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Article

Seafloor and Ocean Crust Structure of the Kerguelen Plateau
from Marine Geophysical and Satellite Altimetry Datasets
Polina Lemenkova
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(ULB), Building L, Campus du Solbosch, ULB—LISA CP165/57, Avenue Franklin D. Roosevelt 50,
1050 Brussels, Belgium; polina.lemenkova@ulb.be; Tel.: +32-471-86-04-59

Abstract: The volcanic Kerguelen Islands are formed on one of the world’s largest submarine plateaus.
Located in the remote segment of the southern Indian Ocean close to Antarctica, the Kerguelen Plateau
is notable for a complex tectonic origin and geologic formation related to the Cretaceous history of
the continents. This is reflected in the varying age of the oceanic crust adjacent to the plateau and
the highly heterogeneous bathymetry of the Kerguelen Plateau, with seafloor structure differing for
the southern and northern segments. Remote sensing data derived from marine gravity and satellite
radar altimetry surveys serve as an important source of information for mapping complex seafloor
features. This study incorporates geospatial information from NOAA, EMAG2, WDMAM, ETOPO1,
and EGM96 datasets to refine the extent and distribution of the extracted seafloor features. The
cartographic joint analysis of topography, magnetic anomalies, tectonic and gravity grids is based
on the integrated mapping performed using the Generic Mapping Tools (GMT) programming suite.
Mapping of the submerged features (Broken Ridge, Crozet Islands, seafloor fabric, orientation, and
frequency of magnetic anomalies) enables analysis of their correspondence with free-air gravity and
magnetic anomalies, geodynamic setting, and seabed structure in the southwest Indian Ocean. The
results show that integrating the datasets using advanced cartographic scripting language improves
identification and visualization of the seabed objects. The results include 11 new maps of the region
covering the Kerguelen Plateau and southwest Indian Ocean. This study contributes to increasing
the knowledge of the seafloor structure in the French Southern and Antarctic Lands.

Keywords: Antarctic; Southern Ocean; bathymetry; French Southern and Antarctic Lands;
cartography; satellite altimetry; marine geophysics; sediments; magnetic anomalies; seafloor
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1. Introduction
1.1. Background

In cartography and spatial data processing, the task of plotting maps (also known as
mapping layouts) is widely used as a common practice. This involves the visualization and
representation of spatially defined objects using cartographic techniques [1–3]. One of the
generally accepted methods for mapping and quantitative and qualitative cartographic
visualization is implemented through Geographic Information Systems (GIS), using al-
gorithms for raster and vector data processing embedded within these programs [4–6].
However, the high complexity and time-consuming nature of GIS are not conducive to large-
scale mapping applications in various Earth science tasks. To address this, programming
and scripting algorithms are proposed as an alternative to the GIS-based approach, aiming
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to reduce data processing complexity in computer graphics and time costs associated with
mapping [7].

The application of programming methods in cartography has seen extensive devel-
opment, resulting in the release of several programs that utilize scripts as mapping tools.
Programming-based cartographic approaches can be categorized into three general types.
First, there are partial uses of scripts, such as plugins or alternative tools in addition to
the existing Graphical User Interface (GUI) in classical modes. Examples include ESRI’s
ModelBuilder [8], modules in the Geographic Resources Analysis Support System (GRASS
GIS), processing script editors in QGIS or ArcGIS [9,10], and the Python-based ERDAS
Macro Language (EML) used in Erdas Imagine to create spatial models. Second, there are
spatial libraries of programming languages, including selected packages in R and Python
specifically designed for satellite image processing and geospatial data analysis [11–14].
Third, there are programs that are completely based on using scripting languages without
any Graphical User Interface (GUI), such as the Generic Mapping Tools (GMT). All these
examples of using scripts aim to automate cartographic data processing using advanced
scripting tools.

The script-based cartographic programs are founded on the principle of utilizing
the syntax of a programming language, which includes a number of key commands and
recognizable expressions by the system [15]. Following the rules of the embedded language,
it becomes possible to compose scripts for data modeling and cartographic visualization.
In contrast to traditional GUI-based GIS methods, cartographic scripts do not directly
generate maps. However, they provide a series of commands that encompass crucial infor-
mation about the map’s appearance, governing specific features on a plotted cartographic
layout [16]. In fact, scripts and programming commands used in cartography define the
elements present on the map produced by the script during execution. Specifically, it is pos-
sible to define key map concepts such as mathematical definitions of the map (projections,
resolution, grid, coordinate systems, extent, and scale), design of symbols and legends
(colors and object sizes, palettes for continuous fields, and transparency), and exposition of
the elements (overlay, topology, generalization) [17].

1.2. Problem Formulation

The analysis of the seafloor structure and ocean crust concerns mapping, detecting,
and recognising the bathymetric structures and variations in geophysical fields. Among
these problems, the integrated geophysical interpretation of the satellite altimetry, marine
gravimetry, and magnetic anomalies, as well as acoustic and seismic surveys present one of
the most active research areas that have attracted research interest in recent decades [18].
Previous studies [19] provided a broad overview of approaches for analysis of the satel-
lite gravimetry data to model the Earth beneath the sea. Marine geophysical and satel-
lite altimetry data provide information on crustal density and processes in the upper
mantle [20–22], sediment thickness and basement depth [23]. Moreover, the analysis of
the geophysical data enables to reveal key characteristics regarding the lithosphere thick-
ness such as Moho discontinuity and elastic features of the lithosphere [24], viscosity and
flexural rigidity. Such data are essential for investigations on the Earth’s structure.

In terms of the data-driven analyses, previous works investigating the oceanic seabed
can be roughly classified into studies focused on the bathymetric mapping and geophys-
ical analysis. Mapping the seafloor characterizes the bathymetric patterns using data
visualization and cartographic methods [25–27]. Marine geophysical methods investi-
gate the geology of the continental margins using methods of deep-sea drilling [28,29],
the analysis of features extracted from seismic survey and remote sensing data [30], investi-
gating the structure of the deep ocean basins [31–33], and modelling the mid-ocean ridge
system [34–36]. Although traditional methods of bathymetric survey supply novel informa-
tion on origin, evolution, structure, stratigraphy, and tectonic features of the oceanic crust,
they require costly hydrographic equipment such as mutlibeam echo sounder systems [37].
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1.3. Related Work

Seafloor bathymetry and geophysical setting of the oceanic crust are two important
topics for modelling lithosphere [38]. However, the integrated capture and processing of
the multi-source data—such as bathymetry, marine geologic data (development on the
Earth’s crust including age, spreading rates and symmetry) and marine geophysical data
(sediment thickness, gravity and magnetic anomalies)—has always been a challenging
task, and few attempts have been made to explore it. Since the variety of data sources
is increasing in modern cartography, it results in an exponential growth in the volume
of data serving cartographic applications [39]. Therefore, the use of the remote sensing
data, satellite altimetry and gravimetry has proven to be effective in geophysical studies.
Numerous examples exist in the literature that focus on estimating the geoid values,
evaluating gravity anomalies, analysis of the tectonic and crustal structures, glacial and
hydrological modelling and habitat mapping.

Satellite altimetry data can be used to jointly represent the patterns of the oceanic
currents and to draw conclusions on connectivity between the habitats [40]. For instance,
a study by [41] uses the hydrographic and acoustic data for the analysis of the vertical layers
of the ocean to identify the community distribution. An example of the tide modelling of
bathymetric gradients was presented using the satellite altimetry data [42]. The retreat
of glaciers using mass balance measurements was estimated using remote sensing data
to analyze spatial distribution of the surface mass balance [43]. Other studies used the
Gravity Recovery and Climate Experiment (GRACE) mission for detecting trends and
variations in the ice-sheet mass balance by evaluating gravity signals [44]. Furthermore,
Mathieu et al. [45] combine the SRTM DEM, remote sensing data and geological sampling
to clarify seafloor structures.

These and similar examples illustrate that a combination of bathymetric and geophysi-
cal data for the detailed analysis of Earth’s crust structure and topography outperforms
their use separately. This suggests that seafloor mapping should be based on the complex
analysis of the heterogeneous features of the seabed. Such information can be derived from
various Earth observation datasets, as pointed out earlier [46–49]. Since such methods can
be regarded as feature-level combinations of seafloor features showing the local appearance
of prominent seabed elements such as fracture zones, ridges, seamounts, deep-sea trenches,
canyons, or rifts, the use of a programming approach to merge different integrated geo-
physical datasets enables matching multi-source data with varying resolutions and origins.
Such data can be used for the detailed analysis of seafloor structure and geodynamic
processes [50–52].

1.4. Objection and Motivation

In this study, several bathymetric and marine geophysical datasets were used for
the analysis of the Kerguelen Plateau (Figure 1) within the south-western segment of
the Indian Ocean to visualize, describe and analyze the structures of the seafloor in the
context of the geophysical settings. Ten new maps are presented and described to visualize
spatial variations, reveal correlation and matches between the geophysical and topographic
setting of the Kerguelen region to continue the existing similar studies [53–55]. Given
the remote location of the Kerguelen Archipelago, one of the most isolated places on
Earth, and associated difficulties and high cost of geological and geophysical sampling,
the integrated use of the satellite-derived data enables to us have better insight into the
structure of the Kerguelen Plateau.
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Figure 1. Map of the Kerguelen Plateau region. Mapping: GMT. Map source: author.

2. Study Area

The Kerguelen Plateau presents a large topographic elevation in the south-west Indian
Ocean, extending over 6500 km2 [56], Figure 1. The Kerguelen Archipelago, formed on
the plateau, constitutes a shallow submarine plateau. The structure of the Kerguelen
Archipelago is asymmetric with notable variations in the two distinct parts: the northern
part (Heard, McDonald and Kerguelen Islands) is more shallow (<1000 m) compared to the
southern segment (depths of 1500–2000 m) [57]. Morphologically, the plateau is oriented in a
NNW direction toward the Antarctic continental margin where it is constrained by Princess
Elizabeth Land. On the northwest, the archipelago is limited by the Crozet Archipelago,
located 1250 km away [58]. To the north, it is bordered by the African-Antarctic Basins; to
the northeast, by the Australian-Antarctic Basin; and to the south, by the Antarctic. Adjacent
lands include Enderby Land, Kemp Land, Mac Robertson Land, Princess Elizabeth Land,
Wilhelm II Land, and Queen Mary Land, all located in the Antarctic, as shown in Figure 2.

The origin of the Kerguelen Plateau is related to the hotspot associated with the Gond-
wana breakup in the Cretaceous period (120–110 Ma), and seafloor spreading between India
and Antarctica in the south-western Indian Ocean [59]. The initial surface manifestations
of the Kerguelen Plume in the southern region began during the Mesozoic era around
120 Ma [60]. Active submarine volcanism occurring on the aseismic ridge, coupled with
sedimentation processes since the Cretaceous, led to the creation of the basaltic basement
of the Kerguelen region [61]. This volcanic activity persisted within the Kerguelen hotspot
until the Tertiary period (<40 Ma) and is evident in the geological and mineralogical com-
position of the archipelago. The archipelago is covered by up to 85% basalts originating
from the mantle plume of the hotspot. These basalts result from the crystallization of raised
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and cooled basaltic magma [62–64]. Presently, the Kerguelen Plateau stands as one of the
largest volcanic plateaus globally, spanning a total length of 2300 km. Remnants of volcanic
activity are still visible on the Heard and McDonald Islands [65].

Figure 2. Age of the ocean crust in SW Indian Ocean and the Kerguelen Plateau region and east
Antarctic. Mapping software: GMT v. 6-1-1. Map source: author.

The Kerguelen Plateau belongs to the French Southern and Antarctic Lands, known
for its protected environment [66–68]. Its high environmental value is explained by the
unique wildlife structure, which includes vulnerable species. The remote location of
the archipelago—4000 km from South Africa and Australia [69,70]—has created ideal
conditions for preserving unique flora and fauna of the Kerguelen Archipelago. The
presence of rare Antarctic plant species and high biodiversity is closely linked to the
soil developed on the basaltic basement and the specific geological substrate of volcanic
origin. Additional factors contributing to this uniqueness include the influence of the Polar
climate [71–73]. The distribution of fish communities and phytoplankton is affected by
seasonal changes of the Antarctic circumpolar currents [74–81]. Furthermore, the steep
bathymetric slopes and the exposure of the Kerguelen plateau amplify the speed and
intensity of the ocean currents’ circulation [82]. The combination of all these factors makes
the ecosystems of the Kerguelen Archipelago unique and deserving of protection as an
environmental heritage of the French Southern and Antarctic Lands [83–85].

3. Materials and Methods

All the maps have been plotted using the scripting toolset Generic Mapping Tools
version 6.4.0 [86], https://www.generic-mapping-tools.org/. A key aspect of the GMT

https://www.generic-mapping-tools.org/
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algorithms is that they consider each cartographic element by its parameters and add new
layers on the map regarding the target location, which can be adjusted using refined flag
options in special modules. Thus, a modular scripting approach of GMT distinguishes it
from GIS.

3.1. Data

The materials used as input cartographic grids include the following datasets. The ma-
rine geological data on age, spreading rates, and asymmetry of the ocean crust were derived
from the NOAA high-resolution dataset [87], Figure 3. The units of the dataset on spreading
asymmetry are expressed as % of crustal accretion of the seafloor, i.e., symmetric spreading
results in values of 50% on conjugate ridge flanks. The bathymetric mapping was based on
the ETOPO Global Relief Model [88]. The gravity grids were obtained from the EGM-2008
and EGM96 [89]. Gravity data are grounded on the concept of gravity anomaly across
different Earth surfaces, which correlates with the interplay between topography, mass
distribution within local and regional relief structures, marine gravity values, and the
establishment of gravitational potential across various Earth locations.

Figure 3. Asymmetry in crustal accretion on conjugate ridge flanks of the ocean crust over the
Kerguelen Plateau region, east Antarctic and south-west Indian Ocean. Map source: author.

The free-air and Bouguer gravity anomaly grids are derived from high-resolution
grids [90,91]. Specifically, the gravity field varies significantly over the oceans due to
density fluctuations. The most pronounced anomalies emerge from fluctuations in density,
such as those occurring at the heterogeneous seafloor or at the crust-mantle interface (Moho
discontinuity) [92]. Such data facilitate the modelling of gravity fields for the analysis of
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Earth’s structure. The latest updates in gravity grids enhance the precision of altimetry-
derived gravity anomalies. While gravity grids do not directly indicate topography, they
offer crucial insights into the Earth’s relief, providing an approximate relationship between
topographic and geophysical data and illustrating the correspondence of surface gravity
values with local geoid undulations [93].

The data on sediment thickness are collected from the GlobSed dataset, which models
distribution of the sediment thickness in the World’s Oceans [94]. The magnetic data are
derived from the two available information sources compiled originally from satellite
and marine magnetic measurements: the Earth Magnetic Anomaly Grid (EMAG2) [95],
which has a resolution of two arc minutes, and the World Digital Magnetic Anomaly Map
(WDMAM) with a resolution of three minutes [96]. The gravity data were derived from the
free-air global gravity grids [97].

The analysis of the geodetic data is useful in such complex terrains since it facilitates the
identification of major tectonic structures and topographic patterns. In addition, the EGM
grids, the identification of lithospheric structure and tectonic blocks can also be performed
using satellite gravity data such as World Gravity Model (WGM) and GRACE [98]. Fur-
thermore, the EGM and astrogeodetic vertical deflections are useful for modelling gravity
and geopotential differences [99]. Finally, processing terrestrial and satellite geodetic data
can be applied to address theoretical geodetic challenges, such as the altimetry–gravimetry
boundary-value problem [100]. Other instances of the implications of geodetic datasets en-
compass the utilization of satellite-derived data from Cryosat-2 and altimetry in conjunction
with ship-measured gravity to estimate marine gravity anomalies [101].

3.2. Methods

In this study, the cartographic methodology is based on using the Generic Mapping
Tools (GMT) programming suite version 6.4.0 [102] by the developed scripting workflow,
explained in detail in earlier works [103,104]. The most prominent feature of the GMT
is a scripting approach that principally distinguishes it from the conventional software
due to the embedded programming language [105]. The traditional GIS-based methods
either employ the GUI for mapping with existing standard menu or allow scripting as a
complimentary workflow.

In contrast, the GMT is a completely console-based software that operates entirely
using scripts. In this way, it captures the data by running a script written using the
embedded syntax that operates similarly to programming. A script consists of a sequence
of predefined commands with parameters that control the appearance of cartographic
elements and features. The most well-known cartographic tools that employ scripts for
data processing are GMT [106] and GRASS GIS [107]. Other software allows scripts
as an additional functionality alongside the standard GUI, as seen in ArcGIS or QGIS.
While the latter is predominantly used for image processing, cartographic, and ecological
studies [108–111], GMT finds application in geophysical and geological research [112–114].

3.2.1. Topographic/Bathymetric Mapping

The script for plotting the topographic/bathymetric map is provided in Listing A1.
The code’s most crucial elements are as follows. The mapping process initiates by selecting
the study area from the global ETOPO1 grid using ’grdcut’. Isolines are chosen through
’grdcontour’ with a 1,000 m gap. In our case, these lines denote significant locations that
offer a high representation estimate for seafloor bathymetry. ’grdimage’ is utilized to
generate an image plot of the raster grid, colored as defined by the ’makecpt’ module, with
values -T indicating the extreme (min/max) data for the topographic grid, as extracted by
the ’gdalinfo’ module. The remaining code details are outlined in Listing A1 along with
key comments.
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3.2.2. Mapping Seafloor Age, Spreading Rates, Spreading Asymmetry and Age Uncertainty
of the Ocean Crust

Mapping the age, age uncertainty, spreading rates, and spreading asymmetries of the
Kerguelen Plateau is executed using raster grids with a 2-minute resolution, as shown in
Figure 4. These grids are reprojected to the Lambert Azimuthal Equal-Area projection utiliz-
ing data from major features within the Indian Ocean basin. The ’psxy’ module is employed
to add vector lines representing mid-ocean ridges, tectonic plates, and lithospheric plates.
This provides a depiction of the borders of the Indian, African, and Australian plates, as
seen in Figure 4. Spreading half rates of the ocean crust are visually presented using the
2-arc-minute netCDF grid v.3.6 from NOAA. Similarly, tectonic slab contours are added via
the ’psxy’ module of GMT. Multiple grids are combined and displayed as plotted raster
grids to illustrate age-depth relationships in the seafloor around the Kerguelen Plateau and
southwest Indian Ocean. The complete scripts are available in Appendix A of this study,
with Listing A2 utilized for mapping the age of the oceanic lithosphere over the Kerguelen
Plateau, Listing A3 for mapping asymmetries in crustal accretion on conjugate ridge flanks
over the Kerguelen Plateau, Listing A4 for visualizing spreading half rates of the oceanic
lithosphere in the Kerguelen Plateau and SW Indian Ocean, and Listing A5 for mapping
crustal age uncertainty of the oceanic lithosphere over the Kerguelen Plateau, as depicted
in Figure 5.

Figure 4. Spreading half rates of the ocean crust over the Kerguelen Plateau region, east Antarctic
and south-west Indian Ocean with added GSFML data. Mapping tool: GMT. Map source: author.



Geomatics 2023, 3 401

Figure 5. Age uncertainty in lithosphere crust (m.y) over the Kerguelen Plateau region, east Antarctic
and south-west Indian Ocean. Cartography: GMT. Map source: author.

3.2.3. Mapping Sediment Thickness

A representation of the GlobSed 5-arc-minute total sediment thickness grid is extracted
from the global raster grid on a target location of the Kerguelen Archipelago area and sur-
rounding regions using ’grdcut’ command, which selects the file. The amplitude of values
is checked using the Geospatial Data Abstraction Library (GDAL) library embedded in
GMT using the ’gdalinfo’. Based on the range of the values, the colour palette table is
defined accordingly and presented using the ’psscale’ module. This module is configured
with parameters specifying the geographic location for each element on the map. The ’-Dg’
command is employed to define the position of the colour scale on the map using coordi-
nates. Furthermore, grid annotations and graticules are added utilizing the ’psbasemap’
GMT module. The remaining part of the script, complete with added comments for concise
explanations, is outlined in Listing A6 within the Appendix of this study. This particular
listing was utilized to create the map featured in Figure 6.
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Figure 6. Sediment thickness (m) in East Antarctica, South-West Indian Ocean and the Kerguelen
Plateau region. Cartography: GMT. Lambert azimuthal equal-area projection. Map source: author.

3.2.4. Geophysical Mapping

To emphasize features and subsurface characteristics that might not be apparent
from geological data alone, maps of gravity anomalies were generated using gravity
datasets projected onto the Lambert Equal-Area Azimuthal Projection for consistency with
other maps. The complete scripts for creating these geophysical maps can be found in
the Appendix, with Listing A7 detailing the process for free-air gravity anomalies and
Listing A8 for vertical gravity gradient. The crucial lines of code are summarized below.

For free-air gravity anomalies, the ’img2grd’ module was initially employed to convert
the image from the .IMG format into GRD format. The projection was defined using the
’-JU43/6.0i’ flag within the ’grdimage’ module. The extent of the region was specified using
the ’-R’ command, and this information was subsequently passed to subsequent modules
using the ’-R -J’ flags.

In the case of the vertical gravity gradient map, a satellite-derived grid sourced from
altimeters CryoSat-2 and Jason-1/2 [115] was used. This dataset facilitated the identification
of ridge propagation on the seafloor.

Due to GMT’s ability to process each feature only once and utilize relevant modules
(’psbasemap’, ’grdcontour’, ’psscale’), it boasts a high processing speed. This technical
advantage empowers GMT to efficiently handle grids encompassing extensive geographic
areas in a matter of seconds. With an understanding of the seafloor’s geological and
geophysical structure, GMT demonstrates rapidity and proficiency in mapping.

By adjusting projection parameters, the algorithm concentrates on key seafloor features
within the desired scale and projection. Additionally, the GMT-based framework excels in
determining the location, scope, and boundaries of mid-ocean ridges and significant basins.
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Through cartographic generalization involving the gap in isolines, redundant bathymetric
features can be eliminated. This process identifies pertinent and nonrepetitive features,
underscores correlations between geophysical settings, gravity, and magnetic anomalies,
and facilitates their comparison with geodetic anomalies. Consequently, GMT offers an
effective approach to map and visualize seafloor structures.

3.2.5. Mapping Magnetic Anomalies

To map the magnetic anomalies, two different grids were used—the WDMAM and
the EMAG2. The first was a subset from the global grid embedded in the GMT using
the ’grdcut’ module, and the second was obtained from the existing raster file of EMAG
2-minute resolution grid. As a result, GMT offers flexibility in data processing through
two approaches: utilizing pre-existing stored files and accessing embedded grids available
within the system remotely. Subsequently, the images were rendered using the ’grdimage’
module, accompanied by color palettes tailored to the data distribution range across the
Kerguelen Plateau and the adjacent southwestern Indian Ocean. The ’makecpt’ module
was employed for this purpose. For a comprehensive view of the GMT scripts for both
maps visualized with WDMAM and EMAG2, refer to Listings A9 and A10 in the Appendix.

3.2.6. Mapping Geoid Anomalies

The map of geoid inundations was created using the EGM96 dataset through the
GMT script, with each module defining specific elements on the map. To achieve effective
mapping, the scripts were executed from the console, tailoring the geoid plotting to target
concepts such as projections, grids, colour palettes, raster extents, and annotations. The
stepwise definition of these cartographic elements is evident on the geoid maps, as demon-
strated in the script provided in Listing A11. This approach to data visualization ensures
high levels of automation in data processing through GMT, surpassing conventional tools.

Significant features such as geoid undulations, seafloor isochrons, basement depth
isolines, and asymmetries in crustal accretion are influenced by the asthenospheric flow
from Kerguelen’s mantle plumes to the spreading Southwest and Southeast Ridges. Map-
ping these data reveals insights into seafloor attributes and enables comparisons with the
geological structure and geodynamics. Consequently, mapping multi-source topographic
and geophysical datasets allows for the comparison of features using consistent projections.
However, it is important to note that real-world seafloor features are seldom identical due
to various factors impacting bathymetry, although they may exhibit strong correlations.
To address this, GMT scripts can be adapted to different scales to map features in more
detailed views. In order to assess the influence of geophysical and geological settings on
seafloor structure using GMT’s capabilities, numerous cartographic re-projections were
generated. Each map represented selected seafloor features at varying levels of detail. The
Lambert azimuthal equal-area projection was ultimately chosen as the optimal projection
for its applicability across all maps, ensuring comparability and coherence.

4. Results and Discussion

Automatic matching of topographic and geophysical grids with high accuracy is es-
sential for complex geologic–tectonic investigations. This paper demonstrated the use of
scripting algorithms of GMT. These algorithms were applied for plotting eleven thematic
maps covering the south-west segment of Indian Ocean and East Antarctic using bathymetric,
geodynamic and high-resolution geophysical datasets on gravity (Figures 7 and 8). Carto-
graphic scripts by GMT, as demonstrated in this research, provide visualized information
on the geodynamic and geophysical setting of remotely located areas such as Kerguelen
Plateau. During the cartographic process and workflow, the scripts enable us to save time
through the increased speed of mapping due to the high level of automation.
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Figure 7. Marine gravity field over the Kerguelen Plateau region, south-west Indian Ocean. Mapping:
GMT. Map source: author.

The programming concept of GMT enables us to better tune and adjust the layout of
the cartographic plots in various scales and focus on a specific area for comparability of
maps in a series. Such compatibility facilitates the evaluation of correlations among various
geophysical and bathymetric features that have developed over the extensive history of
the Kerguelen Archipelago. Furthermore, by utilizing geospatial analysis as a complemen-
tary technique, it becomes possible to compare and analyze the relationships within the
geodynamic setting, such as age, spreading half rates of the ocean crust, asymmetry in
crustal accretion on conjugate ridge flanks, and other variables. In this manner, GMT scripts
offer an advanced cartographic method for visualizing datasets and extracting information
through efficient data processing and modelling of geophysical properties of the seafloor.

These maps reveal the details of the structure of the seafloor in the Kerguelen Plateau.
The results confirm that the dynamics of seafloor development, as reflected in the maps of
oceanic crust age, asymmetries, and spreading rates of the south-west and southeast Indian
ridges, are closely related to the major geophysical setting as depicted on the topographic,
magnetic, and gravity grids. Additionally, the volcanic activity of the Kerguelen hotspot has
a significant impact on the distribution of magnetic anomalies, which aligns with previous
studies [116–118]. Overall, the results demonstrate that GMT scripting is a powerful and
stable cartographic method that efficiently performs geophysical and bathymetric seafloor
mapping. In the sections below, we discuss the obtained results on relevant maps, providing
comments on the essential features and characteristics of the seafloor around the Kerguelen
Plateau, south-west Indian Ocean, and East Antarctic.
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Figure 8. Vertical gravity gradient over Kerguelen Plateau. Mapping: GMT. Map source: author.

4.1. Ocean Floor Formation

The advanced methods of visualization by GMT constitute an important element of the
map content through detailed plotting of the depicted objects, which enables us to indicate
qualitative and quantitative geophysical specifications for reference and analysis. Thus, the
general physical-geographic structure of the Kerguelen Plateau is visible in Figure 1, which
shows a morphological orientation of the archipelago in the NW-SE direction and an extent
surpassing 2000 km in length. As can be seen, the northern and southern parts of the plateau
are asymmetric, where the less expressed southern part is older and lies in deeper water
in the topographically downlifted areas. Age, spreading rates, and spreading symmetry
of the ocean crust indicate the gradual evolution steps of the ocean floor formation in the
southwest Indian Ocean and around the Kerguelen Plateau. The geodynamic setting of the
oceanic crust (Figures 2–5) shows a strong relationship between the Kerguelen Plateau and
the two mid-ocean ridges, which can be revealed from the analysis of the relief.

Relief is the main element of the seafloor since it reflects its geological structure and
geodynamic history. Accordingly, the relief of the seafloor surface around the Kerguelen
Plateau forms a continuously changing field of bathymetric heights. There are also sharp
changes in altitude around the archipelago and mid-oceanic ridges. To depict the relief,
GMT enables the modeling of isolines using the ’grdcontour’ module and adjusted color
gradients using methods of qualitative coloring of background and gradients according
to the actual heights. At the same time, there are specific benefits of GMT techniques for
mapping the hypsometric maps. Thus, the quantitative values of the relief make it possible
to obtain absolute heights and elevations from the raster grid; the characteristics of the
curvature and steepness of inclination can be obtained using the GMT module ’grdtrack’
through cross-sectioning [119–121]. Moreover, GMT enables the modeling of the plasticity
of the relief, that is, to depict a nonlinearity of the landform irregularities that form a visual
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image of the submarine terrain. This enables an analysis of the morphological conformity of
the relief, which highlights major seafloor features, specific landforms, and their structure.

The age of the ocean crust was determined by interpolating the adjacent seafloor
isochrons oriented towards the direction of seafloor spreading, as shown in Figure 2. This
correspondence highlights the unique geophysical setting of the Kerguelen Plateau, underlain
by the oceanic crust, which is strongly associated with its tectonic origin associated with vol-
canic hotspot and geologic history. The formation of the Southwest and the Southeast Indian
Ridges is related to the uplift of the Kerguelen Plateau as a remnant of the Mesozoic oceanic
basin existing after the separation of Gondwana. The comparison of the bathymetric map
with geodynamic maps shows that seafloor heterogeneity around the Kerguelen Archipelago
correlates with the seafloor spreading rates, where rougher basement is formed in the areas
with the low half-spreading rate threshold (30–35 mm/year and lower). This correlation can
be revealed by comparing the maps in Figures 1 and 4. Such heterogeneity in seafloor patterns
varies significantly in various basins of the Indian Ocean, depending on the geodynamic
setting and the geologic development of the oceanic crust.

The gridded map of age of the ocean crust around the Kerguelen Plateau (Figure 2)
shows a correlation with the observed spreading half rates of the lithosphere (Figure 4).
Originally formed as a single structure, Kerguelen was then split by the seafloor spreading in
the south-west sector of the Indian Ocean which resulted in the formation of the two segments
of the archipelago [122] which are visible on the maps. Furthermore, the difference in volcanic
activity between the northern and central parts of the Kerguelen Plateau, underlying Heard
Island, indicates that it is located on a hotspot, with various parts of the islands experiencing
the effects of the mantle plume on different scales [123–125]. This unstable position has an
impact on the geodynamic patterns over the Kerguelen Islands, leading to a higher uncertainty
in the age of the oceanic crust (Figure 5) compared to the adjacent areas. Additionally, the
structure of the oceanic crust beneath the Kerguelen Plateau is similar to that beneath aseismic
ridges such as the Crozet Rise and the Madagascar Ridge, providing evidence that it originates
from active volcanism associated with a hot spot [126].

4.2. Sediment Thickness

Mapping sediment thickness using the 5-arc-minute GlobSed grid relies on the ap-
proximated modelling, which highlights the sedimentation trends around the Kerguelen
Archipelago, Figure 6.

The analytical map showing sediment thickness (Figure 6) displays patterns and key
characteristics of sediment distribution over the seafloor. Using GMT-based techniques of
mapping, it is easy to highlight the variations in sediment accumulation in various parts
of the ocean using an adjusted colour table and the actual range in the data on sediment
thickness. Hence, the level of cartographic details depends on the depth of the analysis with
regard to the geologic formation of the seafloor and sediment accumulation. The objects
on the map show the main regions of accumulated sediments, the structure and trends in
distribution, and special features and properties compared to the closeness of coastal areas.
Thus, the distribution of the sediment thickness correlates with the age of the underlying
oceanic lithosphere and its latitude, which can be noted by the comparison of maps in
Figures 2 and 6. Such correspondence is especially visible for higher values of the sediment
thickness near the shorelines of the Antarctic, Amery Ice Shelf (3000–4000 m), Enderby
Land (over 4000 m) and the Kerguelen Plateau (2000–3000 m).

A higher level of sediment thickness in these areas may also indicate earlier processes of
subaerial erosion that occurred before subsidence and associated sedimentation. The rifting
process that took place during the Late Paleogene resulted in changes in the Tertiary sediment
facies of Kerguelen, which were influenced by the evolution of the Antarctic environment [127].
Sediments covering the Kerguelen Plateau include pillow lavas, tuffaceous sediments, and
marine siltstones that were deposited since the late Miocene [128]. These sediments continue
as a thick sequence of Cenozoic sediments (over 5000 m) within the Enderby Basin to the
southwest of the Kerguelen Plateau (Figure 6).
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The correlations observed between sediment thickness (Figure 6) and the age of the
oceanic lithosphere (Figure 2) demonstrate the role of ocean floor formation in influencing the
pattern of distribution and accumulation of sediments.

Moreover, the analytical map of sediment thickness reflects smaller features and details
compared to the bathymetry of the southwest Indian Ocean. Hence, comparing the map of
sediment thickness with the bathymetry enables us to detect associations, for example, high
values of sediment thickness in the region of Dronning maud Land in the Antarctic, which
can be associated with the effects from the processes of weathering and coastal erosion,
factors of higher curvature in slopes and topographic variations in heights in the coastal
areas. Other important factors increasing the accumulation of the sediments around the
Kerguelen and the adjacent area include glacial processes and the turbidity of the ocean
currents. Hence, intense circulation results in the accumulation of the large sediment fields
with values over 3000 m.

These effects can be attributed to the Antarctic circumpolar currents that started
around the Eocene-Oligocene periods and have continued until the present time. These
currents constitute the strongest current system in the oceans, directed clockwise around
the South Pole, and they significantly influence the adjacent sub-Antarctic regions, such as
Kerguelen [129,130].

The general orientation of areas with maximal sedimentation is consistent with the
sediment-filled troughs stretching in a NW-SE direction. These troughs are associated with
the overall NW-SE orientation of Kerguelen and the axes of tectonic faults. The high values
in sediment thickness around the Kerguelen Plateau, particularly contoured by the ridge
isolines along its eastern margin, are associated with depositions resulting from bottom
currents directed westwards.

4.3. Free-Air Gravity Anomaly and Vertical Gravity Gradients

The visualized marine gravity field over the Kerguelen Plateau region and the adjacent
areas of the south-west Indian Ocean are shown in Figure 7. The comparison of the gravity
roughness with the map of the half-spreading rates (Figure 4) and sediment thickness
(Figure 6) shows the relationship between the speed of the spreading of mid-ocean ridges
and roughness of the seafloor basement. Such phenomena are explained by the effects
from the process of mid-ocean ridge formation. Other factors include the associated
magma flows, spreading directions in Mesozoic and isochron orientations of the age of the
oceanic crust, which affect current bathymetric and gravity patterns [131]. Furthermore, the
gravity highs around the Kerguelen Plateau and Heard Island correspond to the maximal
bathymetric elevations. These gravity highs indicate the presence of seamounts formed
by Miocene basalts erupted during volcanic activity in the southern Indian Ocean. This
volcanic activity contributed to the formation of a large igneous province [132].

The GMT-based geophysical maps enable us to determine the location and spatio-
temporal structure of gravity phenomena that indicate on geological processes, their mutual
relationships, and connections with topography. Such analysis supports the identification
of trends and dynamics in seafloor development. It helps obtain quantitative characteristics
from geophysical data and estimate both the highest and lowest values in gravity grids.
In turn, zoning and classification of gravity variations helps to forecast changes in gravity
anomalies over the seafloor of the Indian Ocean. Hence, the analysis of maps shows that
the values of the free-air gravity over the Kerguelen are higher than in the surrounding
areas and reach up to 80 mGal (Figure 8). In contrast, lower values are associated with the
bathymetric depressions and have values of −40 to −60 mGal. Furthermore, the abyssal
plain is characterized by the medium values of 0–20 mGal, Figure 8. This well illustrates the
existing correlation of the free-air gravity anomalies with the distribution of topographic
highs and depressions on the seafloor since they are strongly influenced by a gravitational
effect of the distributed topographic masses that are caused by the differences in elevation.

Figure 8 displays the mapping outputs for the vertical gradient over the Kerguelen and
the southwest Indian Ocean, showcasing the effects of different locations. The visualized
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map demonstrates a crucial property of gravitational systems, such as free-air gravity,
which is not only subject to the effects of geographic location and the latitude of the
selected measurement regions but also the altitude of the Earth’s surface. This is because
greater altitude implies a greater distance from the Earth’s center, which in turn affects
gravity values. Moreover, the vertical gravity gradient identifies variations in gravity
with changes in topographic elevations, as depicted in Figure 8. The comparison of
gravity datasets provides additional information on the distribution of major geological
and seafloor structures, considering the variations of geophysical fields.

Furthremore, the comparison of the vertical gradient and free-air gravity map
(Figures 7 and 8) with the topographic map (Figure 1) illustrates the effects of seafloor
structure and the distribution of the oceanic bed on gravity, which shows that the high-
est values correspond to the Kerguelen Plateau and other rises, while lower values are
generally associated with topographic depressions.

4.4. Magnetic Anomalies over Kerguelen Plateau

The anomaly of the magnetic intensity at an altitude of 5 km above mean sea level
over the Kerguelen Plateau is shown in Figure 9.

Figure 9. Patterns of the marine and terrestrial airborne magnetic anomaly over the Kerguelen Plateau
on a three-minute resolution grid of WDMAM, south-west Indian Ocean. Map source: author.

Here, high heterogeneity in the geophysical data is related to the past volcanism
over the Kerguelen Plateau, including the voluminous basaltic flooding originated from
a deep hot spot as an asthenospheric source of mantle plume product. This resulted
from the processes of slab dynamics and tectonic plate movements in the southwestern
segment of the Indian Ocean. In this regard, combining the data from the WDMAM and
EMAG2 (Figures 9 and 10) data on terrestrial gravity fields (Figures 7 and 8) for comparison
with maps on oceanic crust development (Figures 2–5) presents an integrated GMT-based
geophysical analysis.
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Figure 10. Marine and Earth airborne magnetic anomaly grid based on EMAG-2 over the Kerguelen
Plateau region. Black areas signify “no data” in the original grid. Map source: author.

Crustal volume contributes to the decreased amplitude of the magnetic anomaly around
the Kerguelen, as can be seen in Figure 10, with lower values of around −500 mGal. The anal-
ysis of the magnetic anomaly patterns in the SW Indian Ocean supports the hypothesis of
the spreading seafloor with variations in the oceanic crustal block movements, as reported
earlier [133]. This phenomenon is evident from the different magnetic patterns observed
over the mid-ocean ridge. Moreover, the comparison of Figure 10 with Figure 5 reveals
that seafloor age uncertainties for grid cells coincide with the marine magnetic anomaly
identified around the Kerguelen Islands. This correlation is also observed for the conjugate
ridge flanks (Figures 3 and 10).

The Earth Magnetic Anomaly Grid (EMAG2) offers the opportunity to assess magnetic-
gravity field relationships as descriptors, going beyond the traditional analysis of gravity and
magnetic anomalies. Magnetic anomalies arise from geological and topographic features that
alter local magnetic fields, making it crucial to comprehend their correlation with geophysical
phenomena and topography. For instance, scrutinizing local magnetic anomaly patterns in the
southwest Indian Ocean reveals associations with oceanic crust formation, seafloor spreading,
and subduction zones. Moreover, the age of oceanic crust and spreading rates, resulting from
land accretion and extensive volcanism of the Kerguelen Plateau, are linked to the historical
geological development of the region, as mentioned previously [134].

The EMAG-2 and WDMAM grids employed for plotting magnetic anomalies exhibit
varying levels of grid detail, allowing insight into the subsurface structure of the seafloor
around the Kerguelen Plateau and the composition of the Earth’s crust in the southwest
Indian Ocean. The magnetic fabric data correlate with hotspot activities and active volcanism,
particularly prominent over the central and northern sectors of the archipelago [135–137].
Furthermore, intermediate crustal thickness values within the oceanic crust beneath the
Kerguelen Plateau and large-amplitude magnetic anomalies across the archipelago point
to the plateau’s oceanic origin, attributed to plate volcanism resulting from tectonic plate
activity, as previously reported [138,139]. Therefore, the distinctive magnetic patterns evident
in Figure 10 maps correspond to heightened hotspot activity and the associated lava flows.
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Deeper masses, asthenospheric upwelling, and mantle plume-driven convection are
geodynamic processes that influence the magnetic properties of the Earth’s surface. More-
over, through data analysis, a deeper understanding of the impact of geophysical settings
on the distribution of positive and negative magnetic undulations emerges, with the former
situated over the Kerguelen Islands and the latter in the eastern regions and southwest of
Australia. This analysis enables the assessment of variations in geophysical grids through
comparative map analysis. Thus, the cartographic depiction of geophysical and magnetic
datasets offers advanced methods for extracting information about seafloor formation and
interconnected geophysical processes.

4.5. Geoid Models

The geopotential model over the Kerguelen, based on the EGM96 dataset, is illustrated
in Figure 11. The variations in the geoid across the Kerguelen Plateau highlight the ongoing
isostatic compensation of the archipelago due to its low-density mantle. Consequently,
the high anomalies in the geoid level above the Kerguelen Plateau can be attributed to the
significant volcanic activity associated with the formation of ridges on the hot lithosphere.
This volcanic activity is reflected in the exceptionally thick crust beneath the Kerguelen,
resulting in geoid values exceeding 40 meters (Figure 11), surpassing the normal thickness
of the oceanic crust. These findings corroborate previous studies investigating the geoid in
the Kerguelen Archipelago, which documented anomalous thickness in this region [140].
This isostatic compensation, linked to anomalously high geoid values, corresponds to the
rugged elevated terrain in regions experiencing active tectonic uplift. These observations
shed light on processes occurring in the upper mantle [141].

A comparison of the geoid map with topography (sf. Figures 1 and 11) implies an
existing correlation between the continued geodynamic processes in the south-west Indian
Ocean and the topographic structure of the Kerguelen Archipelago. Moreover, this proves
a high positive correlation between the geoid height and deep structure of the seafloor
topography, as also noted earlier for the regions of large plateaus and swells [142].

Figure 11. Geoid model based on EGM-96 over the Kerguelen Plateau region, east Antarctic and
south-west Indian Ocean. Mapping: GMT. Map source: author.
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5. Conclusions

As demonstrated in this study, the GMT-based mapping approach offers a wide
range of cartographic functions for comprehensive spatio-temporal modelling and data
visualization through an automated scripting approach. Utilizing GMT for cartographic
tasks provides various modules and methods for representing different types of data,
making it applicable in diverse fields of geomatics. The advantages of employing GMT
in cartographic workflows are manifold. It enables highly automated plotting, facilitating
rapid visualization of complex elements and features such as geographical, geological,
oceanological, and geomorphological characteristics.

Furthermore, GMT supports multiple formats, encompassing both raster and vector
data, and accommodating various classes and types of information. Leveraging the techni-
cal capabilities of GMT within cartographic workflows allows for common modelling and
basic statistical analysis of spatial data, enhancing the understanding of their properties.

Analyzing a multitude of maps generated using GMT scripts reveals the consistency
in depicted objects, facilitating their recognition and interpretation. The broad spectrum of
GMT modules integrates scientific and technical methodologies for cartographic visual-
ization and geospatial analysis. This unification aids in feature detection, recognition, and
related research support.

Consequently, GMT-based mapping enables the amalgamation of maps for spatial
analysis of intricate processes, objects, and phenomena, such as seafloor structures. This
approach proves invaluable in addressing scientific and practical challenges within the
realms of geophysics and geodynamics. The flexibility of GMT’s syntax, the quality of its
cartographic outputs, and its compatibility with various operating systems and computing
devices all contribute to its effectiveness.

Given the success and applicability showcased in the executed GMT scripts–characterized
by syntax flexibility, high-quality cartographic outputs, and compatibility across different
platforms–it is foreseeable that this GMT-based cartographic method can be extended to
study seafloor structures in other oceanic regions, considering varying geologic conditions
and geodynamic evolutions.

Global surveillance of the seafloor through the use of altimeter satellites and gravity
measurements has unveiled significant geophysical anomalies. Integrating data on mag-
netic field intensity, bathymetry, and deep seafloor geodynamics allows for an evaluation
of the interrelations among these processes. This ongoing global surveillance continues to
generate extensive high-resolution datasets. However, effectively analyzing these datasets
in ever-higher spatial resolutions demands advanced tools for automated analysis. The
toolset of GMT scripts has demonstrated its effectiveness in the realm of seafloor bathy-
metric and geophysical mapping. This approach facilitates the visualization and mapping
of diverse seabed features across varying scales and resolutions, aiming to detect correla-
tions between magnetic anomalies, geophysical patterns, and their connections to present
bathymetry. Such visualization offers comprehensive coverage of seafloor features across
the near-global scale.

Direct seafloor surveys for observations are resource-intensive, involving the use
of complex and costly equipment, such as multi-beam echo-sounding systems, for data
collection, generation, and storage. Yet, the need persists for efficient datasets that can be
readily visualized and analyzed. Utilizing high-resolution geophysical datasets provided
by NOAA and USGS, processed through the advanced scripting capabilities of GMT, es-
tablishes a cartographic processing pipeline for swift, automated, and accurate seafloor
mapping. Notably, GMT’s flexibility plays a pivotal role. A variety of GMT modules can be
harnessed to process diverse geospatial data types, catering to different cartographic tasks.
This flexibility allows for the adaptation and expansion of the proposed cartographic work-
flow, addressing larger-scale or smaller-scale mapping needs. The equilibrium between
topographic gradients and geophysical grids vividly illustrates the links between seafloor
patterns, the structure of the oceanic crust, and the processes within the lithospheric mantle.
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From a cartographic perspective, this study underscores that the effective analysis of
geologic-geophysical datasets within Earth sciences extends beyond utilizing isolated pa-
rameters (e.g., topographic maps) to encompass the selection of multiple datasets. The deep
mantle processes, as reflected in geophysical data, intricately shape the seafloor formation.
The methodology showcased in this study demonstrates how data from diverse sources
(geophysical, topographic, geodetic, geodynamic) can be harnessed for comprehensive
cartographic analysis using standardized workflows supported by scripts. This approach
unveils additional insights into seafloor variability and the factors influencing ocean crust
formation, strongly correlated with topographic patterns.

The cartographic approach exhibited here enables data assimilation and extension,
not only across the Indian Ocean but also to other regions of the global ocean. For exam-
ple, the Pacific Ocean boasts a rich tapestry of seafloor features, including vast abyssal
plains, mid-ocean ridges, oceanic trenches, numerous seamounts, and continental shelves.
These features present a fertile ground for investigating potential correlations between
geophysical and magnetic anomalies and the heterogeneous seafloor patterns. In this
context, the application of GMT for seafloor mapping in diverse oceanic regions serves
as an ideal scenario for validating the cartographic scripting approach outlined in the
methodological framework.

The series of maps presented, along with the comparison of the geophysical settings
over the Kerguelen Plateau, underscores the superiority of script techniques over the GIS
approach in terms of cartographic workflow automation. The compactness of GMT’s
syntax allows for code reusability with modifications. However, there are limitations to
consider. GMT necessitates parameter tuning in advance when handling map elements
and adjusting projection parameters, as it lacks the ability to preview maps before script
execution, being a console-based program. Furthermore, GMT cannot remove redundant
features once plotted, requiring the script to be run again for corrections. In contrast, the
GIS approach permits real-time adjustments to map layouts, enabling the correction of
colour palettes and bathymetric details on the fly. GMT’s console-based nature mandates
direct modifications to the script’s code to address cartographic challenges.
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Appendix A. GMT Scripts

Appendix A.1. GMT Script for Mapping Topography of the Kerguelen Region in Lambert
Azimuthal Equal-Area Projection

Listing A1. Mapping topography of the Kerguelen region in Lambert Azimuthal Equal-Area projection.

1 # Subset study area by cutting a sub -region from a grid file
2 grdcut ETOPO1_Ice_g_gmt4.grd -R-40/150/ -70/ -20 -Gkgl_relief.nc
3 gdalinfo ss_relief.nc -stats
4 # Here the actual range is obtained from the ’gdalinfo ’
5 # Minimum = -8239.000 , Maximum =6392.000
6 # Color palette is used to access the master cpt tables and to translate

them to fit the actual data range according to the z-values.
7 gmt makecpt -Cgray.cpt -V -T -8239/6392 > myocean.cpt
8 # Generate a file
9 ps=Bathymetry_Kgl.ps

10 gmt grdimage kgl_relief.nc -Cmyocean.cpt -R-25/ -65/101/ -10r -JA55 / -50/7.5i
-P -I+a15+ne0.75 -Xc -K > $ps

11 # Addiing shorelines by contouring the 2D gridded data sets
12 gmt grdcontour kgl_relief.nc -R -J -C1000 -Wthinnest ,blue -O -K >> $ps
13 # Adding grid to create a basemap plot
14 gmt psbasemap -R -J \
15 -Bpxg10f5a5 -Bpyg10f5a5 -Bsxg5 -Bsyg5 \
16 -B+t"Topographic map of the Kerguelen Plateau" \
17 -Lx15.0c/-1.3c+c318 /-57+ w2000k+l"Scale (km) at 60\232E 50\232S"+f \
18 -UBL/-5p/-40p -O -K >> $ps
19 # Texts and various inscriptions on the maps are plotted using the ’pstext

’ module
20 gmt pstext -R -J -X0.0c -Y0.0c -N -O -K \
21 -F+jTL+f9p ,Helvetica ,white+jLB >> $ps << EOF
22 66.0 -62.0 Enderby
23 66.5 -63.0 Basin
24 EOF
25 # Other text are added likewise
26 # Adding the legend is done using the ’psscale ’ module which explained the

visualised conventional signs.
27 gmt psscale -Dg -27.0/ -60+ w15.4c/0.4c+v+ml -R -J -Cmyocean.cpt \
28 -Bg1000f200a2000+l"Color scale: geo global bathymetry/topography

relief [R= -8239/6392 , H=0, C=RGB]" \
29 -I0.2 -By+lm -O -K >> $ps
30 # Add GMT logo as depicted stamp of the software
31 gmt logo -Dx5 .5/ -2.2+o0.1i/0.1i+w2c -O -K >> $ps
32 # Add subtitle
33 gmt pstext -R0 /10/0/15 -JX10 /10 -X0.5c -Y13.0c -N -O \
34 -F+f10p ,Palatino -Roman ,black+jLB >> $ps << EOF
35 4.0 6.1 ETOPO1 global terrain model , 1 arc min resolution grid
36 2.0 5.5 Lambert Azimuthal Equal -Area projection. Central meridian 55\232E,

standard parallel 50\232S
37 EOF
38 # Convert to image file using GhostScript
39 gmt psconvert Bathymetry_Kgl.ps -A1.0c -E720 -Tj -Z
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Appendix A.2. GMT Script for Mapping Age, Spreading Rates, Spreading Asymmetry and Age
Uncertainty of the Ocean Crust

Listing A2. Mapping age of the oceanic lithosphere over Kerguelen Plateau and SW Indian Ocean.

1 gmt grdcut age .3.2.nc -R-40/150/ -70/ -10 -Gker_age.tif
2 gdalinfo ker_age.tif -stats
3 # Minimum =0.000 , Maximum =16001.000 , Mean =5895.761 , StdDev =4042.817
4 # Color palette
5 # gmt makecpt -Cjet -T14 /16000.000 > age.cpt
6 gmt makecpt -Cwysiwyg -T14 /16000.000 > age.cpt
7 #gmt makecpt --help
8 # Generate a file
9 ps=Ker_age.ps

10 gmt grdimage ker_age.tif -Cage.cpt -R-25/ -65/101/ -10r -JA55 / -50/7.5i -P -I
+a15+ne0 .75 -Xc -K > $ps

11 # add grid
12 gmt psbasemap -R -J \
13 -Bpxg10f5a10 -Bpyg10f5a10 -Bsxg5 -Bsyg5 \
14 -B+t"Age of Oceanic Lithosphere: Kerguelen Plateau and SW Indian Ocean

" -O -K >> $ps
15 # Legend
16 gmt psscale -Dg -30/ -58+ w15.4c/0.4c+v+ml+e -R -J -Cage.cpt \
17 -Bg1000f200a1000+l"Color scale: ’wysiwyg ’ [R=0/6000 , H=0, C=RGB]" \
18 -I0.2 -By+l"M.Y." -O -K >> $ps
19 # Scale , directional rose
20 gmt psbasemap -R -J \
21 -Tdx0.8c/10.3c+w0.3i+f2+l+o0.15i \
22 -Lx16.0c/-1.6c+c318 /-57+ w2000k+l"Scale (km) at 55\232E 50\232S"+f \
23 -UBL/-5p/-40p -O -K >> $ps
24 # GMT logo
25 gmt logo -Dx5 .5/ -2.2+o0.1i/0.1i+w2c -O -K >> $ps
26 # Subtitle
27 gmt pstext -R0 /10/0/15 -JX10 /10 -X0.5c -Y13.0c -N -O \
28 -F+f12p ,0,black+jLB >> $ps << EOF
29 0.0 5.9 Lambert Azimuthal Equal -Area projection. Central meridian 55\232E,

standard parallel 50\232S
30 0.0. 6.6 Age of the ocean crust , 2 arc min netCDF grid v.3., according to

adjacent seafloor isochrons
31 EOF
32 # Convert to image file using GhostScript
33 gmt psconvert Ker_age.ps -A1.7c -E720 -Tj -Z
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Appendix A.3. GMT Script for Mapping Asymmetries in Crustal Accretion on Conjugate Ridge
Flanks: Kerguelen Plateau and SW Indian Ocean

Listing A3. Mapping asymmetries in crustal accretion on conjugate ridge flanks: Kerguelen Plateau
and SW Indian Ocean.

1 exec bash
2 # Cut off raster image
3 gmt grdcut asym .3.2.nc -R-40/150/ -70/ -10 -Gker_asym.tif
4 gdalinfo ker_asym.tif -stats
5 # Minimum =14.000 , Maximum =10000.000 , Mean =5491.073 , StdDev =1628.733
6 # Make color palette
7 gmt makecpt -Cturbo -T14 /10000.000 > asym.cpt
8 # Generate a file
9 ps=Ker_asym.ps

10 gmt grdimage ker_asym.tif -Casym.cpt -R-25/ -65/101/ -10r -JA55 / -50/7.5i -P
-I+a15+ne0.75 -Xc -K > $ps

11 # Grid
12 gmt psbasemap -R -J \
13 -Bpxg10f5a10 -Bpyg10f5a10 -Bsxg5 -Bsyg5 \
14 -B+t"Asymmetries in crustal accretion (%) on conjugate ridge flanks:

Kerguelen Plateau and SW Indian Ocean" -O -K >> $ps
15 # Legend
16 gmt psscale -Dg -30/ -58+ w15.4c/0.4c+v+ml+e -R -J -Casym.cpt \
17 -Bg1000f200a1000+l"Color scale: ’no_green ’ [R=0/6000 , H=0, C=RGB]" \
18 -I0.2 -By+lm -O -K >> $ps
19 # Scale , directional rose
20 gmt psbasemap -R -J \
21 -Tdx0.8c/10.3c+w0.3i+f2+l+o0.15i \
22 -Lx16.0c/-1.6c+c318 /-57+ w2000k+l"Scale (km) at 55\232E 50\232S"+f \
23 -UBL/-5p/-40p -O -K >> $ps
24 # GMT logo
25 gmt logo -Dx5 .5/ -2.2+o0.1i/0.1i+w2c -O -K >> $ps
26 # Subtitle
27 gmt pstext -R0 /10/0/15 -JX10 /10 -X0.5c -Y13.0c -N -O \
28 -F+f12p ,0,black+jLB >> $ps << EOF
29 0.0 5.9 Lambert Azimuthal Equal -Area projection. Central meridian 55\232E,

standard parallel 50\232S
30 0.0. 6.6 Age , spreading rates and spreading asymmetry of the ocean crust ,

2 arc min netCDF grid v.3
31 EOF
32 # Convert to image file using GhostScript
33 gmt psconvert Ker_asym.ps -A1.7c -E720 -Tj -Z
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Appendix A.4. GMT Script for Mapping Spreading Half Rates of the Oceanic Lithosphere in
Kerguelen Plateau and SW Indian Ocean

Listing A4. Mapping spreading half rates of the oceanic lithosphere in Kerguelen Plateau and SW
Indian Ocean.

1 # GMT set up
2 gmt set FORMAT_GEO_MAP=dddF \
3 MAP_FRAME_PEN=dimgray \
4 MAP_FRAME_WIDTH =0.1c \
5 MAP_TITLE_OFFSET =0.5c \
6 MAP_ANNOT_OFFSET =0.1c \
7 MAP_TICK_PEN_PRIMARY=thinner ,dimgray \
8 MAP_GRID_PEN_PRIMARY=thin ,white \
9 MAP_GRID_PEN_SECONDARY=thinnest ,white \

10 FONT_TITLE =12p,0,black \
11 FONT_ANNOT_PRIMARY =7p,0,dimgray \
12 FONT_LABEL =7p,0,dimgray
13 #Overwrite defaults of GMT
14 gmtdefaults -D > .gmtdefaults
15 exec bash
16 # Cut off raster image
17 gmt grdcut rate .3.6.nc -R-40/150/ -70/ -10 -Gker_rate.tif
18 gdalinfo ker_rate.tif -stats
19 # Minimum =0.000 , Maximum =15000.000 , Mean =3175.093 , StdDev =2125.065
20 # Make color palette
21 gmt makecpt -Cf -30 -31 -32. cpt -T0 /15000/250 -N -Iz > age.cpt
22 # Generate a file
23 ps=Ker_rate.ps
24 gmt grdimage ker_rate.tif -Cage.cpt -R -25/ -65/101/ -10r -JA55 / -50/7.5i -P -

I+a15+ne0 .75 -Xc -K > $ps
25 # Add grid
26 gmt psbasemap -R -J \
27 -Bpxg10f5a10 -Bpyg10f5a10 -Bsxg5 -Bsyg5 \
28 -B+t"Spreading Half Rates of the Oceanic Lithosphere in Kerguelen

Plateau and SW Indian Ocean" -O -K >> $ps
29 gmt psxy -R -J ridge.gmt -Sf0.5c/0.15c+l+t -Wthin ,yellow -Gpurple -O -K >>

$ps
30 gmt psxy -R -J TP_Indian.txt -L -Wthickest ,red -O -K >> $ps
31 gmt psxy -R -J TP_Australian.txt -L -Wthickest ,red -O -K >> $ps
32 gmt psxy -R -J TP_African.txt -L -Wthickest ,red -O -K >> $ps
33 # tectonic slab contours
34 gmt psxy -R -J GSFML_SF_FZ_KM.gmt -Wthick ,cyan2 -O -K >> $ps
35 gmt psxy -R -J GSFML_SF_FZ_RM.gmt -Wthick ,cyan2 -O -K >> $ps
36 # transform faults
37 gmt psxy -R -J transform.gmt -Sc0 .05c -Ggreen -Wthick ,deeppink1 -O -K >>

$ps
38 # Add legend
39 gmt psscale -Dg -30/ -58+ w15.4c/0.4c+v+ml+e -R -J -Cage.cpt \
40 -Bg1000f200a1000+l"Color scale: ’f-30 -31 -32.cpt ’ from Gnuplot [R

=0/15000 , H=0, C=RGB]" \
41 -I0.2 -By+l"mm/yr." -O -K >> $ps
42 # Add scale , directional rose
43 gmt psbasemap -R -J \
44 -Tdx0.8c/10.3c+w0.3i+f2+l+o0.15i \
45 -Lx16.0c/-1.6c+c318 /-57+ w2000k+l"Scale (km) at 55\232E 50\232S"+f \
46 -UBL/-5p/-40p -O -K >> $ps
47 # Add GMT logo
48 gmt logo -Dx5 .5/ -2.2+o0.1i/0.1i+w2c -O -K >> $ps
49 # Add subtitle
50 gmt pstext -R0 /10/0/15 -JX10 /10 -X0.5c -Y13.0c -N -O \
51 -F+f12p ,0,black+jLB >> $ps << EOF
52 0.0 5.9 Lambert Azimuthal Equal -Area projection. Central meridian 55\232E,

standard parallel 50\232S
53 0.0. 6.6 Global Seafloor Fabric and Magnetic Lineation Data (GSFML) are

shown by cyan lines
54 EOF
55 # Convert to image file using GhostScript
56 gmt psconvert Ker_rate.ps -A1.7c -E720 -Tj -Z
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Appendix A.5. GMT Script for Mapping Crustal Age Uncertainty of the Oceanic Lithosphere in
Kerguelen Plateau and SW Indian Ocean

Listing A5. Mapping crustal age uncertainty of the oceanic lithosphere in Kerguelen Plateau and SW
Indian Ocean.

1 #!/bin/sh
2 # Age , spreading rates and spreading asymmetry of the ocean crust , 2 arc

min netCDF grid v 3
3 # GMT modules: gmtset , gmtdefaults , grdcut , makecpt , grdimage , psscale ,

grdcontour , psbasemap , gmtlogo , psconvert
4 exec bash
5 # Cut off raster image
6 gmt grdcut ageerror .3.2.nc -R-40/150/ -70/ -10 -Gker_error.tif
7 gdalinfo ker_error.tif -stats
8 # Minimum =8.000 , Maximum =1313.000 , Mean =196.616 , StdDev =156.744
9 # Color palette

10 gmt makecpt -Ccyan -magenta -yellow -white.cpt -T8 /800.000 -N > age.cpt
11 # Generate a file
12 ps=Ker_error.ps
13 gmt grdimage ker_error.tif -Cage.cpt -R-25/ -65/101/ -10r -JA55 / -50/7.5i -P

-I+a15+ne0.75 -Xc -K > $ps
14 # Add grid
15 gmt psbasemap -R -J -Bpxg10f5a10 -Bpyg10f5a10 -Bsxg5 -Bsyg5 \
16 -B+t"Crustal Age Uncertainty of the Oceanic Lithosphere in Kerguelen

Plateau and SW Indian Ocean" -O -K >> $ps
17 # gmt psxy -R -J ridge.gmt -Sf0.5c/0.15c+l+t -Wthin ,yellow -Gpurple -O -K

>> $ps
18 gmt psxy -R -J TP_Indian.txt -L -Wthickest ,red -O -K >> $ps
19 gmt psxy -R -J TP_Australian.txt -L -Wthickest ,red -O -K >> $ps
20 gmt psxy -R -J TP_African.txt -L -Wthickest ,red -O -K >> $ps
21 # tectonic slab contours
22 # gmt psxy -R -J GSFML_SF_FZ_KM.gmt -Wthick ,slateblue3 -O -K >> $ps
23 gmt psxy -R -J GSFML_SF_FZ_KM.gmt -Wthick ,darkmagenta -O -K >> $ps
24 gmt psxy -R -J GSFML_SF_FZ_RM.gmt -Wthick ,darkmagenta -O -K >> $ps
25 # transform faults
26 gmt psxy -R -J transform.gmt -Sc0 .05c -Ggreen -Wthick ,deeppink1 -O -K >>

$ps
27 # Legend
28 gmt psscale -Dg -30/ -58+ w15.4c/0.4c+v+ml+e -R -J -Cage.cpt \
29 --FONT_LABEL =10p,0,dimgray --FONT_ANNOT_PRIMARY =10p,0,black \
30 -Bg100f20a100+l"Color scale: ’jet ’ [R=0/15000 , H=0, C=RGB]" \
31 -I0.2 -By+l"m/yr." -O -K >> $ps
32 # Scale , directional rose
33 gmt psbasemap -R -J \
34 --FONT =10p,0,black --MAP_TITLE_OFFSET =0.3c \
35 -Tdx0.8c/10.3c+w0.3i+f2+l+o0.15i \
36 -Lx16.0c/-1.6c+c318 /-57+ w2000k+l"Scale (km) at 55\232E 50\232S"+f \
37 -UBL/-5p/-40p -O -K >> $ps
38 # GMT logo
39 gmt logo -Dx5 .5/ -2.2+o0.1i/0.1i+w2c -O -K >> $ps
40 # Add subtitle
41 gmt pstext -R0 /10/0/15 -JX10 /10 -X0.5c -Y13.0c -N -O \
42 -F+f12p ,0,black+jLB >> $ps << EOF
43 0.0 5.9 Lambert Azimuthal Equal -Area projection. Central meridian 55\232E,

standard parallel 50\232S
44 0.0. 6.6 Global Seafloor Fabric and Magnetic Lineation Data (GSFML) are

shown by cyan lines
45 EOF
46 # Convert to image file using GhostScript
47 gmt psconvert Ker_error.ps -A1.7c -E720 -Tj -Z
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Appendix A.6. GMT Script for Sediment Thickness over the Kerguelen Plateau and SW
Indian Ocean
Listing A6. Mapping sediment thickness over the Kerguelen Plateau and SW Indian Ocean.

1 exec bash
2 #gmt grdcut GlobSed -v2.nc -R -25/ -65/101/ -10r -Gker_sed.nc
3 gmt grdcut GlobSed -v2.nc -R-40/150/ -70/ -10 -Gker_sed.nc
4 gdalinfo ker_sed.nc -stats
5 # Minimum =0.000 , Maximum =8116.000 , Mean =530.333 , StdDev =728.622
6 # Make color palette
7 gmt makecpt -Cno_green.cpt -V -T0/6000 > myocean.cpt
8 # gmt makecpt --help
9 # Generate a file

10 ps=SedThick_Kgl.ps
11 gmt grdimage ker_sed.nc -Cmyocean.cpt -R-25/ -65/101/ -10r -JA55 / -50/7.5i -P

-I+a15+ne0.75 -Xc -K > $ps
12 # Add shorelines
13 gmt grdcontour ker_sed.nc -R -J -C200 -A200+f10p ,25,black -Wthinner ,

dimgray -O -K >> $ps
14 # Add grid
15 gmt psbasemap -R -J \
16 -Bpxg10f5a10 -Bpyg10f5a10 -Bsxg5 -Bsyg5 \
17 -B+t"Sediment thickness over East Antarctic , Kerguelen Plateau and SW

Indian Ocean" \
18 -Lx15.0c/-1.5c+c318 /-57+ w2000k+l"Scale (km) at 60\232E 50\232S"+f \
19 -UBL/-5p/-40p -O -K >> $ps
20 # Texts
21 # Add legend
22 gmt psscale -Dg -33/ -59+ w15.4c/0.4c+v+ml+e -R -J -Cmyocean.cpt \
23 -Bg1000f50a1000+l"Color scale: ’no_green ’ [R=0/6000 , H=0, C=RGB]" \
24 -I0.2 -By+lm -O -K >> $ps
25 # Add GMT logo
26 gmt logo -Dx5 .5/ -2.2+o0.1i/0.1i+w2c -O -K >> $ps
27 # Add subtitle
28 gmt pstext -R0 /10/0/15 -JX10 /10 -X0.5c -Y13.0c -N -O \
29 -F+f12p ,0,black+jLB >> $ps << EOF
30 3.0 6.1 GlobSed: Total Sediment Thickness Version 3, 5 arc minute grid
31 EOF
32 # Convert to image file using GhostScript
33 gmt psconvert SedThick_Kgl.ps -A1.5c -E720 -Tj -Z

Appendix A.7. GMT Scripts for Geophysical Mapping over the Kerguelen Plateau

Listing A7. Mapping free-air gravity anomalies over Kerguelen Plateau and SW Indian Ocean.

1 exec bash
2 gmt img2grd grav_27 .1. img -R40 /110/ -70/ -20 -Ggrav_Ker.grd -T1 -I1 -E -S0.1

-V
3 gdalinfo grav_Ker.grd -stats
4 gmt makecpt -Chaxby -V -T -100/150 > myocean.cpt
5 ps=Gravity_Kgl.ps
6 gmt grdimage grav_Ker.grd -Cmyocean.cpt -R40 /110/ -70/ -20 -JU43 /6.0i -P -I+

a15+ne0 .75 -Xc -K > $ps
7 gmt grdcontour grav_Ker.grd -R -J -C50 -A50 -Wthinner -O -K >> $ps
8 gmt psbasemap -R -J \
9 -Bpxg10f5a10 -Bpyg10f5a5 -Bsxg5 -Bsyg5 \

10 -B+t"Free -air gravity anomaly on Kerguelen Plateau" \
11 -Lx7.5c/-1.3c+c318 /-57+ w2000k+l"UTM projection , Zone 43. Scale (km)"+f

\
12 -UBL /10p/-40p -O -K >> $ps
13 gmt psscale -Dg41 / -12.5+ w15.4c/0.4c+ml+h+e -R -J -Cmyocean.cpt \
14 -Bg20f2a20+l"Color scale: haxby [R= -100/547 , H=0, C=RGB]" \
15 -I0.2 -By+lm -O -K >> $ps
16 gmt logo -Dx7 .5/ -2.2+o0.1i/0.1i+w2c -O -K >> $ps
17 gmt pstext -R0 /10/0/15 -JX10 /10 -X0.5c -Y13.0c -N -O \
18 -F+f10p ,0,black+jLB >> $ps << EOF
19 1.0 1.3 Global gravity grid from CryoSat -2 and Jason -1, 1 min resolution ,

SIO , NOAA , NGA
20 EOF
21 gmt psconvert Gravity_Kgl.ps -A1.0c -E720 -Tj -Z
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Listing A8. Mapping vertical gravity gradient over Kerguelen Plateau and SW Indian Ocean.

1 exec bash
2 gmt img2grd curv_27 .1. img -R40 /110/ -70/ -20 -Ggravvert_Ker.grd -T1 -I1 -E -

S0.1 -V
3 gdalinfo gravvert_Ker.grd -stats
4 gmt makecpt -Cmag.cpt -T -40/40 > colors.cpt
5 ps=Gravity_Kgl_vert.ps
6 gmt grdimage gravvert_Ker.grd -Ccolors.cpt -R40 /110/ -70/ -20 -JU43 /6.0i -P

-I+a15+ne0.75 -Xc -K > $ps
7 gmt grdcontour gravvert_Ker.grd -R -J -C100 -A100 -Wthinner -O -K >> $ps
8 gmt psbasemap -R -J \
9 -Bpxg10f5a10 -Bpyg10f5a5 -Bsxg5 -Bsyg5 \

10 -B+t"Vertical gravity gradient over Kerguelen Plateau" \
11 -Lx7.5c/-1.3c+c318 /-57+ w2000k+l"UTM projection , Zone 43. Scale (km)"+f

\
12 -UBL /10p/-40p -O -K >> $ps
13 gmt psscale -Dg41 / -12.5+ w15.4c/0.4c+ml+h+e -R -J -Ccolors.cpt \
14 -Bg20f2a20+l"Color scale: mag [R=-40/40, H=0, C=RGB]" \
15 -I0.2 -By+l"mGal/m" -O -K >> $ps
16 gmt logo -Dx7 .5/ -2.2+o0.1i/0.1i+w2c -O -K >> $ps
17 # Add subtitle
18 gmt pstext -R0 /10/0/15 -JX10 /10 -X0.5c -Y13.0c -N -O \
19 -F+f10p ,0,black+jLB >> $ps << EOF
20 1.0 1.3 Global gravity grid derived from satellite altimetry (CryoSat -2

and Jason -1: NOAA , NGA)
21 EOF
22 gmt psconvert Gravity_Kgl_vert.ps -A1.0c -E720 -Tj -Z

Appendix A.8. GMT Scripts for Mapping Magnetic Anomalies over the Kerguelen Plateau

Listing A9. Mapping magnetic anomalies by WDMAM over Kerguelen Plateau.

1 exec bash
2 gmt grdcut @earth_wdmam_03m -R50 /100/ -70/ -30 -Gker_mag.nc
3 gdalinfo ker_mag.nc -stats
4 gmt makecpt -Cmag.cpt -V -T -500/500 > myocean.cpt
5 ps=Magnet_Kgl.ps
6 gmt grdimage ker_mag.nc -Cmyocean.cpt -R50 /100/ -70/ -30 -JM6.5i -P -I+a15+

ne0 .75 -Xc -K > $ps
7 gmt grdcontour ker_mag.nc -R -J -C200 -A1+f10p ,25,black -Wthinner ,dimgray

-O -K >> $ps
8 gmt psbasemap -R -J \
9 -Bpxg10f5a5 -Bpyg10f5a5 -Bsxg5 -Bsyg5 \

10 -B+t"Marine and Earth airborne Magnetic Anomaly Grid on Kerguelen
Plateau" \

11 -Lx14.0c/-3.0c+c318 /-57+ w1000k+l"Mercator projection. Scale (km)"+f \
12 -UBL/-5p/-80p -O -K >> $ps
13 gmt psscale -Dg50 / -71.5+ w16.0c/0.4c+h+ml+e -R -J -Cmyocean.cpt \
14 -Bg100f10a50+l"Color scale: mag (Colors for magnetic anomaly maps), [C

=RGB]" \
15 -I0.2 -By+l"nT" -O -K >> $ps
16 gmt logo -Dx6 .5/ -3.8+o0.1i/0.1i+w2c -O -K >> $ps
17 gmt pstext -R0 /10/0/15 -JX10 /10 -X0.5c -Y13.0c -N -O \
18 -F+f11p ,0,black+jLB >> $ps << EOF
19 1.2 15.8 WDMAM (World Digital Magnetic Anomaly Map), 3 arc min resolution

grid
20 EOF
21 gmt psconvert Magnet_Kgl.ps -A1.0c -E720 -Tj -Z
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Listing A10. Mapping magnetic anomalies by EMAG2 over Kerguelen Plateau.

1 exec bash
2 gmt grdcut EMAG2_V2.grd -R50 /100/ -70/ -30 -Gker_mag.nc
3 gdalinfo ker_mag.nc -stats
4 gmt makecpt -Cmag.cpt -V -T -500/500 > myocean.cpt
5 ps=Magnet_Kgl.ps
6 gmt grdimage ker_mag.nc -Cmyocean.cpt -R50 /100/ -70/ -30 -JM6.5i -P -I+a15+

ne0 .75 -Xc -K > $ps
7 gmt grdcontour ker_mag.nc -R -J -C200 -A1+f10p ,25,black -Wthinner ,dimgray

-O -K >> $ps
8 gmt psbasemap -R -J \
9 -Bpxg10f5a5 -Bpyg10f5a5 -Bsxg5 -Bsyg5 \

10 -B+t"Detailed marine and Earth EMAG -2 airborne Magnetic Anomaly Grid
on Kerguelen Plateau" \

11 -Lx14.0c/-3.0c+c318 /-57+ w1000k+l"Mercator projection. Scale (km)"+f \
12 -UBL/-5p/-80p -O -K >> $ps
13 gmt psscale -Dg50 / -71.5+ w16.0c/0.4c+h+ml+e -R -J -Cmyocean.cpt \
14 -Bg100f10a50+l"Color scale: mag (Colors for magnetic anomaly maps), [C

=RGB]" \
15 -I0.2 -By+l"nT" -O -K >> $ps
16 gmt logo -Dx6 .5/ -3.8+o0.1i/0.1i+w2c -O -K >> $ps
17 gmt pstext -R0 /10/0/15 -JX10 /10 -X0.5c -Y13.0c -N -O \
18 -F+f11p ,0,black+jLB >> $ps << EOF
19 1.2 15.8 EMAG -2 (Earth Magnetic Anomaly Grid , 2 arc min resolution)
20 EOF
21 gmt psconvert Magnet_Kgl.ps -A1.0c -E720 -Tj -Z

Appendix A.9. GMT Scripts for Mapping Geoid Anomalies over the Kerguelen Plateau

Listing A11. Mapping geoid anomalies in Kerguelen Plateau by EGM96.

1 exec bash
2 gdalinfo geoid.egm96.grd -stats
3 gmt grd2cpt geoid.egm96.grd -Cjet > geoid.cpt
4 ps=Geoid_Ker.ps
5 gmt grdimage geoid.egm96.grd -I+a45+nt1 -R40 /110/ -70/ -20 -JQ7.5i -Cgeoid.

cpt -P -K > $ps
6 gmt grdcontour geoid.egm96.grd -R -J -C2 -A4+f10p ,25, black -Wthinner ,

dimgray -O -K >> $ps
7 gmt psbasemap -R -J \
8 -Bpxg10f5a10 -Bpyg10f5a10 -Bsxg5 -Bsyg5 \
9 -B+t"Geoid gravitational model EGM96 over East Antarctic , Kerguelen

Plateau and SW Indian Ocean" \
10 -Lx16.0c/-1.5c+c318 /-57+ w1000k+l"Cylindrical equidistant projection.

Scale (km)"+f \
11 -UBL/-5p/-40p -O -K >> $ps
12 gmt psscale -Dg33 /-70+w13.4c/0.4c+v+ml+e -R -J -Cgeoid.cpt \
13 -Bg10f1a10+l"Color scale: jet [C=RGB]" \
14 -I0.2 -By+lm -O -K >> $ps
15 gmt logo -Dx7 .0/ -2.2+o0.1i/0.1i+w2c -O -K >> $ps
16 gmt pstext -R0 /10/0/15 -JX10 /10 -X0.5c -Y12.5c -N -O \
17 -F+f12p ,0,black+jLB >> $ps << EOF
18 1.0 3.0 EGM96: 15 arc minute resolution grid based on the gravitational

force of the Earth
19 EOF
20 gmt psconvert Geoid_Ker.ps -A1.6c -E720 -Tj -Z
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