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Abstract

Handling cascading reservoir systems is an important energy manage-
ment optimization problem. The difficulty of these problems stems, in
part, from the modeling of the hydro-production function. Data are not
always easy to come by. To remedy this issue, this paper proposes and
describes a realistic instance generator, building instances of varying dif-
ficulty. No specific data format for these problems is currently available
in the literature. In addition, both notation and formulations tend to
vary widely. Instances and case studies are poorly available or otherwise
not applicable to different variants of these problems. The purpose of the
generator is also a first attempt to develop a shared data format useful
for different variants of hydro unit commitment problems and seeks to
mediate the needs of different sectors interested in the optimization of hy-
dro power plants. Hydro Unit CommitmentInstance Generator Cascading
Reservoir System

1 Introduction

Managing the electrical system on a day to day basis involves detailed modeling
of the system as a whole. Traditionally this management is achieved through
unit-commitment, e.g., [19,24]. In energy systems involving both thermal units
and cascading systems, the latter do add quite some complexity to the overall
solution process. We refer to [20] for a detailed overview of cascading reservoir
management. Centrally managing these resources is still vital today as carefully
explained in [24]. In particular, water is a key resource for several economic
activities such as energy, agriculture, and tourism.
Efficiently solving these unit-commitment models is, thus, important for prac-
tice. The specific nature of managing cascading systems immediately steps
forth. First of all, the cascading system naturally connects a variety of units,
whether turbines or pumps, together through the overall cascading nature of
the entire system. The natural connection is through the linear flow equations
involving the release rates of each turbine (and pumping rates). The issue is,
however, that the flow rate of a turbine is not necessarily nicely connected to
the amount of power output. These so-called hydro-production functions are
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typically non-concave and a vast literature of approximations is available. We
refer to [5,9–11,13,14,16,26] and the references therein for more information. In
some situations, it may be convenient to actually discretize the hydro-production
function, so as to consider the set of feasible flow rates to be completely dis-
crete, e.g., [23]. There are some added advantages to this way of proceeding,
and evidently some disadvantages. The main disadvantages are of course that
the discrete variables naturally render the whole problem more rigid, especially
if overall the flow equations and reservoir bounds are “tight”. Moreover, it
may well also be that a significant number of discrete variables is required to
have a reasonably precise model. In terms of advantages, first of all, the non-
concave nature of the hydro-production function (possibly depending on the
water head), is linearized. Furthermore, it becomes possible to integrate with
ease the amount of energy generated for “spinning reserve” requirements. This
latter feature would otherwise require accounting for differences of the hydro-
production function, not at all easy to model and handle. Indeed, it suffices to
think of the easy situation wherein the hydro-production function is concave.
Then, already modeling precisely such a difference of mappings leads to a “dif-
ference of convex problem”, e.g., [25]. These non-convex, possibly non-smooth
problems are much harder to solve. Another possibility, as the hydro-production
function is concerned, is the direct use of non-convex optimization and model-
ing through polynomials. It is also possible to decompose the cascading system,
including the hydro-production function into smaller pieces by employing, for
instance, Lagrangian relaxation, e.g., [9, 10]. For a careful comparison of these
approaches, we refer to [11].
It, thus, appears that cascading reservoir management is still not a well solved
problem. This stems from three main sources:

• The computational time needed to solve a single instance, which may not
always be negligible. One can think of this as a highly crucial point if the
cascading system is furthermore inserted into a decomposition scheme of
its own w.r.t. an encompassing unit-commitment problem.

• The difficulty induced by the non-convex hydro-production function.

• The need to potentially account for uncertainty on inflows (e.g., through
probabilistic constraints [27]).

Therefore, this naturally explains the existence of a wide variety of solution ap-
proaches. It is, however, not evident to carefully compare various approaches as
problem instances are not widely available. It will be the purpose of this work to
reduce this gap, by building an instance generator. We intend to make publicly
available the generator of hydro instances of a variety of sizes and difficulties.
No specific data format for these problems is currently available in the literature.
Instances and case studies are poorly available or otherwise not applicable to dif-
ferent variants of these problems. The purpose of the generator is also a first at-
tempt to develop a shared data format useful for different variants of hydro unit
commitment (HUC) problems. It is evident that a document format that covers
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every possible variant is not easily achievable. This generator is therefore a first
attempt to establish a format, which already covers several uses, but still to be
expanded in the future with more data types or data sources, obtaining a real li-
brary of case studies, as already happens in other problem solving communities.
Validating the need for a unique instance format is the presence in the literature
of some attempts to provide programs and tools that can model/simulate differ-
ent variants hydro power generation problems, for example, SHOP (Short-term
Hydro Optimization Program) [18], which is a modeling tool for short-term
hydro operation planning. The data of the generator are inspired by a spe-
cific HUC, however, it was made with the view of belonging to a format that
includes many more variants and many more features. In this regard, the gener-
ator creates instances in AMPL format which is widely used in the optimization
community and in csv which is a very generic format and easily readable by
many software or programming languages. The code and the data can be found
here: https://people.unipi.it/dimitri_thomopulos/libraries/hig/.
This paper is organized as follows: in Section 2 we define in detail the HUC
problem we consider. In Section 3, we describe the historical data that we
use for the instance generator and, when these are not available, the models
we developed to generate them in a realistic way. In Section 4 we present
some models which can exploit the generated instances. Section 5 is devoted to
computational results aimed at showing that our generator can provide instances
of increasing difficulty and instances of the same size can be extremely easy or
challenging. Finally, we draw conclusions and discuss perspectives in Section 6.

2 Problem Definition

The HUC variant we consider is very similar to the one tackled in [5]. In fact,
as we explain in Section 3, the instances we generate are also inspired by the
ones solved by Borghetti et al. [5].
We focus on the deterministic price-taker variant of the HUC. Multiple reser-
voirs and hydro-plants can be considered, which was not the case in [5]. In
the HUC we are given a short time horizon (typically 24 hours or a week) dur-
ing which, we decide how to produce or consume the power of one or more
hydro-plants. To produce power, turbines are activated thanks to the water in
upstream reservoirs. To consume power, pumps are activated to move water
from downstream to upstream reservoirs. The aim is to maximize the profit
of sold power while accounting for pumping and potential startup costs for the
turbine/pump units. In some periods of the time horizon, when the price of
power is low, it might be convenient to consume power for pumping so as to
have water available to produce and sell power in later periods in which the
power cost is higher. This explains the economic interest of turbining. In the
following, the components of the problem are presented in a schematic mode in
order to facilitate their identification within the format of the instance. Given
an overview of the decision variables, we define the number of periods, reser-
voirs, turbines, and pumps. We define some general parameters. Then, for
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each reservoir, turbine, and pump, we define their specific parameters. Finally,
we present a set of auxiliary parameters that link interconnected information
between different elements.

2.1 Main decision variables

The main decision variables are:

• the water flow passing through each of the turbine/pump units at each
time step.

• the spillage, i.e., water spilled, from each of the reservoirs at each time
step. The spilled water does not flow through turbines, it is just released.
It may or may not appear in downstream reservoirs without generating
energy.

These decision variables are closely related to the following derived quantities,
occasionally modeled as auxiliary variables:

• the water volume in each of the reservoirs at each time step.

• the produced/consumed power by each of the turbine/pump units at each
time step. This is a variable depending on the water flow passing through
the same unit and the water volume in the upstream reservoir.

2.2 Set of general parameters

The part of the problem we focus on is data, as our contribution is an instance
generator. For convenience of interpretation of the format of the instances,
the following notation of the parameters of the model is the same one used in
fact in the instances. The dimensions of the parameter sets and some general
parameters are

• T : number of time steps of the considered time horizon. It allows us to
define the set PERIODS := {1, . . . , T}.

• delta t: time step duration (in hours).

• J : number of reservoirs in the considered hydro valley. It allows us to
define the set RESERVOIRS := {1, . . . , J}.

• rampup: represents the limit of the water-flow increase between two con-
secutive time steps (in [m3/s]).

• rampdwn: represents the limit of the water-flow decrease between two
consecutive time steps (in [m3/s]).

• theta min: lower bound on the amount of water released in each time
period (in [m3/s]).
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• s max: maximum water spillage (in [m3/s]).

• N turbines: number of turbines.

• N pumps: number of pumps.

2.3 Reservoir specific parameters

For each reservoir in RESERVOIRS, we have the following specific parameters:

• v min: lower bound on water volume in the reservoir (in [m3]).

• v max: upper bound on water volume in the reservoir (in [m3]).

• v 0: initial water volume in the reservoir (in [m3]).

• v T : target water volume in the reservoir at the end of the time horizon
(in [m3]).

• pump activation via turbine: is the pump activated using the power pro-
duced by a turbine? 0 = no, 1 = yes (this influences how the cost of
activating a pump is computed).

2.4 Turbine and pumps specific parameters

For each turbine in TURBINES, we have the following parameters.

• qT 0: initial water flow (in [m3/s]).

• g 0: initial status of the turbine. It takes the value 1 if the turbine is on
in period 0, 0 otherwise.

• scT : startup cost of the turbine, paid any time the turbine is turned on
(in e).

• q min: lower bound on the water flow (in [m3/s]).

• q max: upper bound on the water flow (in [m3/s]).

• wT init: water needed to start up each turbine (in [m3/s]). It represents
the water wasted at each startup.

• type: type of turbine, i.e., L for downstream of a lake, E for downstream
of a dam, F for run-of-river, D for valve, and R for discharge.

• plantT: index of the power plant the turbine belongs to.

For each pump in PUMPS, we have the following parameters.

• qP 0: initial water flow (in [m3/s]).

• u 0: initial status of the pump. It takes the value 1 if the pump is on in
period 0, 0 otherwise.
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• scP : startup cost of the pump, paid any time the pump is turned on (in
e).

• wP init: water needed to start up each pump (in [m3/s]). It represents
the water wasted at each startup. It is relevant when a pump is turned
on by a turbine.

• eP init: energy needed to start up each pump (in [MWh]). It is relevant
when a pump is turned on by consuming power.

• plantP: index of the power plant the pump belongs to.

For each turbine in TURBINES, given the set of pumps PUMPS we have also
the following parameter.

• t2p: index of the pump associated with each turbine. t2p = -1 if the
turbine has no corresponding pump.

2.5 Forecasting parameters

Typical forecast data for HUC problems are prices and inflows. In this case some
data come from historical series, as the purpose is not mainly on forecasts, but
on presenting some real data useful for validation of models and approaches.
For each time period t ∈ PERIODS, we have

• prices: prices of electricity (in e/MWh).

We refer the reader to Section 3.1 for further details on how we generate these
values.
For each time period and reservoir, we have

• inflows: water inflow in period t. The water is added to the water volume
in the reservoir (in m3/s).

We refer the reader to Section 3.2 for further details on how we generate these
values.

2.6 Power function parameters

In addition, the expression and data defining the produced power function in
terms of the water flow and the water volume in the reservoir are needed. Thus,
for each time step, turbine, and reservoir, we define

p = φ(q, v), (1)

where p is the amount of produced power (in MW ), q is the water flow (in
m3/s), and v is the water volume in the reservoir (in m3). A value for each of
the coefficients of the closed form of the function φ is provided as part of the
instance data.
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Alternatively, when the generator is not provided with an explicit function, we
can consider a MILP approximation as mentioned in the introduction. The
most general approximation methods discretize the domain of both variables q
and v. We call the discretization points of the domain of q operational points.
Each instance includes the following data.
For each reservoir

• R: is the number of discretization points of the volume domain.

For each reservoir and each volume discretization point

• V : the water volume corresponding to the given volume discretization
point. Each of which is associated with a volume value in [v min, v max]:
the first discretization point corresponds to v min; the volume associated
with each of the following R − 1 discretization points is computed as
“volume of previous discretization point + (v max - v min / R)”.

For each turbine in TURBINES, we have

• nOPT : number of operational points (o.p.), i.e., values of water flow
considered.

For each turbine and operational point

• Q: water flow corresponding to each o.p. of the turbine (in [m3/s]).

For each turbine, operational point, and volume discretization point

• P ir: power produced by the turbine at the given o.p. and volume dis-
cretization point (in [MW ]).

For each pump in PUMPS we have

• nOPP : number of o.p. for each pump, i.e., values of water flow considered.

• P u: power consumed by a pump at each o.p. (in [MW ]). This power is
formalized as absorbed and therefore takes on negative values.

• Q u: water flow corresponding to each o.p. of a pump (in [m3/s]).

2.7 Model Constraints

The constraints and objective function we consider are similar to the ones pre-
sented in [5], except for the linearization of the power function. Namely,

• constraint on the target volume at the end of the horizon.

• water balance equations: water conservation within two consecutive time
periods, while accounting for the cascading structure.

• lower and upper bounds on the flows in the turbine/pump units, including
minimum water flow passing through the turbine.
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• limit the flow variation within two consecutive periods (the so-called ramp-
up/down constraints).

• constraint on the water spillage released at the startup of a turbine.

• lower bound on the amount of water released in each period.

• switch-on/switch-off rules of the turbines and pumps.

• no simultaneous turbine and pump mode.

• constraints related to the power production as a function of water flow
and water volume (as a proxy for the head effect).

We refer the reader to Borghetti et al. [5] for more details on the mathematical
modeling of HUC. Mathematical models including a standard linearization of (1)
are provided on the aforementioned website. The modeling language AMPL [1]
was used to code them.

3 Historical and Generated Data Description

The default instances that are generated are inspired by the ones solved in
Borghetti et al. [5]. In particular, the authors considered a week (168 hours)
from the months of April, June, and December of 2004. Thanks to our gen-
erator, we can consider any time horizon from 01/04/2004 to 31/12/2012, as
explained next. All of the data used by the generator are endemic to the gener-
ator itself except for the price data, which come from data already available in
the literature. In addition, although the data is currently limited to the years
for which all values are available, the generator continues to be usable for dif-
ferent historical data if provided with files in the appropriate format regarding
prices and inflows as explained in the following sections.
Two data formats are available, as will be explained in more detail below, a
single-reservoir format and a multi-reservoir format. At present, the proposed
data generator allows creating data instances with a single reservoir inherent
to the Suviana power plant, data instances in a multi-reservoir format with a
single reservoir inherent to the Suviana power plant, and multi-reservoir data
instances with a cascading structure drawn from the Reno drainage basin (see,
e.g., [8,21]. This drainage basin, as shown in Fig. 1 has 4 reservoirs and 5 power
plants.

3.1 Price dataset

As already mentioned the price dataset is already available in the literature , i.e.,
the historical data from the Italian Electricity Market that can be found (and
downloaded) on the website http://www.mercatoelettrico.org/. The exact
internet URL at least until December 2021 is https://www.mercatoelettrico.
org/en/Download/DownloadDati.aspx?val=MGP_Prezzi. The historical data
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1. Salere 2. Pavana

3. S. Maria 4. Suviana

1. S. Maria 2. Bargi

3. Le Piane 4. Suviana

5.Pavana

Figure 1: Reno drainage basin scheme.

starts on 1st of April 2004 and prices are national and hourly. Although usable,
these data are under the copyright of the Gestore dei mercati energetici (GME),
i.e., Italian Power Exchange (IPEX) which is the company responsible in Italy
for the organization and management of the electricity market. Thus, we cannot
provide the user with such data, thus the user should download it and use it
correctly. However, to simplify this process the generator is provided with an
attached script that can facilitate the search of the data, and allows to overcome
technical difficulties and limitations of the site. Being dependent on third-party
data for pricing, the procedure provided by the generator is designed to make
the least amount of interventions to these files. In addition, even if the proposed
format is using hourly resolution, the generator can also use other resolutions
such as half-hour, quarter-hour, etc.
The price data format that the generator needs to generate the instances is a sep-
arate csv file for each year that the user wants to use called “Anno Y Y Y Y .csv”
where Y Y Y Y is the year in question, for example, “Anno 2004.csv”. An exam-
ple csv (with ”;” as separator) from the year 2004 is presented in the Table 1.
In the table are represented only the first 3 periods that, in the case of the Ital-
ian electricity market, correspond to one hour each. The first column includes
the date in year, month, day format, i.e., YYYYMMDD. The second column
indicates the reference time (between 1 and the maximum number of periods
in 1 day, for example, 24 for hourly data and 48 for half-hourly data). Finally,
the third column shows the national unit price (PUN) in e/MWh. The already
downloadable files contain additional columns containing the market prices of
individual zones and neighboring markets. However, these values are not used
explicitly by the generator.
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Date (YYYYMMDD) delta t PUN
20040401 1 35.45
20040401 2 33.06
20040401 3 32.01

Table 1: Example of csv data of prices for the first 3 periods for the year 2004
used by the generator.

3.2 Inflow dataset

The historical inflow data was unavailable, besides the three weeks considered in
Borghetti et al. [5]. Thus, we generated the inflow dataset with the ORCHIDEE
model while using WRR2 meteorological forcing, with an hourly resolution at
Suviana dam location.
ORCHIDEE (ORganizing Carbon and Hydrology In Dynamic EcosystEms) is
a land surface model that simulates the fast processes occurring between the
vegetated land surface and the atmosphere, such as the soil water budget and
the exchanges of energy, water, and CO2 through photosynthesis between the
atmosphere and the biosphere [15]. It includes a complex routing scheme that
routes the water to the ocean and has been validated with in-situ observations
[17].
The WRR2 (Water Resources Reanalysis) forcing is based on the original ERA-
Interim meteorological data bilinearly interpolated to 0.25◦ [7]. It includes
a topographic adjustment to temperature and a recent precipitation dataset
specifically designed for hydrological modeling [2].
However, even in this case, it is possible to provide the generator with data
with a resolution different from the hourly, remaining consistent with the chosen
resolution for prices as well.
The inflow data format that the generator needs to produce the instances is a csv
file (with ”;” as separator) composed of three columns as shown in an example
in Table 2, i.e., date, delta t, and inflow, respectively. The date is expressed as
year, month, day, i.e., YYYYMMDD. The second column indicates the reference
time (between 1 and the maximum number of periods in 1 day, for example, 24
for hourly data and 48 for half-hourly data). Finally, the third column shows the
inflows expressed in [m3/s]. Additional rows can be added to the existing file
with the condition of entering the data in ascending date order. Data continuity
is not required.
Figure 2 shows some examples of inflows comparing (a) the hourly inflows in
the first 7 days of January 2004, (b) the daily inflows of the months of April,
August, and December 2004, and, finally, (c) the daily inflows of the years 2004,
2008, and 2012.
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Date (YYYYMMDD) delta t Inflow
20040401 1 2.48
20040401 2 2.31
20040401 3 2.17

Table 2: Example of csv data of inflows for the first 3 periods for year 2004 used
by the generator.

3.3 Instance formats and file extensions

Two formats of instances are available, namely single-reservoir format and multi-
reservoir format. The instances in single-reservoir format omit information
about the reservoirs because it is only one, while in the multi-reservoir case
the parameters described in Section 2 are expressed through the set RESER-
VOIRS. In the last case, additional information concerning the structure of the
cascading system is provided. In particular, for each turbine in TURBINES,
the following parameters are provided

• t2Up: index of the upstream reservoir.

• t2Dw: index of the downstream reservoir.

Both values are = -1 if the turbine has no corresponding reservoir.
In addition, a parameter representing the delay from the upstream to the down-
stream reservoir is presented

• tDelay: is the delay [s] in flow from the upstream reservoir to the corre-
sponding downstream reservoir. tDelay = 0 if 0 or there is not a corre-
sponding reservoir.

All the formats are available in two file extensions, i.e., a dat file which is typical
AMPL data file format and a csv file. The two extensions were chosen because
they are widely used, easily interpreted, and readable. The csv file maintains
the same structure as the AMPL file, however, it has a first column where the
parameters of the row are defined separated by white spaces, followed by the
values of the parameters themselves. In the case of data matrices, only the first
row presents a first column defining the data, while the following ones present
an empty first column. The data format is the same as that used to present
them in Section 2.
An example of AMPL extension data of inflows and prices for a case with 3
periods and a single reservoir is
# T is the number of time steps considered

param T := 3;

# inflows{PERIODS} is the external (given) water inflow for each time

step [m3/s]

# prices{PERIODS} is the unit price of the power generated/consumed

at each time step [euros/MWh]
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(a) Comparison of inflows [m3/s] among
the first 7 days of January of the year
2004.

(b) Comparison of inflows [m3/s] among
3 representative of the year 2004, i.e.,
April, August, December.

(c) Comparison of inflows [m3/s] among
the years 2004, 2008, and 2012.

Figure 2: Examples of historical inflows estimation.

param: PERIODS: inflows prices :=

1 2.48 35.45

2 2.31 33.06

3 2.17 32.01

;

While the corresponding csv format is
T;3;;;;;;;;;

PERIODS inflows prices;1;2.48;35.45;;;;;;

;2;2.31;33.06;;;;;;;

;3;2.179;32.01;;;;;;;

also shown in Table 3.
The subsequent data are delta t, rampup, rampdwn, v min, v max, v 0, v T ,
N turbines, N pumps, pump activation via turbine, theta min, and s max,
respectively and each on a new line. These are followed by the turbine data
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T 3
PERIODS inflows prices 1 2.48 35.45

2 2.31 33.06
3 2.17 32.01

Table 3: Example of csv data of prices [e/MWh] and inflows [m3/s] for 3
periods.

presented in Section 2.4 in exactly the same order, all in the same row, and
with one row for each turbine. Followed again by the pump data also in the
order presented in Section 2.4 and with one row for each pump. Then, followed
by the number of intervals R, water flow o.p.s of turbines Q i, power o.p.s of
turbines P ir, water flow o.p.s of pumps Q u, power o.p.s of pumps P u, volume
V , and t2p. An example with R = 2, 1 reservoir, 1 turbine, 1 pump, 3 o.p.s of
turbine and 2 o.p.s of pumping is
param delta t := 1;

param rampup := 70;

param rampdwn := 70; param v min := 15000000;

param v max := 33000000;

param v 0 := 21080000;

param v T := 21080000;

param N turbines := 1;

param N pumps := 1;

param pump activation via turbine := 0;

param theta min := 0;

param s max := 0;

param: TURBINES: qT 0 g 0 scT nOPT q min q max wT init type plantT:=

1 0.00 0 75.00 3 8.40 42.00 0.00 L 1

;

param: PUMPS: qP 0 u 0 scP nOPP wP init eP init plantP:=

1 0.00 0 75.00 2 0.00 0.00 1

;

param R := 2;

param: Q i :=

1 1 0.00

1 2 8.40

1 3 42.00

;

param: P ir :=

1 1 1 0.000000

1 2 1 2.816118

1 3 1 23.272352

1 1 2 0.000000

1 2 2 3.065391

1 3 2 25.906705
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;

param: Q u P u :=

1 1 0.00 0.00

1 2 -26.98 -21.40

;

param: V :=

0 15000000

1 15000000

2 33000000

;

param: t2p :=

1 -1

;

For simplicity of notation we omit the comments that will instead be available
in the file. Instead the corresponding csv example is
delta t;1;;;;;;;;;;

rampup;70;;;;;;;;;;

rampdwn;70;;;;;;;;;;

v min;15000000;;;;;;;;;;

v max;33000000;;;;;;;;;;

v 0;21080000;;;;;;;;;;

v T;21080000;;;;;;;;;;

N turbines;1;;;;;;;;;;

N pumps;1;;;;;;;;;;

pump activation via turbine;0;;;;;;;;;;

theta min;0;;;;;;;;;;

s max;0;;;;;;;;;;

TURBINES qT 0 g 0 scT nOPT q min q max wT init type plantT;1;0.00;0;75.00;3;8.400000;

42.000000;0.00;L;1;;

PUMPS qP 0 u 0 scP nOPP wP init eP init plantP;1;0.00;0;75.00;2;0.00;0.00;1;;;;

R;2;;;;;;;;;;

TURBINES NOPT Q i;1;1;0.00;;;;;;;;

;1;2;8.40;;;;;;;;

;1;3;42.00;;;;;;;;

TURBINES NOPT VOLUMES P ir;1;1;1;0.000000;;;;;;;

;1;2;1;2.816118;;;;;;;

;1;3;1;23.272352;;;;;;; ;1;1;2;0.000000;;;;;;;

;1;2;2;3.065391;;;;;;;

;1;3;2;25.906705;;;;;;;

PUMPS NOPP Q u P u;1;1;0.00;0.00;;;;;;;

;1;2;-26.98;-21.40;;;;;;;

k V;0;15000000.000000;;;;;;;;;

;1;15000000.000000;;;;;;;;;

;2;33000000.000000;;;;;;;;;

TURBINES t2p;1;1;;;;;;;;;
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Instead in the case of a multi-reservoir format also some reservoir data are
added, i.e., parameters J , t2Up, t2Dw,and tDelay. In addition, the reservoir
index is made explicit in the quantities as described in Section 2. The same
example in a mutiperiod format is
param J := 1;

param T := 3;

param: PERIODS: prices :=

1 35.45

2 33.06

3 32.01

;

param delta t := 1;

param rampup := 70;

param rampdwn := 70;

param: RESERVOIRS: inflows v min v max :=

1 1 2.48 15000000 33000000

1 2 2.31 15000000 33000000

1 3 2.17 15000000 33000000

;

param: v 0 v T :=

1 21080000 21080000

;

param N turbines := 1;

param N pumps := 1;

param pump activation via turbine := 0;

param theta min := 0;

param s max := 0;

param: TURBINES: qT 0 g 0 scT nOPT q min q max wT init type plantT:=

1 0.00 0 75.00 16 8.40 42.00 0.00 L 1

;

param: PUMPS: qP 0 u 0 scP nOPP wP init eP init plantP:=

1 0.00 0 75.00 2 0.00 0.00 1

;

param R := 2;

param: Q i :=

1 1 0.00

1 2 8.40

1 3 42.00

;

param: P ir :=

1 1 1 0.000000

1 2 1 2.816118

1 16 1 23.272352

1 1 2 0.000000

1 2 2 3.065391

1 16 2 25.906705
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;

param: Q u P u :=

1 1 0.00 0.00

1 2 -26.98 -21.40

;

param: V :=

1 0 15000000

1 1 15000000

1 2 33000000

;

param: t2p :=

1 -1

;

param: t2Up t2Dw tDelay:=

1 1 -1 0

;

while the corresponding csv format is
J;1;;;;;;;;;;

T;3;;;;;;;;;;

PERIODS prices;1;35.45;;;;;;;;;

;2;33.06;;;;;;;;;

;3;31.01;;;;;;;;;

delta t;1;;;;;;;;;;

rampup;70;;;;;;;;;;

rampdwn;70;;;;;;;;;;

RESERVOIRS inflows v min v max;1;1;2.48;15000000;33000000;;;;;;;

;1;2;2.31;15000000;33000000;;;;;;;

;1;3;2.17;15000000;33000000;;;;;;;

RESERVOIR v 0 v T;1;21080000;21080000;;;;;;;;

N turbines;1;;;;;;;;;;

N pumps;1;;;;;;;;;;

pump activation via turbine;0;;;;;;;;;;

theta min;0;;;;;;;;;;

s max;0;;;;;;;;;;

TURBINES qT 0 g 0 scT nOPT q min q max wT init type plantT;1;0.00;0;75.00;3;8.40;

42.00;0.00;L;1;;

PUMPS qP 0 u 0 scP nOPP wP init eP init plantP;1;0.00;0;75.00;2;0.00;0.00;1;;;;

R;2;;;;;;;;;;

TURBINES NOPT Q i;1;1;0.00;;;;;;;;

;1;2;8.40;;;;;;;;

;1;3;42.00;;;;;;;;

TURBINES NOPT VOLUMES P ir;1;1;1;0.000000;;;;;;;

;1;2;1;2.816118;;;;;;;

;1;3;1;23.272352;;;;;;;

;1;1;2;0.000000;;;;;;;

;1;2;2;3.065391;;;;;;;
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;1;3;2;25.906705;;;;;;;

PUMPS NOPP Q u P u;1;1;0.00;0.00;;;;;;;

;1;2;-26.98;-21.40;;;;;;;

RERSERVOIR k V;0;15000000;;;;;;;;;

;1;15000000;;;;;;;;;

;2;33000000;;;;;;;;;

TURBINES t2p;1;1;;;;;;;;;

RESERVOIRS t2Up t2Dw tDelay;1;1;-1;0;;;;;;;

The generator code is implemented in such a way that it allows the user to
choose the extension of the output files whether only dat, only csv, or both.
The generator offers the possibility of generating one or more single-reservoir or
multi-reservoir instances. It is also possible to select the date of the data used
from a predetermined subset, the number of periods to be considered, and the
number of operational points. Once the number of o.p.s is chosen, the corre-
sponding values are computed through a partition and then discretization of the
corresponding production function. The original nonlinear production function
used in the current version of the generator for every turbine is computed as in
Borghetti et al. [5]. It is always possible to create personal instances by propos-
ing one’s own production function without altering the validity of the proposed
format. Each instance is uniquely characterized and is therefore repeatable. At
present, the generator allows instances to be generated only with 1-hour discre-
tion since it is based on public data whose specific format is precisely 1 hour.
It remains possible, however, to use a different time step duration delta t by
providing other price and inflows data in the formats previously listed.

3.4 Stochastic extension

The data described so far relate to discrete formulations of problems involving
energy management of cascading reservoir systems. In some countries managers
are required to plan by considering the worst-case scenario, i.e., a determinis-
tic formulation is often preferred. The generator does not currently generate
stochastic instances, however, in some environments, it may be interesting to
study such a formulation. For this purpose we also propose a format to describe
the data with uncertainty. Specifically, the data in question are prices and in-
flows. Therefore in that case inflows and prices must have an additional index
corresponding to the inflows and prices scenario, respectively. It is necessary to
introduce the parameters

• N inflows: the number of realization scenarios of inflows.

• N prices: the number of realization scenarios of prices.

For each scenario of inflows it is necessary to introduce the parameter

• prob inflows: the probability between 0 and 1 of realization of a scenarios
of inflows.
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For each scenario of prices it is necessary to introduce the parameter

• prob prices: the probability between 0 and 1 of realization of a scenarios
of prices.

An example of AMPL extension data of inflows and prices for a case with 3
periods, 2 scenarios of inflows with probability 0.4 and 0.6, 2 scenarios of prices
with probability 0.3 and 0.7 is

# T is the number of time steps considered

param T := 3;

# N inflows the number of realization scenarios of inflows

param N inflows := 2;

# N prices the number of realization scenarios of prices

param N prices := 2;

# prob inflows{ISCENARIOS} is the probability between 0 and 1 of realization

of a scenarios of inflows

param: ISCENARIOS: prob inflows :=

1 0.4

2 0.6

;

# prob prices{PSCENARIOS} the probability between 0 and 1 of realization

of a scenarios of prices

param: PSCENARIOS: prob prices :=

1 0.3

2 0.7

;

# inflows{ISCENARIOS,RESERVOIRS,PERIODS} is the external (given) water

inflow for each time step [m3/s]

param: inflows :=

1 1 1 2.48

1 1 2 2.31

1 1 3 2.17

2 1 1 3.48

2 1 2 3.31

2 1 3 3.17

;

# prices{PSCENARIOS,PERIODS} is the unit price of the power generated/consumed

at each time step [euros/MWh]

param: prices :=

1 1 35.45

1 2 33.06

1 3 32.01

1 1 45.45

1 2 43.06

1 3 42.01
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;

While the corresponding csv format is

T;3;;;;;;;;;

N inflows;2;;;;;;;;;

N prices;2;;;;;;;;;

ISCENARIOS prob inflows;1;0.4;;;;;;;;

;2;0.6;;;;;;;;

PSCENARIOS prob prices;1;0.3;;;;;;;;

;2;0.7;;;;;;;;

ISCENARIOS PERIODS inflows;1;1;1;2.48;;;;;;;

;1;1;2;2.31;;;;;;;

;1;1;3;2.17;;;;;;;

;2;1;1;3.48;;;;;;;

;2;1;2;3.31;;;;;;;

;2;1;3;3.17;;;;;;;

PSCENARIOS PERIODS prices;1;1;35.45;;;;;;;

;1;2;33.06;;;;;;;

;1;3;32.01;;;;;;;

;2;1;45.45;;;;;;;

;2;2;43.06;;;;;;;

;2;3;42.01;;;;;;;

also shown in Table 4.

4 Hydro unit commitment models

In this section, we present some possible formulations of hydro unit commitment
problems with a single reservoir. The production function in these problems is
typically nonlinear so we present a MINLP formulation, however, we also pro-
pose some linearization variants through some MILP approximations. Starting
from the input data the set of periods equivalent to PERIODS is defined as
T , a subset T ∗ = T \{1}, and the set of utilities with the same cardinality of
TURBINES and considering also the data for the corresponding PUMPS is
defined as J . In addition, some parameters necessary to the proposed models
are calculated by pre-processing for every j ∈ J , indeed combining the turbines
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T 3
N inflows 2
N prices 2
ISCENARIOS prob inflows 1 0.4

2 0.6
PSCENARIOS prob prices 1 0.3

2 0.7
ISCENARIOS PERIODS inflows 1 1 1 2.48

1 1 2 2.31
1 1 3 2.17
2 1 1 3.48
2 1 2 3.31
2 1 3 3.17

PSCENARIOS PERIODS prices 1 1 35.45
1 2 33.06
1 3 32.01
2 1 45.45
2 2 43.06
2 3 42.01

Table 4: Example of csv data of prices [e/MWh] and inflows [m3/s] for 3
periods.

with the corresponding pumps, i.e.,

Q
j

= Q ut2pj ,nOPP t2pj
, (2)

P j = P ut2pj ,nOPP t2pj
, (3)

Q0j = qT 0j + qP 0t2pj
, (4)

G0j = g 0j , (5)

U0j = u 0t2pj
, (6)

Wj = wT initj , (7)

Zj = wP initt2pj
, (8)

Cj = scT j , (9)

Dj = scP t2pj
, (10)

Ej = eP initt2pj
, (11)

where Q
j

and P j are the maximum water pumped and corresponding power

consumed (as a negative value), respectively. Q0j is the initial water flow con-
sidering both turbines and pumps, G0j is the initial status of the turbine, and
U0j is the initial status of the pump corresponding to the turbine. Wj and
Zj are the water needed to start up the turbine or the corresponding pump,
respectively. Cj and Dj are the start up costs of the turbine, the start up costs
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and energy for the corresponding pump, respectively.
Finally, the nonlinear production function f{qjt, v 0} based on the water flow
qjt of utility j at period t and the initial water volume is computed as

f{qjt, v 0} =
∑
h∈H

(
Lhq

h
jt

∑
l∈H

(
Klv 0l − Llb−R0q2jt

))
, ∀t ∈ T , (12)

where H is the set of coefficients of the linear equation, R0, Llb, Lh, and Kh are
some constants of the nonlinear function (see e.g., [5]). Note that the definition
of f used above is simplified, as it assumes that the head-effect is negligible.
We make this assumption for ease of notation of the approximation models
introduced at the end of this section. Note that this is a simplification of the
model that does not affect the generator.

4.1 Common decision variables

As already mentioned one of the decision variables of the models is water flow
qjt of utility j at period t. In addition, the variable vt represents the water
volume at period t, pjt the power produced/consumed by utility j at period t,
and st, i.e. the spillage at period t. Finally, a set of binary variables (1 on/true,
0 off/false) represents the status of the system, namely gjt, ujt, wjt, w̃jt, zjt,
and z̃jt which represent, for the utility j at period t, the status for the turbine,
the status of the pump, the case where the turbine is in shutting down phase,
starting up phase, the case where the pump is in the shutting down phase, and
the case where the pump is in starting up phase, respectively.

4.2 MINLP formulation

As already mentioned the first presented model is a mixed integer nonlinear
formulation variant of the model (MINLP) in Borghetti et al. [5]. For ease of
notation we call in the following delta t as ∆t, pricest as Πt, and inflowst as
It. The volumes of water have been scaled dividing them by 1000, in order to
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have a more stable and numerically robust solution. The model is therefore

max
∑
j∈J

∑
t∈T

(∆tΠtpjt − Cjw̃jt − (Dj + ΠtEj) z̃jt) , (13)

s.t. vT ≥ v T, (14)

v1 − v0 − 3600∆t

I1 −∑
j∈J

qjt − st

 = 0, (15)

vt − vt−1 − 3600∆t

It −∑
j∈J

qjt − st

 = 0, ∀t ∈ T ∗ (16)

∑
j∈J

qj1 −Q0j + rampdwn ≥ 0, (17)

∑
j∈J

qjt − qj(t−1) + rampdwn ≥ 0, ∀t ∈ T ∗ (18)

∑
j∈J

qj1 −Q0j − rampup ≤ 0, (19)

∑
j∈J

qjt − qj(t−1) − rampup ≤ 0, ∀t ∈ T ∗ (20)

qjt + (Q
j
ujt + q minjgjt) ≥ 0, ∀j ∈ J , t ∈ T (21)

qjt + (Q
j
ujt + q maxjgjt) ≤ 0, ∀j ∈ J , t ∈ T (22)∑

j∈J
qjt + st − theta min ≥ 0, ∀t ∈ T (23)
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st −
∑
j∈J

(Wjw̃jt + Zj z̃jt) ≥ 0, ∀t ∈ T (24)

gjt + ujt ≤ 1, ∀j ∈ J , t ∈ T (25)

gj1 −G0j − (w̃j1 − wj1) = 0, (26)

gjt − gj(t−1) − (w̃jt − wjt) = 0, ∀j ∈ J , t ∈ T ∗ (27)

w̃jt + wjt ≤ 1, ∀j ∈ J , t ∈ T (28)

uj1 − U0j − (z̃jt − zjt) = 0, (29)

ujt − uj(t−1) − (z̃jt − zjt) = 0, ∀j ∈ J , t ∈ T ∗ (30)

z̃jt + zjt ≤ 1, ∀j ∈ J , t ∈ T (31)

pjt − qjtf{qjt, v 0}gjt ≤ 0, ∀j ∈ J , t ∈ T , (32)

pjt − P jujt + Pubjgjt ≤ 0, ∀j ∈ J , t ∈ T (33)

Q
j
≤ qjt ≤ Qubj , ∀j ∈ J , t ∈ T (34)

v min ≤ vt ≤ v max, ∀t ∈ T (35)

Plbj ≤ pjt ≤ Pubj , ∀j ∈ J , t ∈ T (36)

0 ≤ st ≤ s max, ∀t ∈ T (37)

gjt, ujt, wjt, w̃jt, zjt, z̃jt ∈ {0, 1} ∀j ∈ J , t ∈ T , (38)

where Constraints (14) set the final water volume at least to the desired target
value at the end of the time horizon. Constraints (15)-(16) impose the water
conservation within consecutive time periods. Constraints (17)-(20) limit the
water flow variation. Constraints (21)-(22) establish the lower and upper bound
of flow in each period. Constraints (23) establish a lower bound on the amount of
water released in each period. Constraints (24)-(31) define the switch-on/switch-
off rules of the turbines and pumps, imposing that if a turbine is on, then the
corresponding pump should be off and vice versa. Constraints (32) represent
the production function and Constraints (33) define an upper bound on the
produced power. Finally, Constraints (34)-(37) bounds the continuous variables
of the model.

4.3 MILP approximations

Three different MILP approximations of the production function p = φ(q, v)
have been introduced, namely convex combination model (CC), incremental
model (Inc), and multiple choice model (MC), adapted to the application from
[28]. In the presented linear approximations, the original nonlinear production
function is replaced by a linear combination of the same. Each utility j is
divided into Sj operating breakpoints, i.e., k points at which there is a power

P̃jk corresponding to a water flow Q̃jk. Assuming for each utility j a set Sj =
{0, ..., Sj} of breakpoints, and a subset S∗j = Sj\{0}, we introduce the new
binary variables yjtk (for j ∈ J , t ∈ T , k ∈ Sj) which defines in which interval
of production the values of qjt and pjt lie.
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4.3.1 Convex combination model

A possible reformulation is a convex combination of the breakpoints. In addition
to what already introduced also some continuous variables λjtk, µjtk are added
to the model. Therefore, Constraints (21)-(22) and (32)-(33) are replaced by

pjt ≤
∑
k∈S∗

j

µjtkP̃j(k−1) + λjtkP̃jk + P jujt, ∀j ∈ J , t ∈ T (39)

µjtk + λjtk = yjtk, ∀k ∈ S∗j , j ∈ J ,
t ∈ T (40)∑

k∈S∗
j

yjtk = gjt, ∀j ∈ J , t ∈ T (41)

qjt + (Q
j
ujt +

∑
k∈S∗

j

µjtkQ̃j(k−1) + λjtkQ̃jk) ≥ 0, ∀j ∈ J , t ∈ T (42)

qjt + (Q
j
ujt +

∑
k∈S∗

j

µjtkQ̃j(k−1) + λjtkQ̃jk) ≤ 0, ∀j ∈ J , t ∈ T (43)

0 ≤ µjtk ≤ 1, ∀k ∈ S∗j , j ∈ J ,
t ∈ T (44)

0 ≤ λjtk ≤ 1, ∀k ∈ S∗j , j ∈ J ,
t ∈ T . (45)

4.3.2 Incremental model

Another possible reformulation is the incremental model introducing the con-

tinuous variable δjtk and parameter σjtk computed as
P̃jk−P̃j(k−1)

Q̃jk−Q̃j(k−1)
. Therefore
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Constraints (21)-(22) and (32)-(33) are replaced by

pjt ≤ P̃j0yjt1 +
∑
k∈S∗

j

σjtkδjtk + P jujt, ∀j ∈ J , t ∈ T (46)

δjtk ≤ (Q̃jk − Q̃j(k−1))yjtk, ∀k ∈ S∗j ,
j ∈ J , t ∈ T (47)

δjtk ≥ (Q̃jk − Q̃j(k−1))yjt(k+1), ∀k ∈ S∗j \{Sj}, j ∈ J ,
t ∈ T (48)

δjtSj
≥ 0, ∀j ∈ J , t ∈ T (49)

yjt1 ≤ gjt, ∀j ∈ J , t ∈ T (50)

qjt + (Q
j
ujt + Q̃j0gjt

∑
k∈S∗

j

δjtk) ≥ 0, ∀j ∈ J , t ∈ T (51)

qjt + (Q
j
ujt + Q̃j0gjt

∑
k∈S∗

j

δjtk) ≤ 0, ∀j ∈ J , t ∈ T (52)

0 ≤ δjtk ≤ Q̃jk − Q̃j(k−1), ∀k ∈ S∗j , j ∈ J ,
t ∈ T (53)

4.3.3 Multiple choice model

In the multiple choice reformulation, a new continuous variable βjtk is intro-
duced while a parameter σjtk is defined as Section 4.3.2. Therefore Constraints
(21)-(22) and (32)-(33) are replaced by

pjt ≤
∑
k∈S∗

j

P̃jkyjtk + σjtk(βjtk − Q̃j(k−1)yjtk) + P jujt, ∀j ∈ J , t ∈ T (54)

βjtk ≤ Q̃jkyjtk, ∀k ∈ S∗j , j ∈ J ,
t ∈ T (55)

βjtk ≥ Q̃j(k−1)yjtk, ∀k ∈ S∗j , j ∈ J ,
t ∈ T (56)∑

k∈S∗
j

yjtk = gjt, ∀j ∈ J , t ∈ T (57)

qjt + (Q
j
ujt +

∑
k∈S∗

j

βjtk) ≥ 0, ∀j ∈ J , t ∈ T (58)

qjt + (Q
j
ujt +

∑
k∈S∗

j

βjtk) ≤ 0, ∀j ∈ J , t ∈ T . (59)

4.3.4 Considerations on the three MILP approximation models

Note that the three formulations introduced in this section are equivalent, i.e.,
they model the same approximation of the MINLP problem. Even though some
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authors proved that some of them show some nice mathematical properties
(see, for a complete review of alternative formulations, [28]), it is not possible
to predict which one will be easier to solve with standard MILP solvers. Thus,
it is interesting to introduce all of them and compare them from a practical
viewpoint.

5 Computational Results

In this section, we present the results obtained by testing a relevant subset of
single-reservoir instances that can be produced by the generator. The instances
considered have been tested for an MINLP variant and also the three different
MILP approximations of the production function CC, Inc, and MC. The MINLP
and MILP models were coded in AMPL modeling language [1] and are available
on the generator website, together with the instances used for computational
results.
The set of instances has been generated by varying some parameters such as the
reference period of the price and inflow data considering three different periods
of the year as April, August, and December. The three different periods of the
year are exemplary because seasonality leads to clear differences in climate and
electricity consumption, therefore changing prices, demand, and availability of
resources. In addition, three possible time horizons T have been considered,
i.e., 24, 48, and 72 hours, respectively, and finally, also different combinations
of operational points (o.p.) have been considered. We have picked: 3, 10, 16,
23, and 30.
All experiments are performed on a single machine equipped with an Intel Xeon
E5649 processor clocked at 2.53 GHz and 50 GB RAM. We solved the MINLPs
with the exact solvers Baron [22] and Couenne [3] or with the heuristic solvers
Bonmin [4] and Knitro [6]. Note that they are heuristic because our MINLP is
nonconvex. The MILPs models were solved with the IBM ILOG CPLEX 12.6
solver [12]. A time limit (t.l.) of one hour was imposed to all the MINLP and
MILP solvers.
We start analyzing the solution of the MINLP problem, which is a more realistic
formulation compared to the MILP approximation. In Tables 5 and 6 we report
the results of the four MINLP solvers on the 9 instances, in particular, the best
solution value and the CPU time, respectively. The first two columns of each of
the tables represent the characteristics of the considered instance, namely the
considered month (“m”) and time horizon (“T”). The best entry is highlighted
in bold.
Table 5 clearly shows the good performance of Baron in finding the best solution
for the majority of the instances except for i. August instance with a time hori-
zon of 24h, where Baron wrongly proves a global optimum which is worse than
the best solution found by Knitro; ii. the two largest instances for December,
where Bonmin finds a better solution. However, from Table 6 we see that Baron
and Couenne, the two exact solvers, almost always hit the time limit. When
the time limit is not reached, it is because of some error: as explained before,
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m T KNITRO Baron Bonmin Couenne

4 24 4,812.01 5,087.73 4,496.69 3,784.17

4 48 9,476.48 10,053.20 9,387.81 5,010.39

4 72 14,257.35 14,703.75 14,120.03 7,009.04

8 24 216.82 120.63 176.12 N/A

8 48 919.35 1,285.98 639.91 N/A

8 72 1,850.38 1,971.93 1,130.83 N/A

12 24 4,776.82 4,776.82 4,075.47 N/A

12 48 11,788.25 - 15,271.65 4,122.74

12 72 13,392.96 19,023.91 19,176.64 6,718.91

Table 5: Comparison among MINLP solvers for the different instances: optimal
profit value (ek)

m T KNITRO Baron Bonmin Couenne

4 24 1.99 t.l. 13.01 t.l.

4 48 316.58 t.l. 73.14 t.l.

4 72 348.44 t.l. 227.04 t.l.

8 24 2.90 3.23 5.99 2.79

8 48 17.83 t.l. 18.76 7.70

8 72 111.85 t.l. 40.06 16.18

12 24 3.30 t.l. 1.01 17.68

12 48 121.52 t.l. 16.47 t.l.

12 72 811.28 t.l. 33.29 t.l.

Table 6: Comparison among MINLP solvers for the different instances: CPU
time (s)

Baron proves a wrong global optimum in the case of m = 8 and T = 24. In
the four cases where Couenne terminates in less than one hour, it returns an
“infeasible problem” message, which is wrong as well because the other solvers
could find a feasible solution. This shows that the problem is challenging when
considering the nonlinear production function. Thus, the heuristic solvers show
better CPU times at the cost of losing some solution quality.
We now move to the analysis of the solution of the MILP approximations. In
this case as well, the solution found is only heuristic. However, it is well known
that MILP solvers are in practice much more efficient than the MINLP ones,
thus it is worth considering such approximations.
Table 7 shows the computing time [s] for three different MILP formulations,
testing the same set of instances for the MINLP case, but considering as well
different numbers of o.p. For every data reference period, the best performing
formulation among the three is in bold. The Inc formulation seems to be the
most performing. Note that the difficulty of the instances is not necessarily
proportional to its size or the number of binary variables (which is proportional
to T and o.p.). For example, the case of April, T = 72 hours, and 30 o.p.,
the largest considered instance, seems to be easier than smaller instances like
April, T = 72, and 10 o.p. Note as well that, as expected, the CPU time needed
to solve the MILP formulations is much shorter than the one needed for the
MINLP ones. Moreover, CPLEX never hits the time limit when solving Inc.
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April August December

T o.p. CC Inc MC CC Inc MC CC Inc MC

24 3 0.08 0.04 0.05 0.04 0.04 0.04 0.04 0.03 0.03

24 10 3.89 0.25 0.68 0.07 0.05 0.06 0.12 0.07 0.12

24 16 6.81 0.35 1.27 0.14 0.07 0.07 0.19 0.14 0.21

24 23 11.48 0.49 1.86 0.17 0.07 0.09 0.24 0.15 0.30

24 30 17.17 0.64 3.02 0.20 0.10 0.12 0.40 0.23 0.36

48 3 5.98 5.75 4.64 0.05 0.04 0.04 0.07 0.05 0.06

48 10 0.09 0.05 0.12 0.19 0.09 0.14 0.07 0.03 0.09

48 16 21.69 0.95 8.28 0.33 0.19 0.25 0.09 0.10 0.11

48 23 4.93 0.49 0.86 0.38 0.22 0.36 0.12 0.12 0.19

48 30 0.52 0.25 1.31 0.79 0.33 0.60 0.16 0.15 0.19

72 3 416.38 227.99 215.04 0.06 0.06 0.07 0.12 0.09 0.11

72 10 t.l. 1532.47 t.l. 0.26 0.15 0.36 2.05 0.20 0.93

72 16 2.99 0.66 1.47 0.84 0.45 0.78 12.01 0.41 1.34

72 23 t.l. 59.28 t.l. 1.46 0.67 1.41 51.47 0.41 16.70

72 30 8.1 0.90 3.46 2.27 0.99 2.03 116.34 0.58 51.42

Table 7: CPU time (s) using the approaches CC, Inc, MC for the different
instances.

Finally, we remind the reader that the three formulations are equivalent, thus
they find the same optimal solution, for a given number of o.p.
Additional comparison has been performed with the original MINLP formu-
lation solved with Baron. In Figure 3a we present some examples of optimal
values obtained with MINLP and MILP approaches within the time limit, the
time horizon of 24 hours, and different numbers of operational points, which
determine the accuracy of the MILP approximation. The green dotted line
“MINLP” represents indeed the best solution found with the MINLP model
(even if with a gap > 300%), the blue line “R.Opt.” are the optimal solutions
obtained with any of the MILP formulations which seem to overestimate, while
the red line “Opt.” represents the values computed using MILP solutions within
the original MINLP objective function, i.e., the projection of the linear solution
into the nonlinear formulation. Using the optimized solution of the linear re-
laxations, it is always possible to compute the value of the objective function
with nonlinear power formulation based on the obtained solution. As expected
the accuracy of the approximated production function p = φ(q, v) is increasing
as the number of o.p. and using only 10 o.p. it is possible to obtain a practi-
cally perfect approximation by calculating a posteriori the nonlinear objective
function of the optimal solution.
Instead, Figure 3b shows the computing time of some instances as a function
of the difference between the initial water volume and the target water volume,
which ranges from 0 to 1 [hm3]. In particular, the considered instances have
been generated fixing the parameters to 16 o.p., data were taken from April, and
a 24 hours time horizon was picked. Again, MINLP results are not mentioned as
the time limit is once more reached. The result shows that the aforementioned
difference affects the complexity of the problem as they clearly influence the
possible values of volume resources.
Finally, we provide a detailed comparison of the objective function value pro-
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(a) Comparison of objective functions of
the relaxed models and computed us-
ing MILP solutions within the original
MINLP objective function, of instances
in function of the different o.p. 3, 10, 16,
23, and 30, with data from April, and 24
hours horizon.

(b) Comparison of CPU solving time of
instances in function of the difference be-
tween the initial water volume and the
target water volume diff (m3) with 16
o.p. and 24 hours horizon.

Figure 3: Comparison of objective function value and CPU time.

vided by the MILP and the MINLP formulations in Table 8.

m T 3 10 16 23 30 best sol MINLP best UB

4 24 4,681.45 5,089.11 5,089.40 5,091.50 5,093.08 5,087.74 20,202.67

4 48 9,105.78 10,289.96 10,264.88 10,281.78 10,289.96 10,053.20 43,691.41

4 72 13,319.27 15,187.22 15,240.99 15,221.61 15,240.99 14,703.75 58,568.21

8 24 216.82 216.82 216.82 216.82 216.82 216.82 N/A

8 48 1,285.98 1,285.98 1,285.98 1,285.98 1,285.98 1,285.98 2,032.73

8 72 1,971.93 1,971.93 2,028.87 2,028.87 2,028.87 1,971.93 7,131.61

12 24 4,426.82 4,775.23 4,776.33 4,776.78 4,776.31 4,776.82 10,731.09

12 48 13,863.24 15,212.33 15,300.27 15,322.00 15,334.12 15,271.65 33,563.56

12 72 16,971.23 19,273.00 19,314.59 19,322.43 19,322.78 19,176.64 44,879.98

Table 8: Comparison among MINLP solvers for the different instances (ek)

Columns m and T refer to the month and time horizon characterizing the in-
stances. The next 5 columns show the profit value of the best solution found by
the MILP formulations for 3, 10, 16, 23, 30 o.p., respectively. The great major-
ity of the time, a larger number of o.p. implies a better objective function value,
but it is not systematic (see, for example, the value for m = 4 and T = 48).
This is normal because the MILP formulations are just approximations of the
MINLP formulation. In the last two columns, we reported: “best sol MINLP”,
i.e., the best solution value find by any of the MINLP solvers; “best UB” the
best upper bound found by Baron and Couenne. We can observe that the best
solution found by the MINLP solvers is never better than the one found by the
MILP solvers for a number of o.p. ≥ 16 (besides m = 12 and T = 24 if we
consider the decimals). Furthermore, the best upper bound, when available, is
always very far from the best known solution. We suspect that the relaxation
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solved by Baron/Couenne to find the upper bound is very weak.
To conclude, the MILP formulations seem to be a good option when one wishes
to have a good trade off between solution quality and short CPU time.

6 Perspectives and Conclusions

The presented instance generator was shown to yield already non-trivial in-
stances when considering only a single reservoir. Multiple-reservoir instances
also contain information about the cascading structure. In the future, we
are planning to extend the generator to other existing structures and drainage
basins. In addition, the tool can be used with different price and inflow data
with minor modifications. For instance, a possible future extension could be
to allow the generator to provide automatically also data with half-hourly and
quarter-hourly periods and also to handle exceptions such as incomplete data.
This research benefited from the support of the FMJH Program PGMO and
from the support of EDF.
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