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Linear statistics of point processes yield Monte Carlo estimators of integrals. While the simplest approach relies on
a homogeneous Poisson point process, more regularly spread point processes, such as scrambled low-discrepancy
sequences or determinantal point processes, can yield Monte Carlo estimators with fast-decaying mean square
error. Following the intuition that more regular configurations result in lower integration error, we introduce the
repulsion operator, which reduces clustering by slightly pushing the points of a configuration away from each
other. Our main theoretical result is that applying the repulsion operator to a homogeneous Poisson point process
yields an unbiased Monte Carlo estimator with lower variance than under the original point process. On the
computational side, the evaluation of our estimator is only quadratic in the number of integrand evaluations and
can be easily parallelized without any communication across tasks. We illustrate our variance reduction result with
numerical experiments and compare it to popular Monte Carlo methods. Finally, we numerically investigate a few
open questions on the repulsion operator. In particular, the experiments suggest that the variance reduction also
holds when the operator is applied to other motion-invariant point processes.
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1. Introduction

Numerical integration – the task of approximating integrals using pointwise evaluations of the inte-
grand – has a rich history, with (subjective) milestones such as the quadrature of Gauss (1815) or the
Metropolis algorithm (Metropolis et al., 1953). Among methods that scale best to larger dimensions,
Monte Carlo methods may be the most popular in applications; see e.g. (Owen, 2013). In its simplest
form, crude Monte Carlo amounts to writing the target integral as an expectation and estimating it by a
sample average formed with 𝑁 i.i.d. samples. The performance of the estimator is typically measured
by the mean squared error, which classical probability results show decreases as O(1/𝑁). This rate
is slow, and variance reduction for Monte Carlo integration has been a rich topic of research, e. g. by
leveraging auxiliary integrands with known integrals, a method known as control variates, see (Owen,
2013, Chapters 8 and 10) for classical results, and (South et al., 2022) and references therein for more
recent work. Other methods directly improve the rate of convergence of the mean square error by intro-
ducing sophisticated dependence through weights in the sample average (Azaïs et al., 2018, Delyon and
Portier, 2016, Leluc et al., 2023). Alternatively, one can consider expectations under more regularly
spread probability distributions than i.i.d. draws, as in randomized quasi-Monte Carlo (Owen, 2008) or
with determinantal point processes (Bardenet and Hardy, 2020, Belhadji et al., 2020, Coeurjolly et al.,
2021). Our contribution is of the latter kind, taking an expectation under a well-spread random set of
points. But while the cost of sampling the determinantal point process in (Bardenet and Hardy, 2020)
is (at least) cubic in 𝑁 (Gautier et al., 2019a), we aim at keeping the sampling cost quadratic, while still
introducing enough dependence to force variance reduction.

Our inspiration comes from a set of results in stochastic geometry, on gravitation allocation (Chat-
terjee et al., 2010, Nazarov et al., 2007), hyperuniform point processes (Coste, 2021, Klatt et al., 2019,
Torquato, 2018), and systems of points with Coulomb interactions (Serfaty, 2019). Loosely speaking
and for our purpose, a point process is a random locally finite set of points in R𝑑 . A natural reference
is the homogeneous Poisson point process, whose points in a compact set are i.i.d. uniform random
variables, once we condition on the number of points in that compact set. At the other end of the spec-
trum, the counting statistics of hyperuniform point processes yield Monte Carlo estimators with mean
square error decaying at a faster rate than the Poisson point process. For instance, Klatt et al. (2019)
study the candidate hyperuniform point process that results from applying Lloyd’s algorithm iteratively
to a Poisson point process. In a similar vein but leaving aside any iterative scheme for mathematical
tractability, we propose to use gravitational allocation to yield, if not necessarily a faster rate, at least a
provable variance reduction compared to Poisson. Imagining that the points of a Poisson point process
repel each other through a Coulomb interaction, we perform a single step of a numerical scheme to
integrate the corresponding differential equation. We obtain what we call the repelled Poisson point
process, and we show that, for a quadratic cost, the variance of the resulting Monte Carlo estimator is
smaller than under the initial Poisson point process. We note that repelled point processes, resulting
from the same repulsion procedure applied to an arbitrary point process, are objects of independent
interest.

The paper is structured as follows. Section 2 provides background information about point processes.
Section 3 introduces the repulsion operator, a parametric operator that operates on locally finite sets of
points in R𝑑 . We analyze the properties of this operator when applied to a homogeneous Poisson point
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process, and present our main result, showing variance reduction compared to crude Monte Carlo. Ad-
ditionally, we describe a sampling procedure and present an experimental illustration of the variance
reduction. In Section 4, we put our method in context, by conducting a comparison with standard Monte
Carlo methods on synthetic integration tasks. In Section 5, we explore additional aspects of the repul-
sion operator, such as iterating it several times, estimating the pair correlation function and structure
factor of the repelled Poisson point process, as well as applying the repulsion operator to already repul-
sive point processes like the Ginibre point process. Section 6 concludes the paper with a few research
directions. All proofs are gathered in Appendix A, while Appendix B gives extra simulation results.

2. Point processes and their intensity functions

In this section, we provide some background on point processes, with key results like the Slyvniak-
Mecke theorem. We refer to (Stoyan et al., 2013) for details.

Remark 1. Throughout this manuscript, bold lowercase letters, like x, indicate vectors in R𝑑 . The cor-
responding non-bold characters, like 𝑥, are scalars. In particular, we write x = (𝑥1, · · · , 𝑥𝑑). Whenever
not confusing, we use the same letter in different fonts for a vector and its Euclidean norm, i.e., 𝑟 = ∥r∥2
and 𝑘 = ∥k∥2. Calligraphic letters like X are used for point processes, i.e. random configurations of
points. Configurations themselves are denoted with sans-serif letters like X. When the cardinality of a
particular point process is almost surely constant, we sometimes write that point process as X𝑁 , with
the value 𝑁 of the cardinality as the index.

2.1. Spatial point processes

Let a configuration of R𝑑 be a locally finite set X of R𝑑 , that is, for any bounded Borel set 𝐵 of R𝑑

the cardinality X(𝐵) of X ∩ 𝐵 is finite. Endow the family 𝔑 of such configurations with the 𝜎-algebra
generated by the mappings X ↦→ X(𝐵), for any bounded Borel set 𝐵. Formally, a simple1 spatial point
process, hereafter a point process, is a random element X of 𝔑. The distribution of X is determined by
the system of void probabilities

TX (𝐾) ≜ P(X(𝐾) = 0), (1)

as 𝐾 ranges through the compact sets of R𝑑 .
In this paper, we work with stationary and isotropic point processes, also called motion-invariant

point processes. By stationary, we mean that the law of the point process is invariant by translation:
the law of X is identical to that of X + y ≜ {x + y; x ∈ X}, for all y ∈ R𝑑 . Similarly, a point process is
isotropic if its law is invariant by rotation.

Point processes are often described in terms of their intensity measures. The first intensity measure
𝜇 (1) , for instance, is defined by

𝜇 (1) (𝐵) ≜ E[X(𝐵)],

for any Borel set 𝐵 ⊂ R𝑑 . When 𝜇 (1) has a density with respect to the Lebesgue measure, 𝜇 (1) (dx) =
𝜌 (1) (x) dx, we call 𝜌 (1) the intensity of X. If X is stationary, then 𝜇 (1) is proportional to the Lebesgue
measure and the intensity 𝜌 (1) is a positive constant 𝜌 > 0, equal to the mean number of points of X
per unit volume.

1The term simple indicates that the point process almost surely consists of distinct points. For us, this is a direct consequence of
defining configurations as sets. However, some authors avoid assuming simplicity; see e.g. (Last and Penrose, 2017, Chapter 6).
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More generally, the 𝑛-th order intensity measure 𝜇 (𝑛) of X is defined by

E


≠∑︁

x1 , · · · ,x𝑛∈X
𝑓 (x1, · · · ,x𝑛)

 =
∫
R𝑑×···×R𝑑

𝑓 (x1, · · · ,x𝑛)𝜇 (𝑛) (dx1 · · ·dx𝑛), (2)

where 𝑓 is any non-negative bounded measurable function, and the summation is over all 𝑛-tuples
of distinct points in X; see (Last and Penrose, 2017, Stoyan et al., 2013, Chapter 4). Again, when
𝜇 (𝑛) = 𝜌 (𝑛) (x1, · · · ,x𝑛)dx1 · · ·dx𝑛, 𝜌 (𝑛) is called the 𝑛-th order intensity function. Intuitively, for any
pairwise distinct points x1, · · · ,x𝑛, 𝜌 (𝑛) (x1, · · · ,x𝑛)dx1 · · ·dx𝑛 is the probability that X has a point in
each of the 𝑛 infinitesimally small sets around x1, · · · ,x𝑛, with respective volumes dx1, · · · ,dx𝑛.

2.2. The homogeneous Poisson point process (PPP)

Consider a compact set 𝐾 of R𝑑 , and pick 𝑁 i.i.d. points uniformly distributed in 𝐾 . The point process
X𝑁 formed by these 𝑁 points is called the Binomial point process (BPP) of 𝑁 points. Loosely speaking,
when 𝐾 is enlarged to fill out R𝑑 while maintaining 𝑁 = 𝜌 |𝐾 |, we obtain a limiting point process P that
is called the homogeneous Poisson point process (PPP) of intensity 𝜌 > 0. We now list a few properties
of P.

First, P is motion-invariant. Second, the random number P(𝐵) of points of P in a bounded Borel
set 𝐵 has a Poisson distribution of mean 𝜌 |𝐵 |, where |𝐵 | is the Lebesgue measure of 𝐵. In particular,
the void probability (1) is TP (𝐵) = exp(−𝜌 |𝐵 |). Third, P(𝐵1) and P(𝐵2) are independent for any
disjoint Borel sets 𝐵1 and 𝐵2. This second fundamental property is known as complete randomness,
and translates the intuition that the PPP has as little structure as possible; for more details see (Stoyan
et al., 2013, Chapter 2). Fourth, all the moments of P are determined by 𝜌, i.e., for any non-negative
measurable function 𝑓 ,

E


≠∑︁

x1 , · · · ,x𝑛∈P
𝑓 (x1, · · · ,x𝑛)

 = 𝜌𝑛
∫
R𝑑×···×R𝑑

𝑓 (x1, · · · ,x𝑛)dx1 · · ·dx𝑛. (3)

With the notation of Section 2.1, this reads 𝜌 (𝑛) = 𝜌𝑛. Moreover, by the so-called extended Slivnyak-
Mecke theorem, we have

E


≠∑︁

x1 , · · · ,x𝑛∈P
ℎ (x1, · · · ,x𝑛,P \ {x1, · · · ,x𝑛})

 = 𝜌𝑛
∫
R𝑑×···×R𝑑

E[ℎ(x1, · · · ,x𝑛,P)]dx1 · · ·dx𝑛, (4)

for any non-negative measurable function ℎ on (R𝑑)𝑛 ×𝔑; see (Coeurjolly et al., 2017, Section 5.1).
Equation (4) provides further evidence of the PPP’s lack of dependency structure: informally, once
conditioned on a finite number of points belonging to P, the rest of P has the same distribution as P.

3. Repelled point processes

In this section, given a configuration X ∈𝔑 and a parameter 𝜀 > 0, we explain how to construct another
configuration Π𝜀 (X), called the repelled configuration. Keeping in mind our motivation for numerical
integration, we want Π𝜀 to be (𝑖) computationally cheap to apply. Moreover, when applied to a random
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(b) Repelled Poisson point process

Figure 1: A sample from a PPP of intensity 𝜌 = 1000 and the corresponding repelled sample.

configuration, Π𝜀 should (𝑖𝑖) preserve stationarity, isotropy, and intensity, and (𝑖𝑖𝑖) reduce the variance
of linear statistics.

In Section 3.1, we define the repulsion operator Π𝜀 . In Section 3.2, we detail the properties of
Π𝜀 (P), where P is a homogeneous Poisson point process. Our main result is in Section 3.3, where we
show that, for small enough 𝜀, the variance of linear statistics under Π𝜀P is smaller than under P. In
particular, we give theoretical support for the choice of a particular value of 𝜀, which is both explicit and
independent of the considered linear statistic. Our repulsion operator is based on a stochastic process
known as Coulomb force. We discuss basic properties of the latter in Section 3.4. In Section 3.5, we
explain how to approximately sample from Π𝜀X, in time quadratic in the number of points of the point
process X in the observation window. Finally, Section 3.6 gives a first experimental illustration of our
variance reduction result.

3.1. The repulsion operator

For x ∈ R𝑑 and a configuration X ∈𝔑, consider the series (when it converges),

𝐹X (x) ≜
∑︁

z∈X\{x}
∥x−z∥2↑

x − z
∥x − z∥𝑑2

= lim
𝑅→∞

∑︁
z∈X\{x}∩𝐵(x,𝑅)

x − z
∥x − z∥𝑑2

. (𝐹1)

Several observations are in order. First, each term in the sum in (𝐹1) intuitively represents the Coulomb
force felt by a charged particle at x and due to a particle of the same charge placed at z. In a dynamic
setting, this force would repel x away from z. Second, as the series defining 𝐹X (x) is not absolutely
convergent, the order of the summation is important. Following Chatterjee et al., 2010, we consider the
limit in an increasing ball centered at x, i.e., the summands in (𝐹1) are arranged in order of increasing
distance from x. We will discuss in Section 3.4 rearranging the summation by increasing distance from
the origin. Third, a fundamental insight, originally mentioned by Chandrasekhar (1943), states that
if 𝑑 ≥ 3 and P is a homogeneous Poisson point process (PPP), then, for every x, the series defining
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𝐹P (x) converges almost surely. Further information regarding the characteristics of 𝐹P can be found
in Section 3.4.

Call X ∈ 𝔑 a valid configuration if, for all x, the limit defining 𝐹X (x) in (𝐹1) exists. For 𝜀 ∈ R, we
define the (Coulomb) repulsion2 operator Π𝜀 , acting on valid configurations, through

Π𝜀 : X ↦−→ {x + 𝜀𝐹X (x) : x ∈ X}. (5)

There are two formal caveats to our definition (5). First, it only applies to valid configurations. Second,
since by definition, Π𝜀X is a set, it does not keep track of multiplicities, arising when several points in
X are mapped to the same location by Π𝜀 . Anticipating a bit, Corollary 1 below shows that these two
caveats are irrelevant when Π𝜀 is applied to a homogeneous Poisson point process P. In particular, P
is almost surely a valid configuration, and for any two distinct points x,y ∈ P, almost surely

x + 𝜀𝐹P (x) ≠ y + 𝜀𝐹P (y).

This guarantees that Π𝜀P is a simple point process, which we term the repelled Poisson point process
(RPPP). We will occasionally consider the repelled point process Π𝜀X of a more general point process
X, although its existence needs to be discussed.

The first panel of Figure 1 displays a sample from a PPP of intensity 𝜌 = 1000 in 𝑑 = 2, intersected
with a disk-shaped observation window. Note that we plot the construction in dimension 2 for graphical
convenience, but we are not making any convergence claim for (𝐹1) in 𝑑 = 2. We illustrate the RPPP
construction in the second panel of the figure. A detailed explanation of the simulation procedure will
be provided in Section 3.5. At this stage, we simply observe that the repelled sample exhibits a reduced
tendency for points to cluster together, compared to the Poisson sample.

3.2. Properties of the repelled Poisson point process

In this section, we state some properties of the repulsion operator when it is applied to a homogeneous
Poisson point process.

Proposition 1 (Motion-invariance). Let X be a point process that is almost surely valid, and 𝜀 ∈ R.
If X is motion-invariant, then Π𝜀X is also motion-invariant.

The proof of this proposition is deferred to Appendix A.2. Of particular importance to us is the
following corollary.

Corollary 1. Let 𝑑 ≥ 3, and P ⊂ R𝑑 be a homogeneous Poisson point process of intensity 𝜌 > 0. Then,
for any 𝜀 ∈ R, and any two distinct points x, y ∈ P, we have, almost surely,

x + 𝜀𝐹P (x) ≠ y + 𝜀𝐹P (y).

Moreover, Π𝜀P is a stationary and isotropic point process of intensity 𝜌.

The proof of this corollary is also deferred to Appendix A.2. According to Corollary 1, Π𝜀P is of
intensity 𝜌, the same intensity as P. Consequently, for any integrable function 𝑓 of compact support

2While we generally speak of “repulsion”, note that when 𝜀 < 0 the dynamics become attractive instead of repulsive.
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𝐾 , Equation (3) yields

E
[ ∑︁

x∈Π𝜀P
𝑓 (x)

]
= 𝜌

∫
𝐾

𝑓 (x)dx.

In particular,

�̂�Π𝜀P ( 𝑓 ) ≜
1
𝜌

∑︁
x∈Π𝜀P

𝑓 (x) (6)

is an unbiased estimator of

𝐼𝐾 ( 𝑓 ) ≜
∫
𝐾

𝑓 (x)dx. (7)

We shall also consider the so-called “self-normalized” estimator

�̂�𝑠,Π𝜀P∩𝐾 ( 𝑓 ) ≜
|𝐾 |

Π𝜀P(𝐾)1{Π𝜀P(𝐾 )>0}
∑︁

x∈Π𝜀P∩𝐾
𝑓 (x), (8)

where Π𝜀P(𝐾) is the number of points of Π𝜀P in 𝐾 . Compared to (6), (8) replaces 𝜌 by an unbiased
estimator. Self-normalized estimators are frequent in spatial statistics, and one can expect a (small)
variance reduction in (8) at the price of a small bias.

Remark 2. The self-normalized estimator (8) of 𝐼𝐾 ( 𝑓 ) is biased. Indeed

E
[
�̂�𝑠,Π𝜀P ( 𝑓 )

]
= E

[
|𝐾 |

Π𝜀P(𝐾)1{Π𝜀P(𝐾 )>0}E

[ ∑︁
x∈Π𝜀P∩𝐾

𝑓 (x)
��� Π𝜀P(𝐾)

] ]
.

As Π𝜀P is a stationary point process, once conditioning on Π𝜀P(𝐾) each point of Π𝜀P ∩ 𝐾 is uni-
formly distributed over 𝐾 . Let (𝑌𝑖)𝑖≥1 be random variables that follow the uniform distribution over 𝐾 ,
we have

E
[
�̂�𝑠,Π𝜀P ( 𝑓 )

]
= E

[
|𝐾 |

Π𝜀P(𝐾)1{Π𝜀P(𝐾 )>0}

Π𝜀P(𝐾 )∑︁
𝑖=1

E [ 𝑓 (𝑌𝑖)]
]

= |𝐾 |E
[
1{Π𝜀P(𝐾 )>0}E [ 𝑓 (𝑌1)]

]
= (1 − TΠ𝜀P (𝐾))

∫
𝐾

𝑓 (x)dx,

where the void probability TΠ𝜀P is defined in (1). As 𝐾 grows, the bias thus decreases. It is actually
reasonable to expect that it vanishes exponentially fast with the size of 𝐾 .

Before we investigate the variance of linear statistics under Π𝜀P, we need to ensure that the variance
exists. Actually, the following result ensures that the RPPP has moments of any order.

Proposition 2 (Existence of the moments). Let 𝑑 ≥ 3 and P be a homogeneous Poisson point process
of intensity 𝜌 > 0 in R𝑑 . Let 𝜀 ∈ (−1,1) and 𝑅 > 0. For any positive integer 𝑚

E

[( ∑︁
x∈Π𝜀P

1𝐵(0,𝑅) (x)
)𝑚]

<∞.
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The proof is deferred to Appendix A.3, and we note that a quantitative upper bound of the expectation
can be deduced from the proof. For now, a direct consequence of Proposition 2 is that for any continuous
function 𝑓 of compact support 𝐾 , we have

Var
[
�̂�Π𝜀P ( 𝑓 )

]
≤ ∥ 𝑓 ∥2

∞
𝜌2 E


( ∑︁

x∈Π𝜀P
1𝐾 (x)

)2 − 𝐼𝐾 ( 𝑓 )2 <∞.

In the next section, we provide a more explicit expansion of the variance for small 𝜀.

3.3. Main result

The following variance reduction result is the main theoretical finding of the present paper. Its proof is
deferred to Appendix A.4.

Theorem 3 (Variance reduction). Let 𝑑 ≥ 3, P ⊂ R𝑑 be a homogeneous Poisson point process of
intensity 𝜌 > 0, and 𝜀 ∈ (−1,1). For any function 𝑓 ∈ 𝐶2 (R𝑑) of compact support 𝐾 , we have

Var
[
�̂�Π𝜀P ( 𝑓 )

]
=Var

[
�̂�P ( 𝑓 )

]
(1 − 2𝑑𝜅𝑑𝜌𝜀) +𝑂 (𝜀2), (9)

where �̂�Π𝜀P ( 𝑓 ) is defined in (6),

�̂�P ( 𝑓 ) ≜
1
𝜌

∑︁
x∈P

𝑓 (x), (10)

and 𝜅𝑑 is the volume of the unit ball of R𝑑 .

Several remarks are in order.

Remark 3. Upon noting that Π0P = P, Equation (9) implies a negative derivative of the variance of
�̂�Π𝜀P ( 𝑓 ) at 𝜀 = 0. Actually,

Var
[
�̂�Π𝜀P ( 𝑓 )

]
< Var

[
�̂�P ( 𝑓 )

]
= 𝜌−1𝐼𝐾 ( 𝑓 2), (11)

for a small enough stepsize 𝜀 > 0. Computing the second-order derivative of the variance is more
challenging because the second-order moment of 𝐹P is not well-defined; see Section 3.4 and Appendix
A.4.

Remark 4. Taking 𝜀 equal to

𝜀0 ≜
1

2𝑑𝜅𝑑𝜌
(12)

makes the term of order 𝜀 in (9) vanish. Note also that 𝜀0 does not depend on the integrand 𝑓 .

Remark 5. When 𝜀 < 0, we obtain a positive first-order derivative of the variance at 𝜀 = 0, so that, for
|𝜀 | small enough,

Var
[
�̂�Π𝜀P ( 𝑓 )

]
> Var

[
�̂�P ( 𝑓 )

]
.

This result is expected as the behavior of Π𝜀 shifts from repulsive to attractive.
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Remark 6. A key element of the proof of Theorem 3 is the super-harmonicity of the Coulomb potential
𝑈P , which defines the force function 𝐹P . In other words, defining 𝑈P such that ∇𝑈P (x) = 𝐹P (x), we
have

Δ𝑈P (x) = div (𝐹P∩𝐾 (x)) = 𝑑𝜅𝑑
∑︁

z∈P\{x}
𝛿{z} (x) − 𝜅𝑑𝜌,

which is negative on R𝑑 \ P. This property, combined with a tailored integration by parts, forms the
main ingredient of the proof; see Remark 10 and Section 5.1.

Remark 7. Without further assumptions on the integrand, other types of interaction than Coulomb do
not necessarily yield such a variance reduction if plugged into our repulsion operator. Relatedly, there
are many links between Coulomb interaction and numerical integration beside our result. For instance,
the so-called Fekete points, defined as maximizers of the Coulomb energy

x1, . . . , x𝑁 ↦→
≠∑︁

1⩽𝑖, 𝑗⩽𝑁

1
∥x𝑖 − x 𝑗 ∥𝑑−2

2

on a compact, have been studied as a quadrature scheme, see e.g. Serfaty (2019) and references therein.

3.4. Properties of the force

In this section, we discuss key characteristics of the random function 𝐹P , when P is a PPP. Additional
properties can be found in the Appendices.

First, Chatterjee et al. (2010, Proposition 1) proved that when 𝑑 ≥ 3, almost surely, the series defin-
ing 𝐹P (x) converges simultaneously for all x and defines a translation-invariant (in distribution) vector-
valued random function, which is also almost surely continuously differentiable. The subsequent propo-
sition provides further insights into the distribution of 𝐹P .

Proposition 4. Let P be a homogeneous Poisson point process of intensity 𝜌 of R𝑑 , with 𝑑 ≥ 3. Then,
for any x ∈ R𝑑 , 𝐹P (x) has a symmetric 𝛼−stable distribution of index 𝛼 = 𝑑

𝑑−1 .

This observation was mentioned by Chatterjee et al. (2010) and can be easily checked by observing
that the union of 𝑛 i.i.d. copies of P, which is a PPP of intensity 𝑛𝜌, is also a PPP of intensity 𝜌 scaled
by 𝑛−1/𝑑 . The individual terms in 𝐹P (x) scale as a (𝑑 − 1)-th power of the distance, so the sum of 𝑛
i.i.d. copies of 𝐹P (x) has the same distribution as 𝑛(𝑑−1)/𝑑𝐹P (x). Symmetry is obvious, as −P = P
in distribution. Proposition 4 implies that E[𝐹P (x)] = 0 and E[∥𝐹P (x)∥𝜈2 ] < ∞ iff 𝜈 < 𝛼. For more
details about stable distributions, we refer to (Nolan, 2020, Section 1.5) and (Abdul-Hamid and Nolan,
1998).

Second, we have the following result regarding the distribution of the difference of forces.

Proposition 5. Let P be a homogeneous Poisson point process of R𝑑 . Then, for any two distinct points
x,y of R𝑑 , the random vector 𝐹P (x) − 𝐹P (y) is continuous, i.e., for any c ∈ R𝑑 ,

P (𝐹P (x) − 𝐹P (y) = c) = 0.

The proof of this proposition is deferred to Appendix A.1. We note that an additional result regard-
ing the joint density of the vector (𝐹P (x), 𝐹P (y)) can be found in (Chatterjee et al., 2010, Theorem
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10), where the authors demonstrate the existence of the joint density of (𝐹P (x), 𝐹P (y)) for x and y
sufficiently far apart, further conditioning on having at least one point of P within balls centered at x
and y. They also derive an upper bound for the density.

Third, it is possible to derive an alternative expression for 𝐹P (x) that avoids the requirement of a
different order of summation at each point x. More precisely, ordering terms by their distance to the
origin yields

𝐹P (x) =
∑︁

z∈P\{x}
∥z∥2↑

x − z
∥x − z∥𝑑2

− 𝜅𝑑𝜌x, (𝐹2)

where 𝜅𝑑 is the volume of the unit ball of R𝑑 . Note the additional term in (𝐹2), which compensates for
fixing the order of summation. Chatterjee et al. (2010, Proposition 5) proved that the expressions (𝐹1)
and (𝐹2) are equivalent when P is a PPP of unit intensity. A similar proof with slight modifications
holds in the general case when 𝜌 ≠ 1.

Finally, for a stationary point process X ⊂ R𝑑 , and 0 ≤ 𝑞 < 𝑝, we define the truncated force

𝐹
(𝑞,𝑝)
X (x) ≜

∑︁
z∈X\{x}∩𝐴(𝑞,𝑝) (x)

∥x−z∥2↑

x − z
∥x − z∥𝑑2

, (13)

where 𝐴(𝑞,𝑝) (x) = 𝐵(x, 𝑝) \ 𝐵(x, 𝑞) is the annulus centered at x with small radius 𝑞 and big radius 𝑝.
We will denote 𝐴(𝑞,𝑝) (0) simply by 𝐴(𝑞,𝑝) . Intuitively, 𝐹 (𝑞,𝑝)

X (x) represents the total Coulomb force
experienced by a charged particle at x due to the influence of other particles of the same charge located
in X ∩ 𝐴(𝑞,𝑝) (x). Note that the law of 𝐹 (𝑞,𝑝)

P (x) is invariant under translation of x, as was the case
for its non-truncated counterpart. The truncated force is a useful tool for practical implementation, just
like the truncated repelled point process

Π
(𝑞,𝑝)
𝜀 X ≜ {x + 𝜀𝐹 (𝑞,𝑝)

X (x) : x ∈ X}. (14)

Remark 8. The proof of Theorem 3 holds even when we replace 𝐹P with its truncated version 𝐹 (0, 𝑝)
P ,

as long as 𝑝 is larger than the diameter of the support 𝐾 of the integrand.

3.5. Sampling from the repelled Poisson point process

Let P be a PPP of intensity 𝜌 > 0 and Π𝜀P be the associated RPPP. Let 𝐾 ⊂ R𝑑 be compact, with
diameter diam(𝐾). In this section, we propose two approaches to approximately sampling from Π𝜀P ∩
𝐾 . By Corollary 1, Π𝜀P is stationary, and we henceforth assume that 𝐾 ⊂ 𝐵(0,diam(𝐾)/2).

Our first approach is simply to sample Π
(0, 𝑝)
𝜀 P ∩ 𝐾 , where 𝑝 = diam(𝐾)/2. In words, we use the

points of P that fall in the larger ball 𝐵(0,diam(𝐾)) to displace the points of P ∩ 𝐾 . Informally,
for large diam(𝐾), we expect the resulting distribution to be close to that of Π𝜀P ∩ 𝐾 because, for
each x ∈ P ∩ 𝐾 , we only neglected contributions to the force (𝐹1) from points at distance further than
diam(𝐾)/2 from x, and the magnitude of these contributions decreases fast. One downside of this
approach is that it requires, for each x, to order the points in P ∩ 𝐵(0, 𝑝) by their distance to x. While
storing the initial sample of P ∩ 𝐵(0, 𝑝) in an ad-hoc data structure like a KD-tree may help (Bentley,
1975), we empirically found it more computationally tractable to rely on the alternative expression (𝐹2)
of the force.
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Figure 2: Poisson sample (first column) and the corresponding repelled samples, obtained using (𝐹2)
(second column) and using 𝐹 (0,2) (third column). The first row corresponds to 𝑑 = 2 and the second
row to 𝑑 = 3, with 𝜀 set in each row to the value 𝜀0 = 𝜀0 (𝑑) in (12). The last column shows the two
repelled samples superimposed.

Indeed, our second approach stems from the fact that the partial sums of (𝐹2) use the same points
of P, independently of x. Moreover, the correction term in (𝐹2) partially takes into account the border
effects of truncating the sum, so we propose to sample P ∩ 𝐵(0,diam(𝐾)/2) and use the points in the
latter sample to displace the points of P∩𝐾 using (𝐹2). We still need to compute the pairwise distances
between the points of P ∩ 𝐵(0,diam(𝐾)/2), which is 𝑂 (𝑁2), where 𝑁 refers to the number of points
of P in 𝐾 . However, we note that the points of Π𝜀P ∩ 𝐾 can be sampled concurrently, resulting in a
reduction in computational time roughly proportional to the number of available processors. We provide
a Python package, called MCRPPy and available on GitHub3, which implements our two simulation
methods.

Figure 2 shows approximate samples of Π𝜀0P in [−1/2,1/2]𝑑 obtained with the two aforementioned
approaches, for 𝑑 = 2 (first row) and 𝑑 = 3 (second row). The corresponding PPP is of intensity 1000,
and the initial samples are given in the first column. In the second column, (𝐹2) was used, while 𝐹 (0,2)

P
was used in the third column. The last column is a superposition of the samples obtained in columns
2 and 3, displaying very close agreement. Finally, note that Figures 1 and 3 were obtained using (𝐹2),
and we will keep using this simulation method in the next sections for sampling from the repelled point
process.

3.6. An experimental illustration of the variance reduction

In this section, we present a numerical experiment to confirm the variance reduction found in Theorem
3. Additional experiments can be found in Section 4.

3https://github.com/dhawat/MCRPPy

https://github.com/dhawat/MCRPPy
https://github.com/dhawat/MCRPPy
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Figure 3: Estimated standard deviations of �̂�𝑠,Π𝜀P∩𝐾 with respect to 𝜀, for 𝑓1, 𝑓2, and 𝑓3, in 𝑑 = 3.

Let 𝐾 = [−1/2,1/2]𝑑 . Consider the three following integrands, all supported in 𝐾 ,

𝑓1 (x) ≜
(
1 − 4∥x∥2

2

)2
exp

(
−2

1 − 4∥x∥2
2

)
1𝐵(0,1/2) (x),

𝑓2 (x) ≜ 1𝐵(0,1/2) (x),

and 𝑓3 (x) ≜
𝑑∏
𝑖=1

cos3 (𝜋𝑥𝑖) sin(𝜋𝑥𝑖)1𝐾 (x). (15)

Both 𝑓1 and 𝑓3 satisfy the requirements of Theorem 3, while the indicator 𝑓2 is discontinuous
on 𝜕𝐵(0,1/2). For each of these functions, Figure 3 shows the estimated standard deviations
�̂�( �̂�𝑠,Π𝜀P∩𝐾 (.)) of the self-normalized estimator �̂�𝑠,Π𝜀P∩𝐾 (8) for varying values of 𝜀 in 𝑑 = 3. We
conducted the analysis using 50 independent samples of PPP P of intensity 𝜌 = 500.

The estimated standard deviations of �̂�𝑠,P∩𝐾 , corresponding to 𝜀 = 0, are represented by the large red
dots. The black dots indicates the values of �̂�( �̂�𝑠,Π𝜀P∩𝐾 (.)). The dashed lines indicate 𝜀0 (12). Note
that within the range of 𝜀 employed, the number of points of (Π𝜀P) ∩𝐾 remains relatively stable, with
an average ranging between 493 and 501.

First, we observe that for negative values of 𝜀, �̂�( �̂�𝑠,Π𝜀P∩𝐾 (.)) are greater than �̂�( �̂�𝑠, P∩𝐾 (.)), for
the three functions. This behavior is expected because the operator Π𝜀 is attractive for negative val-
ues of 𝜀. Second, for positive values of 𝜀, up to 𝜀0, we observe that �̂�( �̂�𝑠,Π𝜀P∩𝐾 (.)) are lower than
�̂�( �̂�𝑠, P∩𝐾 (.)). This result aligns with our theoretical expectations and provides evidence for the vari-
ance reduction in Theorem 3. Third, for 𝑓1 and 𝑓3 we observe an interesting trend when 𝜀 exceeds 𝜀0.
The standard deviations decrease until reaching a minimum value. This minimum value, particularly for
𝑓3, is relatively close to 𝜀0. However, after this minimum point, the standard deviations start to increase
again. The behavior of 𝑓2 in this scenario appears to be more intricate and less predictable. Overall, it
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appears that 𝜀0 is a reasonable choice for 𝜀, regardless of the integrand, although not necessarily the
optimal threshold for a specific integrand.

4. Application to numerical integration

In this section, we benchmark the RPPP among a few key Monte Carlo methods, to provide context.
The Python code for replicating this study can be found in MCRPPy4.

4.1. A few Monte Carlo methods

Let 𝑓 be a continuous function supported in 𝐾 = [−1/2,1/2]𝑑 . Our goal is to estimate the integral
𝐼𝐾 ( 𝑓 ) in (7). The simple (or crude) Monte Carlo method employs a Binomial point process (BPP) B𝑁
supported on 𝐾 , see Section 2.2, to estimate 𝐼𝐾 ( 𝑓 ) as follows

�̂�MC ( 𝑓 ) =
1
𝑁

∑︁
x∈B𝑁

𝑓 (x). (16)

The number of points used is fixed to 𝑁 . �̂�MC ( 𝑓 ) is an unbiased estimator of 𝐼𝐾 ( 𝑓 ) with a variance
equal to 𝑁−1Var( 𝑓 (u)) where u is a uniformly drawn point of 𝐾 .

Remark 9. As mentioned in Section 2.2, when the number of points of a BPP increases appropriately
with the size of the observation window, the BPP converges to a homogeneous Poisson point process
(PPP). Consequently, one can think of the estimator �̂�MC ( 𝑓 ) as a self-normalized version of the esti-
mator �̂�P ( 𝑓 ) (10), where P represents a PPP with suitable intensity. However, by setting the intensity
of P equal to 𝑁 , we obtain the following variance for �̂�P ( 𝑓 )

Var
[
�̂�P ( 𝑓 )

]
= 𝑁−1

∫
𝐾

𝑓 2 (x)dx,

which is larger than the variance of �̂�MC ( 𝑓 )

Var
[
�̂�MC ( 𝑓 )

]
= 𝑁−1

(∫
𝐾

𝑓 2 (x)dx −
(∫
𝐾

𝑓 (x)dx
)2

)
.

These variances are only equal if the integral of 𝑓 is zero. Otherwise, fixing the number of points is
preferable to using a random number of points.

Much research has gone into reducing the variance of �̂�MC; see e.g. (Owen, 2013). Control variate
methods, for instance, rely on incorporating a function ℎ that is computationally cheap to evaluate and
possesses a known integral. The Monte Carlo control variate estimator is defined as

�̂�MCCV ( 𝑓 ) = �̂�MC ( 𝑓 ) − 𝑐( �̂�MC (ℎ) − 𝐼𝐾 (ℎ)), (17)

4https://github.com/dhawat/MCRPPy

https://github.com/dhawat/MCRPPy
https://github.com/dhawat/MCRPPy
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where 𝑐 is a free parameter to be tuned. First, �̂�MCCV ( 𝑓 ) is an unbiased estimator of 𝐼𝐾 ( 𝑓 ). Second,
the value of 𝑐 that minimizes the variance of the estimator is

Cov( 𝑓 (u), ℎ(u))
Var[ℎ(u)] ,

where u is a uniform random vector on 𝐾 (Owen, 2013, Section 8.9). For this specific value of 𝑐,

Var[ �̂�MCCV ( 𝑓 )] =Var
[
�̂�MC ( 𝑓 )

] (
1 − Corr2 ( 𝑓 (u), ℎ(u))

)
.

Hence, any function ℎ that correlates with 𝑓 helps reducing the variance, even one that correlates
negatively. Finding an appropriate ℎ is usually challenging. We opt in this paper for a polynomial
regression of 𝑓 as our choice for ℎ, and we estimate the coefficient 𝑐 by

𝑐 =

∑
x∈B′ 𝑓 (x) (ℎ(x) − ℎ̄)∑

x∈B′ (ℎ(x) − ℎ̄)2
, (18)

where B′ is a BPP on 𝐾 , which is independent of the point process used to compute �̂�MC in (17), and
ℎ̄ is the mean of ℎ over B′. Under the independence assumption, using 𝑐 instead of 𝑐 does not affect
the unbiasedness of �̂�MCCV ( 𝑓 ) (Owen, 2013, Example 8.3). Finally, note that the construction of the
regressor ℎ and the evaluation of 𝑐 require extra integrand evaluations compared to crude Monte Carlo,
which we neglect here for simplicity.

On the other hand, Monte Carlo methods that try to improve the rate of convergence of the variance
have been proposed, starting with grid-based stratification (Owen, 2013, Chapter 10). For a recent
example, replacing the BPP of crude Monte Carlo with one of a particular family of determinantal point
processes (DPPs) has been shown to enhance the convergence rate of the variance beyond𝑂 (𝑁−1); see
(Bardenet and Hardy, 2020, Coeurjolly et al., 2021). For our comparison, we use the unbiased estimator
given in (Bardenet and Hardy, 2020, Section 2.1) and implemented in DPPy (Gautier et al., 2019b),

�̂�MCDPP ( 𝑓 ) =
∑︁

x∈D𝑁

𝑓 (x/2)
2𝑑K𝑁 (x,x)

, (19)

where D𝑁 is the multivariate Legendre ensemble and K𝑁 its kernel. According to Bardenet and Hardy
(2020), if 𝑓 is 𝐶1 and supported on an open set that is bounded away from the boundary of the hy-
percube 𝐾 , �̂�MCDPP ( 𝑓 ) is an unbiased estimator of 𝐼𝐾 ( 𝑓 ) and its variance is 𝑂 (𝑁−1−1/𝑑), which is
faster than the usual 𝑂 (𝑁−1). One of the limitations of DPP-based methods lies in the computational
complexity associated with sampling from DPPs, which is at least cubic in the number 𝑁 of integrand
evaluations.

We conclude with an instance of the Randomized Quasi-Monte Carlo method, which is an attempt at
getting both the convenience of variance statements and the error reduction of stratified deterministic
quadrature. The estimator used is

�̂�RQMC ( 𝑓 ) =
1
𝑁

∑︁
x∈S𝑁

𝑓 (x), (20)

where S𝑁 is obtained by applying a suitable random perturbation to a low-discrepancy (deterministic)
sequence (Owen, 2013, Chapter 17). In particular, each point of S𝑁 is uniformly distributed in 𝐾 ,
so that (20) is an unbiased estimator of 𝐼𝐾 ( 𝑓 ). Under strong regularity assumptions on 𝑓 (at least
all mixed partial derivatives of 𝑓 of order less than 𝑑 should be continuous on 𝐾), the variance of

https://github.com/guilgautier/DPPy
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(20) is 𝑂 (log(𝑁)𝑑−1𝑁−3) (Owen, 2013, Theorem 17.5). Despite the 𝑑-dependence of the rate and the
strong smoothness assumptions, �̂�RQMC is remarkably efficient in small-to-moderate dimensions, and
sampling is computationally cheap compared to, e.g., DPPs. In this paper, we take S𝑁 to be a scrambled
Sobol sequence5 (Sobol, 1967).

4.2. Experimental comparison

This section focuses on examining and comparing the performance of �̂�Π𝜀P ( 𝑓 ), for 𝜀 = 𝜀0 (12), with
the Monte Carlo estimators outlined in Section 4.1.

While �̂�MC, �̂�MCCV, �̂�MCDPP, and �̂�RQMC use a constant number of points across trials, �̂�Π𝜀0 P is the
only method where the number of points is not fixed, neither in the computational budget nor in the
(smaller) number of integrand evaluations. In an effort to conduct a fair comparison, we replace the
PPP in the estimator �̂�Π𝜀0 P with a BPP, which has a fixed number of points. The resulting estimator is

referred to as �̂�MCRB. Next, we sample 𝑀 realizations from the repelled point processes as described in
Section 3.5, and find the average number of points obtained within the 𝑀 trials. We set the number 𝑁 of
points used in the other methods to this average. Note that we give an unfair advantage to the estimator
�̂�MCCV by not accounting for the evaluations of the integrand necessary to estimate the coefficient (18).

We use 𝑀 = 100 samples from each of the point processes and we make sure 𝑁 ranges roughly
from 50 to 1000. We examine the functions 𝑓1, 𝑓2, and 𝑓3 defined in Section 3 by Equation (15). Their
integrals are

𝐼𝐾 ( 𝑓2) = 𝜅𝑑/2𝑑 , 𝐼𝐾 ( 𝑓3) = 0,

while the precise value of 𝐼𝐾 ( 𝑓1) is unknown.
Figure 4 displays the log of the estimated standard deviation of the estimators �̂�MC, �̂�MCRB, �̂�MCCV,

and �̂�RQMC, plotted against the log number of points log(𝑁), for the functions 𝑓1, 𝑓2, and 𝑓3 and 𝑑 in
{2,3,4,5,7}. �̂�MCDPP is only examined for 𝑑 ∈ {2,3} due to its high cost compared to other methods.
Lines correspond to ordinary least square linear regressions (OLS). The slopes and standard deviations
of the slopes are indicated in the legend.

First, as expected, the estimated variances of �̂�MCRB are generally lower than those of �̂�MC. �̂�MCRB
outperforms �̂�MC in most scenarios, except for 𝑓4 with 𝑑 = 7 where the estimated variances of �̂�MC
and �̂�MCRB are comparable. Interestingly, in this case, the estimated variances of all methods are in the
same ballpark. Second, �̂�MCRB outperforms �̂�MCDPP in dimension 3. Although the convergence rate for
the variance of �̂�MCDPP is faster than 𝑂 (𝑁−1), it seems that the numerator in the variance increases
with the dimension. Moreover, �̂�MCDPP is computationally demanding. Fourth, it appears that �̂�MCRB
outperforms �̂�MCCV in most cases. �̂�MCRB and �̂�RQMC seem the main competitors.
�̂�RQMC consistently performs well. For 𝑑 ≤ 3, the estimated variances of �̂�RQMC are lower than those

of �̂�MCRB for 𝑁 large enough, and the slope of the variance of �̂�RQMC is steeper than that of �̂�MCRP.
However, �̂�RQMC’s performance decreases significantly as 𝑑 increases. Interestingly, for 𝑓3 and 𝑑 = 4,
the estimated variances of �̂�RQMC are larger than those of �̂�MCRB, but the slope for �̂�RQMC remains
steeper than for �̂�MCRB, letting �̂�RQMC catch up as 𝑁 grows large. The same trend is observed for 𝑓1 in
𝑑 = 7 up to a large value of 𝑁 , while the opposite trend is observed for 𝑓4 in 𝑑 = 5. When comparing
the estimated variances of �̂�RQMC and �̂�MCRB for 𝑓1 and 𝑓2 across different dimensions, it appears that
�̂�RQMC’s performance declines more rapidly than �̂�MCRB’s as the dimension 𝑑 increases.

5We used the method Sobol from the Python package scipy to sample from S𝑁 (Virtanen et al., 2020).

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.qmc.Sobol.html
https://docs.scipy.org/
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Figure 4: Estimated standard deviations of various Monte Carlo methods for 𝑓1, 𝑓2, and 𝑓3 across
different dimensions 𝑑 ∈ {2,3,4,5,7}.

Finally, we conducted additional analyses in Appendix B.1, and computed confidence intervals for
the slopes corresponding to �̂�MCRB illustrated in Figure 4. We also compared the error of the Monte
Carlo estimators under investigation. In short, data suggests that the slope is the usual Monte Carlo rate
or slightly faster. Additionally, there is no substantial evidence of bias in �̂�MCRB.
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5. Other models and properties

This section contains numerical investigations of several intriguing questions that arise from the repul-
sion operator. In Section 5.1, we analyze the behavior of a PPP when the repulsion operator is applied
several times. Then, in Section 5.2, we estimate the second-order properties of the RPPP. Finally, in
Section 5.3, we explore the behavior of the repulsion operator when applied to two point processes that
are more regular than the Poisson point process.

5.1. Iterating the repulsion

PPP

Figure 5: Illustration of the gravitational allocation from Lebesgue to a realization (black points) of a
PPP in a disk. Each set of curves sharing the same color illustrates a gravitational cell, which indicates
the points of the space allocated to the point of the PPP that belongs to that particular colored region.
The code to generate this picture can be found in MCRPPy. Note that the image is purely for illustrative
purposes, and no claims are being made regarding the existence of a gravitational allocation from the
Lebesgue measure to a PPP in dimension 𝑑 = 2.

Our repulsion operator Π𝜀 in (5) can be seen as performing one step of a discretization scheme
for a system of differential equations describing gravitational allocation. In this section, we carry the
analogy with gravitational allocation further by iterating the application of Π𝜀 .

To provide more context, consider a PPP P of unit intensity, let x ∈ R𝑑 \ P, and consider the differ-
ential equation

𝜕

𝜕𝑡
𝑌x (𝑡) = −𝐹P (𝑌x (𝑡)) with 𝑌x (0) = x. (21)

The solution 𝑡 ↦→𝑌x (𝑡) of the differential equation (21), defined up to some positive time 𝜏x ∈ (0,∞], is
called a flow curve of the gravitational allocation of P to the Lebesgue measure (Chatterjee et al., 2010);
see Figure 5 for an illustration of the gravitational allocation of a PPP of unit intensity. Remark that for
𝜀 < 0, x+𝜀𝐹P (x) is the first step in a naive numerical scheme discretizing the differential equation (21),
with a stepsize equal to −𝜀. Similarly, each point of Π𝜀P can be viewed as the initial discretization
step of a differential equation akin to (21), with stepsize −𝜀. The catch is that Π𝜀P is applied to the

https://github.com/dhawat/MCRPPy
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points of P itself, not to points in R𝑑 \ P as in (21). Loosely speaking, the image of x ∈ P in Π𝜀P can
be seen as a first step of the numerical discretization of a flow curve, in a gravitational allocation from
the reduced Palm measure of P to the Lebesgue measure. However, to fully formalize and understand
this allocation, further technical details are required and are out of the scope of this paper.

Consider now performing 𝑀 steps of the same numerical scheme, i.e., for each x0 ∈ P, define

x𝑡 = x𝑡−1 + 𝜀𝐹P (x𝑡−1), 𝑡 = 1, . . . , 𝑀. (22)

Call Π𝜀,𝑡P the set of 𝑡−th iterates (22) of the points of P. We expect that for 𝜀 < 0 and large 𝑡,

t = 0

t = 50, ε = −ε0

t = 0

t = 50, ε = ε0

Figure 6: The green points represent a sample from a PPP P of unit intensity, the blue points correspond
to Π−𝜀0 ,50P (left), and Π+𝜀0 ,50P (right).

the distribution of the points of Π𝜀,𝑡P will not be more regular than P. This assertion is supported
by the clustered arrangement of the points of Π−𝜀0 ,50P observed in the left panel of Figure 6; see
also Figure 13. However, it is important to note that some points of Π−𝜀0 ,50 are situated outside the
observation window and are thus not visible in Figure 6.

Following the arguments of Chatterjee et al. (2010), one can prove that the differential equation (21)
defines an allocation rule. So, in particular, for almost any x ∈ R𝑑 \ P, each curve 𝑌x (𝑡) will eventually
end at a point of P, almost surely, as 𝑡 goes to 𝜏x. Similarly, in an “ideal” discretization scenario, we
would expect that x𝑡 ends at a point of P as 𝑡→ 𝜏x0 . However, during our experiments, we observed
that certain points have moved away from the observation window and the remaining points clustered
together within it. The movement of certain points away from the observation window can be attributed
to the naive discretization scheme (22), where we employed a fixed stepsize 𝜀, while the points of P
are singular points of 𝐹P . As a result, when an x𝑡 is in close proximity to a point in P, the force acting
on it becomes considerable, which in turn compels x𝑡+1 to escape the observation window. Applying a
truncated version of the force might help prevent this phenomenon.

The scenario where 𝜀 > 0 and 𝑀 is large is less straightforward. This case can be associated with the
reverse dynamics of Equation (21). Indeed, for x ∈ R𝑑 \ P, the trajectory of 𝑌x (𝑡) halts at some point
of the boundary of an allocation cell of the gravitational allocation from Lebesgue to P; see Figure
5. By the same analogy as before, we can expect that for x0 ∈ P and 𝜀 small enough, as 𝑡→∞, each
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point x𝑡 will eventually approach the boundary of an allocation cell of the gravitational allocation from
Lebesgue to the reduced Palm measure of P. It is hard to dig deeper without further investigation.
Interestingly, in the right panel of Figure 6, we observe a peculiar clustering behavior of the points
in Π𝜀0 ,50P characterized by points appearing to overlap or superimpose with each other; see also
Figure 13.

5.2. Second-order properties of the repelled Poisson point process

The second-order characteristics of a point process, such as the pair correlation function and the struc-
ture factor, offer valuable insights into the regularity of the point process (Baddeley et al., 2015), vari-
ance reduction (Pilleboue et al., 2015), and hyperuniformity (Coste, 2021, Torquato, 2018). In this
section, we estimate the pair correlation function and the structure factor of the RPPP.
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Figure 7: Estimated structure factor (left) and pair correlation function (right) of an RPPP of R2 of
intensity 1/𝜋. The labels ‘ppp’ and ‘fv’ correspond to two different estimators of the pair correlation
function; see e.g. (Hawat et al., 2023).

The pair correlation function 𝑔 of a stationary point process X of intensity 𝜌 > 0 is a function
characterizing the probability of finding a pair of points of the point process at a certain distance. It is
important to note that not all point processes have a pair correlation function in the strict sense, as it
can sometimes be a measure instead. This is the case for a perturbed lattice, for example. However, if 𝑔
exists, it is given by

E


≠∑︁

x,y∈X
ℎ(x,y)

 ≜
∫
R𝑑×R𝑑

ℎ(x + y,y)𝜌2𝑔(x)dxdy,

for any nonnegative measurable bounded function ℎ with compact support. When 𝑔 − 1 is integrable
we can further define the structure factor 𝑆 of X by

𝑆(k) = 1 + 𝜌F (𝑔 − 1) (k), (23)
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where F denotes the Fourier transform. Assuming that X is also isotropic,6 both 𝑔 and 𝑆 become radial
functions, meaning that 𝑔(r) and 𝑆(k) depend only on the norm of r and k respectively. In that case,
we abusively write 𝑔(r) = 𝑔(𝑟), and 𝑆(k) = 𝑆(𝑘) where 𝑥 ≜ ∥x∥2. For a PPP, the structure factor and
the pair correlation function are both constant and equal to 1. A pair correlation function 𝑔(𝑟) below
1 indicates repulsion between the points of the corresponding point process at scale 𝑟 , whereas a pair
correlation function greater than 1 is a sign of attraction. The structure factor, on the other hand, is
used as an indicator of hyperuniformity: 𝑆(0) = 0 implies that the point process is hyperuniform, that
is, the variance of the number of points that fall in a ball grows slower than the volume of that ball. For
the RPPP, with 𝜀 = 𝜀0 we expect to observe 𝑔(𝑟) less than 1 for a certain range of 𝑟 , as the repulsion
operator introduces repulsion between the points. However, having intuition on hyperuniformity is more
difficult, and a statistical diagnostic using an estimator of 𝑆 is required.

Figure 7 shows the estimated pair correlation function and structure factor of an RPPP of intensity
1/𝜋 in dimension 𝑑 = 2. The estimations were obtained using a sample observed within a centered
ball of radius 𝑟 = 150. Bartlett’s isotropic estimator 𝑆BI was used to estimate the structure factor on
the corresponding set of allowed wavenumbers 𝑘; see (Hawat et al., 2023, Sections 3.2.1 and 5.3). The
estimators pcf.ppp, and pcf.fv (Baddeley et al., 2015, Sections 7.4.4 and 7.4.5) of the R library spatstat
were used to estimate the pair correlation function through the Python package structure-factor; see
(Hawat et al., 2023, Section 5.3). Dashed black lines represent the structure factor and pair correlation
function of the PPP. As expected, 𝑔 is smaller than 1 up to a certain value of 𝑟, indicating repulsion
between the points at small scales. However, 𝑆BI (𝑘) is greater than 0.2 at small 𝑘 , suggesting that the
RPPP may not be hyperuniform.

5.3. Other repelled point processes

In this section, we perform numerical investigations to determine whether the variance reduction iden-
tified in Theorem 3 remains valid when the initial points are more evenly distributed than a Poisson
point process, such as in the case of the Ginibre ensemble or a scrambled Sobol sequence.

The Ginibre ensemble (GPP) is a motion-invariant point process of R2 of intensity 1/𝜋. It can be
defined (and approximately sampled) as the limit of the set of eigenvalues of matrices filled with i.i.d.
standard complex Gaussian entries, as the size of the matrix goes to infinity (Hough et al., 2009,
Theorem 4.3.10). Interestingly, the GPP is a hyperuniform point process, and the variance of the number
of points in 𝐵(0, 𝑅) scales like 𝑂 (𝑅𝑑−1) as 𝑅 goes to infinity, instead of scaling like the volume of the
ball, as for the PPP. By Beck (1987), this is the smallest possible growth rate. Figure 8 displays a
sample of a GPP and the corresponding repelled sample with 𝜀 = 𝜀0, observed within 𝐵(0,50). The
sampling methodology follows the description provided in Section 3.5 for the PPP. Another model of
interest is the scrambled Sobol sequence, which is a typical example of a randomized low-discrepancy
sequence, as mentioned in Section 4.1. Figure 9 displays a sample of the scrambled Sobol sequence
and the corresponding repelled sample, with 𝜀 = 𝜀0, observed within 𝐵(0,50). Like for Ginibre, the
repelled Sobol sequence displays a high level of homogeneity.

We now examine the behavior of the variance of �̂�𝑠,Π𝜀G∩𝐾 and �̂�𝑠,Π𝜀S∩𝐾 w.r.t. 𝜀, where G represents
a GPP and S denotes a scrambled Sobol sequence. We use the functions 𝑓1, 𝑓2 and 𝑓3 defined in
Equation (15). Figure 10 illustrates the estimated standard deviations of �̂�𝑠,Π𝜀G∩𝐾 (first row) for 𝑑 = 2
and �̂�𝑠,Π𝜀S∩𝐾 for 𝑑 = 2 (second row), as well as for 𝑑 = 3 (last row), for various values of 𝜀. We
conducted the experiments using 50 independent samples of G and S of intensity 𝜌 = 500. GPP’s

6The assumptions of stationarity and isotropy, in this case, can be straightforwardly weakened to assuming that the intensity
measure is invariant to translations or that the pair correlation function only depends on the inter-point distance.

https://www.rdocumentation.org/packages/spatstat.core/versions/2.1-2/topics/pcf.ppp
https://www.rdocumentation.org/packages/spatstat.core/versions/2.1-2/topics/pcf.fv
https://spatstat.org/
https://github.com/For-a-few-DPPs-more/structure-factor
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(a) Ginibre (b) Repelled Ginibre

Figure 8: A sample from the Ginibre ensemble (left) and the obtained repelled sample (right) with
𝜀 = 𝜀0.

(a) Sobol sequence (b) Repelled Sobol sequence

Figure 9: A sample from the scrambled Sobol sequence (left) and the obtained repelled sample (right)
with 𝜀 = 𝜀0.

samples were rescaled to achieve 𝜌 = 500. The estimated standard deviations of �̂�𝑠, G∩𝐾 and �̂�𝑠, S∩𝐾 are
indicated by the large red dots in Figure 3, while the black dots correspond to the estimated standard
deviations of �̂�𝑠,Π𝜀G∩𝐾 and �̂�𝑠,Π𝜀S∩𝐾 . The dashed lines indicate the value of 𝜀0 defined in Equation
(12). For the 𝐶2 functions 𝑓1 and 𝑓3, we observe a behavior similar to the RPPP results depicted in
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Figure 3, indicating a variance reduction within a certain range of positive values of 𝜀. However, for 𝑓2,
the variance decreases as 𝜀 increases for Π𝜀G in a manner similar to Figure 3, while a more intricate
behavior is observed for Π𝜀S. These observations allow one to conjecture that the repulsion operator
may produce variance reduction for smooth functions for a wide range of point processes.
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Figure 10: Estimated standard deviations of �̂�𝑠,Π𝜀G∩𝐾 (Ginibre) and �̂�𝑠,Π𝜀S∩𝐾 (scrambled Sobol) with
respect to 𝜀 for 𝑓1 (first column), 𝑓2, (second column) and 𝑓3 (last column). The first row shows the
obtained results for the Ginibre ensemble in 𝑑 = 2, the second row for the scrambled Sobol sequence in
𝑑 = 2 and the last one for the scrambled Sobol sequence in 𝑑 = 3.

6. Conclusion

Motivated by variance reduction for Monte Carlo methods and inspired by gravitational allocation,
we have introduced the repulsion operator Π𝜀 . For small 𝜀 > 0, this operator intuitively makes point
processes more regular by slightly pushing their points apart from each other using a force function
controlled by 𝜀. We have provided a detailed theoretical study of Π𝜀P, where the repulsion operator
is applied to a homogeneous Poisson point process P. In particular, we have proved variance reduction
for smooth linear statistics and suggested a practical value for the parameter 𝜀. Numerical experiments
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support the variance reduction and make the repelled Poisson point process a promising alternative to
crude Monte Carlo integration if one can afford the quadratic cost of computing pairwise distances. We
have found no numerical evidence of hyperuniformity for the repelled Poisson point process through
the estimation of its structure factor, while the variance decay in experiments on smooth functions is
compatible with a slightly faster than crude Monte Carlo rate.

Exploratory experiments suggest that variance reduction is also achieved when applying the repul-
sion operator to other point processes, such as the (hyperuniform) Ginibre point process. Proving this
is a natural next step for future work, as well as proving variance reduction when applying the repul-
sion operator to non-homogeneous point processes. Once such a result will have been obtained under
sufficiently weak assumptions, applying the repulsion operator could become a default postprocessing
in many Monte Carlo integration tasks. In another direction, it would be interesting to explore the at-
tractive case of the operator Π𝜀 , achieved by selecting a negative parameter 𝜀. This approach yields
clustering point processes, where points tend to aggregate near the points of the original point process,
offering insights into spatial clustering phenomena.
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Appendix A: Proofs

In this section, we present the proofs of the results mentioned in Sections 3.2, 3.3 and 3.4. The proof
of Proposition 5 can be found in Section A.1. The motion invariance results stated by Proposition 1
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and Corollary 1 are proven in Section A.2. The most intricate proof, that of Proposition 2, is presented
in Section A.3. Finally, Section A.4 contains the proof of the variance reduction result formulated in
Theorem 3, which is the main outcome of the paper.

A.1. Proofs of Proposition 5

In this section, our objective is to establish Proposition 5. This proposition will play a crucial role in
establishing the first part of Corollary 1.

Proof of Proposition 5. Let {𝐵𝑛}𝑛≥1 be a sequence of disjoint balls, each with the same volume
|𝐵1 | = 1/𝜌, and consider the collection of events {Ω𝑛}𝑛≥1 defined by

Ω𝑛 = {P(𝐵𝑛) = 1} .

As P is a PPP, the events Ω1,Ω2, . . . are independent, and we have∑︁
𝑛≥1

P(Ω𝑛) =
∑︁
𝑛≥1

exp(−1) =∞.

By Borel-Cantelli, P(lim supΩ𝑛) = 1. Thus almost surely, infinitely many Ω𝑛 occur, and for c ∈ R𝑑 ,

{𝐹P (x) − 𝐹P (y) = c} ⊂
⋃
𝑛≥1

{𝐹P (x) − 𝐹P (y) = c,Ω𝑛}

⊂
⋃
𝑛≥1

{X𝑛 = c − Y𝑛,Ω𝑛} ,

where X𝑛 = 𝐹P∩𝐵𝑛
(x) − 𝐹P∩𝐵𝑛

(y), and Y𝑛 ≜ 𝐹P∩𝐵𝑐
𝑛
(x) − 𝐹P∩𝐵𝑐

𝑛
(y). In particular,

P (𝐹P (x) − 𝐹P (y) = c) ≤
∑︁
𝑛≥1

P (X𝑛 = c − Y𝑛,Ω𝑛) . (24)

Now, for all 𝑛, conditionally on Ω𝑛, X𝑛 and Y𝑛 are independent random vectors and we further claim
that X𝑛 is continuous, we thus get P (X𝑛 = c − Y𝑛,Ω𝑛) = 0. By (24), we conclude that

P (𝐹P (x) − 𝐹P (y) = c) = 0.

Finally, the claim that X𝑛 is continuous conditionally on the event Ω𝑛 can be easily verified using
harmonic function theory. For instance, for 𝑖 ∈ 1, . . . , 𝑑, let

𝑔𝑖 : 𝐵𝑛 \ {x,y} → R

z ↦→ 𝑥𝑖 − 𝑧𝑖
∥x − z∥𝑑2

− 𝑦𝑖 − 𝑧𝑖
∥y − z∥𝑑2

.

Actually, for z ≜ P ∩ 𝐵𝑛, 𝑔𝑖 (z) is the 𝑖-th component of the random vector X𝑛. As 𝑔𝑖 is a non-constant
real harmonic function on 𝐵𝑛 \ {x,y}, by Theorem 1.28 of Axler et al. (2001), 𝑔𝑖 is a non-constant
real analytic function on 𝐵𝑛 \ {x,y} (which is connected). By Proposition 1 of Mityagin (2020), the
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zero-set 𝑔−1
𝑖

(0) of 𝑔𝑖 has Lebesgue measure zero. By translation, we can deduce that any level set of
𝑔𝑖 is negligible. Finally, conditioning on Ω𝑛, z is uniformly distributed on 𝐵𝑛, so

P
(
X𝑛 = c

���Ω𝑛) ≤ |𝐵𝑛 ∩ {𝑔−1
𝑖 (𝑐𝑖)}| = 0.

A.2. Proof of Proposition 1 and Corollary 1 (motion-invariance)

Throughout this section, we fix 𝜀 ∈ R and we prove Proposition 1 and Corollary 1.
First, to prove Proposition 1, we show that for a point process X, satisfying the conditions of Propo-

sition 1, any void probability (1) of a translation, respectively rotation, of Π𝜀X is equal to the void
probability for Π𝜀X of the same Borel set. The key argument is that, for any x ∈ R𝑑 , the force 𝐹X (x)
defined in (𝐹1) is invariant under both translations and rotations.

Proof of Proposition 1. Assume that X is motion-invariant. As the law of Π𝜀X is defined by the void
probabilities (1), to show that Π𝜀X is motion-invariant, it is enough to prove that for any Borel set 𝐵,
any a ∈ R𝑑 , and any rotation 𝔯,

Ta+Π𝜀X (𝐵) = TΠ𝜀X (𝐵) and T𝔯 (Π𝜀X) (𝐵) = TΠ𝜀X (𝐵).

First, observe that, by construction, Π𝜀 (a +X) = a +Π𝜀X. This yields

Ta+Π𝜀X (𝐵) = 1 − P ((a +Π𝜀X) ∩ 𝐵 = ∅)

= 1 − P (Π𝜀 (a +X) ∩ 𝐵 = ∅) ,

which, by stationarity of X, is TΠ𝜀X (𝐵). Thus, Π𝜀X is stationary.
Second, since ∥𝔯(x)∥2= ∥x∥2 and 𝔯 is linear, we can write

Π𝜀 (𝔯(X)) =

𝔯(x) + 𝜀
∑︁

z∈X\{x}
∥𝔯 (x)−𝔯 (z) ∥2↑

𝔯(x) − 𝔯(z)
∥𝔯(x) − 𝔯(z)∥𝑑2

x∈X

=

𝔯(x) + 𝜀
∑︁

z∈X\{x}
∥𝔯 (x−z) ∥2↑

𝔯(x − z)
∥𝔯(x − z)∥𝑑2

x∈X

=

𝔯(x) + 𝜀
∑︁

z∈X\{x}
∥x−z∥2↑

𝔯(x − z)
∥x − z∥𝑑2

x∈X

= {𝔯(x + 𝜀𝐹X (x))}x∈X .

Thus, we have Π𝜀 (𝔯(X)) = 𝔯(Π𝜀 (X)). This implies that

T𝔯 (Π𝜀 (X) ) (𝐵) = 1 − P (𝔯(Π𝜀 (X)) ∩ 𝐵 = ∅)

= 1 − P (Π𝜀 (𝔯(X)) ∩ 𝐵 = ∅) ,

which is TΠ𝜀 (X) (𝐵) by the isotropy of X. Thus, Π𝜀 (X) is isotropic.

We highlight that the proof remains valid when substituting the repulsion operator Π𝜀 with its trun-
cated version Π

(𝑞,𝑝)
𝜀 (14), with 0 ≤ 𝑞 < 𝑝.
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Now, to prove Corollary 1, we first note that a homogeneous Poisson point process P is almost
surely a valid configuration, as mentioned in Section 3.4. In view of Proposition 1, it is enough to prove
that, almost surely, the images of two distinct points from P under Π𝜀 remain distinct, and that Π𝜀P
possesses the same intensity as P.

Proof of Corollary 1. To show that almost surely the images of two distinct points from P under Π𝜀
remain distinct,7 we need to show that

E


≠∑︁

x,y∈P
1{x+𝜀𝐹P (x)=y+𝜀𝐹P (y) } (x,y)

 = 0. (25)

Using the extended Slivnyak-Mecke theorem (4) we get

E


≠∑︁

x,y∈P
1{x+𝜀𝐹P (x)=y+𝜀𝐹P (y) } (x,y)


= E


≠∑︁

x,y∈P
1{x+𝜀𝐹P\{x,y} (x)+𝜀

x−y
∥x−y∥𝑑2

=y+𝜀𝐹P\{x,y} (y)+𝜀
y−x

∥y−x∥𝑑2
} (x,y)


=

∫
R𝑑×R𝑑

E

[
1{x+𝜀𝐹P (x)+𝜀 x−y

∥x−y∥𝑑2
=y+𝜀𝐹P (y)+𝜀 y−x

∥y−x∥𝑑2
} (x,y)

]
𝜌2dxdy

=

∫
R𝑑×R𝑑

P
(
𝐹P (x) − 𝐹P (y) = (y − x)

(
𝜀−1 + 2∥y − x∥−𝑑2

))
𝜌2dxdy. (26)

By Proposition 5, for x ≠ y, the random vector 𝐹P (x) − 𝐹P (y) is continuous. Thus

P
(
𝐹P (x) − 𝐹P (y) = (y − x)

(
𝜀−1 + 2∥y − x∥−𝑑2

))
= 0.

Plugging back in (26) yields (25).
It remains to show that the intensity of Π𝜀P is equal to 𝜌. Consider a compact 𝐾 of R𝑑 . Based on

the previous reasoning, almost surely, when the repulsion operator Π𝜀 is applied to the points of P, no
two points will end up at the same location. Thus we have

Π𝜀P(𝐾) =
∑︁
x∈P

1𝐾 (x + 𝜀𝐹P (x)).

Applying the extended Slivnyak-Mecke theorem (4) we get

E [Π𝜀P(𝐾)] = E
[∑︁

x∈P
1𝐾

(
x + 𝜀𝐹P\{x} (x)

) ]
=

∫
R𝑑
E [1𝐾 (x + 𝜀𝐹P (x))] 𝜌dx.

As the distribution of 𝐹P (x) is translation-invariant (in x) we get

E[Π𝜀P(𝐾)] =
∫
R𝑑
E [1𝐾 (x + 𝜀𝐹P (0))] 𝜌dx.

7In the broader framework of point processes, our objective is to establish that Π𝜀 (P) is a simple point process, assuming that
we define Π𝜀 (P) as a multiset rather than a set. To accomplish this, we employ (Last and Penrose, 2017, Proposition 6.7).
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Exchanging the integral and expectation using Tonelli’s theorem gives

E[Π𝜀P(𝐾)] = 𝜌E
[∫
R𝑑
1𝐾 (x + 𝜀𝐹P (0))dx

]
= 𝜌E

[∫
R𝑑
1𝐾−𝜀𝐹P (0) (x)dx

]
= 𝜌E [|𝐾 − 𝜀𝐹P (0) |] = 𝜌 |𝐾 |.

Thus the intensity of Π𝜀P is equal to 𝜌, which completes the proof.

A.3. Proof of Proposition 2 (existence of the moments)

In this section, we consider a homogeneous Poisson point process P ⊂ R𝑑 of intensity 𝜌, with 𝑑 ≥ 3,
and let 𝜀 ∈ (−1,1). Our objective is to demonstrate the existence of the moments of the repelled Poisson
point process Π𝜀P. To wit, let 𝑅 > 0 and 𝑚 be a positive integer, we need to show that

E

[( ∑︁
x∈Π𝜀P

1𝐵(0,𝑅) (x)
)𝑚]

<∞.

To accomplish this, the key idea is to decompose the Coulomb force 𝐹P (x) acting on x ∈ R𝑑 and
defined in (𝐹2) into two truncated sums, one that collects the influence of points close to x and the other
one of those points in P far from x; the two terms shall be controlled by different means. Formally,
denote 𝐵(0, 𝑅)𝑐 ≜ R𝑑 \ 𝐵(0, 𝑅). For x ∈ R𝑑 , we write

𝐹P (x) = 𝐹 (0,1)
P (x) + 𝐹 (1,∞)

P (x), (27)

where the truncated forces are defined in (13). We refer to the first term in the right-hand side of (27)
as the “internal” force, and to the second term as the “external” force. In words, our proof works by
showing that, for x ∈ P ∩ 𝐵(0, 𝑅)𝑐 to be pushed inside 𝐵(0, 𝑅), i.e. for x + 𝜀𝐹P (x) ∈ 𝐵(0, 𝑅), one of
two low-probability events must occur. One of these events involves the internal force, and the other
one the external force.

Let 0 < 𝛾 < 1/(𝑑 − 1), 0 < 𝛽 < 𝛾/(𝑑 − 1), and 𝑟 : x ↦→ ∥x∥𝛽2 . Let also 𝑅′ = (𝑅 +𝑚 − 1)1/𝛽 . Now, for
x ∈ P ∩ 𝐵(0, 𝑅′)𝑐, it holds

{x + 𝜀𝐹P (x) ∈ 𝐵(0, 𝑅)} ⊂
{
x + 𝜀𝐹 (0,1)

P (x) ∈ 𝐵(0, 𝑟 (x))
}
∪

{
∥𝐹 (1,∞)

P (x)∥2 ≥
𝑟 (x) − 𝑅

|𝜀 |

}
. (28)

To see the validity of this inclusion, note that if x is not in the right-hand side of (28), then

∥x + 𝜀𝐹P (x)∥2 ≥ ∥x + 𝜀𝐹 (0,1)
P (x)∥2 − ∥𝜀𝐹 (1,∞)

P (x)∥2 > 𝑟 (x) − (𝑟 (x) − 𝑅) = 𝑅.

Now, using (28), we get

E

[( ∑︁
x∈Π𝜀P

1𝐵(0,𝑅) (x)
)𝑚]

≤ E
[( ∑︁

x∈P
1𝐵(0,𝑅′ ) (x) +

∑︁
x∈P∩𝐵(0,𝑅′ )𝑐

1𝐵(0,𝑟 (x) ) (x + 𝜀𝐹 (0,1)
P (x))

+
∑︁

x∈P∩𝐵(0,𝑅′ )𝑐
1{ ∥𝐹 (1,∞)

P (x) ∥2≥(𝑟 (x)−𝑅)/| 𝜀 | } (x)
)𝑚]

.
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By convexity of ℎ : 𝑥 ↦→ 𝑥𝑚 on R+ \ {0}, it further comes

E

[( ∑︁
x∈Π𝜀P

1𝐵(0,𝑅) (x)
)𝑚]

≤ 3𝑚−1

(
E

[(∑︁
x∈P

1𝐵(0,𝑅′ ) (x)
)𝑚]

+ E
©«

∑︁
x∈P∩𝐵(0,𝑅′ )𝑐

1𝐵(0,𝑟 (x) ) (x + 𝜀𝐹 (0,1)
P (x))ª®¬

𝑚
+ E

©«
∑︁

x∈P∩𝐵(0,𝑅′ )𝑐
1{ ∥𝐹 (1,∞)

P (x) ∥2≥(𝑟 (x)−𝑅)/| 𝜀 | } (x)
ª®¬
𝑚

)
. (29)

The first term on the right-hand side of (29) is finite since P is a PPP. The rest of the proof consists in
proving that the remaining two terms are finite, which will be a consequence of Corollaries 2 and 3.

We first focus on the term in (29) involving the external force.

Lemma 1. Consider a homogeneous Poisson point process P ⊂ R𝑑 of intensity 𝜌, with 𝑑 ≥ 3. There
exist 𝑐1, 𝑐2, 𝑐3 > 0 such that for all 𝑝 > 𝑞 > 0 and 𝑡 > 0 we have

P
(
∥𝐹 (𝑞,𝑝)

P (0)∥2> 𝑡
)
≤ 𝑐1 exp

(
−𝑐2𝑞

𝑑−1𝑡 log
(
𝑐3𝑡

𝑞

))
. (30)

Note that by translation-invariance, the choice of 0 in (30) is arbitrary. In addition, when 𝜌 = 1,
Equation (30) corresponds to Equation (32) in Theorem 16 of Chatterjee et al. (2010). While the pa-
per does not offer an exhaustive proof of this equation, it does provide a similar and detailed proof
for another equation within the same theorem. For completeness, we provide here a simple proof of
Lemma 1, valid for any value of 𝜌 > 0. The proof involves bounding the exponential moment of each
component in the random vector 𝐹 (𝑞,𝑝)

P (0) and using Markov’s inequality to obtain a tail bound. The
Poisson assumption then helps simplify the bound.

Proof of Lemma 1. In order to streamline the notations used in this proof, we set 𝐺 (𝑞,𝑝) = −𝐹 (𝑞,𝑝)
P ,

with 𝐺 (𝑞,𝑝)
𝑖

its 𝑖-th component.
If we prove that for any 𝑖 ∈ {1, . . . , 𝑑}, there exist 𝐶1, 𝐶2, 𝐶3 > 0 such that

P
(
𝐺

(𝑞,𝑝)
𝑖

(0) > 𝑡
)
≤ 𝐶1 exp

(
−𝐶2𝑞

𝑑−1𝑡 log
(
𝐶3𝑡

𝑞

))
. (31)

Using that −P is also a PPP of intensity 𝜌, it follows that

P
(
𝐺

(𝑞,𝑝)
𝑖

(0) < −𝑡
)
≤ 𝐶1 exp

(
−𝐶2𝑞

𝑑−1𝑡 log
(
𝐶3𝑡

𝑞

))
.

Combining this with (31), we obtain (30), with 𝑐1 = 2𝑑𝐶1, 𝑐2 = 𝐶2/𝑑 and 𝑐3 = 𝐶3/𝑑. Thus, we only
need to verify Equation (31).

Let 𝜃 ≥ 0, using Markov’s inequality we have

P
(
𝐺

(𝑞,𝑝)
𝑖

(0) > 𝑡
)
= P

©«exp
©«𝜃

∑︁
z∈𝐴(𝑞,𝑝)∩P

∥z∥2↑

𝑧𝑖

∥z∥𝑑2

ª®®®¬ > exp(𝜃𝑡)
ª®®®¬
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≤ E

exp
©«𝜃

∑︁
z∈𝐴(𝑞,𝑝)∩P

∥z∥2↑

𝑧𝑖

∥z∥𝑑2

ª®®®¬
 exp(−𝜃𝑡). (32)

Conditioning on P(𝐴(𝑞,𝑝) ), the points of P ∩ 𝐴(𝑞,𝑝) are independent and uniformly distributed in
𝐴(𝑞,𝑝) . Let u be a uniform r.v. in 𝐴(𝑞,𝑝) , and 𝑁 > 0. By symmetry, E[ u

∥u∥𝑑2
] = 0 and we have

E

exp
©«𝜃

∑︁
z∈𝐴(𝑞,𝑝)∩P

∥z∥2↑

𝑧𝑖

∥z∥2

ª®®®¬
��� P(𝐴(𝑞,𝑝) ) = 𝑁

 = E


∏
z∈𝐴(𝑞,𝑝)∩P

∥z∥2↑

exp

(
𝜃
𝑧𝑖

∥z∥𝑑2

) ��� P(𝐴(𝑞,𝑝) ) = 𝑁


= E

[
exp

(
𝜃
𝑢𝑖

∥u∥𝑑2

)]𝑁
=

(
1 + E

[∑︁
𝑘≥2

1
𝑘!
𝜃𝑘

𝑢𝑘
𝑖

∥u∥𝑘𝑑2

])𝑁
.

In particular,

E

exp
©«𝜃

∑︁
z∈𝐴(𝑞,𝑝)∩P

∥z∥2↑

𝑧𝑖

∥z∥2

ª®®®¬
��� P(𝐴(𝑞,𝑝) ) = 𝑁

 ≤
(
1 +

∑︁
𝑘≥2

1
𝑘!
𝜃𝑘E

[
∥u∥−𝑘 (𝑑−1)

2

] )𝑁
. (33)

Recall that the surface area of the unit ball of R𝑑 is equal to 𝑑𝜅𝑑 . As u has uniform distribution on
𝐴(𝑞,𝑝) we get

E

[
1

∥u∥𝑘 (𝑑−1)
2

]
=

1
|𝐴(𝑞,𝑝) |

∫
𝐴(𝑞,𝑝)

1

∥u∥𝑘 (𝑑−1)
2

du

=
𝑑𝜅𝑑

|𝐴(𝑞,𝑝) |

∫ 𝑝

𝑞

𝑟𝑑−1−𝑘 (𝑑−1)d𝑟.

As 𝑘 ≥ 2 and 𝑑 ≥ 3, we have 𝑘 > 𝑑/(𝑑 − 1). Thus

E

[
1

∥u∥𝑘 (𝑑−1)
2

]
=

𝑑𝜅𝑑

|𝐴(𝑞,𝑝) | (𝑘 (𝑑 − 1) − 𝑑)

(
1

𝑞𝑘 (𝑑−1)−𝑑 − 1
𝑝𝑘 (𝑑−1)−𝑑

)
≤ 𝑑𝜅𝑑

|𝐴(𝑞,𝑝) |𝑞𝑘 (𝑑−1)−𝑑 .

Plugging back into (32), we obtain

P
(
𝐺

(𝑞,𝑝)
𝑖

(0) > 𝑡
)
≤ E


(
1 + 𝑑𝜅𝑑𝑞

𝑑

|𝐴(𝑞,𝑝) |

∑︁
𝑘≥2

1
𝑘!

(
𝜃

𝑞𝑑−1

) 𝑘)P(𝐴(𝑞,𝑝) )  exp(−𝜃𝑡)
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≤ E

(
1 + 𝑑𝜅𝑑𝑞

𝑑

|𝐴(𝑞,𝑝) |
exp

(
𝜃

𝑞𝑑−1

))P(𝐴(𝑞,𝑝) )  exp(−𝜃𝑡).

Now, remembering that P(𝐴(𝑞,𝑝) ) is a Poisson random variable of parameter 𝜌 |𝐴(𝑞,𝑝) |, we obtain8

P(𝐺 (𝑞,𝑝)
𝑖

(0) > 𝑡) ≤ exp
(
𝜌 |𝐴(𝑞,𝑝) | 𝑑𝜅𝑑𝑞

𝑑

|𝐴(𝑞,𝑝) |
exp

(
𝜃

𝑞𝑑−1

))
exp(−𝜃𝑡)

= exp
(
𝑑𝜅𝑑𝜌𝑞

𝑑 exp
(
𝜃

𝑞𝑑−1

)
− 𝜃𝑡

)
.

Taking 𝜃 = 𝑞𝑑−1 log( 𝑡
𝑑𝜅𝑑𝜌𝑞

), we get

P(𝐺 (𝑞,𝑝)
𝑖

(0) > 𝑡) ≤ exp
(
−𝑡𝑞𝑑−1 log

(
𝑡

𝑑𝜅𝑑𝜌𝑞

)
+ 𝑡𝑞𝑑−1

)
= exp

(
−𝑡𝑞𝑑−1 log

(
𝑡

𝑒𝑑𝜅𝑑𝜌𝑞

))
,

which ends the proof.

Lemma 1 has the following corollary.

Corollary 2. Consider a homogeneous Poisson point process P ⊂ R𝑑 of intensity 𝜌, with 𝑑 ≥ 3. Let
𝑅 > 0, 𝜀 ∈ (−1,1), 𝛽 ∈ (0,1) and 𝑟 (x) = ∥x∥𝛽2 . Then, for any positive integer 𝑚, there exist positive
constants (𝑎𝑘)𝑚𝑘=1, (𝑏𝑘)𝑚𝑘=1, and (𝑐𝑘)𝑚𝑘=1 such that

E

©«
∑︁

x∈P∩𝐵(0,𝑅′ )𝑐
1{

∥𝐹 (1,∞)
P (x) ∥2>

𝑟 (x)−𝑅
|𝜀 |

} (x)ª®¬
𝑚 ≤

𝑚∑︁
𝑘=1

𝑎𝑘

(∫
𝐵(0,𝑅′ )𝑐

exp (−𝑏𝑘𝑔𝑘 (x) log(𝑐𝑘𝑔𝑘 (x))) 𝜌dx
) 𝑘
, (34)

where 𝑅′ = (𝑅 +𝑚 − 1)1/𝛽 and 𝑔𝑘 (x) = 𝑟 (x)−(𝑅+𝑘−1)
| 𝜀 |𝑘 .

This corollary helps us control the external term in (27). Indeed, as ∥x∥2 →∞ we have,

exp (−𝑏𝑘𝑔𝑘 (x) log(𝑐𝑘𝑔𝑘 (x))) = 𝑜
(
exp

(
−∥x∥𝛽2

))
.

Thus, for any positive integer 𝑚,

E

©«
∑︁

x∈P∩𝐵(0,𝑅′ )𝑐
1{ ∥𝐹 (1,∞)

P (x) ∥2>
𝑟 (x)−𝑅

|𝜀 | } (x)
ª®¬
𝑚 <∞. (35)

8If 𝑋 is a Poisson random variable of parameter 𝜆, then for any 𝛾 the mean of the random variable (1+ 𝛾)𝑋 is equal to exp(𝜆𝛾) .
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Proof of Corollary 2. Fix a positive integer 𝑚. There exists 𝑚 constants (𝑑𝑖)𝑚𝑖=1 such that

E

©«
∑︁

x∈P∩𝐵(0,𝑅′ )𝑐
1{ ∥𝐹 (1,∞)

P (x) ∥2>
𝑟 (x)−𝑅

|𝜀 | } (x)
ª®¬
𝑚 =

𝑚∑︁
𝑘=1

𝑑𝑘 E


≠∑︁

x1 ,...,x𝑘 ∈P∩𝐵(0,𝑅′ )𝑐
1{ ∥𝐹 (1,∞)

P (x1 ) ∥2>
𝑟 (x1 )−𝑅

|𝜀 | } (x1) · · ·1{ ∥𝐹 (1,∞)
P (x𝑘 ) ∥2>

𝑟 (x𝑘 )−𝑅
|𝜀 | } (x𝑘)

︸                                                                                                            ︷︷                                                                                                            ︸
≜𝐸𝑘

. (36)

Using Lemma 1 we will show that for any 𝑘 ≥ 1 there exists positive constants 𝑎𝑘 , 𝑏𝑘 and 𝑐𝑘 such that

𝐸𝑘 ≤
(∫
𝐵(0,𝑅′ )𝑐

𝑎𝑘 exp [−𝑏𝑘𝑔𝑘 (x) log(𝑐𝑘𝑔𝑘 (x))] 𝜌dx
) 𝑘
,

with 𝑔𝑘 (x) = 𝑟 (x)−(𝑅+𝑘−1)
| 𝜀 |𝑘 for 𝑘 ∈ {1, . . . , 𝑚}.

To simplify the notations, we denote P \ {x1, . . . , x𝑘} by P̂ (𝑘 ) for any 𝑘 ∈ {1, . . . , 𝑚} and sometimes
omit to remind that x1, . . . ,x𝑚 ∈ P ∩ 𝐵(0, 𝑅′)𝑐 when it is clear from the context.

First, remark that for two distinct points x and y of R𝑑 , we have

𝐹
(1,∞)
P (x) =


𝐹
(1,∞)
P\{x,y} (x) if ∥x − y∥2 < 1

𝐹
(1,∞)
P\{x,y} (x) +

x−y
∥x−y∥𝑑2

if ∥x − y∥2 ≥ 1
.

Thus

∥𝐹 (1,∞)
P (x)∥2 ≤ ∥𝐹 (1,∞)

P\{x,y} (x)∥2 + 1.

In particular

1{
∥𝐹 (1,∞)

P (x) ∥2≥(𝑟 (x)−𝑅)/| 𝜀 |
} (x) ≤ 1{

∥𝐹 (1,∞)
P\{x,y} (x) ∥2≥2𝑔2 (x)

} (x). (37)

Generalizing Equation (37) to 𝑘 points gives

1{
∥𝐹 (1,∞)

P (x) ∥2≥(𝑟 (x)−𝑅)/| 𝜀 |
} (x) ≤ 1{

∥𝐹 (1,∞)
P̂ (𝑘) (x) ∥2≥𝑘𝑔𝑘 (x)

} (x). (38)

Using Equation (38) and the extended Slivnyak-Mecke theorem (4) we get

𝐸𝑘 ≤ E
[

≠∑︁
x1 ,...,x𝑘

1{ ∥𝐹 (1,∞)
P̂ (𝑘) (x1 ) ∥2>𝑘𝑔𝑘 (x1 ) ,...,∥𝐹 (1,∞)

P̂ (𝑘) (x𝑘 ) ∥2>𝑘𝑔𝑘 (x𝑘 ) }
(x1, . . . ,x𝑘)

]
=

∫
(𝐵(0,𝑅′ )𝑐 )𝑘

P
(
∥𝐹 (1,∞)

P (x1)∥2 > 𝑘𝑔𝑘 (x1), . . . , ∥𝐹 (1,∞)
P (x𝑘)∥2 > 𝑘𝑔𝑘 (x𝑘)

)
𝜌𝑘dx1 . . . dx𝑘

≤
∫
(𝐵(0,𝑅′ )𝑐 )𝑘

min
𝑗∈{1,...,𝑘}

P
(
∥𝐹 (1,∞)

P (x 𝑗 )∥2 ≥ 𝑘𝑔𝑘 (x 𝑗 )
)
𝜌𝑘dx1 . . . dx𝑘 .
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As the distribution of 𝐹 (1,∞)
P (x) is translation invariant (w.r.t. x), we get

𝐸𝑘 ≤
∫
(𝐵(0,𝑅′ )𝑐 )𝑘

min
𝑗∈{1,...,𝑘}

P
(
∥𝐹 (1,∞)

P (0)∥2 ≥ 𝑘𝑔𝑘 (x 𝑗 )
)
𝜌𝑘dx1 . . . dx𝑘

=

∫
(𝐵(0,𝑅′ )𝑐 )𝑘

P

(
∥𝐹 (1,∞)

P (0)∥2 ≥ max
𝑗∈{1,...,𝑘}

𝑘𝑔𝑘 (x 𝑗 )
)
𝜌𝑘dx1 . . . dx𝑘

≤
∫
(𝐵(0,𝑅′ )𝑐 )𝑘

P
©«∥𝐹 (1,∞)

P (0)∥2 ≥
𝑘∑︁
𝑗=1

𝑔𝑘 (x 𝑗 )
ª®¬ 𝜌𝑘dx1 . . . dx𝑘 . (39)

For x1, . . . ,x𝑘 ∈ 𝐵(0, 𝑅′)𝑐, Lemma 1 with 𝑞 = 1 and 𝑝 =∞ guarantees the existence of 𝐶1, 𝐶2, 𝐶3 > 0
such that

P
©«∥𝐹 (1,∞)

P (0)∥2 ≥
𝑘∑︁
𝑗=1

𝑔𝑘 (x 𝑗 )
ª®¬ ≤ 𝐶1 exp ©«−𝐶2

𝑘∑︁
𝑗=1

𝑔𝑘 (x 𝑗 ) log ©«𝐶3

𝑘∑︁
𝑖= 𝑗

𝑔𝑘 (x 𝑗 )
ª®¬ª®¬

=𝐶1

𝑘∏
𝑗=1

exp ©«−𝐶2𝑔𝑘 (x 𝑗 ) log ©«𝐶3

𝑘∑︁
𝑗=1

𝑔𝑘 (x 𝑗 )
ª®¬ª®¬

≤ 𝐶1

𝑘∏
𝑗=1

exp
(
−𝐶2𝑔𝑘 (x 𝑗 ) log

(
𝐶3𝑔𝑘 (x 𝑗 )

) )
.

Plugging back into (39), and then in (36), we obtain the existence of positive constants {𝑎𝑘}𝑚𝑘=1,
{𝑏𝑘}𝑚𝑘=1, and {𝑐𝑘}𝑚𝑘=1 such that

E

[ ©«
∑︁

x∈P∩𝐵(0,𝑅′ )𝑐
1{ ∥𝐹 (1,∞)

P (x) ∥2>
𝑟 (x)−𝑅

|𝜀 | } (x)
ª®¬
𝑚 ]

≤
𝑚∑︁
𝑘=1

𝑑𝑘𝑎𝑘

∫
(𝐵(0,𝑅′ )𝑐 )𝑘

𝑘∏
𝑗=1

exp
(
−𝑏𝑘𝑔𝑘 (x 𝑗 ) log

(
𝑐𝑘𝑔𝑘 (x 𝑗 )

) )
𝜌𝑘dx1 · · ·dx𝑘

=

𝑚∑︁
𝑘=1

𝑑𝑘𝑎𝑘

(∫
𝐵(0,𝑅′ )𝑐

exp (−𝑏𝑘𝑔𝑘 (x) log (𝑐𝑘𝑔𝑘 (x))) 𝜌 dx
) 𝑘
,

which concludes the proof.

Now we switch focus to bounding the contribution from the internal force to (27). Again, we work
with a lemma and a corollary.

Lemma 2. Consider a homogeneous Poisson point process P ⊂ R𝑑 of intensity 𝜌, with 𝑑 ≥ 3. Let 𝑅 >
0 and 𝜀 ∈ (−1,1). Consider a function 𝑟 : R𝑑 → R+ \ {0} such that 𝑟 (x) < ∥x∥2 for any x ∈ 𝐵(0, 𝑅)𝑐.
Then, for any x ∈ 𝐵(0, 𝑅)𝑐, and 0 < 𝛾 < 1/(𝑑 − 1), there exists 𝑐1, · · · , 𝑐5 > 0 such that

P
(
x + 𝜀𝐹 (0,1)

P (0) ∈ 𝐵(0, 𝑟 (x))
)
≤ 𝑐1

ℎ(x)𝑔(x)1+𝛾 + 𝑐3 exp (−𝑐4𝑔(x) log(𝑐5𝑔(x))) , (40)



34

where ℎ(x) = max
(
1, 𝑐2 (∥x∥2/𝑟 (x) − 1)𝑑−1 − 1

)
, and 𝑔(x) = (∥x∥2 − 𝑟 (x))/|𝜀 |.

First, by translation-invariance of the distribution of 𝐹 (𝑞,𝑝)
P (x), the choice of 0 in (40) is arbitrary.

Second, by choosing 𝑟 (x) = ∥x∥𝛽2 , with 0 < 𝛽 < 1/(2(𝑑 − 1)), the upper bound in Equation (40) is

𝑜(∥x∥−𝑑2 ) as ∥x∥2 goes to infinity. Thus, P
(
x + 𝜀𝐹 (0,1)

P (0) ∈ 𝐵 (0, 𝑟 (x))
)

is integrable over 𝐵(0, 𝑅)𝑐.

x1

x2

x3

x4
x5

x6

x7

x8

x9

x10

x11x12

x13

x14

θ
r(x)

Figure 11: Illustration of the proof idea.

Proof of Lemma 2. Fix x ∈ 𝐵(0, 𝑅)𝑐, and let 𝑞 = ∥x∥2 − 𝑟 (x) and 𝑝 = ∥x∥2 + 𝑟 (x). Pick points {x𝑖}𝑚𝑖=1
iteratively on the sphere 𝑆(0, ∥x∥2) with x1 = −x, such that the balls {𝐵(x𝑖 , 𝑟 (x))}𝑚𝑖=1 are disjoint,
and it is not possible to add an additional similar ball not overlapping the previous ones. Next, let
𝐵𝑖 = 𝐵(x𝑖 ,3𝑟 (x)) and𝐶1 ≜ 𝜅𝑑 (3𝑟 (x))𝑑 be the volume of 𝐵1. Then,

⋃𝑚
𝑖=1 𝐵𝑖 is a covering of the annulus

𝐴(𝑞,𝑝) . To see why this holds, suppose that there exists a point y ∈ 𝐴(𝑞,𝑝) \ ⋃𝑚
𝑖=1 𝐵𝑖 . In particular,

min𝑖 ∥y − x𝑖 ∥2 > 3𝑟 (x). Take z = y ∥x∥2
∥y∥2

, z is in fact the orthogonal projection of y onto 𝑆(0, ∥x∥2). For
any 𝑖 ∈ {1, . . . , 𝑚}

∥z − x𝑖 ∥2 ≥ ∥y − x𝑖 ∥2 − ∥z − y∥

> 3𝑟 (x) − |∥y∥2 − ∥x∥2 |

> 2𝑟 (x).

Thus, we have z ∈ 𝑆(0, ∥x∥2) and 𝐵(z, 𝑟 (x)) ⊂ 𝐴(𝑞,𝑝) \⋃𝑚
𝑖=1 𝐵(x𝑖 , 𝑟 (x)) giving a contradiction. While

our work pertains to dimensions greater than two, employing a visualization that depicts the two-
dimensional case can aid in comprehending the concept. Figure 11 illustrates an example of valid points
{x𝑖}𝑚𝑖=1 in red and the covering in green of 𝐴(𝑞,𝑝) for 𝑑 = 2. Note that, for 𝑑 = 2 and any 𝑖 ∈ {1, ..., 𝑚},
x𝑖 can be chosen inductively as the rotation of x𝑖−1 of angle 𝜃 = Arcsin(𝑟 (x)/∥x∥2) around the origin.

As the balls {𝐵(x𝑖 , 𝑟 (x))}𝑚𝑖=1 are disjoint and contained in 𝐴(𝑞,𝑝) , we have

P
(
𝜀𝐹

(0,1)
P (0) ∈ 𝐴(𝑞,𝑝)

)
≥ P

(
𝜀𝐹

(0,1)
P (0) ∈

𝑚⋃
𝑖=1

𝐵(x𝑖 , 𝑟 (x))
)
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=

𝑚∑︁
𝑖=1

P
(
𝜀𝐹

(0,1)
P (0) ∈ 𝐵(x𝑖 , 𝑟 (x))

)
By isotropy of the law of 𝐹 (0,1)

P (0), we obtain

P
(
𝜀𝐹

(0,1)
P (0) ∈ 𝐴(𝑞,𝑝)

)
≥ 𝑚P

(
𝜀𝐹

(0,1)
P (0) ∈ 𝐵(x1, 𝑟 (x))

)
. (41)

We will now proceed to find a suitable lower bound for 𝑚. To accomplish this, we apply the mean value
theorem to

ℎ : [∥x∥2 − 𝑟 (x), ∥x∥2 + 𝑟 (x)] → R

𝑥 ↦→ 𝑥𝑑 ,

and we get that there exists 𝑐 ∈ (−1,1) such that

(∥x∥2 + 𝑟 (x))𝑑 − (∥x∥2 − 𝑟 (x))𝑑 = 2𝑑𝑟 (x) (∥x∥2 + 𝑐𝑟 (x))𝑑−1 ≥ 2𝑑𝑟 (x) (∥x∥2 − 𝑟 (x))𝑑−1.

Hence

𝑚 ≥
⌊
|𝐴(𝑞,𝑝) |
𝐶1

⌋
=

⌊
𝜅𝑑

(
(∥x∥2 + 𝑟 (x))𝑑 − (∥x∥2 − 𝑟 (x))𝑑

)
𝜅𝑑 (3𝑟 (x))𝑑

⌋

≥

𝜅𝑑

(
2𝑑𝑟 (x) (∥x∥2 − 𝑟 (x))𝑑−1

)
𝜅𝑑 (3𝑟 (x))𝑑

 ≥ max

(
1,𝐶2

(
∥x∥2

𝑟 (x) − 1
)𝑑−1

− 1

)
,

where 𝐶2 = (2𝑑)/3𝑑 . Thus Equation (41) leads to

P
(
𝜀𝐹

(0,1)
P (0) ∈ 𝐵(x1, 𝑟 (x))

)
≤

P
(
𝜀𝐹

(0,1)
P (0) ∈ 𝐴(𝑞,𝑝)

)
max

(
1,𝐶2

(
∥x∥2
𝑟 (x) − 1

)𝑑−1
− 1

)
≤
P

(
∥𝜀𝐹 (0,1)

P (0)∥2 > ∥x∥2 − 𝑟 (x)
)

max
(
1,𝐶2

(
∥x∥2
𝑟 (x) − 1

)𝑑−1
− 1

) .

Since 𝐹 (0,1)
P = 𝐹P − 𝐹 (1,∞)

P , we get

P
(
𝜀𝐹

(0,1)
P (0) ∈ 𝐵(x1, 𝑟 (x))

)
≤
P

(
|𝜀 |∥𝐹P (0) − 𝐹 (1,∞)

P (0)∥2 > ∥x∥2 − 𝑟 (x)
)

max
(
1,𝐶2

(
∥x∥2
𝑟 (x) − 1

)𝑑−1
− 1

)
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≤
P

(
∥𝐹P (0)∥2 >

∥x∥2−𝑟 (x)
2 | 𝜀 |

)
+ P

(
∥𝐹 (1,∞)

P (0)∥2 >
∥x∥2−𝑟 (x)

2 | 𝜀 |

)
max

(
1,𝐶2

(
∥x∥2
𝑟 (x) − 1

)𝑑−1
− 1

) (42)

By Lemma 4, for any 0 < 𝛾 < 1/(𝑑 − 1) we have E[∥𝐹P (0)∥1+𝛾
2 ] <∞. Applying Markov’s inequality

to the first part of Equation (42), and using Lemma 1 with 𝑡 = (∥x∥2 − 𝑟 (x))/(2|𝜀 |) for the last part, we
obtain the existence of positive constants 𝑐1, 𝑐2, and 𝑐3 such that

P
(
x + 𝜀𝐹 (0,1)

P (0) ∈ 𝐵(0, 𝑟 (x))
)

≤
(2|𝜀 |)1+𝛾E

[
∥𝐹P (0)∥1+𝛾

2

]
max

(
1,𝐶2

(
∥x∥2
𝑟 (x) − 1

)𝑑−1
− 1

)
(∥x∥2 − 𝑟 (x))1+𝛾

+
𝑐1 exp

(
−𝑐2

∥x∥2−𝑟 (x)
2 | 𝜀 | log

(
𝑐3

∥x∥2−𝑟 (x)
2 | 𝜀 |

))
max

(
1,𝐶2

(
∥x∥2
𝑟 (x) − 1

)𝑑−1
− 1

)
≤ 𝐶3 |𝜀 |1+𝛾

max
(
1,𝐶2

(
∥x∥2
𝑟 (x) − 1

)𝑑−1
− 1

)
(∥x∥2 − 𝑟 (x))1+𝛾

+𝐶4 exp
(
−𝐶5

∥x∥2 − 𝑟 (x)
|𝜀 | log

(
𝐶6

∥x∥2 − 𝑟 (x)
|𝜀 |

))

with 𝐶3 = 21+𝛾E
[
∥𝐹P (0)∥1+𝛾

2

]
, 𝐶4 = 𝑐1, 𝐶5 = 𝑐2/2 and 𝐶6 = 𝑐3/2.

Note that under the assumptions and definitions of Lemmas 1, 2, for x ∈ 𝐵(0, 𝑅1/𝛽)𝑐, there exists
positive constants 𝑐1, . . . , 𝑐5 such that

P(x + 𝜀𝐹P (x) ∈ 𝐵(0, 𝑅)) ≤
𝑐1

max
(
1, 𝑐2

(
∥x∥2
𝑟 (x) − 1

)𝑑−1
− 1

)
𝑔(x)1+𝛾

+ 𝑐3 exp (−𝑐4𝑔(x) log(𝑐5𝑔(x))) ,

(43)
for any 0 < 𝛾 < 1/(𝑑 − 1). As expected, we observe that

P(x + 𝜀𝐹P ∈ 𝐵(0, 𝑅)) −−−−→
𝜀→0

0.

We will later see that by selecting an appropriate function 𝑟, typically for 𝑟 (x) = ∥x∥𝛽2 with 0 < 𝛽 <
𝛾

𝑑−1 , the bound in Equation (43) converges fast enough to zero allowing to bound the moments of∑
x∈Π𝜀P 1𝐵(0,𝑅) (x).
The next result is a corollary of Lemma 2.

Corollary 3. Consider a homogeneous Poisson point process P ⊂ R𝑑 of intensity 𝜌, with 𝑑 ≥ 3. Let
𝑅 > 0, 𝜀 ∈ (−1,1) and 𝛽 ∈ (0,1). Set 𝑟 (x) = ∥x∥𝛽2 , 𝑔(x) = (∥x∥2 − 𝑟 (x))/|𝜀 | and denote

𝐸𝑘 ≜ E


≠∑︁

x1 ,...,x𝑘 ∈P∩𝐵(0,𝑅)𝑐
1𝐵(0,𝑟 (x1 ) ) (x1 + 𝜀𝐹 (0,1)

P (x1)) . . .1𝐵(0,𝑟 (x𝑘 ) ) (x𝑘 + 𝜀𝐹
(0,1)
P (x𝑘))

 . (44)
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For any positive integer 𝑚 and 0 < 𝛾 < 1/(𝑑 − 1) there exists positive constants 𝑎1, . . . , 𝑎𝑚−1 and
𝑐1, . . . , 𝑐5 such that

𝐸1 ≤
∫
𝐵(0,𝑅)𝑐

𝑐1

max
(
1, 𝑐2

(
∥x∥1−𝛽

2 − 1
)𝑑−1

− 1
)
𝑔(x)1+𝛾

+ 𝑐3 exp (−𝑐4𝑔(x) log (𝑐5𝑔(x))) 𝜌dx, (45)

and

E

©«
∑︁

x∈P∩𝐵(0,𝑅)𝑐
1𝐵(0, 𝑓 (x) ) (x + 𝜀𝐹 (0,1)

P (x))ª®¬
𝑚 ≤

𝑚−1∑︁
𝑘=1

(
𝑎𝑘𝐸𝑘 + 𝑏𝑘−1𝐸1𝐸𝑚−𝑘

)
+ 𝑏𝑚−1𝐸1. (46)

where 𝑏 = 2𝑑𝜅𝑑𝜌.

Taking 0 < 𝛽 < 𝛾

𝑑−1 , the integrand in Equation (45) is 𝑜(∥x∥−𝑑2 ) as ∥x∥2 →∞ implying that

E

©«
∑︁

x∈P∩𝐵(0,𝑅)𝑐
1𝐵(0,𝑟 (x) ) (x + 𝜀𝐹 (0,1)

P (x))ª®¬
𝑚 <∞, (47)

for any positive integer 𝑚.

Proof of Corollary 3. We will show the validity of Equation (46) by induction on 𝑚 ≥ 1.
To begin with, for 𝑚 = 1 using the extended Slivnyak-Mecke theorem (4) and that the law of

𝐹
(0,1)
P (x) is translation-invariant (w.r.t. x) we have

𝐸1 = E


∑︁

x∈P∩𝐵(0,𝑅)𝑐
1𝐵(0,𝑟 (x) ) (x + 𝜀𝐹 (0,1)

P\{x} (x))
 =

∫
𝐵(0,𝑅)𝑐

P
(
x + 𝜀𝐹 (0,1)

P (0) ∈ 𝐵(0, 𝑟 (x))
)
𝜌dx.

By Lemma 2, for any 0 < 𝛾 < 1/(𝑑 − 1) there exists positive constants 𝑐1, · · · , 𝑐5 s.t.

𝐸1 ≤
∫
𝐵(0,𝑅)𝑐

𝑐1

max
(
1, 𝑐2

(
∥x∥1−𝛽

2 − 1
)𝑑−1

− 1
)
𝑔(x)1+𝛾

+ 𝑐3 exp (−𝑐4𝑔(x) log(𝑐5𝑔(x))) 𝜌dx.

Next, suppose that Equation (46) is valid until 𝑚, and let’s verify that it holds for 𝑚 + 1. There exists
a sequence of constants (𝑑𝑘)𝑚𝑘=1 such that

E

©«
∑︁

x∈P∩𝐵(0,𝑅)𝑐
1𝐵(0,𝑟 (x) ) (x + 𝜀𝐹 (0,1)

P (x))ª®¬
𝑚+1 =

𝑚∑︁
𝑘=1

𝑑𝑘𝐸𝑘 + 𝐸𝑚+1. (48)

We only need to focus on finding an upper bound of 𝐸𝑚+1.
To simplify the notations, we denote P \ {x1, . . . ,x𝑘} by P̂ (𝑘 ) for any 𝑘 ∈ {1, . . . , 𝑚} and sometimes

omit to remind that x1, . . . ,x𝑚 ∈ P ∩ 𝐵(0, 𝑅)𝑐 when it is clear from the context.
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To begin, we break down the sum that defines 𝐸𝑚+1 according to the count 𝑘 of the points of P ∩
𝐵(0, 𝑅)𝑐 that fall within a ball of radius 2 centered at x1 as follows

𝐸𝑚+1 = E


≠∑︁

x1 , · · · ,x𝑚+1
max
1<𝑖

∥x𝑖−x1 ∥2≤2

1𝐵(x1 ,𝑟 (x1 ) ) (−𝜀𝐹
(0,1)
P (x1)) · · ·1𝐵(x𝑚+1 ,𝑟 (x𝑚+1 ) ) (−𝜀𝐹

(0,1)
P (x𝑚+1))

︸                                                                                                           ︷︷                                                                                                           ︸
𝐴𝑚+1

+

𝑚∑︁
𝑘=1

E


≠∑︁

x1 , · · · ,x𝑚+1
max

1<𝑖≤𝑘
∥x𝑖−x1 ∥2≤2

min
𝑘<𝑖≤𝑚+1

∥x𝑖−x1 ∥2>2

1𝐵(x1 ,𝑟 (x1 ) ) (−𝜀𝐹
(0,1)
P (x1)) · · ·1𝐵(x𝑚+1 ,𝑟 (x𝑚+1 ) ) (−𝜀𝐹

(0,1)
P (x𝑚+1))

︸                                                                                                                ︷︷                                                                                                                ︸
𝐴𝑘

.

First, for 𝐴𝑚+1 the extended Slivnyak-Mecke theorem (4) followed by a change of variables gives

𝐴𝑚+1 ≤ E


≠∑︁

x1 , · · · ,x𝑚+1
max
1<𝑖

∥x𝑖+x1 ∥≤2

1𝐵(0,𝑟 (x1 ) )
©«x1 + 𝜀𝐹 (0,1)

P̂ (𝑚+1) (x1) + 𝜀
𝑚+1∑︁
𝑗=2

x1 − x 𝑗
∥x1 − x 𝑗 ∥𝑑2

ª®¬


=

∫
𝐵(0,𝑅)𝑐

∫
𝐵(x1 ,2)𝑚

P
©«x1 + 𝜀𝐹 (0,1)

P (x1) ∈ 𝐵
©«𝜀
𝑚+1∑︁
𝑗=2

x 𝑗 − x1

∥x 𝑗 − x1∥𝑑2
, 𝑟 (x1)

ª®¬ª®¬ 𝜌𝑚+1dx𝑚+1 . . . dx1

=

∫
𝐵(0,2)𝑚×𝐵(0,𝑅)𝑐

P
©«x1 + 𝜀𝐹 (0,1)

P (x1) ∈ 𝐵
©«𝜀

𝑚∑︁
𝑗=1

t 𝑗
∥t 𝑗 ∥𝑑2

, 𝑟 (x1)
ª®¬ª®¬ 𝜌𝑚+1dx1dt1 . . . dt𝑚.

By the definition of the first intensity measure (2) the last equation is equal to

∫
𝐵(0,2)𝑚

E


∑︁

x∈P∩𝐵(0,𝑅)𝑐
1
𝐵

(
𝜀
∑𝑚

𝑗=1
t 𝑗

∥t 𝑗 ∥𝑑2
,𝑟 (x)

) (x + 𝜀𝐹 (0,1)
P\{x} (x))

 𝜌
𝑚dt1 . . . dt𝑚.

Employing further the stationarity of Π (0,1)
𝜀 P, we get

𝐴𝑚+1 ≤
∫
𝐵(0,2)𝑚

E


∑︁

x∈P∩𝐵(0,𝑅)𝑐
1𝐵(0,𝑟 (x) ) (x + 𝜀𝐹 (0,1)

P (x))
 𝜌𝑚dt1 . . . dt𝑚

= (2𝑑𝜅𝑑𝜌)𝑚𝐸1. (49)
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Second, for 𝑘 ∈ {2, . . . , 𝑚}, we have

𝐴𝑘 ≤ E
[

≠∑︁
x1∈𝐵(0,𝑅)𝑐

x2 , · · · ,x𝑘 ∈𝐵(x1 ,2)

(
1𝐵(0,𝑟 (x1 ) )

(
x1 + 𝜀𝐹 (0,1)

P̂ (𝑘) (x1) + 𝜀
𝑘∑︁
𝑗=2

x1 − x 𝑗
∥x1 − x 𝑗 ∥𝑑2

)
≠∑︁

x𝑘+1 , · · · ,x𝑚+1∈𝐵(x1 ,2)𝑐
1𝐵(0,𝑟 (x𝑘+1 ) ) (x𝑘+1 + 𝜀𝐹 (0,1)

P̂ (𝑘+1) (x𝑘+1))

· · ·1𝐵(0,𝑟 (x𝑚+1 ) ) (x𝑚+1 + 𝜀𝐹 (0,1)
P̂ (𝑘) \{x𝑚+1 }

(x𝑚+1))
)]
.

Applying the extended Slivnyak-Mecke theorem (4) then, using the independence of 𝐹 (0,1)
P (x) and

𝐹
(0,1)
P (y) whenever ∥x − y∥2 > 2 yield

𝐴𝑘 ≤
∫
𝐵(0,𝑅)𝑐×𝐵(x1 ,2)𝑘−1

E

[
1𝐵(0,𝑟 (x1 ) )

©«x1 + 𝜀𝐹 (0,1)
P (x1) + 𝜀

𝑘∑︁
𝑗=2

x1 − x 𝑗
∥x1 − x 𝑗 ∥𝑑2

ª®¬
≠∑︁

x𝑘+1 ,...,x𝑚+1∈𝐵(x1 ,2)𝑐
1𝐵(0,𝑟 (x𝑘+1 ) )

(
x𝑘+1 + 𝜀𝐹 (0,1)

P\{x𝑘+1 }
(x𝑘+1)

)
. . .1𝐵(0,𝑟 (x𝑚+1 ) )

(
x𝑚+1 + 𝜀𝐹 (0,1)

P\{x𝑚+1 }
(x𝑚+1)

) ]
𝜌𝑘dx𝑘 . . . dx1

=

∫
𝐵(0,𝑅)𝑐×𝐵(x1 ,2)𝑘−1

E

1𝐵(0,𝑟 (x1 ) )
©«x1 + 𝜀𝐹 (0,1)

P (x1) + 𝜀
𝑘∑︁
𝑗=2

x1 − x 𝑗
∥x1 − x 𝑗 ∥𝑑2

ª®¬


E
[ ≠∑︁

x𝑘+1 ,...,x𝑚+1∈𝐵(x1 ,𝑅)𝑐
1𝐵(0,𝑟 (x𝑘+1 ) )

(
x𝑘+1 + 𝜀𝐹 (0,1)

P (x𝑘+1)
)

. . .1𝐵(0,𝑟 (x𝑚+1 ) )
(
x𝑚+1 + 𝜀𝐹 (0,1)

P (x𝑚+1)
) ]
𝜌𝑘dx𝑘 . . . dx1

= 𝐸𝑚+1−𝑘×∫
𝐵(0,𝑅)𝑐×𝐵(x1 ,2)𝑘−1

E

1𝐵(0,𝑟 (x1 ) )
©«x1 + 𝜀𝐹 (0,1)

P (x1) + 𝜀
𝑘∑︁
𝑗=2

x1 − x 𝑗
∥x1 − x 𝑗 ∥𝑑2

ª®¬
 𝜌𝑘dx𝑘 . . . dx1.

Following the same technique used to bound 𝐴𝑚+1 we get

𝐴𝑘 ≤ 𝐸𝑚+1−𝑘

∫
𝐵(0,2)𝑘−1

E


∑︁

x∈P∩𝐵(0,𝑅)𝑐
1
𝐵(𝜀

𝑘−1∑
𝑗=1

t 𝑗
∥t 𝑗 ∥𝑑2

,𝑟 (x) )

(
x + 𝜀𝐹 (0,1)

P (x)
) 𝜌𝑘−1dt1 . . . dt𝑘−1

= 𝐸𝑚+1−𝑘

∫
𝐵(0,2)𝑘−1

E


∑︁

x∈P∩𝐵(0,𝑅)𝑐
1𝐵(0,𝑟 (x) )

(
x + 𝜀𝐹 (0,1)

P (x)
) 𝜌𝑘−1dt1 . . . dt𝑘−1
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= (2𝑑𝜅𝑑𝜌)𝑘−1𝐸1𝐸𝑚+1−𝑘 . (50)

Inserting (49), and (50) in (48) we get

E

©«
∑︁

x∈P∩𝐵(0,𝑅)𝑐
1𝐵(0,𝑟 (x) ) (x + 𝜀𝐹 (0,1)

P (x))ª®¬
𝑚+1 = 𝐴𝑚+1 +

𝑚∑︁
𝑘=1

𝑑𝑘𝐸𝑘 + 𝐴𝑘

≤ 𝑐𝑚1 𝐸1 +
𝑚∑︁
𝑘=1

(
𝑑𝑘𝐸𝑘 + 𝑐𝑘−1

1 𝐸1𝐸𝑚+1−𝑘
)
,

with 𝑐1 = 2𝑑𝜅𝑑𝜌, which concludes the proof.

A.4. Proof of Theorem 3 (variance reduction)

In this section we prove the main result of the paper, Theorem 3. Our starting point is a lemma from
the theory of harmonic functions, which is key in subsequent proofs. Then we state and prove a few
technical lemmas on the behavior as 𝜀 → 0 of various quantities relevant to the variance of linear
statistics under Π𝜀P. Finally, we put these lemmas in action in the proof of Theorem 3.

Lemma 3. Let 𝑑 > 2 and 𝑔 ∈ 𝐶2 (R𝑑) have compact support. For all x ∈ R𝑑 , we have

𝑔(x) = 1
(2 − 𝑑)𝑑𝜅𝑑

∫
R𝑑

Δ𝑔(y) 1
∥x − y∥𝑑−2

2

dy =
1
𝑑𝜅𝑑

∫
R𝑑

∇𝑔(y) · x − y
∥x − y∥𝑑2

dy. (51)

The first equality in (51) can be found in (Axler et al., 2001, Chapter 9). We thus only prove the
second equality, which results from an appropriate integration by parts.

Proof of Lemma 3. First, recall Green’s “integration by parts” formula (Axler et al., 2001, Chapter 1)∫
𝐴

𝑓 (x)Δ𝑔(x)dx =

∫
𝜕𝐴

( 𝑓∇𝑔.n + 𝑔∇ 𝑓 .n) d𝑆 −
∫
𝐴

∇ 𝑓 (x) · ∇𝑔(x)dx, (52)

where 𝐴 is a bounded subset of R𝑑 with smooth boundary, 𝑓 and 𝑔 are 𝐶2 on a neighborhood of �̄�, n is
the outward unit normal vector, 𝑆 is the surface-area measure on 𝜕𝐴. Let the support of 𝑔 be a compact
𝐾 ⊂ 𝐴, (52) simplifies and we have∫

𝐴

𝑓 (x)Δ𝑔(x)dx =

∫
𝜕𝐴

𝑓∇𝑔.n d𝑆 −
∫
𝐴

∇ 𝑓 (x) · ∇𝑔(x)dx. (53)

Let x ∈ R𝑑 , and let 𝑅 > 0 be large enough such that x and 𝐾 are contained in 𝐵(0, 𝑅). Then using the
dominated convergence we get

1
(2 − 𝑑)𝑑𝜅𝑑

∫
R𝑑

Δ𝑔(y)
∥x − y∥𝑑−2

2

dy = lim
𝜀→0

1
(2 − 𝑑)𝑑𝜅𝑑

∫
𝐵(0,𝑅)\𝐵(x, 𝜀)

Δ𝑔(y)
∥x − y∥𝑑−2

2

dy. (54)

Now, using (53) with 𝐴 = 𝐵(0, 𝑅) \ 𝐵(x, 𝜀) and 𝑓 : y ↦→ 1
∥x−y∥𝑑−2

2
, it comes∫

𝐴

Δ𝑔(y)
∥x − y∥𝑑−2

2

dy =

∫
𝜕𝐵(x, 𝜀)

1
∥x − y∥𝑑−2

2

∇𝑔(y).n d𝑆 + (2 − 𝑑)
∫
𝐴

∇𝑔(y). x − y
∥x − y∥𝑑2

dy
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=
1

𝜀𝑑−2

∫
𝜕𝐵(x, 𝜀)

∇𝑔(y).n d𝑆 + (2 − 𝑑)
∫
𝐴

∇𝑔(y). x − y
∥x − y∥𝑑2

dy

= 𝜀

∫
𝜕𝐵(x,1)

∇𝑔(𝜀y).n d𝑆 + (2 − 𝑑)
∫
𝐴

∇𝑔(y). x − y
∥x − y∥𝑑2

dy.

Plugging into (54) evaluating the limit, we obtain the desired limit.

We use Lemma 3 to prove the following result, which takes us closer to controlling the variance of
linear statistics under the repelled Poisson point process.

Lemma 4. Consider a homogeneous Poisson point process P ⊂ R𝑑 of intensity 𝜌, with 𝑑 ≥ 3. Let
𝑓 ∈ 𝐶2 (R𝑑) of compact support 𝐾 ⊂ 𝐵(0, 𝑅) with 𝑅 > 0. For any 𝑅′ ≥ 𝑅 we have

lim
𝜀→0

𝜀−1E

©«
∑︁

x∈P∩𝐵(0,𝑅′ )
𝑓 (x + 𝜀𝐹P (x))

ª®¬
2

−
(∑︁

x∈P
𝑓 (x)

)2 = −2𝑑𝜅𝑑𝜌2𝐼𝐾 ( 𝑓 2), (55)

where 𝐼𝐾 is defined in (7).

The proof of this Lemma relies on the dominated convergence theorem, a first-order Taylor expansion
of 𝑓 , and Lemma 3.

Note that, the two sums in equation (55) are actually over the same subsets of P since 𝑓 has sup-
port 𝐾 ⊂ 𝐵(0, 𝑅′) and this equation represents a first-order derivative. As highlighted in Remark 3,
pursuing the calculation of the second-order derivative through a second-order Taylor expansion poses
difficulties since E[∥𝐹P (x)∥2

2] =∞.

Proof of Lemma 4. Let 𝑅′ ≥ 𝑅. For 𝜀 ∈ (−1,1), define

𝑋𝜀 ≜ 𝜀−1
©«

∑︁
x∈P∩𝐵(0,𝑅′ )

𝑓 (x + 𝜀𝐹P (x))
ª®¬

2

−
(∑︁

x∈P
𝑓 (x)

)2 .
We need to show that E[𝑋𝜀] → −2𝑑𝜅𝑑𝜌2𝐼𝐾 ( 𝑓 2) as 𝜀→ 0. The first step is to find a random variable
𝑌 ∈ 𝐿1 such that |𝑋𝜀 | ≤ 𝑌 for all 𝜀 ∈ (−1,1) so that we can later apply the dominated convergence
theorem to switch the limit and the expectation.

Recall that every 𝐶1 function compactly supported is Lipschitz, so 𝑓 is Lipschitz. Let 𝐿 > 0 be the
Lipschitz constant of 𝑓 , it comes

|𝑋𝜀 | ≤
1
|𝜀 |

∑︁
x∈P∩𝐵(0,𝑅′ )

| 𝑓 (x + 𝜀𝐹P (x)) − 𝑓 (x) |
∑︁

x∈P∩𝐵(0,𝑅′ )
| 𝑓 (x + 𝜀𝐹P (x)) + 𝑓 (x) |

≤ 1
|𝜀 |

∑︁
x∈P∩𝐵(0,𝑅′ )

𝐿∥𝜀𝐹P (x)∥2

∑︁
x∈P∩𝐵(0,𝑅′ )

2∥ 𝑓 ∥∞

= 2𝐿∥ 𝑓 ∥∞
∑︁

x∈P∩𝐵(0,𝑅′ )
∥𝐹P (x)∥2

∑︁
x∈P

1𝐵(0,𝑅′ ) (x).
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Let 𝑌 =
∑

x∈P∩𝐵(0,𝑅′ ) ∥𝐹P (x)∥2
∑

x∈P 1𝐵(0,𝑅′ ) (x). We claim that the nonnegative random variable 𝑌
is in 𝐿1. To see why, note that the extended Slivnyak-Mecke theorem (4) yields

E[𝑌 ] = E


∑︁
x∈P∩𝐵(0,𝑅′ )

∥𝐹P\{x} (x)∥2 +
∑︁

x∈P∩𝐵(0,𝑅′ )
∥𝐹P\{x} (x)∥2

∑︁
y∈P\{x}

1𝐵(0,𝑅′ ) (y)


=

∫
𝐵(0,𝑅′ )

E [∥𝐹P (x)∥2] 𝜌dx +
∫
𝐵(0,𝑅′ )

E

∥𝐹P (x)∥2

∑︁
y∈P

1𝐵(0,𝑅′ ) (y)
 𝜌dx

≤ 𝜌𝜅𝑑 (𝑅′)𝑑
©«E [∥𝐹P (0)∥2] + E

[
∥𝐹P (0)∥𝑎2

]1/𝑎
E ©«

∑︁
y∈P

1𝐵(0,𝑅′ ) (y)
ª®¬
𝑏

1/𝑏ª®®¬ ,
where the last inequality results from Hölder’s inequality with 1 < 𝑎 < 𝑑/(𝑑 − 1) and 𝑏 = 𝑎/(𝑎− 1). As
indicated in Section 3.4, E[∥𝐹P (0)∥𝛾2 ] <∞ for any 𝛾 < 𝑑/(𝑑 − 1). Therefore E[𝑌 ] <∞ and our claim
is true.

Applying the dominated convergence theorem, and a first-order Taylor expansion, we obtain

lim
𝜀→0
E[𝑋𝜀] = E

 lim
𝜀→0

1
𝜀

©«
©«

∑︁
x∈P∩𝐵(0,𝑅′ )

𝑓 (x + 𝜀𝐹P (x))
ª®¬

2

−
(∑︁

x∈P
𝑓 (x)

)2ª®®¬


= E

 lim
𝜀→0

1
𝜀

©«
©«

∑︁
x∈P∩𝐵(0,𝑅′ )

𝑓 (x) + 𝜀∇ 𝑓 (x) · 𝐹P (x) + 𝑜𝜀→0 (𝜀𝐹P (x))
ª®¬

2

−
(∑︁

x∈P
𝑓 (x)

)2ª®®¬


= 2E


∑︁
x∈P∩𝐵(0,𝑅)

𝑓 (x)
∑︁

y∈P∩𝐵(0,𝑅)
∇ 𝑓 (y) · 𝐹P (y)

 .
Expanding the sum, it comes

lim
𝜀→0
E[𝑋𝜀] = 2E


∑︁

x∈P∩𝐵(0,𝑅)
𝑓 (x)∇ 𝑓 (x) · 𝐹P (x) +

≠∑︁
x,y∈P∩𝐵(0,𝑅)

𝑓 (x)∇ 𝑓 (y) · 𝐹P (y)


= 2E


∑︁
x∈P∩𝐵(0,𝑅)

𝑓 (x)∇ 𝑓 (x) · 𝐹P\{x} (x)
 − 2E


≠∑︁

x,y∈P∩𝐵(0,𝑅)
𝑓 (x)∇ 𝑓 (y) · x − y

∥x − y∥𝑑2


+ 2E


≠∑︁

x,y∈P∩𝐵(0,𝑅)
𝑓 (x)∇ 𝑓 (y) · 𝐹P\{y,x} (y)

 . (56)

Using Slivnyak-Mecke (4) and Equation (3), we obtain

lim
𝜀→0
E [𝑋𝜀] = 2

∫
𝐵(0,𝑅)

E [ 𝑓 (x)∇ 𝑓 (x) · 𝐹P (x)] 𝜌dx − 2
∫
𝐵(0,𝑅)×𝐵(0,𝑅)

𝑓 (x)∇ 𝑓 (y) · x − y
∥x − y∥𝑑2

𝜌2dxdy
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+ 2
∫
𝐵(0,𝑅)×𝐵(0,𝑅)

E [ 𝑓 (x)∇ 𝑓 (y) · 𝐹P (y)] 𝜌2dxdy. (57)

But the first and last terms in (57) are zero due to 𝐹P being a centered process, and the second term is
−2𝑑𝜅𝑑𝜌2𝐼𝐾 ( 𝑓 2) by Lemma 3.

Remarkably, the proof of Lemma 4 remains valid even if 𝐹P is replaced by its truncated version
𝐹
(0, 𝑝)
P , where 𝑝 ≥ 2𝑅. In particular, the choice of 𝑝 ≥ 2𝑅 is crucial to ensure that Equation (56)

remains valid.

Lemma 5. Consider a homogeneous Poisson point process P ⊂ R𝑑 of intensity 𝜌, with 𝑑 ≥ 3. Let
𝑓 ∈ 𝐶2 (R𝑑) of compact support 𝐾 ⊂ 𝐵(0, 𝑅) with 𝑅 > 0. Let further 0 < 𝛽 < 1

2(𝑑−1)2 . For any 𝑅′ >

(2𝑅 + 2)1/𝛽

lim
𝜀→0

𝜀−1E

©«
∑︁

x∈P∩𝐵(0,𝑅′ )𝑐
𝑓 (x + 𝜀𝐹P (x))

ª®¬
2 = 0.

The proof is based on Corollary 2 and 3.

Proof of Lemma 5. Let 𝑅′ > (2𝑅 + 2)1/𝛽 , 𝜀 ∈ (−1,1), and

𝑌𝜀 ≜
1
𝜀
E

©«
∑︁

x∈P∩𝐵(0,𝑅′ )𝑐
𝑓 (x + 𝜀𝐹P (x))

ª®¬
2 .

Setting 𝑟 (x) = ∥x∥𝛽2 with 0 < 𝛽 < 1
2(𝑑−1)2 , we use the same splitting technique as in (28), and write

|𝑌𝜀 | ≤
∥ 𝑓 ∥∞
|𝜀 | E

©«
∑︁

x∈P∩𝐵(0,𝑅′ )𝑐
1𝐵(0,𝑅) (x + 𝜀𝐹P (x))

ª®¬
2

≤ ∥ 𝑓 ∥∞
|𝜀 | E

©«
∑︁

x∈P∩𝐵(0,𝑅′ )𝑐
1𝐵(0,𝑟 (x) ) (x + 𝜀𝐹 (0,1)

P (x)) + 1{ ∥ 𝜀𝐹 (1,∞)
P (x) ∥2>𝑟 (x)−𝑅}

(x)ª®¬
2

≤ 2∥ 𝑓 ∥∞
|𝜀 | E

©«
∑︁

x∈P∩𝐵(0,𝑅′ )𝑐
1𝐵(0,𝑟 (x) ) (x + 𝜀𝐹 (0,1)

P (x))ª®¬
2︸                                                         ︷︷                                                         ︸

≜𝐸int (𝜀)

+ 2∥ 𝑓 ∥∞
|𝜀 | E

©«
∑︁

x∈P∩𝐵(0,𝑅′ )𝑐
1{ ∥ 𝜀𝐹 (1,∞)

P (x) ∥2>𝑟 (x)−𝑅}
(x)ª®¬

2︸                                                          ︷︷                                                          ︸
≜𝐸ext (𝜀)

.

By Corollary 3 with 𝑚 = 2, there exists 𝑎1 > 0 such that for any 0 < 𝛾 < 1/(𝑑 − 1)

𝐸int (𝜀) ≤ 𝑎1𝐸1 + 𝐸2
1 ≤ 𝑎1 |𝜀 |1+𝛾 + 2|𝜀 |2+2𝛾 + ℎ1 (𝜀) + 2ℎ1 (𝜀)2,
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where 𝐸1 is defined by Equation (44), for 𝑘 = 1 and

ℎ1 (𝜀) =
∫
𝐵(0,𝑅′ )𝑐

𝑎2 exp
(
−𝑎3

∥x∥2 − 𝑟 (x)
|𝜀 | log

(
𝑎4

∥x∥2 − 𝑟 (x)
|𝜀 |

))
𝜌 dx

=

∫
𝐵(0,𝑅′ )𝑐

𝑎2 exp

(
−𝑎3

∥x∥𝛽2
|𝜀 |

(
∥x∥1−𝛽

2 − 1
)

log

(
𝑎4

∥x∥𝛽2
|𝜀 |

(
∥x∥1−𝛽

2 − 1
)))

𝜌 dx

for some positive constants 𝑎2, . . . , 𝑎4. But

ℎ1 (𝜀) ≤
∫
𝐵(0,𝑅′ )𝑐

𝑎2 exp

(
−𝑎3

∥x∥𝛽2
|𝜀 |

(
𝑅′1−𝛽 − 1

)
log

(
𝑎4

∥x∥𝛽2
|𝜀 |

(
𝑅′1−𝛽 − 1

)))
𝜌 dx

= |𝜀 |𝑑/𝛽
∫
𝐵(0,𝑅′ | 𝜀 |−1/𝛽 )𝑐

𝑎2 exp
(
−𝑎3∥y∥𝛽2

(
𝑅′1−𝛽 − 1

)
log

(
𝑎4∥y∥𝛽2

(
𝑅′1−𝛽 − 1

)))
𝜌 dy

≤ |𝜀 |𝑑/𝛽
∫
𝐵(0,1)𝑐

𝑎2 exp
(
−𝑎3∥y∥𝛽2

(
𝑅′1−𝛽 − 1

)
log

(
𝑎4∥y∥𝛽2

(
𝑅′1−𝛽 − 1

)))
𝜌 dy︸                                                                                          ︷︷                                                                                          ︸

≜𝑐

where in the second line we used the change of variable y = |𝜀 |−1/𝛽x, and in the last line we used that
𝑅′ > |𝜀 |1/𝛽 . Thus

0 ≤ ℎ1 (𝜀) ≤ 𝑐 |𝜀 |𝑑/𝛽 .

As 𝑑/𝛽 > 1, we have ℎ1 (𝜀)/|𝜀 | going to zero as 𝜀 approaches zero, so that 𝐸int (𝜀) = 𝑜(𝜀).
It remains to show that 𝐸ext (𝜀) = 𝑜(𝜀). By Corollary 2 with 𝑚 = 2 there exists 𝑎5, . . . , 𝑎8 > 0 such

that

𝐸ext (𝜀) ≤ 𝑎5

(
ℎ2 (𝜀) + ℎ2 (𝜀)2

)
,

with

ℎ2 (𝜀) =
∫
𝐵(0,𝑅′ )𝑐

𝑎6 exp
(
−𝑎7

𝑟 (x) − (𝑅 + 1)
|𝜀 | log

(
𝑎8
𝑟 (x) − (𝑅 + 1)

|𝜀 |

))
𝜌 dx.

In particular

ℎ2 (𝜀) =
∫
𝐵(0,𝑅′ )𝑐

𝑎6 exp
(
−𝑎7

∥x∥𝛽 − (𝑅 + 1)
|𝜀 | log

(
𝑎8

∥x∥𝛽 − (𝑅 + 1)
|𝜀 |

))
𝜌 dx

≤
∫
𝐵(0,𝑅′ )𝑐

𝑎6 exp
(
−𝑎7

∥x∥𝛽
2|𝜀 | log

(
𝑎8

∥x∥𝛽
2|𝜀 |

))
𝜌 dx,

where in the last line we used that 𝑅′ > (2𝑅 + 2)1/𝛽 . Following the same method used earlier to bound
ℎ1 (𝜀), we can show that ℎ2 (𝜀) ≤ 𝐶 |𝜀 |𝑑/𝛽 for some constant 𝐶. This implies that ℎ2 (𝜀) = 𝑜(𝜀) and
𝐸ext (𝜀) = 𝑜(𝜀). We conclude that 𝑌𝜀 = 𝑜𝜀→0 (1), which ends the proof.

Again, the proof’s validity is unaffected by replacing 𝐹P with its truncated counterpart 𝐹 (0, 𝑝)
P , where

𝑝 > 0. The upcoming lemma is the final tool required to demonstrate Theorem 3.
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Lemma 6. Consider a homogeneous Poisson point process P ⊂ R𝑑 of intensity 𝜌, with 𝑑 ≥ 3. Let 𝑓
be a 𝐶2 (R𝑑) function of compact support 𝐾 ⊂ 𝐵(0, 𝑅) with 𝑅 > 0. For any 𝑅′ ≥ 𝑅 we have

lim
𝜀→0

𝜀−1E


∑︁

x∈P∩𝐵(0,𝑅′ )𝑐
𝑓 (x + 𝜀𝐹P (x))

∑︁
y∈P∩𝐵(0,𝑅′ )

𝑓 (y + 𝜀𝐹P (y))
 = 0.

Proof of Lemma 6. Let 𝑅′ ≥ 𝑅, 𝜀 ∈ (−1,1), and denote

𝑍𝜀 ≜
1
𝜀
E


∑︁

x∈P∩𝐵(0,𝑅′ )𝑐
𝑓 (x + 𝜀𝐹P (x))

∑︁
y∈P∩𝐵(0,𝑅′ )

𝑓 (y + 𝜀𝐹P (y))
 .

We show that 𝑍𝜀 = 𝑜𝜀→0 (1). Since 𝑓 is 𝐶2 with compact support, it is Lipschitz and we denote its
Lipschitz constant by 𝐿 ≥ 0. For x ∈ 𝐵𝑐 (0, 𝑅′), 𝑓 (x) = 0 so

| 𝑓 (x + 𝜀𝐹P (x)) | = | 𝑓 (x + 𝜀𝐹P (x)) − 𝑓 (x) | ≤ 𝐿∥𝜀𝐹P (x)∥21𝐵(0,𝑅′ ) (x + 𝜀𝐹P (x)).

Hence

|𝑍𝜀 | ≤
1
|𝜀 |E


∑︁

x∈P∩𝐵(0,𝑅′ )𝑐
𝐿∥𝜀𝐹P (x)∥21𝐵(0,𝑅′ ) (x + 𝜀𝐹P (x))

∑︁
y∈P∩𝐵(0,𝑅′ )

∥ 𝑓 ∥∞


≤ 𝐿∥ 𝑓 ∥∞E


∑︁
x∈P∩𝐵(0,𝑅′ )𝑐

©«∥𝐹P\{x} (x)∥21𝐵(0,𝑅′ ) (x + 𝜀𝐹P\{x} (x))
∑︁

y∈P\{x}
1𝐵(0,𝑅′ ) (y)

ª®¬


= 𝐿∥ 𝑓 ∥∞
∫
𝐵(0,𝑅′ )𝑐

E

∥𝐹P (x)∥21𝐵(0,𝑅) (x + 𝜀𝐹P (x))
∑︁
y∈P

1𝐵(0,𝑅′ ) (y)
 𝜌dx

The last equality was obtained using the extended Slivnyak-Mecke theorem (4). Next, we employ
Hölder’s inequality with 1 < 𝑝 < 𝑑

𝑑−1 and 𝑞 = 𝑝/(𝑝 − 1) to obtain

|𝑍𝜀 | ≤ 𝐿∥ 𝑓 ∥∞
∫
𝐵(0,𝑅′ )𝑐

E
[
∥𝐹P (x)∥𝑝2 1𝐵(0,𝑅′ ) (x + 𝜀𝐹P (x))

]1/𝑝
E

©«
∑︁
y∈P

1𝐵(0,𝑅′ ) (y)
ª®¬
𝑞

1/𝑞

𝜌dx

= 𝜌𝐿∥ 𝑓 ∥∞E
©«

∑︁
y∈P

1𝐵(0,𝑅′ ) (y)
ª®¬
𝑞

1/𝑞

︸                                         ︷︷                                         ︸
𝐶

∫
𝐵(0,𝑅′ )𝑐

E
[
∥𝐹P (x)∥𝑝2 1𝐵(0,𝑅′ ) (x + 𝜀𝐹P (x))

]1/𝑝 dx

When attempting to compute the limit of the last equation as 𝜀 approaches zero, it becomes challenging
to interchange the limit and integral using the dominated convergence theorem. This difficulty arises
because E[∥𝐹P (x)∥𝑝2 ]

1/𝑝 is not integrable over 𝐵(0, 𝑅′)𝑐. To address this, we will handle the cases of
∥𝐹P (x)∥2 > 1 and ∥𝐹P (x)∥2 < 1 separately. By doing so, we can manage the computation differently
for each case, allowing us to remove the exponent 1

𝑝
in the first case and proceed with the calculations
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accordingly. For x ∈ 𝐵(0, 𝑅′)𝑐, we have

E
[
∥𝐹P (x)∥𝑝2 1𝐵(0,𝑅′ ) (x + 𝜀𝐹P (x))

]1/𝑝

= E
[
∥𝐹P (x)∥𝑝2 1𝐵(0,𝑅′ ) (x + 𝜀𝐹P (x))

(
1{ ∥𝐹P (x) ∥2<1} (x) + 1{ ∥𝐹P (x) ∥2≥1} (x)

) ]1/𝑝

≤ E
[
∥𝐹P (x)∥𝑝2 1𝐵(0,𝑅′ ) (x + 𝜀𝐹P (x))1{ ∥𝐹P (x) ∥2<1} (x)

]1/𝑝

+ E
[
∥𝐹P (x)∥𝑝2 1𝐵(0,𝑅′ ) (x + 𝜀𝐹P (x))1{ ∥𝐹P (x) ∥2≥1} (x)

]1/𝑝

≤ E
[
1𝐵(0,𝑅′+𝜀) (x)

]1/𝑝 + E
[
∥𝐹P (x)∥𝑝2 1𝐵(0,𝑅′ ) (x + 𝜀𝐹P (x))

]
= 1𝐵(0,𝑅′+𝜀) (x) + E

[
∥𝐹P (x)∥𝑝2 1𝐵(0,𝑅′ ) (x + 𝜀𝐹P (x))

]
.

Thus

|𝑍𝜀 | ≤ 𝐶
∫
𝐵(0,𝑅′ )𝑐

1𝐵(0,𝑅′+𝜀) (x) + E
[
∥𝐹P (x)∥𝑝2 1𝐵(0,𝑅′ ) (x + 𝜀𝐹P (x))

]
dx

=𝐶 |𝐵(0, 𝑅′)𝑐 ∩ 𝐵(0, 𝑅′ + 𝜀) | +𝐶
∫
𝐵(0,𝑅′ )𝑐

E
[
∥𝐹P (0)∥𝑝2 1𝐵(0,𝑅′ ) (x + 𝜀𝐹P (0))

]
dx.

The first term in the last inequality goes to zero as 𝜀→ 0. It remains to show that the second term also
goes to zero as 𝜀→ 0. Denote by 𝑓𝐹P (0) the density function of 𝐹P (0) and observe that

lim
𝜀→0

|𝑍𝜀 | = lim
𝜀→0

𝐶

∫
𝐵(0,𝑅′ )𝑐

E
[
∥𝐹P (0)∥𝑝2 1𝐵(0,𝑅′ ) (x + 𝜀𝐹P (0))

]
dx

= lim
𝜀→0

𝐶

∫
𝐵(0,𝑅′ )𝑐

∫
R𝑑

∥u∥𝑝2 1𝐵(0,𝑅′ ) (x + 𝜀u) 𝑓𝐹P (0) (u) du dx

= lim
𝜀→0

𝐶

∫
R𝑑

∥u∥𝑝2 𝑓𝐹P (0) (u) |𝐵(0, 𝑅′)𝑐 ∩ 𝐵(𝜀u, 𝑅′) |︸                                              ︷︷                                              ︸
𝐴𝜀 (u)

du.

Now, for any u ∈ R𝑑 , 𝐴𝜀 (u) −−−−→
𝜀→0

0. It is enough to show that we can use the dominated convergence

theorem to conclude. Actually

|𝐴𝜀 (u) |≤ 𝜅𝑑𝑅′𝑑 ∥u∥𝑝2 𝑓𝐹P (0) (u) ≜𝑌 (u)

and
∫
R𝑑
𝑌 (u)du = 𝜅𝑑𝑅

′𝑑E[∥𝐹P (0)∥𝑝2 ], which is finite since 𝑝 < 𝑑/(𝑑 − 1); see Section 3.4. The dom-
inated convergence theorem thus concludes the proof.

The proof’s validity is unaffected by replacing 𝐹P with its truncated counterpart 𝐹 (0, 𝑝)
P , where

𝑝 > 0.
We end this section with the proof of Theorem 3. We will use Lemmas 4, 5 and 6.
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Proof of Theorem 3. Consider a function 𝑓 ∈ 𝐶2 (R𝑑) of compact support 𝐾 ⊂ 𝐵(0, 𝑅) for some 𝑅 >
0. We start by proving that 

𝜕Var
[
�̂�Π𝜀P ( 𝑓 )

]
𝜕𝜀

 |𝜀=0

= −2𝑑𝜅𝑑 𝐼𝐾 ( 𝑓 2).

First, Proposition 2 implies the existence of Var
[
�̂�Π𝜀P∩𝐾 ( 𝑓 )

]
for any 𝜀 ∈ (−1,1). Now, fix

0 < 𝛽 <
1

2(𝑑 − 1)2 ,

and let 𝑅′ ≥ (2𝑅 + 2)1/𝛽 . As E[ �̂�Π𝜀P∩𝐾 ( 𝑓 )] = E[ �̂�P∩𝐾 ( 𝑓 )] we have

Var
[
�̂�Π𝜀P∩𝐾 ( 𝑓 )

]
−Var

[
�̂�P∩𝐾 ( 𝑓 )

]
= E

[(
�̂�Π𝜀P∩𝐾 ( 𝑓 )

)2
]
− E

[(
�̂�P∩𝐾 ( 𝑓 )

)2
]

= 𝜌−2E


(∑︁

x∈P
𝑓 (x + 𝜀𝐹P (x))

)2

−
(∑︁

x∈P
𝑓 (x)

)2
= 𝜌−2E

©«
∑︁

x∈P∩𝐵(0,𝑅′ )
𝑓 (x + 𝜀𝐹P (x))

ª®¬
2

−
(∑︁

x∈P
𝑓 (x)

)2 + 𝜌−2E

©«
∑︁

x∈P∩𝐵(0,𝑅′ )𝑐
𝑓 (x + 𝜀𝐹P (x))

ª®¬
2

+ 2𝜌−2E


∑︁

x∈P∩𝐵(0,𝑅′ )
𝑓 (x + 𝜀𝐹P (x))

∑︁
x∈P∩𝐵(0,𝑅′ )𝑐

𝑓 (x + 𝜀𝐹P (x))


Using Lemmas 4, 5, and 6 we get
𝜕Var

[
�̂�Π𝜀P∩𝐾 ( 𝑓 )

]
𝜕𝜀

 |𝜀=0

= lim
𝜀→0

𝜀−1𝜌−2E

©«
∑︁

x∈P∩𝐵(0,𝑅′ )
𝑓 (x + 𝜀𝐹P (x))

ª®¬
2

−
(∑︁

x∈P
𝑓 (x)

)2
= −2𝑑𝜅𝑑 𝐼𝐾 ( 𝑓 2) = −2𝑑𝜅𝑑𝜌Var[ �̂�P ( 𝑓 )] .

Finally, the Taylor expansion of Var
[
�̂�Π𝜀P∩𝐾 ( 𝑓 )

]
at 𝜀 = 0 gives

Var
[
�̂�Π𝜀P∩𝐾 ( 𝑓 )

]
=Var

[
�̂�Π0P∩𝐾 ( 𝑓 )

]
+ 𝜀


𝜕Var

[
�̂�Π𝜀P∩𝐾 ( 𝑓 )

]
𝜕𝜀

 |𝜀=0

+𝑂 (𝜀2)

=Var
[
�̂�P ( 𝑓 )

]
(1 − 2𝑑𝜅𝑑𝜌𝜀) +𝑂 (𝜀2)

which ends the proof.
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Remark 10. Substituting 𝐹P with its truncated version 𝐹
(0, 𝑝)
P , where 𝑝 ≥ diam(𝐾), preserves the

validity of the proof of Theorem 3. However, the same cannot be said for 𝐹 (𝑞,𝑝)
P when 𝑞 > 0, as it leads

to the breakdown of the proof of Lemma 4. This highlights the possibility that the variance reduction
may be attributed to the singularity of 𝐹P at the points of P.

Appendix B: Additional experiments

B.1. Further analysis of Section 4.2

SW CI SW CI SW CI SW CI SW CI

𝑓1 stat=0.9, p=0.04 [-0.58, -0.46] stat=0.96, p=0.48 [-0.69, -0.51] stat=0.95, p=0.34 [-0.66, -0.54] stat=0.95, p=0.39 [-0.65, -0.53] stat=0.91, p=0.06 [-0.52, -0.28]

𝑓2 stat=0.98, p=0.88 [-0.63, -0.51] stat=0.94, p=0.26 [-0.65, -0.53] stat=0.93, p=0.17 [-0.61, -0.49] stat=0.96, p=0.61 [-0.63, -0.51] stat=0.94, p=0.30 [-0.60, -0.48]

𝑓3 stat=0.97, p=0.65 [-0.57, -0.45] stat=0.98, p=0.92 [-0.67, -0.55] stat=0.97, p=0.84 [-0.69, -0.57] stat=0.93, p=0.15 [-0.64, -0.52] stat=0.99, p=0.99 [-0.60, -0.48]

d=2 d=3 d=4 d=5 d=7

Table 1. Shapiro Wilk (SW) test for the residual of the OLS of the estimated log-standard deviation of �̂�MCRB
over log(𝑁) and the confidence interval (CI) with 99.7% confidence level of the slopes for 𝑓1, 𝑓2 and 𝑓3 when
𝑑 ∈ {2,3,4,5,7}.

We used the Shapiro-Wilk test (Shapiro and Wilk, 1965) to assess whether the residuals of each OLS
of log(𝜎) of �̂�MCRB over log(𝑁) shown in Figure 4 are Normally distributed, and computed confidence
intervals for the slope corresponding to �̂�MCRB. The 𝑝-values of the Shapiro-Wilk test corresponding
to �̂�MCRB are summarized in Table 1. The null hypothesis of the test is that the residuals are normally
distributed. As the statistics are close to 1 and the 𝑝-values are large (typically larger than 0.01), the
distributions of the residuals are not significantly different from a normal distribution at a 99% sig-
nificance level. We have also verified that the Quantile-Quantile plots of the residuals are compatible
with the result of Shapiro-Wilk’s test; for a comparison between Normality tests see (Mohd Razali and
Yap, 2011). Hence, we can construct confidence intervals for the slopes using their estimated standard
deviations. Table 1 shows the 99.7% confidence intervals (corresponding to three standard deviations)
of the slopes. For 𝑑 ∈ {3,4,5} the confidence intervals suggest that the variance of �̂�MCRB may decrease
slightly faster than the usual Monte Carlo rate.

Finally, to account for the slight possible bias of the estimator �̂�MCRB, we conclude this section by
presenting the errors obtained in the experiment of 4. Figure 12 displays the box plots of the error of
the estimators �̂�MC, �̂�MCRB, �̂�MCCV, and �̂�RQMC, for the functions 𝑓2 and 𝑓3 for 𝑑 in {2,3,4,5,7} and
for �̂�MCDPP when 𝑑 in {2,3}. There is no clear evidence in Figure 12 to suggest that �̂�MCRB exhibits any
notable bias.

B.2. Further analysis of Section 6

Figure 13 presents an extension of the iterative repulsion experiments discussed in Section 5.1.
In this extended analysis, we explore a broader range of stopping times, specifically considering
𝑡 ∈ {30,80,130,180,200}. To set up the experiment, we consider a sample from a PPP P of unit inten-
sity. Subsequently, we perform an iterative application of the repulsion operator Π𝜀P to the original
point process P, yielding the resulting point processes Π𝜀,𝑡P (22) for 𝑡 ∈ {30,80,130,180,200}. In
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Figure 12: Estimated error of various Monte Carlo methods for 𝑓2, and 𝑓3 and 𝑑 ∈ {2,3,4,5,7}.
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Figure 13, we present the outcomes of this iterative repulsion process. The left panels of the figure
showcase the 𝑡-th iterates Π𝜀,𝑡P, specifically constrained to the observation window, where we set
𝜀 = −𝜀0 (12). On the other hand, the right panels display the results obtained with 𝜀 = 𝜀0.
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Figure 13: The green points represent a sample from a PPP P of unit intensity, the blue points corre-
spond to Π−𝜀0 ,𝑡P (left), and Π+𝜀0 ,𝑡P (right), for 𝑡 ∈ {30,80,130,180,200}.
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