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Boundary conditions at fluid porous interfaces
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Abstract

We derive boundary conditions at the interface of a homogeneous and isotropic porous medium and
an overlying fluid layer by averaging the generalized transport equations in the interfacial region and
rewriting the obtained jump conditions at the effective sharp interface dividing the homogeneous fluid and
porous layers, thus taking into account the thickness of the diffuse interface. We obtained jump boundary
conditions in terms of geometrical parameters, namely the Brinkman penetration depth 8, the ratio
a = A/8p of the thickness of the interfacial region to the Brinkman depth, and the location of the effective
dividing interface. This is the first attempt to determine the appropriate location of the diving interface by
matching the solutions to the one-domain and two-domain approaches. Jump boundary conditions reduce
to the slip-transpiration-resistance model proposed by Lacis et al. [29], either in the thick interface limit
(e” > 1) or if the Darcy law is assumed to apply in the porous medium. In these limits, adequate choice
of the dividing interface location enables to replace the slip condition by the continuity of the tangential
velocity, yielding a simpler Dirichlet-transpiration-resistance model. Our formulation has the advantage
that the effective coefficients depend explicitly on geometrical parameters that are easy to estimate in
practice and, therefore, can be easily implemented. Numerical tests for parallel and non-parallel flows
using the obtained boundary conditions or the generalized transport equations show excellent agreement.
Our results can be easily extended to deal with 3D configurations and anisotropic porous media.

Keywords: porous media, flow-structure interaction

1 Introduction

One of the long-standing sources of challenging problems for mathematical analysis is the description and
modelling of transport phenomena of a fluid in a porous medium and the transitional region at a fluid-porous
interface responsible for mass and momentum transfer. The necessity for addressing this problem stems not
only from the significant influence exerted by the presence of small-scale surface inhomogeneities at the
interface on the transport phenomena but also from its ubiquitous occurrence in nature (benthic boundary
layer, turbulent flow in the forest or urban location, flows over gravel stream beds, contaminant transport
in rivers or atmosphere) and in many industrial and environmental applications (dendritic solidification
of multicomponent mixtures, oil recovery, flow in heat exchangers, fuel cell and separation processes, in
nuclear reactor vessels, in nuclear waste repositories), see, e.g., Alazmi & Vafai [1l], Angot et al. [4]], Bottaro
[7], Gavrilov et al. [16l], Lyubimova et al. [33]. Starting from the pioneering study by Beavers & Joseph
[6] who considered a Poiseuille flow over a permeable medium employing an empirical slip boundary
condition, referred to as the Beavers and Joseph (B-J) condition, where the governing equations in the two
regions (Stokes and the Darcy equations) which model the dynamics are of different differential orders,
there have been several theoretical and experimental efforts in the past few decades (see Angot et al. 3]
for details). These studies have provided different models describing the dynamics to be employed in
the two regions, depending on the phenomenon to be examined, namely Darcy, Forchheimer, or Darcy-
Brinkman models, and the appropriate boundary conditions needed to connect the transport models in the
two regions, so that one can investigate the dynamics in the whole region, determine and quantify the role
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of the interfacial region. The B-J jump condition contains a dimensionless slip coefficient that depends
on the microstructure of the interfacial region [6} [17} 36, 140, 43| 145] 149, 150 |54]]. Note that the transition
region is one in which the flow velocity in the fluid layer reduces drastically until it reaches an average
seepage velocity that the Darcy equation can predict. It is crucial to examine the general form of the
admissible boundary conditions from a mathematical point of view, given the models in the fluid and the
porous regions. It is also important to characterize the transfer in the transition region (mass, momentum)
and to model these by appropriate boundary conditions.

From a macroscopic perspective (where the concept of interface is related to the average representa-
tion), the fluid flow in a coupled flow system has been characterized by two modelling approaches, the
One-Domain Approach (ODA) and the Two-Domain Approach (TDA), which employ volume-averaging
techniques that provide a framework for obtaining macroscopic models from point-wise models at fluid
and porous medium scales [49].

The ODA considers the system as a continuum, where the geometrical properties (porosity, permeabil-
ity) and transport phenomena display rapid spatial changes in the inter-region [17, 36| 146 149| 50]], regarded
as a thin transition porous layer (see figure[I]a). The earlier attempts to describe the transport governed by
the generalized transport equations (GTE), valid everywhere in the entire system, have employed heuris-
tic expressions for permeability, but the predictions near the interface have not been satisfactory [14, 25].
This suggested a need for accounting for the correct spatial dependence of permeability everywhere in
the system through the GTE and for understanding how the spatial variations of the effective coefficients
are related to the size of the averaging volume employed to derive the macroscopic equations. The sub-
sequent efforts to fulfil the above requirements are based on GTE formulations, which are free of length
constraints, and they accounted for porosity variations by including first and second Brinkman correction
terms [39} 148]]. There were suggestions to neglect the second Brinkman correction term [L1} 12, [13] as its
contribution is considered through the other terms in the GTE. However, the inclusion of these terms has
also been accepted as it can be regarded just as a result of the up-scaling method employed to derive the
macroscopic equations.

Motivated by the relevance of the derivation of a reliable GTE that accurately describes the momen-
tum transport across fluid-porous medium, Hernandez-Rodriguez et al. [20] have presented a momentum
GTE (ODA approach), valid everywhere in the system and expressed in terms of position-dependent effec-
tive medium coefficients, containing the two Brinkman corrective terms along with the Darcy term. The
ODA predictions compare well with the results generated by averaging the local profiles resulting from
pore-scale simulations. They have predicted the position-dependent permeability tensor from both pore-
scale simulations and the solution of the corresponding local closure problem in a typical domain of the
fluid-porous medium boundary. Their analysis reveals that including the first and the second Brinkman
correction terms, along with the position-dependent intrinsic permeability tensor in the Darcy term in the
GTE for momentum transport, facilitates accurate predictions of the average velocity profiles everywhere
in the system. It is worth mentioning that the derivation of the GTE for momentum transport also gains
significance in the context of TDA since one can assess whether or not the inclusion of additional terms
helps in the accurate prediction of the associated jump coefficients and the position of the dividing surface.

The TDA considers the porous medium-fluid region as two continuous regions separated by a dividing
surface (see figure [T| b). Different models for the fluid and the porous medium scales have been imple-
mented and matched through the corresponding developed jump conditions at the dividing surface [S1}52].
The solution of the associated closure problems has supplied the coefficients involved in the jump condi-
tions. There have been continued efforts in proposing adequate boundary conditions at the interface of
the two domains, but there are certain features of the momentum and the mass transport phenomena that
have not been accounted for, resulting in some failure to capture significant physical characteristics of the
porous surface. The derivation of the boundary conditions must incorporate a direct correlation between
the microscopic geometrical details of the porous medium and the corresponding macroscopic transport of
mass and momentum; this being a complicated effort in such multi-scale problems, an effective approach
has been proposed to capture the averaged effect of the microscale characteristics on the macroscopic pro-
cesses within the framework of TDA. This corresponds to imposing the boundary conditions at a fictive
interface between the free fluid and the porous region. Note that the jump boundary conditions are a result
of the integration of the momentum transport over a thin transition layer of the ODA [19} 47].

The investigations devoted to the derivation of the jump boundary conditions for inertia-less, one-
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dimensional channel flow parallel to the porous layer (16,19, 119,26} 134,|39| 142, 47]], for general two or three-
dimensional inertia-less viscous flow and arbitrary flow direction at the interface [3]], employing asymptotic
modelling [2], for inertial flow through a permeable interface [37], for multidimensional arbitrary flow
direction and for macroscopic scale for one-dimensional (1D) channel flow [22 43], at the pore scale
for 1D channel flow [} (8 28} 32, 41, I53] |55]], reveal that the jump boundary conditions represent the
integration of transport phenomena over the transition layer. The derived jump boundary conditions based
on the combination of the ODA and the TDA approaches have either assumed the volume averaging method
[38L139], or are based on the solution of an ancillary closure problem related to macroscopic deviations [47]],
or used matched asymptotic expansion [[13]], or asymptotic analysis [3].

In the above investigations, the normal free-flow velocity v/ is either set to zero at the interface (while
modelling a porous surface with very small permeability by a rigid surface with wall slip, characterized
by a slip length) or to the velocity in the porous medium justified by conservation of mass arguments or
leading order boundary condition [27, 30, 35]. However, the mass transfer to the exterior fluid takes place
due to stream-wise variation of the slip velocity across a depth below the interface where wall-normal
velocity exists and is non-zero. Hence, the boundary condition on the wall-normal velocity at the interface
must be a relation connecting v/, the Darcy seepage velocity v7, and the amount of exchange of mass that
the porous medium permits across the interface.

Further, the free fluid pressure p' is assumed to be continuous across the interface and is the same
as the pressure in the porous medium (p?, the pore pressure) in contrast to the theoretical and numerical
predictions [24} 28| 31]] which revealed that there is a jump in pressure: p! — p? = 2Uvy; W is the dynamic
viscosity of the fluid. Note that v, = 0 stands only for parallel flows and that there are systems (non-
parallel flows) such as the turbulent channel flow [29, [54]] in which the wall-normal velocity fluctuations
contribute to the friction at a rough/porous wall. [29] thus proposed to introduce a resistance coefficient
which quantifies the friction induced by the crossing of the interface, as well as a transpiration length which
represents the distance from the interface below which the normal velocity differs from the seepage Darcy
one.

In such scenarios, one has to account for not only the transport of the interface tangential momentum
but also that of mass and interface normal momentum. Hence, the pressure boundary condition must
relate the normal stress of the free fluid flow on the interface, taking into consideration that v, # 0 and the
contribution of the frictional force generated by the Darcy seepage velocity v in the normal stress from
the porous medium. The idea is to derive a boundary condition with a flow direction that is neither normal
nor tangential to the porous fluid interface and besides is evolving in the tangential direction (v, # 0).

The above-mentioned investigations and arguments demonstrate that the description of the transport
phenomena across the transition region must accurately account for the dependence of the exchange of
mass, momentum, energy, and other passive scalars on the inhomogeneities at the interface between the
free-flowing fluid and the porous medium and that, for the given physical phenomena, the precise loca-
tion of the interface inside the fluid-porous transitional region may have a significant impact on the final
result. This suggests that it is important to propose the exact location of the interface and the appropriate
boundary conditions at a sharp interface within the interfacial region, taking into account the thickness of
the transitional region. The above requirement is also supported by experimental observations on transition
layer thickness at a fluid, porous interface in packed beds by [[L7]. The thickness 2A of the transition zone
(height below the permeable interface up to which the velocity decreases to the Darcy seepage velocity)
has been shown to be of the order of the grain diameter and hence much larger than the square root of the
permeability.

This calls for the derivation of appropriate boundary conditions at a sharp interface within the tran-
sitional region of the thickness of order 2A, i.e. of the order of the grain diameter, employing accurate
quadrature rules to evaluate the integrals involved in the computations. In view of the above, the present
study considers the derivation of the jump boundary conditions at a fluid-porous medium interface (TDA),
taking into account the transitional layer thickness and integrating the ODA governing equations across the
diffuse interface employing consistent quadrature rules [3].

In our geometrical argument, we take into account the following two effects within the TDA: (i) the
effect of the transition between the fluid and the porous region and (ii) the Brinkman diffusion within the
bulk of the porous medium. Note that if the Brinkman sub-layer, defined as the region of the flow where
Brinkman diffusive terms are non-negligible, is included within the interfacial region, it makes no sense
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Figure 1: Sketches of the interfacial fluid-porous interfacial region modelled by the ODA, TDA approaches.

to include Brinkman corrections in the bulk of the porous medium within the framework of TDA. Thus,
it is more appropriate to use the Darcy approximation of the porous flow coupled with the jump boundary
conditions. In this regard, we have identified two parameters that characterize the interfacial region, namely,
the thickness of the interfacial region, A and the ratio a = A/dp of interfacial thickness to the Brinkman
penetration depth Jp (the depth below which the Brinkman diffusive terms are dominant), and propose to
present the appropriate boundary conditions for the TDA. We have obtained sets of boundary conditions
that are expressed explicitly in terms of these two parameters, in contrast to the previous attempts where
the coefficients in the boundary conditions are given in terms of the integrals of the pore-scale variables.

The paper is organized as follows: Section [2] presents the mathematical description of the proposed
model and the derivation of the effective homogenized boundary conditions, with coefficients expressed
explicitly in terms of the three relevant parameters introduced. The proposed TDA model is validated for
channel flow and stagnation point flow over a porous wall with the suction flow in section|3| and section
presents the concluding remarks.

2 Mathematical modelling

We consider a system comprising fluid and porous regions separated by a planar diffuse interface at y =0,
of thickness 2A. The porous bed is isotropic and homogeneous, i.e., the permeability and porosity in the
bulk of the porous region are assumed constant, Ky and €y, and to vary continuously as functions x(y)
and &(y) within the diffuse interfacial region. Fundamental properties of the fluid, density (p) and dynamic
viscosity (i) are considered to remain constant. The kinematic viscosity is denoted by v = u/p. For ease
of simplicity, we limit ourselves to considering a two-dimensional (2D) flow, though the analysis can be
generalized to 3D flows without difficulty.

Within the one-domain approach (ODA) (for details see Hernandez-Rodriguez et al. [20], Hirata et al.
[23]), the flow is governed by the equations

V.v

© 1y (bveo)

where subscripts denote partial derivatives. Body forces, such as gravity, are here assumed to derive from a
potential and are included in the definition of the pressure field. The last terms —¢~'Ve -V (¢7!v) are the
second Brinkman corrections, which are non-zero only in the diffuse interfacial regions where the porosity
gradients cannot be a priori neglected. However, these terms are generally considered to be weak, though
Hernandez-Rodriguez et al. [20] have shown that they must be retained in order to capture precisely the

0, (1a)

1 1 1 v
Vp4—Av— — —7V6~V(—). 1b
PV e € (1b)



192

3

velocity profile of parallel flows. As shown later on in this work, these terms affect only weakly the base
flow profile. We will therefore neglect them in our analysis of the interfacial region.

The governing equations have been made dimensionless using characteristic length L and velocity
U scales, e.g. the total thickness of the entire continuum and the averaged velocity of the fluid. The
pressure scale is equal to uU /L. Three dimensionless groups characterize the flow, namely the Reynolds
number Re = Ui/ v, the Darcy number Da = ky /Zz and the dimensionless thickness of the interfacial
region A=A/L.

In contrast, within the two-domain approach (TDA), the porous and fluid domains are separated by
a sharp interface of zero thickness, the fluid and porous regions being homogeneous. Within TDA, the
location y; of the sharp interface dividing the fluid and porous regions can be chosen arbitrarily within
the interfacial region, i.e. —A < y; < A. The solution to the TDA, labelled with [ and p superscripts, is
governed by the Navier-Stokes equation in the liquid phase

v.v =0, &{VH—V-(VI@WIH:—Vpl—i—AVl, )
and the Darcy-Brinkman equations
Vvl =0, 0=-Vprt Ay Ly 3)
) e Da )

or the Darcy equations
1
Vv =0, 0=-—Vpl——vP 4
v : PPV “4)

if the first Brinkman correction is neglected or not in the porous phase.

2.1 Interfacial jump conditions

Following [3]], we integrate the ODA governing equations (I)) across the diffuse interfacial region in order
to obtain jump conditions connecting the fluid and porous layers. We introduce the scale 6 = \/Da/en
below which Brinkman diffusive terms are dominant in the bulk of the porous medium. We will thus refer
to Op as a Brinkman penetration depth.

Noteworthy is that our definition of the Brinkman penetration depth differs from the thickness of the
Brinkman boundary layer, which we denote here by A, as identified by Hernandez-Rodriguez et al. [21]]
as the typical distance over which the velocity profile decreases drastically from the velocity at the surface
of the porous medium to the Darcy seepage velocity. These authors have shown that the extension of this
boundary layer is of the order of the size rg of the averaging volume in the homogenization method, which
also corresponds to the typical extension of the variations of the permeability distribution obtained by the
same method [20]. Thus Az = O(A), and may be much larger than the Brinkman penetration depth &g in
their computations. We thus infer that the Brinkman boundary layer has a thickness Ap of the order of the
maximum of 8g and A.

As the interfacial region is thin in comparison to the macro scale, we stretch the normal coordinate as
Y = y/A. The continuity equation thus reads

Auy+vy =0 (®)]

Since u, = O(1) and, in the bulk of the porous region, the velocity is governed by the Darcy law, i.e.
v =0(Da) = O(8%) = O(A?/a*), we conclude that v = O(A) in the interfacial region. We thus rescale the
normal velocity component such that V =v/A.

The governing equations (T)) then read

VY = —Uy, (63)
1 u Re u? uV A?
1 A2t o2t uw uv A2p. 2
bt = B (2) () LB @
1 1% Re uV V2 A?
Wy —N— = N— [Vz+ <> + () } +py — —Va, (6¢)
€ K € e/, € )y £
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where A /k = O(1). Truncating at order A, we obtain a set of equations that we rewrite with the original
scales

Vy = —Uy, (7a)
1 u
—= = 0, b
8”}) P (7b)
1 %
) —— pu— 7
T Dy (Tc)

Thus, at the leading order, inertia is negligible in the interfacial region. The pressure gradient is oriented
orthogonally to the interface and drives a flow in the normal direction.
Following [3]l, we integrate (7) using the trapezoidal quadrature rule

[ s = irt@) + 1)1+ 0| ma 701 ®

where h = b — a, and the quadrature of the integral of products

/abf h/ / )dx+0{max |’ (x |<g|>h2}, )

: 1 b
with (|g|) =" [ |g|dx.
Therefore, integration of the continuity equation (7a) gives

A
Vs —v|oa=— / indy % =B ]+ -a) = Ay la+y]-a) (10)

Similarly, we have

A
/A uyydy = ZA/ *dy/ “wdyN( )(”y|A_“)| A) (11)

and R
u u u A
—d zA(— _ —:)z— _ 12
lAKY K\y A+K|yA DaM\A (12)
We thus obtain 1+ A
EH
e, (la=ul-a)=oul-a, (13)

We next integrate the normal momentum balance to obtain

1+ey A
pla—pl-a= W("yh*"ﬂﬂ)*avﬁm (14)

To complete our system of jump conditions connecting the fluid and porous layers, we need to write a
relation between the jump of velocity and the shear stress. Still following [3]], we write

/AS tydy ~ ZA/ y/ tydy (15)

Applying the trapezoidal rule (8) on each side of this equation gives

1+¢ 1
o (s —ul-) = (st gola) (16)
€y 974

Let us stress that we have computed the integrals [, u/xdy and [*,v/Kkdy using the trapezoidal rule (8)
instead of the quadrature rule (9) employed by Angot ez al. [3]. As discussed in the appendix [A] using (9
leads to u|p = O(A) < 1, which erroneously implies that the fluid layer essentially sees a no-slip boundary
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condition at the top of the interfacial region and therefore that the extension of the Brinkman boundary
layer is negligible. We note that, contrary to (58a), the jump of the tangential shear stress (T3) is naturally
balanced as uy|s — uty|—ao = O(A) and u|_» = O(Da/€y) since the flow in the bulk of the porous medium is
essentially governed by the Darcy law.

In order to obtain a set of symmetrical jump relations for the tangential and normal velocities, we
rewrite the normal velocity jump by evaluating the integral [ fA vy/€&dy, which gives

1
Ola s = (1wt gonla) a7
E€q

Finally, we write a jump relation for the gradient of pressure that will be used to close the system of
equations for the boundary conditions that we will derive in the next section. Taking the divergence of the

momentum balance gives
d (1 d (1
= ()i (3) "

which we integrate across the interfacial region as
A d (1 A R L L 1
ydy=|—1|-)v—— — — | = ——nd 19
/—Ap” g [dy (8>v’ K]A /—Ady2 (8>Vy T >

1
Pyla=pyl-a= 5 (vl-a —Avy|-a) (20)

which gives

which, with the help of (7c), can also be rewritten as

1
vIA— — V| A= ——Vy| - 21
Vyyla 8H")y| A Da vl-a 2D

Next, we integrate vy, /€ to get

S = vl-a) =8 (plact govmla) @)
€H €H
The jump relations (ZT) and (22) will be used to eliminate the second derivatives of the normal velocity v
and close our set of boundary equations as discussed in the next section.

The set of four jump conditions (T3), (T6)), (14) and (T7)), is similar to the one derived by [3]]. However,
these authors postulated u, to be negligible, and thus also vy, and therefore found the normal velocity to be
continuous within the interfacial region instead of the jump condition (7).

2.2 Two-domain approach boundary conditions

In this section, we propose to derive from the jump conditions (T3)), (T4), (T6), (T7), ZI) and (22)), boundary
conditions for the two-domain approach (TDA). We assume that the solution to the TDA, labelled with /
and p superscripts to denote the fluid and porous regions, coincides with the ODA solution outside the
diffuse interface. Similarly to section 2.1} considering the diffuse interface to be thin, a boundary-layer
analysis gives at leading order

P p L W o Lo Y 23
L a“yy**D* ) a"yy**D*Py* ) (23a)
I [ Il

vy = Uy, Uy, =0, v,—p, =0. (23b)

Taking the divergence of the momentum balances gives Laplace equations for the pressure field, i.e.

ply=0,  pb =0, (24)
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from which we deduce that the pressure gradients p; and p} are independent of y at leading order within
the interfacial region. Matching with the outer regions thus ensures that pé, and p¥ are O(1) quantities

and therefore, v/ = O(A?), v = O(A), v}y, = O(1), v/ = O(A?), v}, = O(A) and v} = O(1). Consequently,

the continuity equations provide the estimates u” = O(A), ul = 0(1), ut = 0(A), ui = O(1) within the

interfacial region. These ordering relations will be used to discuss the boundary conditions which we
propose below.
From (23)), the tangential velocity component can easily be integrated to give

ub = uP|,cosh 5 Yy Spu §’|,51nh 33 , =i+ (v —yi)ul)i (25a)
From which the normal velocity component can be obtained with the help of the continuity equation
2
oYY Y=Y Y=Y
2 =l nsion 52 83 [eosn Y52 1] L =V e C R
(25b)
and the pressure distribution
1 VP
P =k (bl ) P = a0l 2s0)

Substitution of (23) into (I3) and (T6) leads to the following boundary conditions expressed at the sharp
interface y =y; :

1+8H 1

pli—p’li = 558 vPli4 = avfli+ (& +7)8pvy, i (26a)
g
(B2 ) ot
I+¢
- an = ~La, (260)
1;;;H Wi—au’|; = —ySgulli— BSpull;, (26¢)
l+éey / 2.1 2 1+en
e, (v |,~_Vp|l.) — gl — BSLli+ (S L+ 63 (- 2 )bl 60
Vi—avk | = _EVP|. (26e)
wyli yyli 55 Vi
1+£
Tolli—avll; = —ydpvl,|i— BosD:, (26f)
where & = y,~/63 and
(1+&y)C—2aS (1+&)S—2aC (a—&)(1—¢ep)
26 , B 26, Y 2en S (27a)
_ (a=8)[s(1+en)+a(3en—1)]
¢ = den : (27b)
N C+aS A S+aC
= 27
a — p= e (27¢)
C = cosh(a+¢&), S=sinh(a+&), and a=A/8p. (27d)

270  Differentiating (26b) and with respect to x and adding them to (26d) and (26a) gives

13 1
pl|i—pp|i = 8Bgva|i+§63 v§y|,'—av§,’y|,~ , (28a)
1+€H ] | 2 1+£H 21+£H
ﬁ (V ‘i_Vp‘i> = —'}’53Vy|i+53 C"_ 2 y}|l B 2 p ‘t (28b)
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Combining and (261) enables to eliminate v}, |; and v{y |;, which leads to the boundary conditions

=l = s li= (9l wifl) 29)
1 + &y ! ﬁ
Sen wyli—oufl; = _$“p|ia (29b)
I+¢
?H*’um—auﬂ\i = —ySpul)i — BSpull;, (29¢)
Vl‘ifvp‘i = 7¢SSBV§|,'71A[/5BV§|,'. (29d)
where
1+ey)(beg —1
o = +2H)( 1) (30a)
2¢e;(B+ay)
o(l—ae B(Be
v = ( u)+BBen+v). (30b)
(B +ay)
i - 00— (1+ey)*+4Behy+ aey 2+ en +4epy* +2(1 +€y){] (300
2en(1+en)(B+va) ’
g _ (renla(=6)+(B+7)B)+2(Bf —adent 300
(1+en)(B+va)

Conditions and (29d) represent the jump of velocity induced by the shear rate in the interfacial
region. (29d) corresponds to the jump of pressure generated by the balance of normal stresses at the
interface. Finally, (29b) accounts for the friction exerted by the porous medium on the flow in the interfacial
region, which is responsible for a jump in tangential shear rate.

From (29a), we obtain that, at the leading order, the pressure is continuous if the sharp interface is
chosen to correspond to the middle of the diffuse interfacial region (§ = 0). This result is consistent with
the pore-scale simulations of a fluid-porous interface performed by Carraro et al. [10] for an isotropic
porous medium. However, the coefficients of the boundary conditions (29) are dependent on the choice
of location of the dividing sharp interface through the parameter £. This calls for the best choice of that
parameter, which enables to obtain the best agreement between ODA and TDA solutions. Finding the best
value for & has no clear answer. However, since tangential velocities u’ and u” are O(A) in the interfacial
region, whereas the normal velocities are O(A?), it is convenient to look for the value of & based on the
tangential velocity profiles.

The Darcy seepage velocity being small, we propose to adjust £ in order to set u/|; to zero, or close
to zero, so that u”|; ~ u'|;. Because of the exponential nature of the solution [23), we have u”|; ~ Spus|;.
Thus, setting u”|; = Sguy|; and u'|; into the velocity and shear stress boundary conditions and (290)
yield

(1+ep —2egy)ul]i =0 (31)

Since ué |: # 0, we obtain a condition for the location of the sharp interface, namely

_ a(l—EH)—l—EH
&= 1+ e ; (32)

The condition & > —a implies a > (1+ €g)/2. Thus, (32) will be employed only for a > (1+ &g)/2
to guarantee a location of the sharp dividing interface within the interfacial region. In the case of a thin
interfacial region, for which a < (1 + &g)/2, the sharp dividing interface is placed at the middle of the
interfacial region (§ = 0).

2.3 Thick interface limit

The thickness of the interfacial region is generally much larger than the Brinkman penetration depth, so
the ratio a = A/8p > 1. This is justified by the experimental observations of Goharzadeh et al. [17]. Let
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us thus consider the limit of a thick diffuse interface, i.e. A =e"% <« 1, cosha ~ 1/(2A) and sinha =
1/(24). Expanding the boundary conditions and (29b) for the tangential velocities and shear rates
and truncating them at the leading order with respect to A give

up\i = 33u1?|i, (333.)

Y
(1—en)a+(1+en)(1-8)
1+ey

W, = -8 i, (33b)
Therefore, in the case of a thick diffuse interface, a partial decoupling of the fluid and porous regions
is observed as the shear rate at the sharp interface y = y; in the fluid (porous) region depends only on
the velocity in the fluid (porous) region. (33DB) is the slip boundary condition obtained by [42] using
homogenization techniques, starting from the Darcy equations in the porous medium [26]].

We note that a > 1 implies that the diffuse interface thickness 2A is much larger than the Brinkman
penetration depth 8, which is the scale below which Brinkman diffusive terms are effective. Therefore,
the Brinkman diffusion is inefficient at the scale A and the fluid region experiences a permeable boundary
essentially governed by the Darcy law. Since scales smaller or of the order of A are not resolved in the
TDA, accounting for the Brinkman diffusive terms in the homogeneous porous region in the limit of a
thick diffuse interface makes little sense. Besides, for a thick interfacial region, the exponential nature of
the solution to the Darcy-Brinkman equation leads to unrealistic values of u”. Therefore, we assume a
Darcy flow in the porous medium. Because of the degeneracy of the Darcy equation, the condition (33a))
cannot be enforced in that case. Besides, for a Darcy flow, (]ZE[) implies that v§’ = 0 in the interfacial region.
We thus obtain

Wi = L, (34a)
Pli—p’li = —Fvi+Gvl|;, (34b)
Vl|,'—Vp|,' = Mv§,|,-. (34C)
where
(1 —en)at(1+em)(1-5) S
B 1+¢ey ’ opey’ (352)
S(1+a)(1+en)
G = , 35b
a*(eg—1)— (1+en)(en—&)+alé —1+eg(3+&)] (35b)
My
M = A
SBMB, (35¢)
My = a[—1+@2—5en)en]+ (1+en)(—2+2en& — E2)
+a(l+en){—-2+2¢5— (£ ~2)& —enl4 +£(6+8)]}
+a*{—1+2& +ey[6— ey (9+28)]}, (35d)
Mg = 2(1+ey)(a+d®+ey—3aey —a*ey+e5—(1+a)(1+ex)é). (35¢)
System (34) is similar to the model proposed by [29] to represent the interfacial momentum transfer at a

rough or porous interface. Lacis et al. introduced a length, corresponding to the dimensionless coefficient
M, which they call transpiration length, which represents the distance below which the normal velocity
component differs from the Darcy seepage velocity. They also introduced a resistance coefficient ', which
modelled the friction of the porous matrix on the flow in the normal direction. However, they assumed the
shear stress in the fluid layer at the sharp interface to be equal to its value in the bulk of the flow, which
corresponds to taking G equal to 2. Note that in our derivation, coefficients F and G are proportional to &.
Hereinafter, we refer to @) as the Slip-Transpiration-Resistance (STR) model.

The STR model (34) can be further simplified by conveniently choosing the location of the sharp
interface such that to cancel out the slip length L = 0, which gives

_l+a+ey(l—a)
o l1+ey )

¢ (36)
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This choice leads to a no-slip boundary condition #/|; = 0, or more exactly to u'|; = O(A?) as we solve the
leading-order system of equations with respect to the expansion parameter A. Since the seepage velocity in
the porous medium is O(A?), we replace this no-slip condition with the continuity of the tangential velocity.
Therefore, (34) is modified into

Wi = ul;, (37a)
Pli—p’li = —Fv[i+Gv;, (37b)
ViIi=vPli = Ml;, (37¢)

which we refer to hereinafter as the Dirichlet-Transpiration-Resistance (DTR) model. The resistance coef-
ficient F, the transpiration dimensionless length M and the stress coefficient G are then given by

3 1+a+éep(l—a) 1+en+al2+a(l—eqg))

F = — -— , G= 5 ; (38a)
o€l 538[-1(1 +8H) 1—¢g +a(1 —|—38[-])

M= 634a2£§(1+a)—(1+8H)2(2£H—3)+a(3+108H+7£,2{)‘ (38b)

2(1+¢&p)[1 — €5 +a(l+3en)]

Let us underline that the no-slip boundary condition u!|; = 0 would have led to inconsistencies, as it
implies that v§| i = —ul|; = 0. However, vi, = O(A?) is of the same order of magnitude as v"|; = O(A?) and
must not be dropped out.

2.4 Two-domain approach boundary conditions for a Darcy flow

As stated above, the exponential nature of the solution to the TDA approach within the interfacial re-
gion leads to unreasonable values of the tangential velocity in the vicinity of the sharp interface when the
boundary conditions 29) are applied, i.e. whenever a £ 2 as will be shown in the next section. The condi-
tions can be employed along with the Darcy equation in the homogeneous porous medium but only if
e“ > 1, which requires a £ 5. Another set of boundary conditions must be derived to bridge the gap in the
range2 Sa 3 5.

A remedy for this drawback is to assume a Darcy flow within the homogeneous porous medium in the
interfacial region. Thus, the leading-order equations for the TDA approach within the interfacial region
become

u? vP
V= —ufl, E:o, E—&-pﬁ,’zo. (39)
which gives u? = 0 in the interfacial region, so that the tangential velocity is at least of order O(A?).
Considering a zero tangential velocity yields a too-degenerate representation of the flow. We thus assume
u? small but non-zero and introduce the ansatz
(y—y)?

1
uP =uPli, V=Vt (y—yi)wli, pP=p"li— a ((yyz')"p|i+ 2V5|i> (40

Thus the jump conditions and (T6) for the tangential velocity and shear stress yield

1+¢
W) = 2aH”§’|i’ (41a)
1+ey (14 &) (1 —2a* + ey +2a€) ;
A P Sputl ;. 41b
2ey ] @t daey ity (41b)

The relation is degenerate as the Darcy law is of lower order than the Darcy-Brinkman law and,
therefore, cannot be enforced as a boundary condition at the fluid-porous sharp interface.
Substitution in the jump conditions for the pressure gradient and the normal shear stress give

I a(l+epy) I

i = 63[a2(8H—1)—SH(1+£H)+a(1+£H)§]vy|” “2)
Pl ey(1+¢q) I

i a*(1—ey)+ey(l+ey)—a(l +eg)é wli *3)
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The set of boundary conditions then reduces to the STR model (34) where

_ aleg—1) l+ey - &

b= [ 1+€n M 2a &, F= Spen (44a)
- (14 &) (a* — 20 — &2)

¢ T 1) -en(tem) ta(l TemE]’ (44b)
_ a2[1+8H(58H—2)}—|—2a(g%I_1)§+(1+8H)2§2

M = 530[ 4€H(QZ+SH—028H+8£,—a(1—|—8H)§ (44c)

Note that, unlike (33)), the expression of the coefficient G in ([@4) is not proportional to &, as a result of
the dissymmetry of the pressure distributions in the fluid and porous layers introduced by the choice of the
Darcy law in the interfacial region.

The slip length L can again be set to zero by adjusting the location of the sharp interface such that

1—¢ey 14+¢&y
a—
1+¢ey 2a

¢ = (45)

We thus again simplify the STR model (34) into the DTR model where the coefficients F G and M are
given by

é 1 1—81-1 1+8H
oo 5 _ 46
Open Open 1+8Ha 2a , o
2(1 2_(1 4 ey (2 —1
G - Sa(ten)—(1+en) +8a'len(2ten)—1] (46b)
4a*(1+€ey)?(1+3ey)
1+ &y [6+ 16a* + ey (4 + ex)]
M = -& 46
B 4a(1 4 €q)2(1+ 3en) oo

2.5 Discussion

So far, we have obtained three different formulations (29), (37) with (38), and (37) with {@6), depending
on the relative thickness a = A/8p of the interfacial region with respect to the Brinkman penetration depth.
For a < 2, the Darcy-Brinkman governing equations (3)) are closed by the jump conditions (29) for the
velocity, shear rate and pressure fields.

For a > 2, we expect the Brinkman sub-layer to be contained within the interfacial region, such that
the appropriate governing equations in the porous medium are the Darcy equations (@). We obtained
two similar sets of boundary conditions in that case, either by taking the limit e* >> 1 or by assuming the
Darcy equations to apply within the interfacial region, which is similar to the transpiration-resistance model
obtained by Lacis et al. [29] when written at an interface location for which the continuity of the tangential
velocities replaces the Navier slip condition. However, in both cases, the resistance coefficient F' is given
by the same expression F = —& /(8p€p). Thus, the sign of F depends on the choice of the location of the
sharp interface, whereas Lacis et al. [29] assumed it to be positive. The expression of the coefficient F
can be determined rigorously, independently, without the quadrature rules employed to obtain the pressure
jump condition (1)) as shown in Appendix [B]

3 Validation

In this section, we test the boundary conditions obtained for the TDA problem by comparing the solutions
of TDA and ODA.

3.1 Channel flow

We first consider a parallel and stationary flow in a channel. The lower half of the channel is filled by
a homogeneous and isotropic porous medium, and the upper half of the channel is a fluid region. The

12
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Ratio a Transfer model
Interface location &

0<a< l*% Darcy-Brinkman with jump BCs (29) E=0

H% <a<?2 Darcy-Brinkman with jump BCs (29) & given by (32)
2<a<5 Darcy with DTR model 1(37) and (46) & given by (@5)
a>5 Darcy with DTR model and (38) & given by (36)

Table 1: Summary of the different proposed representations of the mass and momentum transfer at the
fluid-porous interface within the two-domain approach.

interfacial region extending from y = —A to y = A is modelled within the ODA by differentiable functions
of the form

ely) = 3 [1+en+(1—emert ()], = 5 [1—er(by)]. @)
where the constant b determines the extension A of the interfacial region. The channel height is denoted
by H, whereas the thickness of the porous medium is . The pressure gradient is adjusted so that the
averaged velocity is set to unity. The numerical solution to this problem has been obtained by continuation
methods using software AUTOO7P [[L5]. The channel height and the extension of the porous medium are
set to H =1 and § = 0.5, respectively, so that the fluid and porous regions have comparable sizes. The
homogeneous porosity was set to &g = 0.41 which is a typically reported value for packed beds [18].

As A is a crucial variable for the computation of the appropriate boundary conditions for the equivalent
TDA problem, we carefully adjusted the constant b by considering the numerical solutions to the GTE
equations (I)). An example is shown in ﬁgurefor Da=10"*, gg = 0.41 and b = 20. The upper boundary
of the interfacial region may be evaluated as the location of the maximum of the shear rate u,, i.e. y =0.082,
which gives A = 1.64/b. Hereinafter, we set b =2 /A, thus a slightly larger evaluation of A, such that £(—A)
and k(—A) depart from their constant values in the homogeneous porous region, €y and Du, by a relative
distance of only 3 x 1073,

Modifying the representation of the continuous variations of the porosity and permeability in the inter-
facial region has a significant but weak influence on the ODA solution. We compare in figure[3]the solutions
to the GTE equations (T)) with the error-function representation (@7)) and with a hyperbolic-tangent repre-
sentation

1

1 1
ely)= 3 [14 &y + (1 —eg)tanh (byy)] , <0 =T [1 —tanh(byy)] with by =+/7wlnd  (48)

where the constant b; has been adjusted such that the global friction exerted by the porous matrix on the
flow may be equivalent, i.e. [, erf(2y)dy = [ tanh(byy)dy.

Figure ] compares the solution to GTE equations (I)) with and without the second Brinkman corrections
for Da = 10~* and different values of the ratio @ = A/8p of the thickness of the interfacial region to the

13
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Figure 2: ODA solution to GTE (I)) with error-function distributions 7)) of porosity and permeability,
Da = 10"* and &y = 0.41 and b = 20. The shaded band materializes the interfacial region defined by
A=2/b.
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Figure 3: Comparison of ODA solutions with error-function distributions of porosity and permeability
(solid line), and hyperbolic-tangent distributions @) (dashed lines) for different values of the ratio a of
the interfacial region thickness A to the Brinkman penetration depth dg. Left: comparison of the velocity
profiles; right: comparison of the maximum velocity upay as a function of A. Du = 10~% and &y = 0.41.
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Figure 4: Comparison of ODA solutions with (dotted line) and without (solid line) second-order Brinkman
corrections for different values of the ratio a of the thickness of the interfacial region to the Brinkman
penetration depth. Left: comparison of the velocity profiles; right: comparison of the maximum velocity
Umax as functions of a. Da = 10~* and ey = 0.41.

Brinkman penetration depth. Since the first-order correction is of the order O(65 2) and the second-order
corrections are of the order O(Adg), we expect the second-order Brinkman terms to be negligible at large
values of a. Our computations confirm that second-order Brinkman corrections affect only weakly the ODA
solution whenever a is larger than 0.5. Our findings suggest that neglecting the second-order Brinkman
corrections is a valid simplification. Though, in agreement with Hernandez-Rodriguez et al. [20], we
observe that the difference between the ODA solutions with and without these terms decreases only slowly
with a.

We also observe that the velocity of the fluid at the inferior limit of the interfacial region, u(y = —A),
departs from the seepage velocity —Da p, by a relative value which is inferior to 10 % whenever a is larger
than 5 and for the tested range of porosities ey € [0.2,0.8]. We thus conclude that the Brinkman diffusion
sub-layer can be assumed to be entirely contained within the interfacial region for @ > 5, which justifies the
derivation of the DTR model (B_7I) in the thick-interface limit. Besides, for a > 2, the velocity in the porous
region remains small as u(y = —A) is smaller than two times the seepage velocity —Da py, which justifies
the use of the Darcy equations (@) and the DTR model (37) for 2 < a < 5, even if the Brinkman sub-layer
is not entirely contained within the interfacial region in that case.

We next compute the solutions to the TDA problem using the boundary conditions we have derived in
section[2.2] Accuracy is assessed by comparisons to the reference ODA solutions in the fluid and porous
outer regions, as TDA and ODA problems differ in the interfacial region.

Figure [5] compares the solutions to the TDA and ODA approaches as a is varied. The thickness of the
interfacial region is maintained as A = 0.01 by adjusting the Darcy number for ease of comparison. For
all tested values of the parameter a, an excellent agreement of the TDA and ODA solutions is observed
outside the interfacial region. At a = 0.5, the ODA solution presents large deviations of the velocity
profile in the porous medium from the Darcy seepage velocity, which demonstrates that the Brinkman
sub-layer is not contained within the interfacial region in that case. Panel a compares the solution of the
GTE equations (I) to the TDA solution, where the flow in the porous layer is modelled by the Darcy-
Brinkman law (3)) and applying the jump boundary conditions (29) at the middle of the interfacial region
(£ = 0). An excellent agreement is found. In particular, the maximum velocity of the flow is accurately
captured. Similar excellent agreements are observed at @ = 1.5 (panel b) and @ = 3 (panel c) where the
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location of the dividing interface is adjusted with formula (32)) so as to approach a near zero velocity at this
interface. However, the solution to the Darcy-Brinkman equation (3) presents large deviations from the
nearly constant velocity profile of the ODA solution in the vicinity of dividing interface for a = 3. Instead,
the solution to the TDA approach modelled by the Darcy equation (@) and the DTR boundary conditions
(37) accurately capture the flow in the porous medium, with the exception of the Brinkman layer at the
lower wall. However, a less convincing agreement is found with the ODA solution in the fluid layer than
with the TDA approach modelled by the Darcy-Brinkman equation (3) and (29). At a = 10, the TDA
approach is modelled by the Darcy equation () and the DTR boundary conditions (37) with (38) or (#6).
The expressions (38) of the coefficients of the DTR model provide the best result with a solution in the fluid
layer, which nearly coincides with the ODA solution. Indeed, the derivation of the DTR model of interfacial
momentum transfer presented in section 23] accounts for the Brinkman sub-layer in the interfacial region,
whereas the derivation of this model presented in section [2.4]assumes only a Darcy flow.

So far, we have compared the ODA and TDA solutions for which the boundary conditions have been
derived by solving the TDA governing equations in the interfacial region in section 2.2] These boundary
conditions, either (29) or the DTR model (37) are considerably more complex than the jump boundary
conditions derived in section[2.1] Following Angot et al. [3]], one may neglect the thickness of the interfacial
region and directly apply on the sharp interface at y; = 0 the jump conditions (T3)), (T6), (T4) and (I7). Using
the Darcy-Brinkman equations (3), the result is compared to the ODA solution in figure 6| for a = 0.5 and
a =10 and the same parameter set as that in figure[5] Without surprise, the agreement to the ODA solution
is less convincing than when the thickness of the interfacial region is accounted for.

We end this section by discussing the influence of the location of the dividing interface, as defined by
the parameter &, on the accuracy of the TDA solution with respect to the ODA solution. In our approach, the
location of the dividing interface is adjusted to correspond approximately to the cancelling of the velocity
in the fluid side «/. This choice reflects the fact that the velocity in the fluid layer is much larger than in
the porous layer, so the accuracy of the TDA solution corresponds principally to its capacity to represent
correctly the flow in the fluid layer.

The location at which the velocity in the fluid layer effectively cancels can be evaluated by fitting the
ODA solution by a parabola in the fluid region. Figure [/| compares the relative location of the dividing
interface & /a obtained by this procedure to the estimates (32)), (36) and (@3) for two values of the porosity,
eg = 0.41 and ey = 0.78. The latter value is typical of metal foam, for instance. For both cases, a
reasonable agreement is found. The estimate (32) used in the range a € [(1 + &y)/2,2] is particularly
accurate. The estimates (32)) and (@3] presents the same trend as the parabolic fit to the ODA solution,
whereas the estimate @) shows a different trend. However, all three estimates converge to the same
asymptote & /a = (1 —ey)/(1+ €y) as a is increased.

3.2 Stagnation point

We extend the well-known solution of a viscous stagnation point on a solid wall [44] to the case of a
porous one with suction. The porous medium extends from y = —§ to the fluid-porous boundary at y = 0,
whereas the overlying fluid layer extends to y = H with H >> § in order to mimic a plane irrotational flow
impinging a wall. The flow is assumed to be potential far from the boundary, i.e., u =~ x, v~ —y+cst.,

p = —# + cst.. We introduce a suction velocity vy = —A Da at the bottom y = —§ of the porous
medium. In this test case, the Darcy seepage velocity is oriented in neither normal nor tangential direction
to the porous-fluid interface. Besides, v, # 0 in the interfacial region will enable us to check the presence
of pressure jumps and normal velocity. The length scale is adjusted to set the Reynolds number to unity
without loss of generality.

Following Schlichting & Gersten [44], we introduce the ansatz:

xZ

u=xf'(y), v=—£f©), p=-= 80, (49)

which enables to reduce the resolution of the original 2D problem to a 1D one. Within the ODA approach,
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Figure 5: Comparison of ODA and TDA solutions for a constant thickness A = 0.01 of the diffuse interface
and different values of a. The Darcy number is adjusted to Da = &y (A/a)? to mmaintain A constant.
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Figure 6: Comparison of ODA and TDA solutions using the jump condition (T3) and (T6) when applied
directly at the dividing interface y = 0. See the caption of ﬁgureEl
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Figure 7: Estimation of the relative location £ /a of the fluid-porous sharp interface from a parabolic fit
of the ODA solution as compared to the formulae (32), @3) (36) for Da = 10~* and &y = 0.41 (left) and
e = 0.78 (right). See Table[I] The straight lines indicate the locations of the diffuse interface boundaries

(& = +a).
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Figure 8: Streamlines in the porous region and in the vicinity of the diffuse interface (shaded regions) for
the flow around a stagnation point with suction. § = 0.5, Du =103, g5 = 0.78 and a = 1.89.

the system of equations to be solved thus reads

f/// f/ 1 (f/)Z _ ff// e ,
—_—— = |4 -1 50
c c c +aff ) (50a)
mf LIff €L,
—= = —|l-—4= 50b
c e tal | te (50b)
with the associated boundary conditions
f(=8)=ADa f'(-8)=g(-8)=0, f(H)=1. (5D
Within the TDA approach, the Darcy-Brinkman equations (3) yields
p! p/ p! 2 _ £p £p! p!! /4 p £p!
U i L7 N G R 0 ) 520
&y Da & &y Da &
L A RS AT (52b)

which is closed by (31). Considering instead a Darcy flow within the porous medium, this system of
equations reduces to (52b) with f” = Da(A+y) and g = — (Ay+ 3)?).

We solve again systems (50) and (52)) by continuation methods using AUTO07P software for the set of
parameters 0 = 0.5, H = 10 and €y = 0.41 or €5 = 0.78. In the present test, the thickness of the interfacial
region is evaluated using the Carman-Kozeny relation, which relates the typical grain size d of packed beds
to their permeability
_ g
C180(1 —gy)?”

Goharzadeh et al. [17] estimated the thickness of the diffuse interface to correspond to the size of a grain.
We thus deduce from (53)) an estimate for the dimensionless thickness of the interfacial region,

1
A~3V5

Kn (53)

P SB y
which gives A = 9.60p for g = 0.41 and A = 1.896p for ey = 0.78.

We first consider the case of a relatively thin interfacial region, for Da = 1073, ey =0.78 and a = 1.89.
Figure [§] illustrates the flow pattern and its symmetry around the stagnation point located at x = 0, in the
porous region and at the diffuse interface. The streamlines are obtained from the expression x f(y) of
the stream function corresponding to the ODA solutions and to the TDA solution to the Darcy-Brinkman
equation (52) with the jump boundary conditions (Z9). An excellent agreement is observed in the fluid and
porous regions outside the diffuse interface.

(54
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Figure [9] further offers a direct comparison of the ODA solution to TDA solutions to the Darcy-
Brinkman equation (32)) with the jump boundary conditions (29), as well as to (52b) with the Darcy flow
fP=Da(A+y)and g = — (Ay + %yz) and the DTR model (37) with (6). The Darcy-Brinkman equation
with the jump conditions (29) predicts the velocity field (u < f’ and v « f) satisfactorily, even if the normal
velocity in the fluid layer presents some discrepancies with the ODA solution. The velocity in the porous
layer in the vicinity of the dividing interface is also somewhat overestimated. The solution to the TDA
approach assuming a Darcy flow in the porous medium and using the DTR transfer model also performs
satisfactorily. In particular, in both cases, the TDA approach reproduces accurately the pressure distribution
within the flow represented by the function g, as well as the jump of tangential shear stress u, o< f” across
the interfacial region. Note that both (29) and (37) predict a positive jump of the pressure at the dividing
interface, p'|; — p?|; > 0.

We next consider Du = 10~ and a porosity &y = 0.41, representative of packed beds, for which the
Carman-Kozeny relation gives an estimate of the interfacial thickness corresponding to a relatively large
value of a = 9.6. This time we compare the solution to the TDA with a Darcy flow f? = Da(A +y)
and g” = — (Ay+ 3»?) and the DTR model (37) with (38) or (#@) to the reference solution to the ODA
equations (30). An excellent agreement is observed either for the coefficient expressions (38) obtained in
the limit ¢? >> 1 or the expressions ([@6) obtained considering a Darcy flow in the interfacial region. As
for the parallel flow considered in § [3.1] the solution to the ODA approach predicts a velocity field in
the homogeneous porous region (y < —A) which remains close to the seepage velocity —DaVp. We thus
conclude that the assumption of a Brinkman sub-layer entirely contained in the interfacial region is again
justified. The DTR model, either with (38) or (@6), predicts a location of the dividing interface above
the centre of the interfacial region (§ > 0) in close agreement with the coordinate at which the velocity
predicted by the ODA solution departs from the seepage Darcy velocity. The pressure jump p'|; — p?|; is
then negative. A situation which is inverted with respect to the case &g = 0.78 (& < 0 and p'|; — p?|; > 0),
and is a direct consequence of the proportionality of the resistance coefficient F with &.

4 Concluding Remarks

The present investigation has considered a long-standing challenge to accurately describe and model the
transport phenomena in a fluid-porous medium system and the transitional region between the two domains
responsible for interfacial mass and momentum transfer. Our starting point is the GTE equations (I)) as a
valid macroscopic description of the momentum transfer at the fluid-porous interface [20]. Following
Angot et al. [3], we have integrated the GTE equations across the interfacial region to obtain jump boundary
conditions for the speed, pressure and shear stresses. Our derivation completes the work of Angot et al.
by taking into account the variations of the normal velocity (vy # 0), which yields a jump condition (T6)
for the normal velocity instead of the continuity condition postulated by Angot et al. [3], Ochoa-Tapia &
Whitaker [39].

Within the framework of TDA, the jump conditions across the interfacial regions are rewritten at the
fictitious dividing interface separating the homogeneous and isotropic porous medium and the fluid layer
by solving the creeping flow in the interfacial region. Two parameters are identified, namely, the Brinkman
penetration depth (0p = \/Da/€ey) and the ratio of the transitional thickness to the Brinkman penetration
depth (a = A/8p), which facilitated the derivation of the effective homogenized boundary conditions with
coefficients expressed explicitly in terms of these two parameters. For a porous medium with given poros-
ity, the coefficients in the boundary conditions account for the details about the diffusive transport into the
porous medium across the interface and the frictional force generated by the Darcy seepage velocity that
provides resistance to the imposed shear from the fluid region. The jump conditions are imposed on a fictive
interface whose location within the transitional region can be specified in terms of another parameter (&)
that depends on the parameters 0 and a. The exact location of the interface may be decided by requiring
that the obtained TDA solutions match very closely with the corresponding ODA solutions.

This study proposes three different formulations depending on the parameter a. When a < 2, the Darcy-
Brinkman equations (3) are closed by the jump conditions (29) for the velocity, shear rate and pressure
distribution. For @ > 2, two similar sets of equations are derived, either by considering the limit e > 1 or
by assuming the Darcy equation to be valid within the interfacial region. This formulation is based on the
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Figure 9: Comparison of ODA solution to (50), labelled ‘ODA’, with the TDA solution to (32) and (29),
labelled ‘TDA Brinkman’, and with the TDA solution to (32b) and (37) with (@6), labelled ‘TDA Darcy’.

(Da=1073,e5=0.78, a=1.89 and A = 2).
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consideration that the Brinkman sub-layer is contained within the interfacial region, which implies that the
appropriate governing equation is the Darcy law in this case.

It is worth mentioning that these sets of boundary conditions resemble the slip-transpiration-resistance
(STR) model (34) proposed by Lacis et al. [29]. The choice of the location of the sharp interface determines
the sign of the resistance coefficient ', which can be determined independently of the choice of quadrature
rules (see Appendix [B). In this study, we choose to locate the fictitious dividing interface at a location
where the fluid-side tangential velocity essentially vanishes (u!|; = O(A?)) and propose to replace the B-J
slip condition by the continuity of the tangential velocity. As a result, a Dirichlet-transpiration-resistance
(DTR) model is proposed. The different obtained formulations and the range of the parameter a at
which we propose to apply them are summarized in Table[T]

The derived boundary conditions have been tested by comparing the TDA solutions obtained with
these boundary conditions and the corresponding ODA solutions for the following test problems: channel
flow and stagnation point flow on a porous wall with suction. The satisfactory agreement of the solutions
from the two approaches enhances our confidence that the proposed set of boundary conditions accurately
captures the transport phenomena across the fictive sharp interface.

Our formulation is explicit with respect to a few geometrical parameters, which are easy to estimate
in practice, and, therefore, can be easily implemented. This study is a first attempt towards a coherent
mass and momentum model that complements the available models within the framework of TDA [3\ 29].
The proposed model presents a pathway for extending the study to multiphase flows involving fluid-porous
domains and multi-scale flow problems. Further, an extension of the study to include anisotropy of the
porous medium, higher dimensional flow, and inhomogeneous porous layers is feasible and may require
a higher order description in terms of the interfacial thickness A. The investigations on these and other
relevant applications are in progress.
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A Influence of the integration rule on the TDA boundary conditions
In this section, we discuss the influence of the choice of the numerical quadrature rule on the jump con-
ditions across the interfacial region and the momentum transfer model for the TDA with two examples.
We limit ourselves to parallel flows (i.e. vy, = 0) for simplicity. We show that the choice of the quadrature

rule must ensure balanced jump conditions across the diffuse interfacial region in order to yield usable
boundary conditions within the TDA approach.

A.1 Quadrature rule of a product

Using (9), we can write the quadrature

[ reos@ax=Lir) + s0ieta) + 500, 59)
which gives

[ty [ Ly [ty s (st ) (56)
Ak T oA Jax® T 2pg AT A
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Ay, 1+¢ey
y
—dy= +uy| - 57
LAS y de (uy|a+uy|-a) (57)

With this choice of a quadrature rule, the jump conditions connecting the fluid and porous regions within
the ODA approach then reads for a parallel flow (v, = 0)

1+ €y A
ey (uyla —uy|-a) = 3D (u|a+ul-a), (58a)
u\A—u|_A = A(uy‘A+My|_A) . (58b)

We note that balancing the terms of the tangential stress jump (58a)) implies that u|s = O(Da) since u|_5 =
O(Dua/ey). From (58)), the following boundary conditions for the TDA problem are derived

a | (14+¢ex)S—aC

(1+eg+ak —az)u§|,~ —[(I+en)C—aSluf|; = —<uli———g——u|;, (59a)
OB dp
W)i—(C—aS)u’|; = —(S—aC)8pul;. (59b)
In the limit of a thick interfacial region ¢ >> 1, this gives
i=— i 60
S D@ 1 ew) £l 17 el 0

which can be rewritten as a no-slip boundary condition at an effective sharp interface located at y; =
Sp(a—1)(a*> —1—eg)/[(a—1)*+&y] ~ adp = A, hence at the upper limit of the diffuse interfacial region.
This is consistent with the estimate u|x = O(Da) < 1, which is necessary to balance the tangential shear
jump (38a)). Therefore, the quadrature rule (33)) leads to un underestimation of the flow within the interfacial
region.

A.2 Generalization of the trapezoidal rule

The trapezoidal quadrature rule can be generalized with the exact formula:

b h h? K3 K
/uf(X)dx = 5@+ 7O)]+ @)= f B+ 1" (@) + /B + 27" (@) = f"()]
o £ (@) 4+ (=1)" £ ()] + ... (61)

2n!

Denoting by dynu the nth derivative of u with respect to y, we note that dy (u/K)|a = 0, dyu(u/K)|-a ~
85 2"u|_a and Ayni1 (u/K)|-a = &g yy| 5. Summing the different series, we obtain after some algebra

Ay CS C?—1
/ —dy =~ ul_a+ Uy| A (62)
A 'H OB EH

A u 5BC§ 62 —1
/_A ;ydyza53uy|A+ o Uy| A+ o ul_a (63)
We thus obtain the jump conditions
1+ey CS 21
—_ —uy|— = AT ——uy|- 64
2en (y|a —uty|-a) £H53u| ATt & Uy|-a, (64a)
1+¢ CS§ C*-1
5 " (ula—ul-a) = adpugla+p—uy| a+ ul_a, (64b)
EH €y
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from which we derive the following boundary conditions at y = £a for the TDA problem:

_ _ _ _ pP|.

(1+en)ul|i— [(2C—1+e4)C—2CSS| ul|; = [2CSC+ (1—¢e—2C?)S] “6|’, (65a)
B
(1 +8H)I/tl|,'— [(26— 1 +8H)C—ZC_‘SS} Mp|i = 53 [a(SH — 1)+€(1 +8H)]u;\i

+85 [2CSC+ (1—e—2C*)S|ul|;  (65b)

In the limit of a thick diffuse interface, i.e. e*>> 1, the boundary conditions (63) give u}|; ~ —u”|;/8p.
Similarly, the jump conditions (64) yields uy|_a ~ —u|_a/p. These estimates are obviously unphysical.
They arise from the imbalance of the jump conditions (64) as C and § diverge to infinity in the limit a >> 1.
We, therefore, conclude that the quadrature rule (§) does not yield valid boundary conditions for the TDA
approach.

B Determination of the resistance coefficient F

In this section, we determine the friction coefficient F in the pressure jump of the STR model (32a). We
show that the expression of F is independent of the quadrature rule.

To this aim, we consider a parallel and steady flow normal to the fluid-porous interface, the generalized
transport equations (I) yields v = cst and py = —v/Kk. As a consequence, the pressure in the liquid region
is constant and equal to its value at the sharp interface location, p = p'|;, and

il |
p=rlitv [ dv (66)
yK

Integrating the Darcy (@) or Darcy-Brinkman equation (3)) similarly gives

%
P— Pl (v
p’=pPli Da(y Vi) - (67)

Requiring next that for y < —A, p = p” then gives

- |
ﬂwmmvabf+LK@),Mry<—A (68)

For an evenly distributed permeability around the middle y = O of the interfacial region we have

U | y
—dy=—. 69
V=1 (69)
As a consequence, we obtain
Pl|i—pp|iZV%;Z—Fv. (70)
From this we deduce the expression of the friction coefficient ' such that
Yi S
=—=—=- 71
Da 538]-1 7D

which corresponds to the expressions (38) and (46).
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