive lattice (DL).

9. A totally ordered set (TOS) is a distributive lattice (DL).

10. A modular lattice (ML) is semimodular SML) (so a distributive lattice is semi-
modular).

11. A semimodular lattice (SML) is atomic (AL) (so a modular lattice is atomic).

12. An atomic lattice (AL) is a lattice (L).
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13. A lattice (L) is a semilattice (SL).

14. A semilattice (SL) is a partially ordered set (POS).

All this lead to the graph of Fig. 6.

DL

SML

  AL

ML
MCL

RCL

CL

BL

OML

OCL

RL

HA

   L

  BA

DOL

  TOS

  SL

  POS

Figure 6: A graph of some of the main lattices

7 Uniquely complemented nondistributive lattices
Now if we are looking for a nondistributive lattice in which every element has a unique
complement, that is not easy to point out. However, we can get some informations
from above:

7.1 First properties

Proposition 7.1. A nondistributive lattice uniquely complemented is necessarily non
atomic.
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Proof. According to theorem 4.5, every uniquely complemented atomic lattice is dis-
tributive. So we can deduce that a nondistributive lattice is non atomic or non
uniquely complemented (or both). But suppose now L, a nondistributive uniquely
complemented lattice. If it were atomic, it would exists an atomic uniquely comple-
mented lattice which would be nondistributive, a contradiction. So L is necessarily
non atomic.

We also know two other theorems concerning the subject:

Theorem 7.2 ([Blyth 05]). Every uniquely complemented lattice of finite width is
distributive.

Hence we can infer the following:

Proposition 7.3. A uniquely complemented nondistributive lattice is necessarily of
infinite width.

We also have:

Theorem 7.4 ([von Neuman 36-37]). Every uniquely complemented modular lattice
is distributive.

Hence, we get:

Proposition 7.5. A uniquely complemented nondistributive lattice is not modular.

We can also recall the following theorem from Salĭı (see [Salĭı 72]):

Theorem 7.6 ([Salĭı 72]). A compactly generated lattice with unique complement is
distributive.

Proposition 7.7. A uniquely complemented nondistributive lattice cannot be com-
pactly generated.

By propositions 7.1, 7.3, 7.5 and 7.7 we can deduce:

Proposition 7.8. A uniquely complemented nondistributive lattice is necessarily non
atomic, non modular, non compactly generated, and of infinite width.

As Salĭı observes, if to the requirement for unique complements, we add the condition
that the lattice is modular or that the Morgan laws hold, or that the lattice is atomic,
in all these cases, we find that the lattice operations are distributive (see [Salĭı 87]).
Therefore, it is not surprising that, in other circumstances, we get negative results:
a uniquely complemented nondistributive lattice, of course, is none of that.

13



7.2 Salĭı’s properties of distributive and nondistributive com-
plemented Lattices

Reading pages 39-57 of [Salĭı 87], allows us to further detail the properties of dis-
tributive lattices and - by contrast - nondistributive complemented lattices in the
following way:

Recall first what is the ascending (resp. descending) chain condition8 in a partially
ordered set.

Definition 7.1 (ACC). A partially ordered set (poset) P is said to satisfy the
ascending chain condition (ACC) if no infinite strictly ascending sequence:

a1 < a2 < a3 < ...

of elements of P exists. Equivalently, every weakly ascending sequence:

a1 ≤ a2 ≤ a3 ≤ ...

of elements of P eventually stabilizes, meaning that there exists a positive integer n
such that:

an = an+1 = an+2 = ... .

Definition 7.2 (DCC). Similarly, P is said to satisfy the descending chain condition
(DCC) if there is no infinite descending chain of elements of P . Equivalently, every
weakly descending sequence:

a1 ≥ a2 ≥ a3 ≥ ...

of elements of P eventually stabilizes.

Salĭı proves the following theorems:

Theorem 7.9. If a uniquely complemented lattice (UCL) satisfies the descending
chain condition or the ascending chain condition, then it is distributive.

8The ascending chain condition (ACC) and descending chain condition (DCC) are finiteness
properties satisfied by some algebraic structures, especially ideals in certain commutative rings.
These conditions played an important role in the development of the structure theory of commu-
tative rings in the works of David Hilbert, Emmy Noether, and Emil Artin. But the conditions
themselves can be stated in an abstract form, so that they make sense for any partially ordered set.
A poset which satisfies both the ascending and descending chain condition is said to be well-founded
and converse well-founded.
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Theorem 7.10. If the largest element of a UCL is the least upper bound of its sets
of atoms, then the lattice is distributive.

Theorem 7.11. If in a uniquely complemented lattice there exists for each nonzero
element a prime ideal that does not contain it, then this lattice is distributive.

Theorem 7.12. A uniquely complemented lattice L is distributive if and only if
for each nonzero element x there exists a homomorphism φ : L → {0, 1} onto the
two-element lattice such that φ(x) = 1.

Definition 7.3. A lattice with 0 is called initially complemented (or sectionally
complemented).

Theorem 7.13. An initially complemented UC lattice is distributive.

Theorem 7.14. A uniquely complemented lattice is distributive if and only if:

(x ∨ ((x ∨ y) ∧ x′)) ∧ y < 0, (3)

for any x and any y > 0.

Theorem 7.15. In a uniquely complemented lattice, the quasi-identity x ≤ y ⇒
x′ ≥ y′ implies distributivity.

From the above theorems, we can infer:

1. If a lattice is non distributive, which is the case of the uniquely complemented
nondistributive lattice UCN), then it does not satisfies the descending chain condition
or the ascending chain condition.

2. In a UCN the largest element is not the least upper bound of its sets of atoms.

3. In a UCN, for each nonzero element, all prime ideals contain it.

4. In a UCN, for each nonzero element x, there does not exist a homomorphism
φ : L→ {0, 1} onto the two-element lattice such that φ(x) = 1.

5. A UCN is not an initially complemented UC lattice.

6. In a UCN, the inequation (3) does not hold for any x and any y > 0.

7. In a UCN, the quasi-identity x ≤ y ⇒ x′ ≥ y′ does not imply distributivity.

Salĭı proves also:

Theorem 7.16. A uniquely complemented ortholattice is distributive.
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Theorem 7.17. A uniquely complemented orthomodular lattice is distributive.

Theorem 7.18. In a uniquely complemented lattice either of the following conditions
implies distributivity:

(x ∧ y)′ = x′ ∨ y′ for any comparable element x and y, (4)

(x ∧ y)′ = x′ ∨ y′ for any noncomparable element x and y. (5)

Hence we can infer:

8. A UCN can neither be a complemented ortholattice, nor a complemented ortho-
modular lattice.

9. In a UCN, the conditions (4) and (5) do not hold.

Moreover, the Birkhoff-von Neumann theorem asserts that the uniquely comple-
mented modular lattices are distributive. But it turns out that they are distributive
in a much wider class. According to Salĭı:

Theorem 7.19. A uniquely complemented 0-semimodular lattice is distributive.

Theorem 7.20 ([Grillet and Varlet 67]). A uniquely complemented 0-modular lattice
is distributive.

Hence we can infer that a UCN is neither 0-semimodular nor 0-modular.

Among several other properties implied by a uniquely complemented lattice, we ex-
tract this one, reported by Grätzer in his review of Salĭı’s book (see [Grätzer 90]).

Theorem 7.21. A uniquely complemented lattice is distributive iff each nonzero
element contains a nonzero regular element9.

So, here again, we can state the following proposition:

Proposition 7.22. In a uniquely nondistributive complemented lattice each element
does not contain a nonzero regular element.

Salĭı recognizes that we know very little about uniquely complemented lattices.
Among the positive properties of uniquely complemented lattices with comparable
complements (UCC lattice in short), we still have the following:

Theorem 7.23 ([Salĭı 87]). Let L be a UCC lattice. If a < b ∈ L, then b ∧ a > 0.
9Recall that an element a is "regular" iff a ∧ x = 0 and a ∧ y = 0 imply that a ∧ (x ∨ y) = 0.
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In the next theorem, "a < b" denotes that "a is covered by b", that is, a < b and
there is no element in between.

Theorem 7.24 ([Salĭı 87]). Let L be a UCC lattice. If a < b, then c = b ∧ a′ is an
atom, and it is a relative complement of a in [0, b].

Such a theorem shows, for instance, that if a UCC lattice is atomic, then it is dually
atomic, and that the covering relation is preserved at least under some joins and
meets.

Concerning the Dilworth’s lattice - the L15 object of Kwuida’s classification (see
[Kwuida et al. 06], 157) - its positive properties would be semi-complementation,
dual-semi-complementation, complementation and weak-complementation (see also
[Kalmbach 83]). Kwuida further adds that this lattice is infinite, that its complemen-
tation is automatically an involution, and that it cannot be antitone nor relatively
complemented.

However, these observations are about complementation, not about non-distributivity.
Moreover, the existence of the uniquely complemented nondistributive lattice re-
mains a mystery, and this, although Salĭı, using a result of Adam and Sichler (see
[Adam-Sichler 81]), has proved in his book that there is a variety10 which contains
it.

To understand this proposition, let us first introduce a definition of the concept of
lattice variety:

Definition 7.4 (Lattice varieties). Let E be a set of lattice identities (equations),
and denote by Mod E the class of all lattices that satisfy every identity in E . A class
V of lattices is a lattice variety if:

V = Mod E
10The concept of lattice variety (see Definition 7.4) is very special. Historically, and according

to [Jipsen-Rose 92], "the study of lattice varieties evolved out of the study of varieties in general,
which was initiated by Garrett Birkhoff in the 1930’s. He derived the first significant results in this
subject, and further developments by Alfred Tarski and later, for congruence distributive varieties,
by Bjarni Jónsson, laid the groundwork for many of the results about lattice varieties. During the
same period, investigations in projective geometry and modular lattices, by Richard Dedekind, John
von Neumann, Garrett Birkhoff, George Grätzer, Bjarni Jónsson and others, generated a wealth
of information about these structures, which was used by Kirby Baker and Rudolf Wille to obtain
some structural results about the lattice of all modular subvarieties. Nonmodular varieties were
considered by Ralph McKenzie, and a paper of him published in 1972 stimulated a lot of research in
this direction. Since then the efforts of many people have advanced the subject of lattice varieties
in several directions, and many interesting results have been obtained".
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for some set of lattice identities E .

The class of all lattices, which we will denote by L, is of course a lattice variety since
L = Mod 0. One also frequently encounter the following lattice varieties:

T = Mod{x = y}

V = Mod{xy + xz = x(y + z)}
M = Mod{xy + xz = x(y + xz)}

all trivial lattices, all distributive lattices, all modular lattices.

Let us come now to the result of Salĭı:

Theorem 7.25. The variety V of lattices defined by the identity:

(x ∧ (y ∨ z)) ∨ (y ∧ (x ∨ t)) = ((x ∧ (y ∨ z)) ∨ y) ∧ (x ∨ (y ∧ (x ∨ t)))

contains nondistributive uniquely complemented lattices.

Anyway, as we have seen, R. P. Dilworth has already disclosed the existence of such
lattices in 1945, by proving the following theorem:

Theorem 7.26 (Dilworth). Every lattice is a sublattice of a lattice with unique
complements.

As Dilworth comments, "thus any nondistributive lattice is a sublattice of a lattice
with unique complements which a fortiori is not a Boolean algebra" (see [Dilworth 45],
123). As a nondistributive lattice cannot be a sublattice of a distributive lattice, there
necessarily exists a nondistributive lattice with unique complements.

As reported by Grätzer, Dilworth’s result has been found several times. In 1964 it was
still proved by Dean (see [Dean 64]) who "extends Dilworth’s free lattice generated by
an order P to the free lattice generated by an order P with any number of designated
joins and meets" (see [Grätzer 07], 699). But Dean’s proof was the same complicated
induction as the one in [Dilworth 45]. Subsequently, a greatly simplified proof can
be found in H. Lakser’s Ph.D. thesis, 1968 (see [Lakser 68]). Then Chen and Grätzer
proved that we could greatly simplify the proof of Dilworth’s theorem by skipping
2 of the 4 steps (the crucial steps 2 and 3), and proving a slightly stronger theorem
(see [Chen and Grätzer 69]; [Grätzer and Lakser 06])11.

As all known nondistributive uniquely complemented lattices - according to Grätzer
- are freely generated, it is important to take a closer look at what free lattices are -
what we will do now.

11We will develop these results in section 9.
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8 Free lattices
Let us start first with a quite informal definition.

Definition 8.1 ([Kaufmann 78]). A free lattice generated by n generators x1, x2, ..., xn
is a lattice where appear all the possible combinations obtained with these n distinct
elements and the ∧ and ∨ operations.

With Xn = {x1, x2, ..., xn}, n ≥ 3, we can easily see, by enumeration, that the free
lattices have an infinite number of elements (this has been proved by [Whitman 42],
see below, theorem 8.1). We have, for example,

(((((x1 ∧ x2) ∨ x3) ∧ x1) ∨ x2) ∧ .....),

and continue like this ad infinitum. As we will see, the properties of commutativity,
associativity, idempotence and absorption do not allow limiting the enumeration as
soon as n is equal to 3.

8.1 Modular free lattices with n generators

If we impose the property of modularity (see definition 3.5) on the free lattice X3,
the number of its elements becomes finite and drops to 28 (a result of Dedekind, see
[Grätzer 03], 49).

8.2 Distributive free lattices with n generators

If we now impose one or the other of the distributivity properties (see definition 3.8),
the lattice only comprises 18 elements12, certain elements, among the 28 of the cor-
responding modular lattice, being equivalent to others as a result of the distributive
property (for example, (x1 ∧ x2) ∨ (x1 ∧ x3) = x1 ∧ (x2) ∨ x3)).

Legend of diagrams

Modular lattice (A)

a : 1 ∨ 2; l : (1 ∧ 2) ∨ (1 ∧ 3);

b : 1 ∨ 3; m : (1 ∧ 2) ∨ (2 ∧ 3);

c : 2 ∨ 3; n : (1 ∧ 3) ∨ (2 ∧ 3);
12For a proof, see [Grätzer 03], 49.
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Figure 7: Modular (A) and distributive (B) free lattices

d : (1 ∨ 2) ∧ (1 ∨ 3); o : 1 ∧ 2;

e : (1 ∨ 2) ∧ (2 ∨ 3); p : 1 ∧ 2;

f : (1 ∨ 3) ∧ (2 ∨ 3); q : 2 ∧ 3;

g : 1 ∨ (2 ∧ 3); r : [1 ∧ (2 ∨ 3)] ∨ (2 ∧ 3);

h : 2 ∨ (1 ∧ 3) : s : [2 ∧ (1 ∨ 3)] ∨ (1 ∧ 3);

i : 1 ∧ (2 ∨ 3) t : [3 ∧ (1 ∨ 2)] ∨ (1 ∧ 2).

j : 2 ∧ (1 ∨ 3); u : (1 ∧ 2) ∨ (2 ∧ 3) ∨ (1 ∧ 3);

k : 3 ∧ (1 ∨ 2); v : (1 ∨ 2) ∧ (2 ∨ 3) ∧ (1 ∨ 3);

w : 3 ∨ (1 ∧ 2).
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.

Distributive lattice (B)

a : 1 ∨ 2; h : 1 ∧ (2 ∨ 3);

b : 1 ∨ 3; i : 2 ∨ (1 ∧ 3);

c : 2 ∨ 3; j : 3 ∧ (1 ∨ 2;

d : 1 ∨ (2 ∧ 3); k : 1 ∧ 2;

e : 2 ∨ (1 ∧ 3); l : 1 ∧ 3;

f : 3 ∨ (1 ∧ 2); m : 2 ∧ 3;

g : (1 ∧ 2) ∨ (1 ∧ 3) ∨ (2 ∧ 3) = (1 ∨ 2) ∧ (1 ∨ 3) ∧ (2 ∨ 3).

By imposing the distributive property, we check that all distributive free lattices are
unique for given and finite n. We thus find the values of Table 1.

Generators (n) Elements (N)
1 1
2 42
3 18
4 166
5 7,579
6 7,828 532
... ...

Table 1: Number of generators and number of elements in the free lattice

8.3 Enumeration of the free lattices

Definition 8.2. We will call monomial in ∧ (resp. in ∨) an expression where we
will find only monomial in ∧ (resp. in ∨).

Definition 8.3. We will call polynomial an expression comprising both monomials
in ∧ joined by ∨ or, conversely, monomials in ∨ joined by ∧.

Free lattices, especially interesting in view of generating a nondistributive uniquely
complemented lattice, have been studied, as we said, by Philip M. Whitman in the
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1940s. Whitman defines free lattices in [Whitman 41], answering the question of how
to compare two "lattice polynomials" and showing that, given a polynomial, there
is a shortest polynomial equal to it in the free lattice.

Whitman also proves several important theorems in [Whitman 42]:

Theorem 8.1. FL(3) has FL(n) as a sublattice for any finite or countable n.

Corollary 8.2. For n ≥ 3 and any finite or countable k, FL(n) has FL(k) as a
sublattice.

Theorem 8.3. FL(n) has no sublattice isomorphic to the free modular or distributive
lattice on more than two generators.

Now, recall that, when we seek to approximate the elements in a partial order by
much simpler elements, we are led to a class of continuous posets, consisting of posets
where every element can be obtained as the supremum of a directed set of elements
that are way-below the element. If one can additionally restrict these to the compact
elements of a poset for obtaining these directed sets, then the poset is even algebraic.
Both concepts can be applied to lattices, so that a continuous lattice is a complete
lattice that is continuous as a poset. In this context, Whitman proves the following
theorem:

Theorem 8.4. FL(n) is continuous13.

Whitman also proves:

Theorem 8.5. FL(n) is not complete for n ≥ 3.

Theorem 8.6. FL(4) has an infinite chain of distinct elements.

Whitman ended by stating a number of open problems, the most important being
the following ones: do there exist infinite connected chains in FL(n)? Can we study

13The theory of continuous lattices was carried out by Dana Scott (see [Scott 70], [Scott 71],
[Scott 72]) and also, for a more recent reference and the study of the Scott and Lawson topologies,
[Gierz et al. 03]. It led to the discovery that these generalization of algebraic lattices could be used
to assign meanings to programs written in high-level programming languages. On the purely math-
ematical side, research into the structure theory of compact semilattices led Lawson ([Lawson 69])
and others ([Gierz et al. 80]; [Hoffmann et al. 76]) to consider the category of those compact semi-
lattices which admit a basis of subsemilattice neighborhoods at each point. It was discovered in
[Hoffmann et al. 76] that those objects are precisely the continuous lattices of Scott. One of the
most important features of continuous lattices is that they admit sufficiently many homomorphisms
(that is, mappings which preserve arbitrary infs and directed sups) into the unit interval to separate
the points. The topological form of this result is due to Lawson.
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the free complete lattice and the completion of FL(n) by cuts? And finally, can we
determine the finite sublattices of FL(n)?14

None of the questions posed by Whitman seem to have been answered yet. In
an article dating from the 1980s (see [Salĭı 82]), Salĭı noted that,"since Dilworth
discovered that any lattice may be isomorphically embedded in a suitable uniquely
complemented lattice (i.e. in a lattice with 0 and 1 in which every element has one
and only one complement), not much about this class of close-to-Boolean lattices
has become known" (see [Salĭı 75]). At this time - and still now - it was an open
problem if such lattice might be complete without being distributive. Birkhoff and
Ward (see [Birkhoff and Ward 39]) have proved that it does not have to be atomic
and in [Salĭı 72], as we have seen, it was shown that the property of being compactly
generated also implies distributivity. Another fact concerning complete uniquely
complemented lattices was stated in [Salĭı 75], namely that every such lattice is
isomorphic to a direct product of a complete atomic Boolean lattice and a complete
atomless uniquely complemented lattice. In this latest article, Salĭı deal with so-
called regular elements in a uniquely complemented lattice. It only was shown that
regular elements form a complete Boolean sublattice.

The study of free lattices is also essential because, as Adam and Sichler remarked„
"the lattices constructed by R. P. Dilworth in [Dilworth 45] contain the free lattice
on countably many generators as a sublattice. Hence, in particular, any nontrivial
lattice identity fails to hold in any of Dilworth’s lattices" (see [Adam-Sichler 81]).
By a nontrivial identity, Adam and Sichler mean an identity that does not follow
from the lattice axioms. In this context, a growing conjecture has been that any
uniquely complemented lattice that satisfies a nontrivial lattice identity is distribu-
tive. However, though different authors add numerous restrictions that lead to define
a uniquely complemented distributive lattice, this is not indicative of the general sit-
uation: Adam and Sichler have shown that there are 2ℵ0 varieties of lattices for which
Dilworth’s theorem holds.

More recently, John Harding (see [Harding 08]) was able to prove the following re-
sult:

Theorem 8.7. For κ an infinite cardinal, every complete at most UC-lattice can be
regularly embedded into a κ-complete UC-lattice.

14Since that time, free lattices have been also studied by Dean, Freese, Ježek, Ježek and Slav̌ık,
Jǒnsson, Jǒnsson and Kiefer, Jǒnsson and Nation, Wille... A bibliography may be found in
[Freese and al. 95].
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The same Harding proved before (see [Harding 94] that:

Theorem 8.8. The MacNeille completion of a uniquely complemented lattice need
not be complemented.

Some problems on free lattices like this one - which lattices (and in particular which
countable lattices) are sublattices of a free lattice? - and some other issues connected
to algorithmic may be found in [Freese and al. 95].

9 Some realizations of Dilworth’s lattice
As Schmerl says (see [Schmerl 10], 1366), less is known about infinite lattices, and
it is only in the case of distributive lattices that had been significant results. In
Chajda et al. (see [Chajda 18], 31), we may read that "using free lattice techniques,
Dilworth proved that every lattice is isomorphic with a sublattice of a lattice with
unique complements. Hence there exists a uniquely complemented lattice containing
the nonmodular N5 as a sublattice which is, of course, not distributive". Maybe we
can look at an infinite uniquely complemented lattice containing N5 as a sublattice.
Where to find a good candidate?

9.1 Grätzer’s analysis of Dilworth’s proof

According to [Grätzer 07], all known examples of nondistributive uniquely comple-
mented lattices are freely generated one way or another.

It is obviously the case of Dilworth’s lattice itself. The four steps of its construction
are the following:

A. P being a partially ordered set, the first step consists in imbedding P in a lattice
L so that bounds, whenever they exist, of pairs of elements of P are preserved. L is
namely the free lattice generated by P in the sense that the only containing relations
in L are those which follow from lattice postulates and preservation of bounds (the
methods employed are an extension of those used by Whitman in the study of free
lattices) (see Fig. 8).

B. Next, the lattice L is extended to a lattice O with unary operator, that is, a lattice
over which an operation a∗ is defined with the property:

a = b implies a∗ = b∗. (6)
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Figure 8: Example of free lattices generated by an order

The only containing relations in O are those which follow from lattice postulates,
preservation of bounds, and from (6).

C. In the third step, a sublattice N is selected from O over which a new operation
a∗ is defined for which (6) holds and also having the property:

(a∗)∗ = a. (7)

Thus N is a lattice with reflexive, unary operator. N is again free in the sense that
the only containing relations in N are those which follow from lattice postulates,
preservation of bounds, and the two properties (6) and (7).

D. Finally, a homomorphic image M of N is constructed in which the operation a∗
becomes a complementation. It follows from the structure theorems of O that this
complementation is unique. Furthermore,M contains P and is indeed the free lattice
with unique complements generated by P .

In the end, one gets the following theorem:

Theorem 9.1. The free lattice with unique complements generated by two elements
contains as a sublattice the free lattice with unique complements generated by a de-
numerable set of elements.

This proves the difference between free lattices with unique complements and Boolean
algebras, since the free Boolean algebra generated by a finite number of elements is
always finite.
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9.2 Dean’s theorem and Lakser’s simplification

Dean’s Theorem (see [Dean 64]) has extended Dilworth’s free lattice generated by an
order P to the free lattice generated by P with any number of designated joins and
meets. Then a greatly simplified proof can be found in Lakser’s Ph.D. thesis, 1968
(see [Lakser 68]). But Chen and Grätzer, eliminating section 2 and 3 of Dilworth’s
article, found another proof in two steps in 1969. In fact, the result they proved is
much stronger that Dilworth’s one. This supposes the following definitions:

Definition 9.1 (Almost uniquely complemented lattice). A lattice L is said almost
uniquely complemented if it is bounded and every element has at most one comple-
ment.

Definition 9.2 ({0, 1}-embedding). A {0, 1}- embedding is an embedding that maps
the 0 to 0 and the 1 to 1.

They proved the following theorem:

Theorem 9.2. Let L be an almost uniquely complemented lattice. Then L can be
{0, 1}-embedded into a uniquely complemented lattice.

9.3 Grätzer and Lakser’s solution

In 2006, Grätzer and Lakser provided the one-step following solution:

Let K be a bounded lattice. Let a ∈ K − {0, 1}, and let u be an element not in
K. The authors extend the partial ordering ≤ of K to Q = K ∪ {u} by 0 ≤ u ≤ 1.
They also extend the lattice operations ∧ and ∨ to Q as commutative partial meet
and join operations.

For x ≤ y in Q, they define x ∧ y = x and x ∨ y = y. In addition, they let a ∧ u = 0
and a ∨ u = 1, as can be seen in Fig. 9.

To construct and describe the lattice F (Q) freely generated by Q, Grätzer and Lakser
repeatedly form joins and meets of elements of Q, obtaining the polynomials over
Q, which will represent elements of F (Q). For the polynomials A and B over Q,
the expression A ≤ B denotes the relation forced by the lattice axioms and the
structure of Q. One observes that given any polynomial A, there is a largest element
A∗ of K with A∗ ≤ A and a smallest element A∗ of K such that A∗ ≥ A. An easy
computation shows that the only complement of u is a.

The authors also show that if K is almost uniquely complemented, then the only
other complemented pairs in F (Q) are the complemented pairs in K. Thus if a does
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Figure 9: The partial lattice Q

not have a complement in K, they get an almost uniquely complemented {0, 1}-
extension in which a has a complement. By transfinite induction on the set of
noncomplemented elements of K, they get an almost uniquely complemented {0, 1}-
extension K1 of K0 = K, where each element of K0 has a complement. Then, by
a countable induction, they get a uniquely complemented {0, 1}-extension Kω of
K0 = K.

9.4 Adam and Sichler theorems

Already in the 1980s, as we have learned from Salĭı, Adam and Sichler (see [Adam-Sichler 81])
stated, among others, two significant theorems:

Theorem 9.3. There is a system V of 2ℵ0 varieties of lattices such that, for V ∈ V,
every L ∈ V is a sublattice of a uniquely complemented lattice L′ ∈ V .

In fact, rather than proving this theorem, the authors proved the following stronger
result:

Theorem 9.4. There is a system V of 2ℵ0 varieties of lattices such that, for V ∈ V,
if L ∈ V is a {0, 1}-lattice, each element of which has at most one complement, then
L is a {0, 1}-sublattice of a uniquely completed {0, 1}-lattice L′ ∈ V .

But what interests us here is how they approached the construction of a Dilworth
lattice. This is done as follows:

From a lattice L (see Fig. 10, left), they extracted what they call a "partial lattice"
Lw (see Fig. 10, right) by excluding the least element and the greatest element of
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Figure 10: Finite lattice L and the associated partial lattice Lw

A bounded lattice is a lattice with a least element 0 and a greatest element 1. A
bounded lattice in which the zero and unit elements are considered as distinguished
elements is called, as previously, a {0, 1}-lattice.

Now, for an arbitrary {0, 1}-lattice K, L(K) will denote the lattice obtained by
inserting the lattice K in the interval [x, y] of L (see Fig. 11).

Formally, let ≤ be a relation defined on L ∪ (K \ {0, 1}) by the following:

(i) For a, b ∈ L, a ≤ b if and only if a ≤ b ∈ L;

(ii) For a, b,∈ K \ {0, 1}, a ≤ b if and only if a ≤ b ∈ K;

(iii) For a ∈ K \ {0, 1}, x < a < y.

L(K) is the lattice whose order relation is the transitive closure of ≤. Let Lw(K) de-
note the partial lattice obtained from the lattice L(K) by excluding its least element
and its greatest element (see Fig. 11). Observe that, in the notation of Adam and
Sichler, L and Lw are L(2) and Lw(2), respectively, where 2 denotes the two-element
chain.

Then, the authors proved the following lemma:

Proposition 9.5. If, for any {0, 1}-lattice K, Lw(K) is a relative sublattice of a
lattice L then the sublattice of L generated by Lw(K) is isomorphic to L(K).

Adam and Sichler’s approach, though different from Grätzer’s one, leads to a kind
of Dilworth Lattice.
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Figure 11: The lattice L(K) and the partial lattice Lw(K) obtained from it

10 Conclusion
We may therefore conclude with a few observations. First, looking for a concrete real-
ization of the Dilworth lattice, we have not found, inside mathematics, a construction
of a nondistributive uniquely complemented lattice that is not freely generated. It
seems that there are no natural examples of a nondistributive uniquely complemented
lattice in topology, or in some other mathematical domain. As for possible physical
instantiations, they are also lacking. From gluons to galaxies (see [Creuz 23]), from
lattice vacuum (see [Mitrjushkin et al. 00]) to a lattice universe (see [Kirshner 97];
[Duff et al. 97]), there is a lot of lattice-based structures in physics. However, the
lattices studied within the framework of nonlinear lattice theory (see [Dixon 19]) do
not fit the problem. In classical mechanics they reduce to one dimensional lattices
- in fact, chains - of particles with nearest neighbor interactions (see [Toda 89], 1).
In quantum physics, the use of lattices is often limited to Z2 (see [Naaijkens 16])
and the modeling of lattice gas in chemistry does not go further (see [Simon 93]).
Since all lattice-like biological or engineering structures (see [Pum et al. 21]) are fi-
nite, one cannot expect any information on the subject from the life sciences either.
In conclusion, the UCN lattice of Dilworth remains an enigma. A generalization of
the problem to partially ordered sets was carried out by Waphare and Joshi (see
[Waphare-Joshi 05]), and more recently by Chajda et al. (see [Chajda 18]), with-
out casting any particular light on the matter, and above all, without finding an
object to associate with the poset in question. We only get negative answers to
the three problems posed in [Grätzer 07]. We are in front of a true mathematical
mystery.

We return now to the non-mathematical problem from which we started: if we want
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to define an object O whose properties P ⊂ E are not accessible to us, from the
properties E − P of an object M that we actually know, we are not required to
assume the existence of a Boolean structure on E. If E is not finite, it suffices to
assume that E is a nondistributive uniquely complemented lattice.

If the world (both known and unknown) conforms to the structure of this space E,
then we can approximate the properties of the unknown from the properties of the
known, inside this mysterious non Boolean Dilworth structure.
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