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Abstract7

We derive boundary conditions at the interface of a homogeneous and isotropic porous medium and8
an overlying fluid layer by averaging the generalized transport equations in the interfacial region and9
rewriting the obtained jump conditions at the effective sharp interface dividing the homogeneous fluid and10
porous layers, thus taking into account the thickness of the diffuse interface. We obtained jump boundary11
conditions in terms of geometrical parameters, namely the Brinkman penetration depth δB, the ratio12
a= ∆/δB of the thickness of the interfacial region to the Brinkman depth, and the location of the effective13
dividing interface. This is the first attempt to determine the appropriate location of the diving interface by14
matching the solutions to the one-domain and two-domain approaches. Jump boundary conditions reduce15
to the slip-transpiration-resistance model proposed by Lācis et al. [29], either in the thick interface limit16
(ea ≫ 1) or if the Darcy law is assumed to apply in the porous medium. In these limits, adequate choice17
of the dividing interface location enables to replace the slip condition by the continuity of the tangential18
velocity, yielding a simpler Dirichlet-transpiration-resistance model. Our formulation has the advantage19
that the effective coefficients depend explicitly on geometrical parameters that are easy to estimate in20
practice and, therefore, can be easily implemented. Numerical tests for parallel and non-parallel flows21
using the obtained boundary conditions or the generalized transport equations show excellent agreement.22
Our results can be easily extended to deal with 3D configurations and anisotropic porous media.23

Keywords: porous media, flow-structure interaction24

1 Introduction25

One of the long-standing sources of challenging problems for mathematical analysis is the description and26
modelling of transport phenomena of a fluid in a porous medium and the transitional region at a fluid-porous27
interface responsible for mass and momentum transfer. The necessity for addressing this problem stems not28
only from the significant influence exerted by the presence of small-scale surface inhomogeneities at the29
interface on the transport phenomena but also from its ubiquitous occurrence in nature (benthic boundary30
layer, turbulent flow in the forest or urban location, flows over gravel stream beds, contaminant transport31
in rivers or atmosphere) and in many industrial and environmental applications (dendritic solidification32
of multicomponent mixtures, oil recovery, flow in heat exchangers, fuel cell and separation processes, in33
nuclear reactor vessels, in nuclear waste repositories), see, e.g., Alazmi & Vafai [1], Angot et al. [4], Bottaro34
[7], Gavrilov et al. [16], Lyubimova et al. [33]. Starting from the pioneering study by Beavers & Joseph35
[6] who considered a Poiseuille flow over a permeable medium employing an empirical slip boundary36
condition, referred to as the Beavers and Joseph (B-J) condition, where the governing equations in the two37
regions (Stokes and the Darcy equations) which model the dynamics are of different differential orders,38
there have been several theoretical and experimental efforts in the past few decades (see Angot et al. [3]39
for details). These studies have provided different models describing the dynamics to be employed in40
the two regions, depending on the phenomenon to be examined, namely Darcy, Forchheimer, or Darcy-41
Brinkman models, and the appropriate boundary conditions needed to connect the transport models in the42
two regions, so that one can investigate the dynamics in the whole region, determine and quantify the role43
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of the interfacial region. The B-J jump condition contains a dimensionless slip coefficient that depends44
on the microstructure of the interfacial region [6, 17, 36, 40, 43, 45, 49, 50, 54]. Note that the transition45
region is one in which the flow velocity in the fluid layer reduces drastically until it reaches an average46
seepage velocity that the Darcy equation can predict. It is crucial to examine the general form of the47
admissible boundary conditions from a mathematical point of view, given the models in the fluid and the48
porous regions. It is also important to characterize the transfer in the transition region (mass, momentum)49
and to model these by appropriate boundary conditions.50

From a macroscopic perspective (where the concept of interface is related to the average representa-51
tion), the fluid flow in a coupled flow system has been characterized by two modelling approaches, the52
One-Domain Approach (ODA) and the Two-Domain Approach (TDA), which employ volume-averaging53
techniques that provide a framework for obtaining macroscopic models from point-wise models at fluid54
and porous medium scales [49].55

The ODA considers the system as a continuum, where the geometrical properties (porosity, permeabil-56
ity) and transport phenomena display rapid spatial changes in the inter-region [17, 36, 46, 49, 50], regarded57
as a thin transition porous layer (see figure 1 a). The earlier attempts to describe the transport governed by58
the generalized transport equations (GTE), valid everywhere in the entire system, have employed heuris-59
tic expressions for permeability, but the predictions near the interface have not been satisfactory [14, 25].60
This suggested a need for accounting for the correct spatial dependence of permeability everywhere in61
the system through the GTE and for understanding how the spatial variations of the effective coefficients62
are related to the size of the averaging volume employed to derive the macroscopic equations. The sub-63
sequent efforts to fulfil the above requirements are based on GTE formulations, which are free of length64
constraints, and they accounted for porosity variations by including first and second Brinkman correction65
terms [39, 48]. There were suggestions to neglect the second Brinkman correction term [11, 12, 13] as its66
contribution is considered through the other terms in the GTE. However, the inclusion of these terms has67
also been accepted as it can be regarded just as a result of the up-scaling method employed to derive the68
macroscopic equations.69

Motivated by the relevance of the derivation of a reliable GTE that accurately describes the momen-70
tum transport across fluid-porous medium, Hernandez-Rodriguez et al. [20] have presented a momentum71
GTE (ODA approach), valid everywhere in the system and expressed in terms of position-dependent effec-72
tive medium coefficients, containing the two Brinkman corrective terms along with the Darcy term. The73
ODA predictions compare well with the results generated by averaging the local profiles resulting from74
pore-scale simulations. They have predicted the position-dependent permeability tensor from both pore-75
scale simulations and the solution of the corresponding local closure problem in a typical domain of the76
fluid-porous medium boundary. Their analysis reveals that including the first and the second Brinkman77
correction terms, along with the position-dependent intrinsic permeability tensor in the Darcy term in the78
GTE for momentum transport, facilitates accurate predictions of the average velocity profiles everywhere79
in the system. It is worth mentioning that the derivation of the GTE for momentum transport also gains80
significance in the context of TDA since one can assess whether or not the inclusion of additional terms81
helps in the accurate prediction of the associated jump coefficients and the position of the dividing surface.82

The TDA considers the porous medium-fluid region as two continuous regions separated by a dividing83
surface (see figure 1 b). Different models for the fluid and the porous medium scales have been imple-84
mented and matched through the corresponding developed jump conditions at the dividing surface [51, 52].85
The solution of the associated closure problems has supplied the coefficients involved in the jump condi-86
tions. There have been continued efforts in proposing adequate boundary conditions at the interface of87
the two domains, but there are certain features of the momentum and the mass transport phenomena that88
have not been accounted for, resulting in some failure to capture significant physical characteristics of the89
porous surface. The derivation of the boundary conditions must incorporate a direct correlation between90
the microscopic geometrical details of the porous medium and the corresponding macroscopic transport of91
mass and momentum; this being a complicated effort in such multi-scale problems, an effective approach92
has been proposed to capture the averaged effect of the microscale characteristics on the macroscopic pro-93
cesses within the framework of TDA. This corresponds to imposing the boundary conditions at a fictive94
interface between the free fluid and the porous region. Note that the jump boundary conditions are a result95
of the integration of the momentum transport over a thin transition layer of the ODA [19, 47].96

The investigations devoted to the derivation of the jump boundary conditions for inertia-less, one-97
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dimensional channel flow parallel to the porous layer [6, 9, 19, 26, 34, 39, 42, 47], for general two or three-98
dimensional inertia-less viscous flow and arbitrary flow direction at the interface [3], employing asymptotic99
modelling [2], for inertial flow through a permeable interface [37], for multidimensional arbitrary flow100
direction and for macroscopic scale for one-dimensional (1D) channel flow [22, 43], at the pore scale101
for 1D channel flow [5, 8, 28, 32, 41, 53, 55], reveal that the jump boundary conditions represent the102
integration of transport phenomena over the transition layer. The derived jump boundary conditions based103
on the combination of the ODA and the TDA approaches have either assumed the volume averaging method104
[38, 39], or are based on the solution of an ancillary closure problem related to macroscopic deviations [47],105
or used matched asymptotic expansion [13], or asymptotic analysis [3].106

In the above investigations, the normal free-flow velocity vl is either set to zero at the interface (while107
modelling a porous surface with very small permeability by a rigid surface with wall slip, characterized108
by a slip length) or to the velocity in the porous medium justified by conservation of mass arguments or109
leading order boundary condition [27, 30, 35]. However, the mass transfer to the exterior fluid takes place110
due to stream-wise variation of the slip velocity across a depth below the interface where wall-normal111
velocity exists and is non-zero. Hence, the boundary condition on the wall-normal velocity at the interface112
must be a relation connecting vl , the Darcy seepage velocity vp, and the amount of exchange of mass that113
the porous medium permits across the interface.114

Further, the free fluid pressure pl is assumed to be continuous across the interface and is the same115
as the pressure in the porous medium (pp, the pore pressure) in contrast to the theoretical and numerical116
predictions [24, 28, 31] which revealed that there is a jump in pressure: pl − pp = 2µvy; µ is the dynamic117
viscosity of the fluid. Note that vy = 0 stands only for parallel flows and that there are systems (non-118
parallel flows) such as the turbulent channel flow [29, 54] in which the wall-normal velocity fluctuations119
contribute to the friction at a rough/porous wall. [29] thus proposed to introduce a resistance coefficient120
which quantifies the friction induced by the crossing of the interface, as well as a transpiration length which121
represents the distance from the interface below which the normal velocity differs from the seepage Darcy122
one.123

In such scenarios, one has to account for not only the transport of the interface tangential momentum124
but also that of mass and interface normal momentum. Hence, the pressure boundary condition must125
relate the normal stress of the free fluid flow on the interface, taking into consideration that vy ̸= 0 and the126
contribution of the frictional force generated by the Darcy seepage velocity vp in the normal stress from127
the porous medium. The idea is to derive a boundary condition with a flow direction that is neither normal128
nor tangential to the porous fluid interface and besides is evolving in the tangential direction (vy ̸= 0).129

The above-mentioned investigations and arguments demonstrate that the description of the transport130
phenomena across the transition region must accurately account for the dependence of the exchange of131
mass, momentum, energy, and other passive scalars on the inhomogeneities at the interface between the132
free-flowing fluid and the porous medium and that, for the given physical phenomena, the precise loca-133
tion of the interface inside the fluid-porous transitional region may have a significant impact on the final134
result. This suggests that it is important to propose the exact location of the interface and the appropriate135
boundary conditions at a sharp interface within the interfacial region, taking into account the thickness of136
the transitional region. The above requirement is also supported by experimental observations on transition137
layer thickness at a fluid, porous interface in packed beds by [17]. The thickness 2∆ of the transition zone138
(height below the permeable interface up to which the velocity decreases to the Darcy seepage velocity)139
has been shown to be of the order of the grain diameter and hence much larger than the square root of the140
permeability.141

This calls for the derivation of appropriate boundary conditions at a sharp interface within the tran-142
sitional region of the thickness of order 2∆, i.e. of the order of the grain diameter, employing accurate143
quadrature rules to evaluate the integrals involved in the computations. In view of the above, the present144
study considers the derivation of the jump boundary conditions at a fluid-porous medium interface (TDA),145
taking into account the transitional layer thickness and integrating the ODA governing equations across the146
diffuse interface employing consistent quadrature rules [3].147

In our geometrical argument, we take into account the following two effects within the TDA: (i) the148
effect of the transition between the fluid and the porous region and (ii) the Brinkman diffusion within the149
bulk of the porous medium. Note that if the Brinkman sub-layer, defined as the region of the flow where150
Brinkman diffusive terms are non-negligible, is included within the interfacial region, it makes no sense151
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Figure 1: Sketches of the interfacial fluid-porous interfacial region modelled by the ODA, TDA approaches.

to include Brinkman corrections in the bulk of the porous medium within the framework of TDA. Thus,152
it is more appropriate to use the Darcy approximation of the porous flow coupled with the jump boundary153
conditions. In this regard, we have identified two parameters that characterize the interfacial region, namely,154
the thickness of the interfacial region, ∆ and the ratio a = ∆/δB of interfacial thickness to the Brinkman155
penetration depth δB (the depth below which the Brinkman diffusive terms are dominant), and propose to156
present the appropriate boundary conditions for the TDA. We have obtained sets of boundary conditions157
that are expressed explicitly in terms of these two parameters, in contrast to the previous attempts where158
the coefficients in the boundary conditions are given in terms of the integrals of the pore-scale variables.159

The paper is organized as follows: Section 2 presents the mathematical description of the proposed160
model and the derivation of the effective homogenized boundary conditions, with coefficients expressed161
explicitly in terms of the three relevant parameters introduced. The proposed TDA model is validated for162
channel flow and stagnation point flow over a porous wall with the suction flow in section 3, and section 4163
presents the concluding remarks.164

2 Mathematical modelling165

We consider a system comprising fluid and porous regions separated by a planar diffuse interface at y = 0,166
of thickness 2∆̄. The porous bed is isotropic and homogeneous, i.e., the permeability and porosity in the167
bulk of the porous region are assumed constant, κH and εH , and to vary continuously as functions κ(y)168
and ε(y) within the diffuse interfacial region. Fundamental properties of the fluid, density (ρ) and dynamic169
viscosity (µ) are considered to remain constant. The kinematic viscosity is denoted by ν = µ/ρ . For ease170
of simplicity, we limit ourselves to considering a two-dimensional (2D) flow, though the analysis can be171
generalized to 3D flows without difficulty.172

Within the one-domain approach (ODA) (for details see Hernandez-Rodriguez et al. [20], Hirata et al.173
[23]), the flow is governed by the equations174

∇ ·v = 0 , (1a)
Re
ε

[
vt +∇ ·

(
1
ε

v⊗v
)]

= −∇p+
1
ε

∆v− 1
κ

v− 1
ε

∇ε ·∇
(v

ε

)
. (1b)

where subscripts denote partial derivatives. Body forces, such as gravity, are here assumed to derive from a175
potential and are included in the definition of the pressure field. The last terms −ε−1∇ε ·∇

(
ε−1v

)
are the176

second Brinkman corrections, which are non-zero only in the diffuse interfacial regions where the porosity177
gradients cannot be a priori neglected. However, these terms are generally considered to be weak, though178
Hernandez-Rodriguez et al. [20] have shown that they must be retained in order to capture precisely the179
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velocity profile of parallel flows. As shown later on in this work, these terms affect only weakly the base180
flow profile. We will therefore neglect them in our analysis of the interfacial region.181

The governing equations have been made dimensionless using characteristic length L̄ and velocity182
Ū scales, e.g. the total thickness of the entire continuum and the averaged velocity of the fluid. The183
pressure scale is equal to µŪ/L̄. Three dimensionless groups characterize the flow, namely the Reynolds184
number Re = ŪL̄/ν , the Darcy number Da = κH/L̄2 and the dimensionless thickness of the interfacial185
region ∆ = ∆̄/L̄.186

In contrast, within the two-domain approach (TDA), the porous and fluid domains are separated by187
a sharp interface of zero thickness, the fluid and porous regions being homogeneous. Within TDA, the188
location yi of the sharp interface dividing the fluid and porous regions can be chosen arbitrarily within189
the interfacial region, i.e. −∆ < yi < ∆. The solution to the TDA, labelled with l and p superscripts, is190
governed by the Navier-Stokes equation in the liquid phase191

∇ ·vl = 0 , Re
[
vl

t +∇ ·
(

vl ⊗vl
)]

=−∇pl +∆vl , (2)

and the Darcy-Brinkman equations192

∇ ·vp = 0 , 0 =−∇pp +
1

εH
∆vp − 1

Da
vp , (3)

or the Darcy equations193

∇ ·vp = 0 , 0 =−∇pp − 1
Da

vp , (4)

if the first Brinkman correction is neglected or not in the porous phase.194

2.1 Interfacial jump conditions195

Following [3], we integrate the ODA governing equations (1) across the diffuse interfacial region in order196
to obtain jump conditions connecting the fluid and porous layers. We introduce the scale δB =

√
Da/εH197

below which Brinkman diffusive terms are dominant in the bulk of the porous medium. We will thus refer198
to δB as a Brinkman penetration depth.199

Noteworthy is that our definition of the Brinkman penetration depth differs from the thickness of the200
Brinkman boundary layer, which we denote here by ∆B, as identified by Hernandez-Rodriguez et al. [21]201
as the typical distance over which the velocity profile decreases drastically from the velocity at the surface202
of the porous medium to the Darcy seepage velocity. These authors have shown that the extension of this203
boundary layer is of the order of the size r0 of the averaging volume in the homogenization method, which204
also corresponds to the typical extension of the variations of the permeability distribution obtained by the205
same method [20]. Thus ∆B = O(∆), and may be much larger than the Brinkman penetration depth δB in206
their computations. We thus infer that the Brinkman boundary layer has a thickness ∆B of the order of the207
maximum of δB and ∆.208

As the interfacial region is thin in comparison to the macro scale, we stretch the normal coordinate as209
Y = y/∆. The continuity equation thus reads210

∆ux + vY = 0 (5)

Since ux = O(1) and, in the bulk of the porous region, the velocity is governed by the Darcy law, i.e.211
v = O(Da) = O(δ 2

B) = O(∆2/a2), we conclude that v = O(∆) in the interfacial region. We thus rescale the212
normal velocity component such that V = v/∆.213

The governing equations (1) then read214

VY = −ux , (6a)
1
ε

uYY −∆
2 u

κ
= ∆

2 Re
ε

[
ut +

(
u2

ε

)
x
+

(
uV
ε

)
Y

]
+∆

2 px −
∆2

ε
uxx , (6b)

1
ε

VYY −∆
2 V

κ
= ∆

2 Re
ε

[
Vt +

(
uV
ε

)
x
+

(
V 2

ε

)
Y

]
+ pY − ∆2

ε
Vxx , (6c)
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where ∆2/κ = O(1). Truncating at order ∆, we obtain a set of equations that we rewrite with the original215
scales216

vy = −ux , (7a)
1
ε

uyy −
u
κ

= 0 , (7b)

1
ε

vyy −
v
κ

= py (7c)

Thus, at the leading order, inertia is negligible in the interfacial region. The pressure gradient is oriented217
orthogonally to the interface and drives a flow in the normal direction.218

Following [3], we integrate (7) using the trapezoidal quadrature rule219 ∫ b

a
f (x)dx =

h
2
[ f (a)+ f (b)]+O

[
max

x∈[a,b]
| f ′′(x)|h3

]
(8)

where h = b−a, and the quadrature of the integral of products220 ∫ b

a
f (x)g(x)dx =

1
h

∫ b

a
f (x)dx

∫ b

a
g(x)dx+O

[
max

x∈[a,b]
|g′(x)|⟨|g|⟩h2

]
, (9)

with ⟨|g|⟩= h−1 ∫ b
a |g|dx.221

Therefore, integration of the continuity equation (7a) gives222

v|∆ − v|−∆ =−
∫

∆

−∆

uxdy ≈−∆(ux|∆ +ux|−∆) = ∆(vy|∆ + vy|−∆) , (10)

Similarly, we have223 ∫
∆

−∆

1
ε

uyydy ≈ 1
2∆

∫
∆

−∆

1
ε

dy
∫

∆

−∆

uyydy ≈ 1
2

(
1+

1
εH

)
(uy|∆ −uy|−∆) (11)

and224 ∫
∆

−∆

u
κ

dy ≈ ∆

( u
κ
|y=−∆ +

u
κ
|y=∆

)
≈ ∆

Da
u|−∆ (12)

We thus obtain225
1+ εH

2εH
(uy|∆ −uy|−∆) =

∆

Da
u|−∆ , (13)

We next integrate the normal momentum balance (7c) to obtain226

p|∆ − p|−∆ =
1+ εH

2εH
(vy|∆ − vy|−∆)−

∆

Da
v|−∆ , (14)

To complete our system of jump conditions connecting the fluid and porous layers, we need to write a227
relation between the jump of velocity and the shear stress. Still following [3], we write228 ∫

∆

−∆

1
ε

uydy ≈ 1
2∆

∫
∆

−∆

1
ε

dy
∫

∆

−∆

uydy (15)

Applying the trapezoidal rule (8) on each side of this equation gives229

1+ εH

2εH
(u|∆ −u|−∆) = ∆

(
uy|∆ +

1
εH

uy|−∆

)
(16)

Let us stress that we have computed the integrals
∫

∆

−∆
u/κdy and

∫
∆

−∆
v/κdy using the trapezoidal rule (8)230

instead of the quadrature rule (9) employed by Angot et al. [3]. As discussed in the appendix A, using (9)231
leads to u|∆ = O(∆)≪ 1, which erroneously implies that the fluid layer essentially sees a no-slip boundary232
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condition at the top of the interfacial region and therefore that the extension of the Brinkman boundary233
layer is negligible. We note that, contrary to (58a), the jump of the tangential shear stress (13) is naturally234
balanced as uy|∆ −uy|−∆ = O(∆) and u|−∆ = O(Da/εH) since the flow in the bulk of the porous medium is235
essentially governed by the Darcy law.236

In order to obtain a set of symmetrical jump relations for the tangential and normal velocities, we237
rewrite the normal velocity jump by evaluating the integral

∫
∆

−∆
vy/εdy, which gives238

1+ εH

2εH
(v|∆ − v|−∆) = ∆

(
vy|∆ +

1
εH

vy|−∆

)
(17)

Finally, we write a jump relation for the gradient of pressure that will be used to close the system of239
equations for the boundary conditions that we will derive in the next section. Taking the divergence of the240
momentum balance gives241

pyy = vyy
d
dy

(
1
ε

)
− v

d
dy

(
1
κ

)
(18)

which we integrate across the interfacial region as242

∫
∆

−∆

pyy dy =
[

d
dy

(
1
ε

)
vy −

v
κ

]∆

−∆

−
∫

∆

−∆

d2

dy2

(
1
ε

)
vy −

1
κ

vy dy (19)

which gives243

py|∆ − py|−∆ =
1

Da
(v|−∆ −∆vy|−∆) (20)

which, with the help of (7c), can also be rewritten as244

vyy|∆ −
1

εH
vyy|−∆ =− ∆

Da
vy|−∆ (21)

Next, we integrate vyy/ε to get245

1+ εH

2εH
(vy|∆ − vy|−∆) = ∆

(
vyy|∆ +

1
εH

vyy|−∆

)
. (22)

The jump relations (21) and (22) will be used to eliminate the second derivatives of the normal velocity v246
and close our set of boundary equations as discussed in the next section.247

The set of four jump conditions (13), (16), (14) and (17), is similar to the one derived by [3]. However,248
these authors postulated ux to be negligible, and thus also vy, and therefore found the normal velocity to be249
continuous within the interfacial region instead of the jump condition (17).250

2.2 Two-domain approach boundary conditions251

In this section, we propose to derive from the jump conditions (13), (14), (16), (17), (21) and (22), boundary252
conditions for the two-domain approach (TDA). We assume that the solution to the TDA, labelled with l253
and p superscripts to denote the fluid and porous regions, coincides with the ODA solution outside the254
diffuse interface. Similarly to section 2.1, considering the diffuse interface to be thin, a boundary-layer255
analysis gives at leading order256

vp
y = −up

x ,
1

εH
up

yy −
up

Da
= 0 ,

1
εH

vp
yy −

vp

Da
− pp

y = 0 , (23a)

vl
y = −ul

x , ul
yy = 0 , vl

yy − pl
y = 0 . (23b)

Taking the divergence of the momentum balances gives Laplace equations for the pressure field, i.e.257

pl
yy = 0 , pp

yy = 0 , (24)
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from which we deduce that the pressure gradients pl
y and pp

y are independent of y at leading order within258
the interfacial region. Matching with the outer regions thus ensures that pl

y and pp
y are O(1) quantities259

and therefore, vp = O(∆2), vp
y = O(∆), vp

yy = O(1), vl = O(∆2), vl
y = O(∆) and vl

yy = O(1). Consequently,260
the continuity equations provide the estimates up = O(∆), up

y = O(1), ul = O(∆), ul
y = O(1) within the261

interfacial region. These ordering relations will be used to discuss the boundary conditions which we262
propose below.263

From (23), the tangential velocity component can easily be integrated to give264

up = up|i cosh
y− yi

δB
+δBup

y |i sinh
y− yi

δB
, ul = ul |i +(y− yi)ul

y|i (25a)

From which the normal velocity component can be obtained with the help of the continuity equation265

vp = vp|i + vp
y |iδB sinh

y− yi

δB
+ vp

yy|iδ 2
B

[
cosh

y− yi

δB
−1

]
, vl = vl |i +(y− yi)vl

y|i +
(y− yi)

2

2
vl

yy|i ,

(25b)
and the pressure distribution266

pp = pp|i +(y− yi)

(
1

εH
vp

yy|i −
vp|i
Da

)
, pl = pl |i +(y− yi)vl

yy|i (25c)

Substitution of (25) into (13) and (16) leads to the following boundary conditions expressed at the sharp267
interface y = yi :268

pl |i − pp|i =
ξ

δBεH
vp|i +

1+ εH

2εH
vl

y|i −αvp
y |i +(ξ + γ)δBvl

yy|i (26a)

+

(
β − ξ

εH

)
δBvp

yy|i ,

1+ εH

2εH
ul

y|i −α up
y |i = − β

δB
up|i , (26b)

1+ εH

2εH
ul |i −α up|i = −γδBul

y|i −βδBup
y |i , (26c)

1+ εH

2εH

(
vl |i − vp|i

)
= −γδBvl

y|i −βδBvp
y |i +ζ δ

2
Bvl

yy|i +δ
2
B

(
α − 1+ εH

2εH

)
vp

yy|i , (26d)

vl
yy|i − α̂vp

yy|i = − β̂

δB
vp

y |i , (26e)

1+ εH

2εH
vl

y|i −α vp
y |i = −γδBvl

yy|i −βδBvp
yy|i , (26f)

where ξ = yi/δB and269

α =
(1+ εH)C−2aS

2εH
, β =

(1+ εH)S−2aC
2εH

, γ =
(a−ξ )(1− εH)

2εH
−ξ , (27a)

ζ =
(a−ξ )[ξ (1+ εH)+a(3εH −1)]

4εH
, (27b)

α̂ =
C+aS

εH
, β̂ =

S+aC
εH

, (27c)

C = cosh(a+ξ ) , S = sinh(a+ξ ) , and a = ∆/δB . (27d)

Differentiating (26b) and (26c) with respect to x and adding them to (26d) and (26a) gives270

pl |i − pp|i =
ξ

δBεH
vp|i +ξ δB

(
vl

yy|i −
1

εH
vp

yy|i
)
, (28a)

1+ εH

2εH

(
vl |i − vp|i

)
= −γδBvl

y|i +δ
2
B

(
ζ +

1+ εH

2εH

)
vl

yy|i −δ
2
B

1+ εH

2εH
vp

yy|i (28b)

8



Combining (26e) and (26f) enables to eliminate vl
yy|i and vp

yy|i, which leads to the boundary conditions271

pl |i − pp|i =
ξ

δBεH
vp|i −ξ

(
φvl

y|i +ψvp
y |i

)
, (29a)

1+ εH

2εH
ul

y|i −α up
y |i = − β

δB
up|i , (29b)

1+ εH

2εH
ul |i −α up|i = −γδBul

y|i −βδBup
y |i , (29c)

vl |i − vp|i = −φ̂δBvl
y|i − ψ̂δBvp

y |i . (29d)

where272

φ =
(1+ εH)(α̂εH −1)

2ε2
H(β + α̂γ)

, (30a)

ψ =
α(1− α̂εH)+ β̂ (βεH + γ)

εH(β + α̂γ)
, (30b)

φ̂ =
α̂ − (1+ εH)

2 +4βε2
Hγ + α̂εH

[
2+ εH +4εHγ2 +2(1+ εH)ζ

]
2εH(1+ εH)(β + γα̂)

, (30c)

ψ̂ =
(1+ εH)[α(1− α̂)+(β + γ)β̂ ]+2(ββ̂ −αα̂)εHζ

(1+ εH)(β + γα̂)
(30d)

Conditions (29c) and (29d) represent the jump of velocity induced by the shear rate in the interfacial273
region. (29a) corresponds to the jump of pressure generated by the balance of normal stresses at the274
interface. Finally, (29b) accounts for the friction exerted by the porous medium on the flow in the interfacial275
region, which is responsible for a jump in tangential shear rate.276

From (29a), we obtain that, at the leading order, the pressure is continuous if the sharp interface is277
chosen to correspond to the middle of the diffuse interfacial region (ξ = 0). This result is consistent with278
the pore-scale simulations of a fluid-porous interface performed by Carraro et al. [10] for an isotropic279
porous medium. However, the coefficients of the boundary conditions (29) are dependent on the choice280
of location of the dividing sharp interface through the parameter ξ . This calls for the best choice of that281
parameter, which enables to obtain the best agreement between ODA and TDA solutions. Finding the best282
value for ξ has no clear answer. However, since tangential velocities ul and up are O(∆) in the interfacial283
region, whereas the normal velocities are O(∆2), it is convenient to look for the value of ξ based on the284
tangential velocity profiles.285

The Darcy seepage velocity being small, we propose to adjust ξ in order to set ul |i to zero, or close286
to zero, so that up|i ≈ ul |i. Because of the exponential nature of the solution (25), we have up|i ≈ δBup

y |i.287
Thus, setting up|i = δBup

y |i and ul |i into the velocity and shear stress boundary conditions (29c) and (29b)288
yield289

(1+ εH −2εHγ)ul
y|i = 0 (31)

Since ul
y|i ̸= 0, we obtain a condition for the location of the sharp interface, namely290

ξ =
a(1− εH)−1− εH

1+ εH
, (32)

The condition ξ > −a implies a > (1+ εH)/2. Thus, (32) will be employed only for a > (1+ εH)/2291
to guarantee a location of the sharp dividing interface within the interfacial region. In the case of a thin292
interfacial region, for which a < (1+ εH)/2, the sharp dividing interface is placed at the middle of the293
interfacial region (ξ = 0).294

2.3 Thick interface limit295

The thickness of the interfacial region is generally much larger than the Brinkman penetration depth, so296
the ratio a = ∆/δB > 1. This is justified by the experimental observations of Goharzadeh et al. [17]. Let297
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us thus consider the limit of a thick diffuse interface, i.e. A = e−a ≪ 1, cosha ≈ 1/(2A) and sinha ≈298
1/(2A). Expanding the boundary conditions (29c) and (29b) for the tangential velocities and shear rates299
and truncating them at the leading order with respect to A give300

up|i = δBup
y |i , (33a)

ul |i = −δB
(1− εH)a+(1+ εH)(1−ξ )

1+ εH
ul

y|i , (33b)

Therefore, in the case of a thick diffuse interface, a partial decoupling of the fluid and porous regions301
is observed as the shear rate at the sharp interface y = yi in the fluid (porous) region depends only on302
the velocity in the fluid (porous) region. (33b) is the slip boundary condition obtained by [42] using303
homogenization techniques, starting from the Darcy equations in the porous medium [26].304

We note that a ≫ 1 implies that the diffuse interface thickness 2∆ is much larger than the Brinkman305
penetration depth δB, which is the scale below which Brinkman diffusive terms are effective. Therefore,306
the Brinkman diffusion is inefficient at the scale ∆ and the fluid region experiences a permeable boundary307
essentially governed by the Darcy law. Since scales smaller or of the order of ∆ are not resolved in the308
TDA, accounting for the Brinkman diffusive terms in the homogeneous porous region in the limit of a309
thick diffuse interface makes little sense. Besides, for a thick interfacial region, the exponential nature of310
the solution to the Darcy-Brinkman equation leads to unrealistic values of up. Therefore, we assume a311
Darcy flow in the porous medium. Because of the degeneracy of the Darcy equation, the condition (33a)312
cannot be enforced in that case. Besides, for a Darcy flow, (24) implies that vp

y ≈ 0 in the interfacial region.313
We thus obtain314

ul |i = Lul
y|i , (34a)

pl |i − pp|i = −Fvp|i +Gvl
y|i , (34b)

vl |i − vp|i = Mvl
y|i . (34c)

where315

L = −δB
(1− εH)a+(1+ εH)(1−ξ )

1+ εH
, F =− ξ

δBεH
, (35a)

G =
ξ (1+a)(1+ εH)

a2(εH −1)− (1+ εH)(εH −ξ )+a[ξ −1+ εH(3+ξ )]
, (35b)

M = δB
MA

MB
, (35c)

MA = a3[−1+(2−5εH)εH ]+ (1+ εH)
2(−2+2εHξ −ξ

2)

+a(1+ εH){−2+2ε
2
H − (ξ −2)ξ − εH [4+ξ (6+ξ )]}

+a2{−1+2ξ + εH [6− εH(9+2ξ )]} , (35d)
MB = 2(1+ εH)(a+a2 + εH −3aεH −a2

εH + ε
2
H − (1+a)(1+ εH)ξ ) . (35e)

System (34) is similar to the model proposed by [29] to represent the interfacial momentum transfer at a316
rough or porous interface. Lācis et al. introduced a length, corresponding to the dimensionless coefficient317
M, which they call transpiration length, which represents the distance below which the normal velocity318
component differs from the Darcy seepage velocity. They also introduced a resistance coefficient F , which319
modelled the friction of the porous matrix on the flow in the normal direction. However, they assumed the320
shear stress in the fluid layer at the sharp interface to be equal to its value in the bulk of the flow, which321
corresponds to taking G equal to 2. Note that in our derivation, coefficients F and G are proportional to ξ .322
Hereinafter, we refer to (34) as the Slip-Transpiration-Resistance (STR) model.323

The STR model (34) can be further simplified by conveniently choosing the location of the sharp324
interface such that to cancel out the slip length L = 0, which gives325

ξ =
1+a+ εH(1−a)

1+ εH
. (36)
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This choice leads to a no-slip boundary condition ul |i = 0, or more exactly to ul |i = O(∆2) as we solve the326
leading-order system of equations with respect to the expansion parameter ∆. Since the seepage velocity in327
the porous medium is O(∆2), we replace this no-slip condition with the continuity of the tangential velocity.328
Therefore, (34) is modified into329

ul |i = up|i , (37a)
pl |i − pp|i = −Fvp|i +Gvl

y|i , (37b)

vl |i − vp|i = Mvl
y|i , (37c)

which we refer to hereinafter as the Dirichlet-Transpiration-Resistance (DTR) model. The resistance coef-330
ficient F , the transpiration dimensionless length M and the stress coefficient G are then given by331

F = − ξ

δBεH
=−1+a+ εH(1−a)

δBεH(1+ εH)
, G =

1+ εH +a[2+a(1− εH)]

1− ε2
H +a(1+3εH)

, (38a)

M = δB
4a2ε2

H(1+a)− (1+ εH)
2(2εH −3)+a(3+10εH +7ε2

H)

2(1+ εH)[1− ε2
H +a(1+3εH)]

. (38b)

Let us underline that the no-slip boundary condition ul |i = 0 would have led to inconsistencies, as it332
implies that vl

y|i =−ul
x|i = 0. However, vl

y = O(∆2) is of the same order of magnitude as vp|i = O(∆2) and333
must not be dropped out.334

2.4 Two-domain approach boundary conditions for a Darcy flow335

As stated above, the exponential nature of the solution to the TDA approach within the interfacial re-336
gion leads to unreasonable values of the tangential velocity in the vicinity of the sharp interface when the337
boundary conditions (29) are applied, i.e. whenever a ⪆ 2 as will be shown in the next section. The condi-338
tions (37) can be employed along with the Darcy equation in the homogeneous porous medium but only if339
ea ≫ 1, which requires a ⪆ 5. Another set of boundary conditions must be derived to bridge the gap in the340
range 2 ⪅ a ⪅ 5.341

A remedy for this drawback is to assume a Darcy flow within the homogeneous porous medium in the342
interfacial region. Thus, the leading-order equations for the TDA approach within the interfacial region343
become344

vp
y =−up

x ,
up

Da
= 0 ,

vp

Da
+ pp

y = 0 . (39)

which gives up = 0 in the interfacial region, so that the tangential velocity is at least of order O(∆2).345
Considering a zero tangential velocity yields a too-degenerate representation of the flow. We thus assume346
up small but non-zero and introduce the ansatz347

up = up|i , vp = vp|i +(y− yi)vp
y |i , pp = pp|i −

1
Da

(
(y− yi)vp|i +

(y− yi)
2

2
vp

y |i
)

(40)

Thus the jump conditions (13) and (16) for the tangential velocity and shear stress yield348

up|i =
1+ εH

2a
ul

y|i , (41a)

1+ εH

2εH
ul |i =

[
a+

(1+ εH)(1−2a2 + εH +2aξ )

4aεH

]
δBul

y|i . (41b)

The relation (41a) is degenerate as the Darcy law is of lower order than the Darcy-Brinkman law and,349
therefore, cannot be enforced as a boundary condition at the fluid-porous sharp interface.350

Substitution in the jump conditions for the pressure gradient and the normal shear stress give351

vl
yy|i =

a(1+ εH)

δB[a2(εH −1)− εH(1+ εH)+a(1+ εH)ξ ]
vl

y|i , (42)

vp
y |i =

εH(1+ εH)

a2(1− εH)+ εH(1+ εH)−a(1+ εH)ξ
vl

y|i (43)
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The set of boundary conditions then reduces to the STR model (34) where352

L = δB

[
a(εH −1)

1+ εH
+

1+ εH

2a
+ξ

]
, F =− ξ

δBεH
, (44a)

G = − (1+ εH)(a2 −2aξ −ξ 2)

2[a2(εH −1)− εH(1+ εH)+a(1+ εH)ξ ]
, (44b)

M = −δBa
[

a2[1+ εH(5εH −2)]+2a(ε2
H −1)ξ +(1+ εH)

2ξ 2

4εH(a2 + εH −a2εH + ε2
H −a(1+ εH)ξ

]
. (44c)

Note that, unlike (35), the expression of the coefficient G in (44) is not proportional to ξ , as a result of353
the dissymmetry of the pressure distributions in the fluid and porous layers introduced by the choice of the354
Darcy law in the interfacial region.355

The slip length L can again be set to zero by adjusting the location of the sharp interface such that356

ξ =
1− εH

1+ εH
a− 1+ εH

2a
(45)

We thus again simplify the STR model (34) into the DTR model (37) where the coefficients F G and M are357
given by358

F = − ξ

δBεH
=− 1

δBεH

(
1− εH

1+ εH
a− 1+ εH

2a

)
, (46a)

G =
8a2(1+ εH)

2 − (1+ εH)
4 +8a4[εH(2+ εH)−1]

4a2(1+ εH)2(1+3εH)
, (46b)

M = −δB
1+ εH [6+16a4 + εH(4+ εH)]

4a(1+ εH)2(1+3εH)
. (46c)

2.5 Discussion359

So far, we have obtained three different formulations (29), (37) with (38), and (37) with (46), depending360
on the relative thickness a = ∆/δB of the interfacial region with respect to the Brinkman penetration depth.361
For a < 2, the Darcy-Brinkman governing equations (3) are closed by the jump conditions (29) for the362
velocity, shear rate and pressure fields.363

For a > 2, we expect the Brinkman sub-layer to be contained within the interfacial region, such that364
the appropriate governing equations in the porous medium are the Darcy equations (4). We obtained365
two similar sets of boundary conditions in that case, either by taking the limit ea ≫ 1 or by assuming the366
Darcy equations to apply within the interfacial region, which is similar to the transpiration-resistance model367
obtained by Lācis et al. [29] when written at an interface location for which the continuity of the tangential368
velocities replaces the Navier slip condition. However, in both cases, the resistance coefficient F is given369
by the same expression F =−ξ/(δBεH). Thus, the sign of F depends on the choice of the location of the370
sharp interface, whereas Lācis et al. [29] assumed it to be positive. The expression of the coefficient F371
can be determined rigorously, independently, without the quadrature rules employed to obtain the pressure372
jump condition (21) as shown in Appendix B.373

3 Validation374

In this section, we test the boundary conditions obtained for the TDA problem by comparing the solutions375
of TDA and ODA.376

3.1 Channel flow377

We first consider a parallel and stationary flow in a channel. The lower half of the channel is filled by378
a homogeneous and isotropic porous medium, and the upper half of the channel is a fluid region. The379
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Ratio a Transfer model
Interface location ξ

0 < a < 1+εH
2 Darcy-Brinkman with jump BCs (29) ξ = 0

1+εH
2 < a < 2 Darcy-Brinkman with jump BCs (29) ξ given by (32)

2 < a < 5 Darcy with DTR model l(37) and (46) ξ given by (45)

a > 5 Darcy with DTR model (37) and (38) ξ given by (36)

Table 1: Summary of the different proposed representations of the mass and momentum transfer at the
fluid-porous interface within the two-domain approach.

interfacial region extending from y =−∆ to y = ∆ is modelled within the ODA by differentiable functions380
of the form381

ε(y) =
1
2
[1+ εH +(1− εH)erf(by)] ,

1
κ(y)

=
1

2Da
[1− erf(by)] , (47)

where the constant b determines the extension ∆ of the interfacial region. The channel height is denoted382
by H, whereas the thickness of the porous medium is δ . The pressure gradient is adjusted so that the383
averaged velocity is set to unity. The numerical solution to this problem has been obtained by continuation384
methods using software AUTO07P [15]. The channel height and the extension of the porous medium are385
set to H = 1 and δ = 0.5, respectively, so that the fluid and porous regions have comparable sizes. The386
homogeneous porosity was set to εH = 0.41 which is a typically reported value for packed beds [18].387

As ∆ is a crucial variable for the computation of the appropriate boundary conditions for the equivalent388
TDA problem, we carefully adjusted the constant b by considering the numerical solutions to the GTE389
equations (1). An example is shown in figure 2 for Da = 10−4, εH = 0.41 and b = 20. The upper boundary390
of the interfacial region may be evaluated as the location of the maximum of the shear rate uy, i.e. y= 0.082,391
which gives ∆≈ 1.64/b. Hereinafter, we set b= 2/∆, thus a slightly larger evaluation of ∆, such that ε(−∆)392
and κ(−∆) depart from their constant values in the homogeneous porous region, εH and Da, by a relative393
distance of only 3×10−3.394

Modifying the representation of the continuous variations of the porosity and permeability in the inter-395
facial region has a significant but weak influence on the ODA solution. We compare in figure 3 the solutions396
to the GTE equations (1) with the error-function representation (47) and with a hyperbolic-tangent repre-397
sentation398

ε(y) =
1
2
[1+ εH +(1− εH) tanh(b1y)] ,

1
κ(y)

=
1

2Da
[1− tanh(b1y)] with b1 =

√
π ln4 (48)

where the constant b1 has been adjusted such that the global friction exerted by the porous matrix on the399
flow may be equivalent, i.e.

∫
∞

0 erf(2y)dy =
∫

∞

0 tanh(b1y)dy.400
Figure 4 compares the solution to GTE equations (1) with and without the second Brinkman corrections401

for Da = 10−4 and different values of the ratio a = ∆/δB of the thickness of the interfacial region to the402
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Figure 2: ODA solution to GTE (1) with error-function distributions (47) of porosity and permeability,
Da = 10−4 and εH = 0.41 and b = 20. The shaded band materializes the interfacial region defined by
∆ = 2/b.
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Figure 3: Comparison of ODA solutions with error-function distributions (47) of porosity and permeability
(solid line), and hyperbolic-tangent distributions (48) (dashed lines) for different values of the ratio a of
the interfacial region thickness ∆ to the Brinkman penetration depth δB. Left: comparison of the velocity
profiles; right: comparison of the maximum velocity umax as a function of ∆. Da = 10−4 and εH = 0.41.
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Figure 4: Comparison of ODA solutions with (dotted line) and without (solid line) second-order Brinkman
corrections for different values of the ratio a of the thickness of the interfacial region to the Brinkman
penetration depth. Left: comparison of the velocity profiles; right: comparison of the maximum velocity
umax as functions of a. Da = 10−4 and εH = 0.41.

Brinkman penetration depth. Since the first-order correction is of the order O(δ−2
B ) and the second-order403

corrections are of the order O(∆δB), we expect the second-order Brinkman terms to be negligible at large404
values of a. Our computations confirm that second-order Brinkman corrections affect only weakly the ODA405
solution whenever a is larger than 0.5. Our findings suggest that neglecting the second-order Brinkman406
corrections is a valid simplification. Though, in agreement with Hernandez-Rodriguez et al. [20], we407
observe that the difference between the ODA solutions with and without these terms decreases only slowly408
with a.409

We also observe that the velocity of the fluid at the inferior limit of the interfacial region, u(y = −∆),410
departs from the seepage velocity −Da px by a relative value which is inferior to 10 % whenever a is larger411
than 5 and for the tested range of porosities εH ∈ [0.2,0.8]. We thus conclude that the Brinkman diffusion412
sub-layer can be assumed to be entirely contained within the interfacial region for a > 5, which justifies the413
derivation of the DTR model (37) in the thick-interface limit. Besides, for a > 2, the velocity in the porous414
region remains small as u(y =−∆) is smaller than two times the seepage velocity −Da px, which justifies415
the use of the Darcy equations (4) and the DTR model (37) for 2 < a < 5, even if the Brinkman sub-layer416
is not entirely contained within the interfacial region in that case.417

We next compute the solutions to the TDA problem using the boundary conditions we have derived in418
section 2.2. Accuracy is assessed by comparisons to the reference ODA solutions in the fluid and porous419
outer regions, as TDA and ODA problems differ in the interfacial region.420

Figure 5 compares the solutions to the TDA and ODA approaches as a is varied. The thickness of the421
interfacial region is maintained as ∆ = 0.01 by adjusting the Darcy number for ease of comparison. For422
all tested values of the parameter a, an excellent agreement of the TDA and ODA solutions is observed423
outside the interfacial region. At a = 0.5, the ODA solution presents large deviations of the velocity424
profile in the porous medium from the Darcy seepage velocity, which demonstrates that the Brinkman425
sub-layer is not contained within the interfacial region in that case. Panel a compares the solution of the426
GTE equations (1) to the TDA solution, where the flow in the porous layer is modelled by the Darcy-427
Brinkman law (3) and applying the jump boundary conditions (29) at the middle of the interfacial region428
(ξ = 0). An excellent agreement is found. In particular, the maximum velocity of the flow is accurately429
captured. Similar excellent agreements are observed at a = 1.5 (panel b) and a = 3 (panel c) where the430
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location of the dividing interface is adjusted with formula (32) so as to approach a near zero velocity at this431
interface. However, the solution to the Darcy-Brinkman equation (3) presents large deviations from the432
nearly constant velocity profile of the ODA solution in the vicinity of dividing interface for a = 3. Instead,433
the solution to the TDA approach modelled by the Darcy equation (4) and the DTR boundary conditions434
(37) accurately capture the flow in the porous medium, with the exception of the Brinkman layer at the435
lower wall. However, a less convincing agreement is found with the ODA solution in the fluid layer than436
with the TDA approach modelled by the Darcy-Brinkman equation (3) and (29). At a = 10, the TDA437
approach is modelled by the Darcy equation (4) and the DTR boundary conditions (37) with (38) or (46).438
The expressions (38) of the coefficients of the DTR model provide the best result with a solution in the fluid439
layer, which nearly coincides with the ODA solution. Indeed, the derivation of the DTR model of interfacial440
momentum transfer presented in section 2.3 accounts for the Brinkman sub-layer in the interfacial region,441
whereas the derivation of this model presented in section 2.4 assumes only a Darcy flow.442

So far, we have compared the ODA and TDA solutions for which the boundary conditions have been443
derived by solving the TDA governing equations in the interfacial region in section 2.2. These boundary444
conditions, either (29) or the DTR model (37) are considerably more complex than the jump boundary445
conditions derived in section 2.1. Following Angot et al. [3], one may neglect the thickness of the interfacial446
region and directly apply on the sharp interface at yi = 0 the jump conditions (13), (16), (14) and (17). Using447
the Darcy-Brinkman equations (3), the result is compared to the ODA solution in figure 6 for a = 0.5 and448
a = 10 and the same parameter set as that in figure 5. Without surprise, the agreement to the ODA solution449
is less convincing than when the thickness of the interfacial region is accounted for.450

We end this section by discussing the influence of the location of the dividing interface, as defined by451
the parameter ξ , on the accuracy of the TDA solution with respect to the ODA solution. In our approach, the452
location of the dividing interface is adjusted to correspond approximately to the cancelling of the velocity453
in the fluid side ul . This choice reflects the fact that the velocity in the fluid layer is much larger than in454
the porous layer, so the accuracy of the TDA solution corresponds principally to its capacity to represent455
correctly the flow in the fluid layer.456

The location at which the velocity in the fluid layer effectively cancels can be evaluated by fitting the457
ODA solution by a parabola in the fluid region. Figure 7 compares the relative location of the dividing458
interface ξ/a obtained by this procedure to the estimates (32), (36) and (45) for two values of the porosity,459
εH = 0.41 and εH = 0.78. The latter value is typical of metal foam, for instance. For both cases, a460
reasonable agreement is found. The estimate (32) used in the range a ∈ [(1+ εH)/2,2] is particularly461
accurate. The estimates (32) and (45) presents the same trend as the parabolic fit to the ODA solution,462
whereas the estimate (36) shows a different trend. However, all three estimates converge to the same463
asymptote ξ/a = (1− εH)/(1+ εH) as a is increased.464

3.2 Stagnation point465

We extend the well-known solution of a viscous stagnation point on a solid wall [44] to the case of a466
porous one with suction. The porous medium extends from y =−δ to the fluid-porous boundary at y = 0,467
whereas the overlying fluid layer extends to y = H with H ≫ δ in order to mimic a plane irrotational flow468
impinging a wall. The flow is assumed to be potential far from the boundary, i.e., u ≈ x, v ≈ −y+ cst.,469
p ≈ − x2+y2

2 + cst.. We introduce a suction velocity vs = −ADa at the bottom y = −δ of the porous470
medium. In this test case, the Darcy seepage velocity is oriented in neither normal nor tangential direction471
to the porous-fluid interface. Besides, vy ̸= 0 in the interfacial region will enable us to check the presence472
of pressure jumps and normal velocity. The length scale is adjusted to set the Reynolds number to unity473
without loss of generality.474

Following Schlichting & Gersten [44], we introduce the ansatz:475

u = x f ′(y) , v =− f (y) , p =−x2

2
−g(y) , (49)

which enables to reduce the resolution of the original 2D problem to a 1D one. Within the ODA approach,476
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Figure 5: Comparison of ODA and TDA solutions for a constant thickness ∆ = 0.01 of the diffuse interface
and different values of a. The Darcy number is adjusted to Da = εH(∆/a)2 to mmaintain ∆ constant.
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Figure 6: Comparison of ODA and TDA solutions using the jump condition (13) and (16) when applied
directly at the dividing interface y = 0. See the caption of figure 5.
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Figure 7: Estimation of the relative location ξ/a of the fluid-porous sharp interface from a parabolic fit
of the ODA solution as compared to the formulae (32), (45) (36) for Da = 10−4 and εH = 0.41 (left) and
εH = 0.78 (right). See Table 1. The straight lines indicate the locations of the diffuse interface boundaries
(ξ =±a).
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Figure 8: Streamlines in the porous region and in the vicinity of the diffuse interface (shaded regions) for
the flow around a stagnation point with suction. δ = 0.5, Da = 10−3, εH = 0.78 and a = 1.89.

the system of equations to be solved thus reads477

f ′′′

ε
− f ′

κ
=

1
ε

[
( f ′)2 − f f ′′

ε
+

ε ′

ε2 f f ′
]
−1 , (50a)

f ′′

ε
− f

κ
=

1
ε

[
− f f ′

ε
+

ε ′

ε2 f 2
]
+g′ , (50b)

with the associated boundary conditions478

f (−δ ) = ADa , f ′(−δ ) = g(−δ ) = 0 , f (H) = 1 . (51)

Within the TDA approach, the Darcy-Brinkman equations (3) yields479

f p′′′

εH
− f p′

Da
=

( f p′)2 − f p f p′′

ε2
H

−1 ,
f p′′

εH
− f p

Da
=− f p f p′

ε2
H

+gp′ , (52a)

f l ′′′ = ( f l ′)2 − f l f l ′′−1 , f l ′′ =− f l f l ′+gl ′ , (52b)

which is closed by (51). Considering instead a Darcy flow within the porous medium, this system of480
equations reduces to (52b) with f p = Da(A+ y) and gp =−

(
Ay+ 1

2 y2
)
.481

We solve again systems (50) and (52) by continuation methods using AUTO07P software for the set of482
parameters δ = 0.5, H = 10 and εH = 0.41 or εH = 0.78. In the present test, the thickness of the interfacial483
region is evaluated using the Carman-Kozeny relation, which relates the typical grain size d of packed beds484
to their permeability485

κH =
ε3

Hd2

180(1− εH)2 . (53)

Goharzadeh et al. [17] estimated the thickness of the diffuse interface to correspond to the size of a grain.486
We thus deduce from (53) an estimate for the dimensionless thickness of the interfacial region,487

∆ ≈ 3
√

5
1− εH

εH
δB , (54)

which gives ∆ ≈ 9.6δB for εH = 0.41 and ∆ = 1.89δB for εH = 0.78.488
We first consider the case of a relatively thin interfacial region, for Da = 10−3, εH = 0.78 and a = 1.89.489

Figure 8 illustrates the flow pattern and its symmetry around the stagnation point located at x = 0, in the490
porous region and at the diffuse interface. The streamlines are obtained from the expression x f (y) of491
the stream function corresponding to the ODA solutions and to the TDA solution to the Darcy-Brinkman492
equation (52) with the jump boundary conditions (29). An excellent agreement is observed in the fluid and493
porous regions outside the diffuse interface.494
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Figure 9 further offers a direct comparison of the ODA solution to TDA solutions to the Darcy-495
Brinkman equation (52) with the jump boundary conditions (29), as well as to (52b) with the Darcy flow496
f p = Da(A+y) and gp =−

(
Ay+ 1

2 y2
)

and the DTR model (37) with (46). The Darcy-Brinkman equation497
with the jump conditions (29) predicts the velocity field (u ∝ f ′ and v ∝ f ) satisfactorily, even if the normal498
velocity in the fluid layer presents some discrepancies with the ODA solution. The velocity in the porous499
layer in the vicinity of the dividing interface is also somewhat overestimated. The solution to the TDA500
approach assuming a Darcy flow in the porous medium and using the DTR transfer model also performs501
satisfactorily. In particular, in both cases, the TDA approach reproduces accurately the pressure distribution502
within the flow represented by the function g, as well as the jump of tangential shear stress uy ∝ f ′′ across503
the interfacial region. Note that both (29) and (37) predict a positive jump of the pressure at the dividing504
interface, pl |i − pp|i > 0.505

We next consider Da = 10−4 and a porosity εH = 0.41, representative of packed beds, for which the506
Carman-Kozeny relation gives an estimate of the interfacial thickness corresponding to a relatively large507
value of a = 9.6. This time we compare the solution to the TDA with a Darcy flow f p = Da(A + y)508
and gp = −

(
Ay+ 1

2 y2
)

and the DTR model (37) with (38) or (46) to the reference solution to the ODA509
equations (50). An excellent agreement is observed either for the coefficient expressions (38) obtained in510
the limit ea ≫ 1 or the expressions (46) obtained considering a Darcy flow in the interfacial region. As511
for the parallel flow considered in § 3.1, the solution to the ODA approach predicts a velocity field in512
the homogeneous porous region (y < −∆) which remains close to the seepage velocity −Da∇p. We thus513
conclude that the assumption of a Brinkman sub-layer entirely contained in the interfacial region is again514
justified. The DTR model, either with (38) or (46), predicts a location of the dividing interface above515
the centre of the interfacial region (ξ > 0) in close agreement with the coordinate at which the velocity516
predicted by the ODA solution departs from the seepage Darcy velocity. The pressure jump pl |i − pp|i is517
then negative. A situation which is inverted with respect to the case εH = 0.78 (ξ < 0 and pl |i − pp|i > 0),518
and is a direct consequence of the proportionality of the resistance coefficient F with ξ .519

4 Concluding Remarks520

The present investigation has considered a long-standing challenge to accurately describe and model the521
transport phenomena in a fluid-porous medium system and the transitional region between the two domains522
responsible for interfacial mass and momentum transfer. Our starting point is the GTE equations (1) as a523
valid macroscopic description of the momentum transfer at the fluid-porous interface [20]. Following524
Angot et al. [3], we have integrated the GTE equations across the interfacial region to obtain jump boundary525
conditions for the speed, pressure and shear stresses. Our derivation completes the work of Angot et al.526
by taking into account the variations of the normal velocity (vy ̸= 0), which yields a jump condition (16)527
for the normal velocity instead of the continuity condition postulated by Angot et al. [3], Ochoa-Tapia &528
Whitaker [39].529

Within the framework of TDA, the jump conditions across the interfacial regions are rewritten at the530
fictitious dividing interface separating the homogeneous and isotropic porous medium and the fluid layer531
by solving the creeping flow in the interfacial region. Two parameters are identified, namely, the Brinkman532
penetration depth (δB =

√
Da/εH ) and the ratio of the transitional thickness to the Brinkman penetration533

depth (a = ∆/δB), which facilitated the derivation of the effective homogenized boundary conditions with534
coefficients expressed explicitly in terms of these two parameters. For a porous medium with given poros-535
ity, the coefficients in the boundary conditions account for the details about the diffusive transport into the536
porous medium across the interface and the frictional force generated by the Darcy seepage velocity that537
provides resistance to the imposed shear from the fluid region. The jump conditions are imposed on a fictive538
interface whose location within the transitional region can be specified in terms of another parameter (ξ )539
that depends on the parameters δB and a. The exact location of the interface may be decided by requiring540
that the obtained TDA solutions match very closely with the corresponding ODA solutions.541

This study proposes three different formulations depending on the parameter a. When a< 2, the Darcy-542
Brinkman equations (3) are closed by the jump conditions (29) for the velocity, shear rate and pressure543
distribution. For a > 2, two similar sets of equations are derived, either by considering the limit ea ≫ 1 or544
by assuming the Darcy equation to be valid within the interfacial region. This formulation is based on the545
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Figure 9: Comparison of ODA solution to (50), labelled ‘ODA’, with the TDA solution to (52) and (29),
labelled ‘TDA Brinkman’, and with the TDA solution to (52b) and (37) with (46), labelled ‘TDA Darcy’.
(Da = 10−3, εH = 0.78, a = 1.89 and A = 2).
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Figure 10: Comparison of ODA solution to (50), labelled ‘ODA’, with the TDA solutions to (52b) and the
DTR model with (38), labelled ‘TDA a ≫ 1’, and (46), labelled ‘TDA Darcy’. (Da = 10−4, εH = 0.41,
a = 9.7 and A = 2).
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consideration that the Brinkman sub-layer is contained within the interfacial region, which implies that the546
appropriate governing equation is the Darcy law in this case.547

It is worth mentioning that these sets of boundary conditions resemble the slip-transpiration-resistance548
(STR) model (34) proposed by Lācis et al. [29]. The choice of the location of the sharp interface determines549
the sign of the resistance coefficient F , which can be determined independently of the choice of quadrature550
rules (see Appendix B). In this study, we choose to locate the fictitious dividing interface at a location551
where the fluid-side tangential velocity essentially vanishes (ul |i = O(∆2)) and propose to replace the B-J552
slip condition by the continuity of the tangential velocity. As a result, a Dirichlet-transpiration-resistance553
(DTR) model (37) is proposed. The different obtained formulations and the range of the parameter a at554
which we propose to apply them are summarized in Table 1.555

The derived boundary conditions have been tested by comparing the TDA solutions obtained with556
these boundary conditions and the corresponding ODA solutions for the following test problems: channel557
flow and stagnation point flow on a porous wall with suction. The satisfactory agreement of the solutions558
from the two approaches enhances our confidence that the proposed set of boundary conditions accurately559
captures the transport phenomena across the fictive sharp interface.560

Our formulation is explicit with respect to a few geometrical parameters, which are easy to estimate561
in practice, and, therefore, can be easily implemented. This study is a first attempt towards a coherent562
mass and momentum model that complements the available models within the framework of TDA [3, 29].563
The proposed model presents a pathway for extending the study to multiphase flows involving fluid-porous564
domains and multi-scale flow problems. Further, an extension of the study to include anisotropy of the565
porous medium, higher dimensional flow, and inhomogeneous porous layers is feasible and may require566
a higher order description in terms of the interfacial thickness ∆. The investigations on these and other567
relevant applications are in progress.568
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A Influence of the integration rule on the TDA boundary conditions574

In this section, we discuss the influence of the choice of the numerical quadrature rule on the jump con-575
ditions across the interfacial region and the momentum transfer model for the TDA with two examples.576
We limit ourselves to parallel flows (i.e. vy = 0) for simplicity. We show that the choice of the quadrature577
rule must ensure balanced jump conditions across the diffuse interfacial region in order to yield usable578
boundary conditions within the TDA approach.579

A.1 Quadrature rule of a product580

Using (9), we can write the quadrature581 ∫ b

a
f (x)g(x)dx ≈ h

4
[ f (a)+ f (b)][g(a)+g(b)] , (55)

which gives582 ∫
∆

−∆

u
κ

dy ≈ 1
2∆

∫
∆

−∆

1
κ

dy
∫

∆

−∆

udy ≈ 1
2Da

(u|∆ +u|−∆) (56)
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and583 ∫
∆

−∆

uy

ε
dy ≈ 1+ εH

4εH
(uy|∆ +uy|−∆) (57)

With this choice of a quadrature rule, the jump conditions connecting the fluid and porous regions within584
the ODA approach then reads for a parallel flow (vy = 0)585

1+ εH

2εH
(uy|∆ −uy|−∆) =

∆

2Da
(u|∆ +u|−∆) , (58a)

u|∆ −u|−∆ = ∆(uy|∆ +uy|−∆) . (58b)

We note that balancing the terms of the tangential stress jump (58a) implies that u|∆ = O(Da) since u|−∆ =586
O(Da/εH). From (58), the following boundary conditions for the TDA problem are derived587

(1+ εH +aξ −a2)ul
y|i − [(1+ εH)C−aS]up

y |i =
a
δB

ul |i −
(1+ εH)S−aC

δB
up|i , (59a)

ul |i − (C−aS)up|i = −(S−aC)δBup
y |i . (59b)

In the limit of a thick interfacial region ea ≫ 1, this gives588

ul
y|i =− (a−1)2 + εH

δB(a−1)(a2 −1− εH)−ξ [(a−1)2 + εH ]
ul |i . (60)

which can be rewritten as a no-slip boundary condition at an effective sharp interface located at yi =589
δB(a−1)(a2−1−εH)/[(a−1)2+εH ]≈ aδB = ∆, hence at the upper limit of the diffuse interfacial region.590
This is consistent with the estimate u|∆ = O(Da)≪ 1, which is necessary to balance the tangential shear591
jump (58a). Therefore, the quadrature rule (55) leads to un underestimation of the flow within the interfacial592
region.593

A.2 Generalization of the trapezoidal rule594

The trapezoidal quadrature rule can be generalized with the exact formula:595 ∫ b

a
f (x)dx =

h
2
[ f (a)+ f (b)]+

h2

4
[ f ′(a)− f ′(b)]+

h3

12
[ f ′′(a)+ f ′′(b)]+

h4

48
[ f ′′′(a)− f ′′′(b)]

+ . . .+
hn

2n!
[ f (n)(a)+(−1)n f (n)(b)]+ . . . (61)

Denoting by ∂ynu the nth derivative of u with respect to y, we note that ∂yn(u/κ)|∆ ≈ 0, ∂y2n(u/κ)|−∆ ≈596
δ
−2n
B u|−∆ and ∂y2n+1(u/κ)|−∆ ≈ δ

−2n
B uy|−∆. Summing the different series, we obtain after some algebra597

∫
∆

−∆

u
κ

dy ≈ C̄S̄
εHδB

u|−∆ +
C̄2 −1

εH
uy|−∆ (62)

where C̄ = cosha and S̄ = sinha. We have similarly598 ∫
∆

−∆

uy

ε
dy ≈ aδBuy|∆ +

δB C̄S̄
εH

uy|−∆ +
C̄2 −1

εH
u|−∆ (63)

We thus obtain the jump conditions599

1+ εH

2εH
(uy|∆ −uy|−∆) =

C̄S̄
εHδB

u|−∆ +
C̄2 −1

εH
uy|−∆ , (64a)

1+ εH

2εH
(u|∆ −u|−∆) = aδBuy|∆ +δB

C̄S̄
εH

uy|−∆ +
C̄2 −1

εH
u|−∆ , (64b)
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from which we derive the following boundary conditions at y = ξ a for the TDA problem:600

(1+ εH)ul
y|i −

[
(2C̄−1+ εH)C−2C̄S̄S

]
up

y |i =
[
2C̄S̄C+(1− ε −2C̄2)S

] up|i
δB

, (65a)

(1+ εH)ul |i −
[
(2C̄−1+ εH)C−2C̄S̄S

]
up|i = δB [a(εH −1)+ξ (1+ εH)]ul

y|i
+δB

[
2C̄S̄C+(1− ε −2C̄2)S

]
up

y |i (65b)

In the limit of a thick diffuse interface, i.e. ea ≫ 1, the boundary conditions (65) give up
y |i ≈ −up|i/δB.601

Similarly, the jump conditions (64) yields uy|−∆ ≈ −u|−∆/δB. These estimates are obviously unphysical.602
They arise from the imbalance of the jump conditions (64) as C̄ and S̄ diverge to infinity in the limit a ≫ 1.603
We, therefore, conclude that the quadrature rule (8) does not yield valid boundary conditions for the TDA604
approach.605

B Determination of the resistance coefficient F606

In this section, we determine the friction coefficient F in the pressure jump of the STR model (52a). We607
show that the expression of F is independent of the quadrature rule.608

To this aim, we consider a parallel and steady flow normal to the fluid-porous interface, the generalized609
transport equations (1) yields v = cst and py =−v/κ . As a consequence, the pressure in the liquid region610
is constant and equal to its value at the sharp interface location, p = pl |i, and611

p = pl |i + v
∫

∞

y

1
κ

dy (66)

Integrating the Darcy (4) or Darcy-Brinkman equation (3) similarly gives612

pp = pp|i −
v

Da
(y− yi) . (67)

Requiring next that for y ≪−∆, p = pp then gives613

pl |i − pp|i = v
(

yi − y
Da

+
∫ y

∞

1
κ

dy
)
, for y ≪−∆ . (68)

For an evenly distributed permeability around the middle y = 0 of the interfacial region we have614 ∫ y

∞

1
κ

dy =
y

Da
. (69)

As a consequence, we obtain615
pl |i − pp|i = v

yi

Da
=−F v . (70)

From this we deduce the expression of the friction coefficient F such that616

F =− yi

Da
=− ξ

δBεH
(71)

which corresponds to the expressions (38) and (46).617
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