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Introduction

Regressions models [START_REF] Hastie | The elements of statistical learning: data mining, inference and prediction[END_REF] are often applied in many domains such as medecine but the observations of medical tabular data are often noisy which makes more difficult the interpretation. Despite this issue, it may be not often that an analysis takes care of the noise and considers robust methods [START_REF] King | How robust standard errors expose methodological problems they do not fix, and what to do about it[END_REF]. The outliers are considered neglectable such as their weights are so small that they do not change the estimates too much. There exists other sources of biases when for instance the sample is unbalanced for some classes, it is expected to not retrieve the population values accurately. Herein, the interest is in the case where the correlations from the main variables are spurious for the regression such that a mixture of regressions is better than a regression. In particular the break happens according to the outcome (response, target, dependent) variable instead of the explaining (independent) variables. Thus this problem is tackled here via a mixture approach because the hypothesis of linearity is non respected. The case of continuous and ordered discretized outcomes are considered and seen as complementary in order to check for * rpriam@gmail.com. a break, here chosen at the median of the distribution for the outcome variable.

The approach is thus different from the mixture models of regressions [START_REF] Everitt | An introduction to finite mixture distributions[END_REF][START_REF] Mclachlan | Finite mixture models[END_REF] which do not propose a statification of the observed outcomes y i but a clustering of the observed pairs (x i , y i ). Similarly the segmented regressions [START_REF] Vito | Estimating regression models with unknown break-points[END_REF] are for breaks at the level of the independent variables x i instead of the dependent variable y i . In the literature it is not rare to find regression per groups, but not when the groups come from the outcome except in some non generalized ways on the contrary to herein. Note that the idea of Simpson paradox may be related to the mixture model along the outcome nextafter but this is not discussed herein: it is supposed that one, two (or more) components are either or not relevant for the regression error from the observed available variables.

The plan of the paper is as follows. In a second section, after the introduction the objectives are presented. In a third section, the proposed family of models is described. In a fourth section, the inference is discussed for the linear models. In a next section, the experiments confirm the interest from the proposed modeling with real data, while in a last section at the conclusion the results are summarized with perspectives.

Stratification for non linearities

In the case when the relation between the leading independent variables and the outcome is not linear, a stratification is proposed in order to model a break in the regression as explained in this section by discussing the correlation just before writing the generative mixture model.

Segmented correlations from subsamples

With z the outcome, if the correlation between the variable z and a main variable in the regression x is spurious, typically, a transformation such as x 2 or log(x) is likely to be tried according to the shape of the scatterplot. But this is not always taken care of because a bias sample induced biased correlations for instance. An example of such situation is typically when for M z a given threshold value:

cor(z, x) =    c 0 for All z c 1 if z ≤ M z c 2 if z > M z .
Here, an example of hypothesis is that the correlation is weak for a part and almost moderate [START_REF] Ratner | The correlation coefficient: Its values range between +1/-1, or do they?[END_REF] for the second part:

c 0 ̸ = c 1 ̸ = c 2 .
Note that the relation is eventually polynomial or more generally nonlinear for one or both of the subsamples but with a different function. With this configuration, the resulting overall correlation may look like also moderated too. An example of such altered correlation is presented in the experiment part in table 5, at the application subsection. For instance the main correlation equal to -0.47 for the full sample while equal to only -0.33 and -0.20 for the subsamples. Such difference suggests that an unique model is expected to not fit the data as well as two distinct models with their own regression coefficients.

Nextafter, it is denoted the observed data sample s = {(z i , x i ); 1 ≤ i ≤ n} or s = {(y i , x i ); 1 ≤ i ≤ n} where x i ∈ R p including an additional component equal to one for continuous outcomes but implicit nextafer for a lighter notation. Here, z i and y i are respectively continuous and discrete, while the number of observations is n a positive integer.

Mixture models from subsamples

Herein, the dichotomy can be seen via a decision rule with a binay classifier C such that the dependent variable z i is a function of the independent variables aggregated in the vector x i , such that:

z i ≈ x T i δ {C(x i ;β 1 ,β 2 ,Mz)=0} β 1 + δ {C(x i ;β 1 ,β 2 ,Mz)=1} β 2 .
Here β 1 and β 2 are two vectors of regression coefficients instead of an unique one β in order to model a change in the prediction for smaller and larger outcomes which is likely to happen in non physical non biological real data. For prediction, the model can be seen as a classification followed by local regressions hence a clustering or more generaly a partioning of the data sample is available. The classifier is such that its success or failure corresponds to the dichotomy for the outcome, {z i ≤ M z } and {z i > M z }, but is required only at an eventual prediction step because during training the position of y i w.r.t. M z is already known. The variation for the coefficients is a function of the outcome but not in a continuous way from an independent variable as in [START_REF] Hastie | Varying-coefficient models[END_REF], but in a discrete way instead. Thus, the variation is for a partioning as in an usual mixture of regression but according to a stratification instead of a clustering. The model above is for predicting purpose, but for explaining purposes [START_REF] Shmueli | To Explain or to Predict?[END_REF], the classification rule is already known and not involved for new data. Thus this model can be understood as a mixture model where the mixing parameters are a function of only the outcome. Let define the mixing parameters:

π iℓ (z i ) ∝ exp(-(z i -m ℓ ) 2 /σ 2 ℓ )
, with the means m ℓ and variances σ 2 ℓ such as defined in univariate gaussian distributions. Note that for the mixture, another variable than z i may be preferred, but this choice remains herein without loss of generality. This leads to a more general model with a smooth break as follows:

ℓ M (θ) = 2 ℓ=1 i∈s ℓ π iℓ (z i ) log π ℓ g θ ℓ (z i , x T i β ℓ ) .
Here zi may be equal to z i because the outcome is known for fitting and explaining but one may prefer the value x T i β ℓ which is less precise but available for new data, such that the model becomes closely related to mixture-of-experts [START_REF] Isobel | Model-based clustering[END_REF] in this particular case. And, π ℓ is for the size of each component which is near 0.5 for a break at the median. The amount of mixture depends only on the value of the outcome, which extends the idea of hard break from the likelihood just before. When the coefficients π iℓ are equal to one or zero, it is retrieved the same model than just before which is considered nextafter, with π 1 = π 2 , as follows,

ℓ M (θ) = i δ {z i ≤Mz} log g θ 1 (z i , x T i β 1 ) + i δ {z i >Mz} log g θ 2 (z i , x T i β 2 ) -n log 2 .
For deciding if two groups are acceptable for the vectors of regression coefficients one must choose a method, as studied herein for the considered distribution mainly when the target variable takes integer values with an order while the linear regression becomes latent next after.

Stratifying regression models

In this section, the models are presented for continuous and discrete outcomes, thus it is discussed the shape of the noise and the parameters involved in these parametric models for the distribution of each component for the regression.

Linear model with subsamples

If there is a change, the sample may be divided into two subsamples (or more) with same models but different parameters. For each component with parameter θ, one writes the linear model for one observation, a p-dimensional vector, with the probability density function:

g θ (z i , x T i β) = 1 σ √ 2π exp -1 2σ 2 (y i -x T i β) 2 .
When two components are fitted instead of one, this model is duplicated into two identical ones, except that the parameters are denoted for the first component β 1 and σ 1 while for the second component β 2 and σ 2 , with eventually σ 1 = σ 2 = σ for a common noise. This is more formally written as follows.

-For the whole available sample s, an usual linear regression leads to the following likelihood, for a model named "type I" for one component only,

L(θ) = i∈s g θ (z i , x T i β) .
Here the noise is gaussian, with expectation 0 and standard error σ, denoted ϵ i ∼ N (0, σ) for the observed pair (x i , z i ). While β denotes the vector of regressions coefficients,

X = [x 1 |• • • |x n ] T the design matrix and z = [z 1 , • • • , z n ]
T the vector of target variables.

-When there is a change in the sample s, then let suppose two samples s 1 of size n 1 and s 2 of size n 2 such that s = s 1 ∪ s 2 . The two related noises are normally distributed as follows ϵ iℓ ∼ N (0, σ ℓ ). This induces the new likelihood, for a model named "type II" for two (or more) components,

L(θ) = i∈s 1 g θ 1 (z i , x T i β 1 ) i∈s 2 g θ 2 (z i , x T i β 2 ) .
To check if the linear regression should be replaced by two regressions, the models proposed often refer to a statistical test [START_REF] Gregory | Tests of equality between sets of coefficients in two linear regressions[END_REF] in order to estimate different regressions coefficients before and after the break while checking if these coefficients are different or equal. It looks mandatory when some break happens in the linear trend to change the model into a new one which is more relevant. Such as this turns into testing if either the two vectors of parameters are equal and if either they are not equal. Approaches for comparing and selecting between the two models are via hypothesis testing or via model choice, with the second way chosen herein.

Logit ordered model with subsamples

A widely studied model for ordinal outcomes supposes that there exists latent response variables z i which are unobserved and that they are linear functions of the independent variables, with eventually two parts herein. Instead of z i , it is measured the ordinal variables y i such that:

y i = k if γ k-1 < z i < γ k+1 .
It is supposed γ 0 = -∞ and γ K = +∞ for notations reasons. The quantities γ k define the bounds of the intervals where z i belongs for each level of the discrete variable y i . The later ones also may be seen as label classes except that there is an order such as observed in a likert scale in psychometry for instance. More generally such values are found after recoding of a variable such as age with 1 for young, 2 for middle age and 3 for old, even if the ordering may be not always kept. Thus, in order to keep the ordering in the model, it is proceed as follows. The outcomes y i with integer values are changed into binary versions (y i1 , • • • , y iK ) for notation reasons.

-For one sample, the likelihood of the model is written as follows.

L(θ) = i∈s k=K k=1 P r (y i = k; θ) = i∈s k=K k=1 P r ({γ k-1 < z i } ∩ {z i ≤ γ k } ; θ) = i∈s k=K k=1 g θ (y i , x T i β; γ k-1 , γ k ) y ik .
where,

g θ (y i , x T i β; γ k-1 , γ k ) = ϕ θ γ k -x T i β -ϕ θ γ k-1 -x T i β .
Here, for this model named "type I", the parameter vec-

tor is just θ = (β T , γ 1 , • • • , γ K-1 ) T .
Example of function for ϕ θ (.) are the sigmoid one e u 1+e u or the cumulative distribution function of the centered and reduced norm law N (0, 1) for instance. Such related models are presented in [START_REF] Ananth | Regression models for ordinal responses: a review of methods and applications[END_REF][START_REF] Fullerton | A conceptual framework for ordered logistic regression models[END_REF] for instance for an alternative to the multinomial regression model where the categories have no ordering.
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-For two samples, there is a break at B with 1 < B < K.

This leads to denote two versions of the likelihood in stake, as a product with two parts which are multiplied for the whole sample:

         L 1 (θ 1 ) = i∈s 1 k=B k=1 g θ 1 (y i , x T i β 1 ; γ k-1 , γ k ) y ik L 2 (θ 2 ) = i∈s 2 k=K k=B+1 g θ 2 (y i , x T i β 2 ; γ k-1 , γ k ) y ik .
Thus the new overall likelihood is as follows:

L(θ) = L 1 (θ 1 )L 2 (θ 2 ) .
These models are named "type II" or more precisely "type II ncon " and "type II con " respectively for the first non contiguous and the second contiguous. It is denoted

θ 1 = (β T 1 , γ 1 , • • • , γ B ) T and θ 2 = (β T 2 , γ B+1 , • • • , γ K-1
) T for the first case hence with non contiguous parameters. While,

θ 1 = (β T 1 , γ (1) 
1 , • • • , γ (1) 
B ) T and θ 2 = (β T 2 , γ (2) 
B , • • • , γ (2) 
K-1 ) T for the second case with also γ

(1)

B = γ (2)
B hence with contiguous parameters. Note that the second version has an order at the change of regression coefficients and less parameters because the quantities γ B are shared between the two components.

Nextafter, the models with subsamples are fitted with data in order to compare the results from one and two components, just after discussing the optimization for maximizing the loglikelihoods.

Derivatives and training algorithms

After that the models are defined with one or two components, one looks for a solution for the unknown parameters:

θI = argmax θ log L(θ) θII = argmax θ log L(θ) .
The procedure for fitting the regression models with linear settings are explained just below with also the first and second order derivatives of the optimized criteria from the loglikelihoods.

Summary of the proposed family

These models are stratified normal or ordinal regressions in order to consider an underlying clustering along a variable, here the outcome. This is because the regression should not keep the same for lower and larger values of the outcome because this is not exactly the same kind of individuals which are involved. For instance, when modeling the age, the living beings might not have the same physiology and social situation when younger or older, such that the regression needs to change and a stratification may be mandatory in order to avoid a too much general model. This leads to the proposed family of (weighted) loglikelihoods summarized in the table below, with two additional models when constraints are added to the noncontiguous model for continuous outcomes. The additional constraint here is possible for data Table 1: Proposed family of stratified models along the outcome.

Model Criterion Constraints Type I log L(θ)

Type II ncon log L 1 (θ 1 ) + log L 2 (θ 2 ) Type II c ncon log L 1 (θ 1 ) + log L 2 (θ 2 ) ŷ1 (x 0 ) = ŷ2 (x 0 ) Type II con log L1 (θ 1 ) + log L2 (θ 2 ) γ (1) 
B = γ (2) B
where a value x0 is available but may induce a bias when reducing the variance. Other additional constraints may also force that the predictions are ordored before and after the threshold M z , for a few values of the vector of independent variables. The estimation of the parameters is explained next subsection for the models without constraints.

Optimization for the linear model

The models are as given previously in the previous subsection with one or two separated vectors of regression coefficients.

For the case linear eventually latent, in each component having its own coefficients vector, it is supposed:

z i ≈ β T x i .
For the optimization of the parameters and increasing the likelihood, let denote the vector of first derivative of the loglikelihood ∇L(θ) and the hessian matrix H θ aggregating the second order derivatives. For instance, the Newton-Raphson algorithm repeats iterations until convergence to a stable value when numbered (m) as below,

θ (m+1) = θ (m) -H -1 θ (m) ∇ log L(θ (m) ) .
This algorithm and the computation of the hessian matrix is implemented eventually via a numerical solver from the computational library scipy and the module optimize or a dedicated libraries such as statsmodels or scikit-learn in python.

Experiments

The methods are compared for several datasets with the criteria from several models. An illustration is with a medical dataset for an example of more practical results with regressions coefficients.

Experimental settings

The output stat + yŷ and stat - yŷ are respectively the square root of the mean square error (mse) for continuous outcomes or the mean absolute error (mae) for integer outcomes, both computed for each subsample and the whole sample, for comparisons. Thus, the sign plus is for y > M y and a sign minus for y ≤ M y where M y is the median is for each group (left or right of M y ) when computing (y i -ŷi )2 or |y i -ŷi | for continuous or integer outcomes. For a selection of the best model, an usual approach compares the values of the Bayesian information criterion (bic) or the Akaike information criterion (aic), when m is the number of parameters and n the sample size one writes that for instance for the one component model:

BIC(y s , x s ) = -2 log L( θ) + m log(n) AIC(y s , x s ) = -2 log L( θ) + 2m .
Here y s and x s are replaced by y s ℓ and x s ℓ for refering to the same indicator but restricted to the subsample s ℓ . These indicators behave nearly [START_REF] Stone | An asymptotic equivalence of choice of model by cross-validation and Akaike's criterion[END_REF] as a cross-validation for enough large samples, hence they are informative for model selection such that the model with the lowest indicator is to be preferred between L( θ) and L 1 ( θ1 )L 2 ( θ2 ). Two different models for two subsamples may decrease the generalization thus one has to check if the regression coefficients or the corresponding models are statistically different. Nextafter, the values for BIC, AIC and LGL are respectively for bic and aic, and the loglikelihood at the optimum θ.

Comparison of the linear models

The five studied datasets (covid-191 , pre-diabet 2 , lifeexpectancy3 , pisa-20094 and housing5 ) are described in the Table 3 just below, after filtering eventual rows with missing outcomes.

The outcome for the five datasets including the medical survey is discretized into an ordinal variables with ten ordered categories. The regressions are computed for the continuous outcome and the discretized outcome. For each type of outcome, there is three cases: the full sample for the whole usual model plus the two subsamples according to the median of the outcome with two separated models without shared parameters. The proportionality factors for the regression coefficients from the linear and discrete models are given in Table 4.

It is interesting to notice that for the full model and for the model from the data where the outcome is larger than its median, the coefficients from the linear model and the ordinal model are proportional almost exactly for most of the datasets.

For instance, the respective proportional factors are equal respectively to 28.80 and 20.33 for the survey dataset. The variance is high often for subsample where the outcome is lower than the median for three datasets out of the five considered ones. This is not observed with the third model were there is no proportionaly between the vectors of regression coefficients for the survey dataset, which may confirm that this model is less relevant. This makes sense that the models for continuous and discretized outcomes are related in some cases but a more formal proof would be required here, and similarly when the discrete outcomes are used in a multivariate regression instead of an ordinal one.

A more robust model would be interesting to test here in order to check if same proportionality is met again when the fitting is more cautious. The regressions coefficients and the indicators for the linear and ordinal regressions are presented in Table 2. From the indicator mae, there is a dramatic improvement between modeling the full sample or the two subsample, because the indicator means that there is an error of less than 2 ranks with the proposed model intead of more than 2. The indicator AIC is directly compared for the two likelihoods L(θ) and L(θ) with for all the five datasets:

AIC(y s , x s ) > AIC(y s 1 , x s 1 ) + AIC(y s 2 , x s 2 ) .
This induces that the models with two components as proposed lead to a better fit, but also that the one component model, the usual regression, is a less relevant choice. This may be explained by several reasons: some nonlinear relations and spurious linear correlations between dependent and independent variables, an undetected heteroscedasticity of the noise with a varying variance instead of being constant, or that the model for the lower and larger values are different. 

Application with a medical survey

The proposed method is illustrated with a medical dataset "covid-19" from a psychological survey about the worldwide lockdown for covid which happened in the year 2020. This dataset was chosen because it is able to demonstrate the improvement when one considers two samples instead of one sample for the regression due to the correlations which are nonlinear when looking at the bivariate density. The correlations have not the same shape, confirming different values in table 5 for the different samples such that only the Accam razor may justify an usual regression as a first approach by choosing the simpler model. The variables are for "y" the felt difference for the passage of time (during and before the lockdown) while for "x" are kept: boredom (occupied vs. bored), happiness (sad vs. happy), anger (peaceful vs. angry), fear of death, home stress and financial concern. From a one component linear regression, the output is as follows in the Table 5 after imputation of missing "x" values with the median, removal of three rows for missing outcomes and centering-reducing the design matrix. The linear regression is computer for the full dataset, the dataset when the outcome is less or equal to its median, and the dataset when the the outcome variable is more than its median. The rows with label "variable name" Table 5 give the correlations between the outcome y and the corresponding variable x j in stake, such as the values are different for each group of respondants which induces different regression models as expected. Here M z = 22.0 is the median of the outcome or "felt difference of time". The models for each subsample performs clearly better than the one for the whole sample. This suggests also for instance that the parameters for "financ" and "fear" are not reliable because the standard-deviations have high values in comparison to the estimated coefficients, while there is change of sign for hstrs, such that less variables may be kept here eventually for further analysis. This result combinated with the reduced mean squared error and the information criterion confirms that the one component linear regression may be not enough relevant for lower values of the outcome. Graphically, it is checked the residuals divided by their standard deviations, for the two groups of observations when one regression or two are fitted, such that considering two components allows a better centering but also adds outliers in the noise for one of the two components. The coefficients for the model for a discrete outcome are given in Table 6, after mutiplication with the proportional factor found previously in order to make more direct the comparisons with the ones from the model for a continuous outcome. The values of the standard-deviations after transformation are not given because of their nonlinear relation with the coefficients, thus this is left as perspective. Note that for all the tables the value of M y in the case of the ordered logit model was chosen equal to the value 5.0 because the discretization of the outcomes variables from the five datasets were according to the percentiles into ten classes hence this is five classes for each component. The output in 1 suggests visually that the models are different for each part of the sample before and after the median. According to the scatter plots, the relations are not completely linear such as the Pearson correlations are not able to explain fully the links between the independent variables and the outcome. Scatter plots with bivariate densities allow a better overview of the linear or nonlinear correlation. The curves at the right shows the value of the bic and aic when the value of the break changes, such that the median is not far of the minimum for this dataset. Note that an usual mixture of regression lead to only 40926.73 for aic and 41035.2 for bic, which confirms the interest of our proposal for data analysis. As a complement one may shows also the curves for the coefficients of regressions from each components in order to check their trend when the threshold M z varies. As explained above, it is expected the coefficients to be almost equal for the two first models in the tables, but different for the last model from the tables. As a perspective, the smoother and constrained version of the models need to be implemented for comparison with the hard clustering tested herein. In future for dealing with the continuous outcome of this dataset, a truncated or censored distribution (out of the scope herein) for the ceiling effect (coming from the survey questionary) or additional transformations may fit even better the data. At least a robust regression or a two components mixture where one component is mostly learnt from the larger values of the outcome could get rid of the outliers that no one wants for the analysis because they add bias to the results.

Conclusion and perspectives

In this paper, it is discussed the multiple regression model and the ordered logit model in order to separate into two parts such model along the outcome. The dichotomy is discussed and tested with real data with continuous and discretized outcomes. The model may be not the same for lower and upper values of the outcome (and more generally ranges of values), while the usual linear regression model makes this hypothesis. To our knowledge, such parameterization for ordinal regression and even gaussian one was not studied before because mixture of regressions finds a clustering of the independent and dependent variable together thus not along the outcome alone. The proposed approach allows to detect some possible issues with an usual linear regression but may not provide in all cases a complete solution for an optimal fitting. A stratification of the outcome for regression is able to improve dramatically the results for explaining (and eventually predicting with the knowledge of the ranges) with some datasets. Possible perspectives for the reader is to look for the number and the choice of the strata for the outcome, with a more robust or smoother setting and to include statistical tests in order to validate further the choice of several components. Other concerns may be the behavior of the involved criteria when the noise is not full gaussian and also if an alternative partitioning w.r.t x i only or (x i , y i ) is able improve the results.

Figure 1 :

 1 Figure 1: For left to right. a) From the top, three boxplots for the residuals from the regression on the whole sample when are kept first all the residuals and the residuals from each subsample. Followed by two boxplots for the residuals from the regression fitted on each subsample separately. b) Scatter plot with bivariate densities between time and the main variable bored, for the full sample and the two sub-samples from the left and right to the median value of the outcome. c) Plot of bic and aic for the regression with one and two components as a function of the value of the break M z for the sample D1.

Table 2 :

 2 Output from the gaussian and ordinal regressions with one and two groups, named after table 1, in an unsupervised setting for the whole sample and the two subsamples.

			Gaussian model			Ordinal model	
			Type I	Type II ncon	Type I	Type II ncon
			All z	z > M z	z ≤ M z	All y	y > M y	y ≤ M y
	covid-19	LGL BIC AIC	-20886.83 41832.32 41787.66	-9461.39 18976.43 18936.79	-9356.11 18766.19 18726.22	-8979.19 18084.09 17988.38	-3205.33 6487.30 6430.66	-3211.28 6499.66 6442.55
		stat + yŷ stat -yŷ	36.48 34.96	20.55	16.03	3.88 2.15	1.61	1.73
	pre-diabet	LGL BIC AIC stat + yŷ stat -yŷ	-12030.81 24101.76 24071.63 13.16 14.12	-4908.17 9852.9 9826.33 6.36	-5528.07 11092.9 11066.15 8.41	-6796.29 13696.91 13618.57 2.89 3.17	-2334.08 4726.67 4684.15 1.76	-2476.72 5012.24 4969.43] 2.13
	housing	LGL BIC AIC	-22623.77 -11772.18 45336.96 23627.54 45265.54 23562.37	-1761.74 -36946.16 -14191.47 -14106.19 3606.66 74061.22 28493.83 28323.28 3541.48 73926.33 28406.94 28236.38
		stat + yŷ stat -yŷ	1.18 1.12	0.76	0.29	1.75 1.38	1.33	1.25
	pisa-2009	LGL BIC AIC stat + yŷ stat -yŷ	-30451.08 -14017.60 -14152.05 -11234.16 61081.98 28200.45 28469.37 22716.63 60944.16 28077.19 28346.11 22526.31 97.94 51.39 2.64 98.56 53.99 2.60	-4107.39 8403.65 8262.79 1.74	-4036.64 8262.15 8121.28 1.68
	life-expectancy	LGL BIC AIC stat + yŷ stat -yŷ	-8253.12 16641.93 16540.23 9.24 8.62	-3382.65 6889.08 6799.29 2.48	-4090.24 8304.53 8214.49 3.87	-4311.36 8822.27 8672.71 1.47 1.07	-1774.70 3695.03 3589.40 1.20	-1476.69 3099.30 2993.37 1.04

Table 3 :

 3 For each dataset, the name, number of rows, number of variables kept and number of discretizing classes.

	Name	n	p # classes
	D1 covid-19	4361	6	10
	D2 pre-diabet	3059	4	10
	D3 life-expectancy	2928 16	10
	D4 pisa-2009	5233 20	10
	D5 housing	20640	8	10

Table 4 :

 4 For each dataset, the factor of proportionality for the coefficients between the linear and ordinal models.

	Name	All z	z > M z	z ≤ M z
	D1	28.80 (2.28)	20.33 (3.57)	4.89 (34.07)
	D2	10.57 (3.71)	8.34 (4.33)	7.84 (1.42)
	D3	4.86 (6.48)	2.56 (1.13)	6.04 (7.91)
	D4	76.96 (13.21) 62.69 (28.78) 20.81 (109.12)
	D5	0.49 (0.29)	0.74 (0.18)	0.26 (0.03)

Table 5 :

 5 β of a linear regression and correlations for the sample D1 and each of the subsamples from the stratified outcome.

		Type I		Type II ncon
		All z		z > M z	z ≤ M z
	x j	coefs	std coefs	std coefs	std
	const	26.94 0.44 55.92 0.45 -0.72 0.34
	hstrs	2.68 0.47	1.64 0.47 -1.05 0.35
	financ	1.61 0.45	1.41 0.45 0.32 0.34
	fear	-2.43 0.47 -1.68 0.48 0.30 0.35
	angry	-2.51 0.52 -2.12 0.53 -1.14 0.39
	happy	5.80 0.54	4.16 0.54 1.34 0.39
	bored -12.91 0.47 -5.84 0.47 -2.82 0.35
	x hstrs	0.22		0.20	-0.03
	financ	0.11		0.09	0.04
	fear	-0.22		-0.20	-0.01
	angry	-0.29		-0.28	-0.11
	happy	0.37		0.34	0.13
	bored	-0.47		-0.34	-0.19

j cor(time,x j ) cor(time,x j ) cor(time,x j )

Table 6 :

 6 β of the ordered logit model for D1, with a multiplicative correction for better comparison with the linear regression.

		Type I	Type II ncon
		All y y > M y y ≤ M y
		coefs	coefs	coefs
	hstrs	2.59	1.83	-0.24
	financ	1.73	1.63	0.10
	fear	-2.88	-1.83	-0.00
	angry	-2.30	-1.63	-0.20
	happy	6.05	4.47	0.49
	bored	-12.96	-5.69	-0.93
	Figure			
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