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aUniversité Lyon 1, Villeurbanne, France – CNRS, UMR 5007, LAGEPP, France.

Abstract

Robustness guarantees are important properties to be looked for during control design. They ensure stability of closed-
loop systems in face of uncertainties, unmodeled effects and bounded disturbances. Inspired by the continuous-time
literature, in this article we investigate the total stability properties of dynamical discrete-time nonlinear systems. Such
a property locally relates phase plots of dynamical systems of the same dimension which are “similar enough”. As a
consequence, it enables the analysis of robustness properties via simple model difference in the discrete-time context.
First, we study how existence of equilibria for a nominal model transfers to sufficiently similar ones. Then, we provide
results on the propagation of stability guarantees to perturbed systems. Finally, we relate such properties to the constant
output regulation problem by motivating the use of discrete-time integral action in discrete-time nonlinear systems for
model robustness purposes.

1. Introduction

Stability of an equilibrium is of utter importance in the
design of feedback controllers. Stability properties are typ-
ically inferred through the analysis of the system model in
closed-loop. However, it is well known that uncertainties
inherently exist in control applications, due to the pres-
ence of unmodeled effects and parameters mismatches. To
tackle such an issue, robust control and robust stability
analysis have become fundamental tools for control design
[1]. The problem of synthesizing such robust controllers
can be cast in an optimization framework, both in the lin-
ear and the nonlinear scenario, e.g. [2–6]. Nevertheless, a
strong theoretical foundation turns out to be a fundamen-
tal design tool. While the theory on robust stability and
regulation is well-developed and mature for continuous-
time systems, see e.g., [7, 8], the discrete-time nonlin-
ear scenario still misses some important results. In prac-
tice, control laws are often implemented via digital devices
working at certain time instants. Moreover, many digi-
tal sensors provide measurements discontinuously in time,
controlled by the frequencies of internal clocks. Thus, it
can be effective to design controllers based on a discrete-
time model of the plant, see, e.g., [9]. Although it is known
that, for sufficiently small sampling times, continuous-time
results are valid in the discrete framework (see, e.g., [10]),
such an approach may be restrictive or inapplicable for
some control applications.
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In this article, we suppose that a discrete-time nonlinear
model has already been derived and we focus on the ro-
bust stability properties of an equilibrium of such a model.
In this context, some necessary local conditions linked to
robustness appeared in [11]. Therein, the authors state
that a necessary condition for local stability of nonlin-
ear discrete-time autonomous systems comes from invert-
ibility of the vector field at the equilibrium and close to
it. The aforementioned condition can be seen as requir-
ing the existence of a fixed point for a perturbed system
that does not differ too much in norm from the initial one.
Also, results on robust stability appeared in [12, Chapter
5]. Therein, it is shown that if the origin of the nomi-
nal system is locally stable and Lipschitz, then it is also
locally robustly stable for bounded disturbances. More
recently, in the context of converse Lyapunov theorems
for discrete-time systems, [13, 14] proved that a necessary
condition for robust stability is the existence of a smooth
Lyapunov function. Successively, [15] extended the results
to the stochastic framework. However, all the aforemen-
tioned works mainly focused on perturbations vanishing
in the equilibrium. Moreover, when considering persistent
constant disturbances (see e.g., [15, Section 7.1]) the au-
thors only provide practical stability guarantees and do
not characterize the system behavior inside the attractive
set. This doesn’t guarntee the correct functioning of a tool
such as the integral action, whose foundation lies in the ex-
istence of equilibria [8]. Indeed, to the best of the authors’
knowledge, there are no results mimicking well-established
general results of “total stability” for continuous-time sys-
tems. The concept of total stability was early introduced
in the works of Dubosin, Gorsin and Malkin [16, pp. 316]
(see also [17] and references therein), and more recently
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studied in [8, 17–19]. In this context, robustness proper-
ties are analyzed directly via nonlinear unstructured mod-
els differences. This allows inferring the preservation of a
stable equilibrium point for sufficiently similar plants by
means of simple model comparison [8, Lemma 4, 5].

The goal of this paper is therefore to translate such re-
sults to the discrete-time scenario. We draw conclusions
similar to the continuous case, yet under some fundamen-
tal differences, given by the discrete nature of the sys-
tem. In particular, we show that stability properties of
the equilibrium of a nominal model imply the existence
and stability of an equilibrium (possibly different from the
former) for any perturbed system sufficiently “close” to
the nominal one. The result is proved under some regular-
ity assumptions and bounded mismatches. Moreover, we
provide a counterexample highlighting that some results
from the continuous-time scenario may not apply in the
discretized framework. This disproves some arguments of
[11]. Finally, we link the obtained results on robust stabil-
ity to the robust output regulation problem, building on
recent forwarding techniques [20]. We justify the addition
of an integral action for rejecting constant disturbances or
tracking constant references. More specifically, we show
that if the true model of the plant to be controlled is suffi-
ciently close to one used for controller design, then output
regulation is still achieved.

The rest of the paper is organized as follows: Section 2
presents the main result of the paper on total stability;
Section 3 applies the result to the problem of constant
output regulation; Section 4 comments and concludes the
paper.

1.1. Notation

R, resp. N, denotes the set of real numbers, resp. non-
negative integers. R≥0 denotes the set of nonnegative real
numbers. In this work, we define a time-invariant nonlin-
ear dynamical discrete-time system as x+ = f(x), where
x ∈ Rn is the state solution evaluated at timestep k ∈ N
with initial condition x0, and x+ is the state solution at
step k+1. Sets are denoted by calligraphic letters and, for
a given set X , we identify its boundary by ∂X . The no-
tation X \ G identifies the intersection between X and the
complement of G. When a set X is strictly included in a
set G, we use the notation X ⫋ G. We use | · | as the norm
operator for matrices and vectors. Moreover, we denote
as d(x,X ) a generic distance function between any point
x ∈ Rn and a closed set X ⊂ Rn. For instance, one may
choose d(x,X ) = infz∈X |x−z|. A function α : R≥0 → R≥0

is of class K (α ∈ K) if it is continuous, zero at zero and
strictly increasing. Similarly, we say α ∈ K∞ if α ∈ K
and lims→∞ α(s) = ∞. Moreover, for a square matrix
A we denote by λmax(A) its maximum eigenvalue. Given
a symmetric positive definite matrix P ∈ Rn×n, for any
A ∈ Rn×n and for any arbitrary scalar r := r1r2 with
r1, r2 > 0, the generalized Schur’s complement implies that

the following inequalities are equivalent{
A⊤PA− rP ⪯ 0

−P ≺ 0
⇐⇒

(
−r1P A⊤P
PA −r2P

)
⪯ 0.

Given two topological spaces X ,Y, a function ϕ : X → Y
is said to be a homeomorphism if it is continuous, bijec-
tive (i.e. its inverse exists and it is unique), and its inverse
is continuous. Moreover, X and Y are said to be homeo-
morphic if there exists a function ϕ : X → Y which is a
homeomorphism.

2. Total stability results

In this section, we study how the stability properties of
the origin of a given discrete-time autonomous nonlinear
system

x+ = f(x), (1)

transfer to systems described by a sufficiently similar dif-
ference equation

x+ = f̂(x), (2)

where f : Rn → Rn , f̂ : Rn → Rn are continuous func-
tions. We propose two different results. The first one
links the existence of an equilibrium for system (1) to the
existence of an equilibrium for the perturbed system (2).
Without loss of generality, we assume such an equilibrium
for (1) to be the origin. We show that an equilibrium for
(2) exists, provided that the two models are locally close
enough. More precisely, the result holds if the functions f
and f̂ are not too different in the C0 norm, and system (1)
presents a forward invariant set containing its equilibrium
and which is homeomorphic to the unit ball. The second
result considers the case where both the dynamics and the
Jacobians of the two systems (1), (2) are sufficiently simi-
lar. Under such conditions, we show that the existence of a
locally exponentially stable equilibrium for (1) implies the
existence and uniqueness of a locally exponentially stable
equilibrium for (2) close to it. Moreover, we present a
lower bound on the size of the domain of attraction of the
equilibrium for (2).

The definition of total stability historically involves
quantitative properties of the solution initiated from an
equilibrium point under constantly acting disturbances
[16, pp. 303]. Inspired by these seminal works, we pro-
pose the following qualitative version of such a definition,
which is related to the preservation of an equilibrium. In
particular, we define local similarities in the phase plots
between the vector fields of systems whose dynamics are
close enough. A corresponding delta-epsilon condition is
given by Theorem 1 in Section 2.4.

Definition 1 (Total stability). The origin of system

(1) is said to be totally stable if, for any f̂ close enough
to f , we can associate an equilibrium xe which is (locally)
asymptotically stable for system (2).
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2.1. Existence of equilibrium

We now present the minimal assumption required to
show the existence of an equilibrium for (2). To this end,
we introduce the following notation. Given a positive func-
tion V : A ⊆ Rn → R≥0 and a positive real number c > 0,
we denote the sublevel set of such a function as

Vc(V ) := {x ∈ A : V (x) ≤ c}. (3)

Assumption 1. Let A be an open subset of Rn. There
exists a C0 function V : A → R≥0 satisfying V (0) = 0
and such that the following holds:

1. there exists a positive real number c̄ such that the set
Vc̄(V ) is homeomorphic to the unit ball;

2. there exists ρ ∈ (0, 1) such that

V (f(x)) ≤ ρV (x), ∀x ∈ Vc̄(V ). (4)

The first result is formalized by the following proposi-
tion. It states that, if the conditions of Assumption 1 hold,
system (2) admits (at least) one equilibrium inside the set

Vc̄(V ) if the functions f and f̂ are “close enough”.

Proposition 1. Let Assumption 1 hold. Then, for any
positive c ≤ c̄ there exists a positive real number δ such
that, for any continuous function f̂ : Rn → Rn satisfying

|f̂(x)− f(x)| < δ, ∀x ∈ Vc̄(V ) (5)

the corresponding system (2) admits an equilibrium point
xe ∈ Vc(V ). Moreover, such system has no other equilib-
rium in the set Vc̄(V ) \ Vc(V ).

Proof. Consider c ≤ c̄ and let ρ̂ be any positive real
number satisfying ρ < ρ̂ < 1. Since the set Vc̄(V ) is home-
omorphic to the unit ball, it is bounded. Moreover, the
function V being continuous, Vc(V ) is a compact subset.
Next, we define the function p : R≥0 → R as

p(s) = max
x∈Vc̄(V )

v∈Rn:|v|=1

{
V (f(x) + sv)− c̄

}
, (6)

with s a positive real number. Recalling item 2 of As-
sumption 1, we obtain

p(0) = max
x∈Vc̄(V )

v∈Rn:|v|=1

{
V (f(x))− c̄

}
≤ max

x∈Vc̄(V )
v∈Rn:|v|=1

{
ρV (x)− c̄

}
≤ (ρ− 1)c̄ < 0. (7)

Then, we define the function q : R≥0 → R as

q(s) = max
x∈Vc̄(V )\Vc(V )

v∈Rn:|v|=1

{
V (f(x) + sv)− ρ̂V (x)

}
.

It satisfies

q(0) = max
x∈Vc̄(V )\Vc(V )

{V (f(x))− ρ̂V (x)},

≤ max
x∈Vc̄(V )\Vc(V )

{(ρ− ρ̂)V (x)} ≤ (ρ− ρ̂)c < 0. (8)

As a consequence, since p, q are continuous functions sat-
isfying (7), (8), there exists δ > 0 such that

p(s) < 0, q(s) < 0, ∀ s ∈ [0, δ]. (9)

Now, pick any continuous function f̂ satisfying (5). Note

that for all x in Vc̄(V ) such that f(x) ̸= f̂(x),

V (f̂(x))− c̄ = V (f(x) + sv)− c̄

with s = |f(x)− f̂(x)|, v = f(x)−f̂(x)

|f(x)−f̂(x)|
. Consequently, for

all x in Vc̄(V ) inequalities (9) and (5) imply

V (f̂(x))− c̄ ≤ p(|f(x)− f̂(x)|) < 0. (10)

Hence, f̂(x) ∈ Vc̄(V ). By assumption, Vc̄(V ) is home-
omorphic to a unitary ball, which we denote as B =
{z ∈ Rn : |z| ≤ 1}. Hence, there exists two continu-
ous mappings T : Vc̄(V ) → B and T−1 : B → Vc̄(V )
such that T ◦ T−1(z) = z for all z in B. Hence, the

mapping T ◦ f̂ ◦ T−1 : B → B is a continuous func-
tion. Hence, by Brouwer’s fixed point theorem, there exists
z∗ ∈ B such that T ◦ f̂ ◦ T−1(z∗) = z∗. Thus, it implies

f̂ ◦ T−1(z∗) = T−1(z∗). We deduce that xe = T−1(z∗) is
a fixed point belonging to Vc̄(V ). Now, let us consider
the set Vc̄(V ) \ Vc(V ). As before, with the same defini-
tions of s and v, inequalities (9) and (5) imply that, for all
x ∈ Vc̄(V ) \ Vc(V ), it holds

V (f̂(x))− ρ̂V (x) = V (f(x) + sv)− ρ̂V (x)

≤ q(s) < 0.

Hence, f̂(x) ̸= x for all x ∈ Vc̄(V ) \ Vc(V ). Consequently,
xe belongs to Vc(V ) and this concludes the proof. 2

2.2. Comments about Assumption 1

We remark that Assumption 1 and Proposition 1 do not
imply that equilibria of systems (1) and (2) are unique
or attractive. Indeed, Assumption 1 is not requiring the
nominal system (1) to be asymptotically stable. It solely
assumes the existence of a forward invariant compact set
that is homeomorphic to the unit ball. As a matter of fact,
since V is not strictly positive outside of the origin (i.e. we
are not asking the function V to be lower-bounded by a
class K function of the norm of x), V may have multiple
local minima. This does not allow concluding asymptotic
stability of the origin. In order to clarify this aspect, we
give the following simple example. Consider a system of
the form

x+ = f(x) :=


1
2 (x+ c) if x ≥ c
1
2 (x− c) if x ≤ −c
x otherwise

where x ∈ R and f : R → R is a piecewise continuous
linear function and c is a strictly positive constant. It can
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be seen that all the points satisfying |x| ≤ c are equilibrium
points, yet, none of them is attractive. Now, select V as

V (x) :=

{
0 if |x| ≤ c ,
|x| − c otherwise .

It is non-negative, continuous, and all level sets identified
by c > 0 are homeomorphic to the unit ball. Moreover, by
the definition of f and since c > 0 we obtain

V (x+) =

{
0 ≤ 1

2V (x) if |x| ≤ c
1
2 |x| −

1
2c =

1
2V (x) otherwise

This shows that Assumption 1 holds and Proposition 1
applies. For instance, consider f̂(x) := f(x)+ δ, satisfying

(5). Pick c = 2c and c = c. If 2|δ| ≤ c then f̂ admits a
unique fixed point xe satisfying |xe| = c + 2|δ| ≤ 2c and
no other equilibrium exists inside the set Vc̄(V )\Vc(V ) :=
{2c < |xe| ≤ 3c}. Finally, as a further example, by select-
ing any 0 < δ < 1

2c and

f̂(x) =


δ if 0 ≤ x ≤ δ
cx−δ2

c−δ if δ ≤ x ≤ c

f(x) + δ otherwise

it can be verified that x∗
e = δ is an additional equilibrium

point with respect to the previously defined xe. This new
equilibrium lies inside V0(V ).

2.3. Continuous and discrete-time results

Proposition 1 establishes the conditions under which the
existence of an equilibrium for the nominal model (1) im-
plies the existence of an equilibrium for any perturbed
system (2) sufficiently close to the nominal one. This
result parallels the continuous-time one presented in [8,
Lemma 4]. However, different assumptions are needed. In
the continuous-time case, the origin of the nominal sys-
tem is supposed to be asymptotically stable. In turn, for
any forward invariant set, this ensures the existence of
a Lyapunov function whose level sets are homeomorphic
to a sphere, see [21, Theorem 1.2]. Unfortunately, in the
discrete-time case this fact is in general not true. As a mat-
ter of fact, Lyapunov level sets may be non-homeomorphic
to spheres, contrarily to what is stated in [11, Proof of
Theorem 2.7]. As an example, see [22]. This phenomenon
is due to the nature of such systems, as the presence of
jumps doesn’t allow an easy translation of continuous-time
results. As a consequence, in Assumption 1 we ask for the
existence of an invariant sublevel set Vc̄(V ) homeomorphic
to a ball. At the same time, we do not require asymptotic
stability of the origin.

In the following, we present an example showing the
aforementioned behavior. In particular, we focus on a
simple and stable linear system. We carefully craft a non-
trivial Lyapunov function guaranteeing asymptotic stabil-
ity of the origin. Successively, we exploit the structure of

Figure 1: Lyapunov sublevel set for x ∈ R2

such a function to show that it has no sublevel set which
is homeomorphic to a ball. Consider the linear system

x+ = f(x) :=
1

2
Inx,

where x ∈ Rn, In is the identity matrix of dimension n
and the candidate Lyapunov function

V (x) =


0 x = 0

6|x| − 5 · 2i 2i ≤ |x| < 2i + 2i−1

−4|x|+ 5 · 2i+1 2i + 2i−1 ≤ |x| < 2i+1

where i ∈ Z∪{−∞,+∞} and it is uniquely defined by |x|.
It can be verified that V (x) is continuous. Consider the
case where 2i ≤ |x| < 2i + 2i−1 for some i in Z. We have
2i−1 ≤ |f(x)| < 2i−1 + 2i−2 and

V (f(x))− V (x) = 6|f(x)| − 5 · 2i−1 − 6|x|+ 5 · 2i

= −3|x|+ 5 · 2i−1 < −2i−1 < 0.

Similarly, for 2i + 2i−1 ≤ |x| < 2i+1 for some i in Z we
obtain 2i−1 + 2i−2 ≤ |x| < 2i and

V (f(x))− V (x) = −4|f(x)|+ 5 · 2i + 4|x| − 5 · 2i+1

= 2|x| − 5 · 2i < −2i < 0.

Hence, V is a continuous Lyapunov function for the sys-
tem. However, it does not exist any c > 0 such that the
corresponding sublevel set Vc(V ) defined in (3) is home-
omorphic to a ball, since each sublevel set is not path-
connected. Figure 1 shows such a behavior for the planar
case x ∈ R2.

Clearly, one could have picked a quadratic Lyapunov
function for such a linear system. Yet, this example shows
that discrete-time Lyapunov functions do not always pos-
sess the desired homeomorphicity property. As a conse-
quence, we cannot guarantee that Lyapunov functions pro-
vided by converse Lyapunov theorems (e.g., [23]) satisfy
such a property.
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2.4. Existence of an exponentially stable equilibrium

We now present the main result on total stability of
this paper, which is formalized in the next theorem. This
result parallels [8, Lemma 5]. We exploit the asymptotic
properties of the equilibrium for the nominal system (1) to
prove existence, uniqueness and stability of an equilibrium
for (2).

Theorem 1. Assume the origin of the system (1) is
asymptotically stable with domain of attraction A and lo-
cally exponentially stable. Let C be an arbitrary compact
set satisfying {0} ⫋ C ⫋ A and suppose the function f is
C0 for all x ∈ A and C1 for all x ∈ C. Then, for any
forward invariant compact set C verifying

{0} ⫋ C ⫋ C ⫋ A,

there exists a positive scalar δ > 0 such that, for any func-
tion f̂ which is C0 for all x ∈ A and C1 for all x ∈ C and
satisfying

|f̂(x)− f(x)| ≤ δ, ∀x ∈ C, (11)∣∣∣∣∣∂f̂∂x (x)− ∂f

∂x
(x)

∣∣∣∣∣ ≤ δ, ∀x ∈ C, (12)

the corresponding system (2) admits an equilibrium point
xe ∈ C, which is asymptotically stable with a domain of
attraction containing C and locally exponentially stable. In
other words, the origin of system (1) is totally stable.

Note that, differently from [8, Lemma 5], the nominal
and perturbed models are required to be C1 inside C solely,
while C0 outside. This allows considering interesting con-
tinuous functions, such as saturation functions, which are
not differentiable everywhere.

Proof. The proof is organized in several steps. We start
by establishing the existence, uniqueness and local expo-
nential stability of an equilibrium for the perturbed sys-
tem (2). Then, we characterize the size of its domain of
attraction by combining the converse Lyapunov theorems
established in [23] and techniques similar to the ones used
in the proof of Proposition 1.

Step 1: Local analysis. Let Π be a positive definite sym-
metric matrix and a ∈ (0, 1) a real scalar satisfying

∂f⊤

∂x
(0)Π

∂f

∂x
(0) ⪯ aΠ.

Since the origin is a locally exponentially stable equilib-
rium for system (1), its linearization around the origin is
stable. Hence, the existence of Π is guaranteed by discrete-
time Lyapunov inequality. In the following, given any
c > 0, we denote with Vc(Π) the subset of Rn defined
as

Vc(Π) := {x ∈ Rn : x⊤Πx ≤ c} ⊂ Rn. (13)

Now, note that the quadratic Lyapunov function defined
by Π is a local Lyapunov function for system (1). More-
over, note that for any a ∈ (0, 1) we have a ≤ 1+a

2 < 1.
Then, by continuity there exists a real number ε > 0 such
that Vε(Π) ⊆ C and

∂f⊤

∂x
(x)Π

∂f

∂x
(x) ⪯ 1 + a

2
Π ∀x ∈ Vε(Π).

Equivalently (refer to Section 1.1) it holds

Ψ(x) :=

− 1+a
2 Π

∂f⊤

∂x
(x)Π

Π
∂f

∂x
(x) −Π

 ⪯ 0 (14)

for all x ∈ Vε(Π). Consider the candidate Lyapunov func-
tion

V (x) = x⊤Πx, V (x+) = f(x)⊤Πf(x).

By defining a function F : R → Rn as F (s) := f(sx), and
since we assumed the origin to be an equilibrium point for
f , we have

f(x) = f(x)− f(0) = F (1)− F (0) =

∫ 1

0

∂f

∂x
(sx)x ds.

Then, recalling that 1+a
2 < 1 and via the addition and

subtraction of V (x+), we compute

V (x+)− 1+a
2 V (x) = −1 + a

2
x⊤Πx

+ 2

∫ 1

0

x⊤ ∂f⊤

∂x
(sx)Πf(x) ds− f(x)⊤Πf(x)

= −1 + a

2
x⊤Πx

∫ 1

0

ds+

∫ 1

0

x⊤ ∂f⊤

∂x
(sx)Πf(x) ds

+ f(x)⊤Π

∫ 1

0

∂f

∂x
(sx)x ds− f(x)⊤Πf(x)

∫ 1

0

ds

=

∫ 1

0

[
− 1 + a

2
x⊤Πx+ x⊤ ∂f⊤

∂x
(sx)Πf(x)

+ f(x)⊤Π
∂f

∂x
(sx)x− f(x)⊤Πf(x)

]
ds

=
(
x⊤ f(x)⊤

) ∫ 1

0

Ψ(sx)ds

(
x

f(x)

)
≤ 0 (15)

for all x ∈ Vε(Π) and s ∈ [0, 1], where in the last step we
used the definition of Ψ in (14).

Step 2: Existence of an equilibrium for the perturbed sys-
tem. Now, let f̂ satisfy

|f̂(x)− f(x)| ≤ δ1 :=

√
ε(1− a)2

8λmax(Π)(3 + a)
, (16)

for all x ∈ V ε
2
(Π). In the following, we show that the

existence of such a bound and the local stability of system
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(1) imply the existence of an equilibrium point xe ∈ V ε
2
(Π)

for the perturbed system (2). To this aim, we leverage on
Brouwer’s fixed point theorem. Hence, we need to show
that the set V ε

2
(Π) is forward invariant for system (2) and

that it is homeomorphic to a unit ball.
Let us choose x̄ ∈ Rn satisfying x̄ ∈ ∂V ε

2
(Π) and note

that for all x ∈ ∂V ε
2
(Π)

f̂(x)⊤Πf̂(x) =
[
f̂(x)− f(x)

]⊤
Π
[
f̂(x)− f(x)

]
+ f(x)⊤Πf(x) + 2

[
f̂(x)− f(x)

]⊤
Πf(x).

Then, using the generalized Young’s inequality 2αβ ≤
ν−1α2+νβ2 with ν =

1− a

2(1 + a)
on the last term, we obtain

f̂(x)⊤Πf̂(x) ≤ 3 + a

1− a

[
f̂(x)− f(x)

]⊤
Π
[
f̂(x)− f(x)

]
+

3 + a

2(1 + a)
f(x)⊤Πf(x)

≤ 1− a

4
x̄⊤Πx̄+

3 + a

4
x⊤Πx

≤ 1− a

4
x̄⊤Πx̄+

3 + a

4
x̄⊤Πx̄ ≤ x̄⊤Πx̄,

where we used inequality (16) in the second step for bound-
ing the first term on the right-hand side of the inequality.
Thus, V ε

2
(Π) is forward invariant for the system (2).

Moreover, since ∂V ε
2
(Π) is the level surface of a quadratic

Lyapunov function, it is homeomorphic to a sphere.
Hence, the set V ε

2
(Π) is homomorphic to a closed unit

ball. Following the proof of Proposition 1 and employ-
ing Brouwer’s fixed point theorem, there exists a point
xe ∈ V ε

2
(Π) satisfying f̂(xe) = xe.

Step 3: Local exponential stability. Now we show that xe ∈
V ε

2
(Π) is locally exponentially stable for (2). In particular,

we show that if f̂ satisfies∣∣∣∣∣∂f̂∂x (x)− ∂f

∂x
(x)

∣∣∣∣∣ ≤ δ2 :=
1− a

2
√
10 + 6a

, (17)

for all x ∈ Vε(Π), then, by denoting

x̃ := x− xe

f̄(x̃) := f̂(x̃+ xe)− f̂(xe) = f̂(x)− xe,

the candidate Lyapunov function V̂ (x̃) = x̃⊤Πx̃ has to
satisfy

V̂ (x̃+) = f̄(x̃)
⊤
Πf̄(x̃) ≤ 3 + a

4
V̂ (x̃) ≤ V̂ (x̃) (18)

for all x̃ ∈ Ṽε(Π), where

Ṽε(Π) = {x̃ ∈ Rn : (xe + sx̃) ∈ Vε(Π), ∀s ∈ [0, 1]}.

To show such a property, first note that by defining a func-
tion G : R → Rn as G(s) = f̂(xe + sx̃), it holds

f̄(x̃) = G(1)−G(0) =

∫ 1

0

∂f̂

∂x
(xe + sx̃) ds x̃.

Then, similarly to the previous part of the proof, we com-
pute

V̂ (x̃+)− 3 + a

4
V (x̃) = −3 + a

4
x̃⊤Πx̃− f̄(x̃)

⊤
Πf̄(x̃)

+ 2f̄(x̃)
⊤
Π

∫ 1

0

∂f̂

∂x
(xe + sx̃)x̃ ds

=
(
x̃⊤ f̄(x̃)

⊤
)∫ 1

0

Ψ̂(xe + sx̃)ds

(
x̃

f̄(x̃)

)
, (19)

where in the last step we defined

Ψ̂(x) :=

− 3+a
4 Π

∂f̂⊤

∂x
(x)Π

Π
∂f̂

∂x
(x) −Π

 . (20)

Recalling Section 1.1 and since a ∈ (0, 1), if

Φ(x) :=

− 5+3a
8 Π

∂f̂⊤

∂x
(x)Π

Π
∂f̂

∂x
(x) − 2(3+a)

5+3a Π

 ⪯ 0

then Ψ̂(x) ⪯ 0. Thus, we can study the sign semi-
definiteness of Φ(x) to conclude the sign semi-definiteness

of Ψ̂(x). By adding and subtracting Ψ(x) to Φ(x) and
recalling inequality (14), we obtain,

Φ(x) = Φ(x)−Ψ(x) + Ψ(x) ⪯ Φ(x)−Ψ(x)

Then,

Φ(x) ⪯


a− 1

8
Π

∂f̃⊤

∂x
(x)Π

Π
∂f̃

∂x
(x)

a− 1

5 + 3a
Π

 ,

with ∂f̃
∂x (x) :=

∂f̂
∂x (x)−

∂f
∂x (x). Via generalized Schur’s com-

plement and bound (17), by following the lines of Step 2
and since a ∈ (0, 1), we conclude that the matrix on the
right-hand side is negative semi-definite. Consequently, it
holds Ψ̂(x) ⪯ 0 for all x ∈ Ωε. As a consequence, we

conclude Ψ̂(xe + sx̃) ⪯ 0 for all x̃ ∈ Ω̃ showing (18). We
proved that xe is locally exponentially stable for (2) with a

domain of attraction including the set {x̃ ∈ Ṽε(Π)}. Note
that by the definition of Ṽε(Π) and since Vε(Π) is convex,
the point xe + sx̃ = (1 − s)xe + sx belongs to the set
Vε(Π) for all (x, xe, s) ∈ Vε(Π) × Vε(Π) × [0, 1] . Hence,
the domain of attraction of xe ∈ V ε

2
(Π) contains the set

{x ∈ Vε(Π)}.
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Step 4: Domain of attraction. We now provide a stronger
lower bound on the size of the domain of attraction of
the equilibrium point xe for the perturbed system (2). In
particular, we show that xe has a domain of attraction
that includes the set C. First, by picking

δ3 = min{δ1, δ2} (21)

where δ1 comes from (16) and δ2 is defined in (17), we
obtain that the point xe is a locally exponentially stable
equilibrium point for (2). Moreover, it is contained in C
and its domain of attraction includes Vε(Π).
Now, since C is forward invariant and since system (1)

is time-invariant and described by a continuous function
on A, we can leverage on [23, Theorem 1] to claim the
existence of smooth Lyapunov functions V0 : A → R≥0

and VC : A → R≥0 such that for all x ∈ A it holds

α1(|x|) ≤ V0(x) ≤ α2(|x|),
V0(f(x)) ≤ ρ0V0(x),

V0(x) = 0 ⇐⇒ x = 0,

and

α1(d(x, C)) ≤ VC(x) ≤ α2(d(x, C)),
VC(f(x)) ≤ ρCVC(x),

VC(x) = 0 ⇐⇒ x ∈ C,

where α1, α2 ∈ K∞ and (ρ0, ρC) ∈ (0, 1)×(0, 1). Note that
the two Lyapunov functions can be bounded by different
K∞ functions. Yet, we can select the minimum (maxi-
mum) between those and obtain the same lower (upper)
bound for the two. Consider now the set C. Since it is com-
pact and included in A, there exists a strictly positive real
number d̄ such that the set D := {x ∈ A : d(x, C) ∈ (0, d̄]}
is a subset of A, namely D ⫋ A. Let

V (x) = VC(x) + σV0(x), (22)

with

σ =
α1(d̄)

2ν
, ν = sup

x∈A:d(x,C)≤d̄

V0(x).

By picking ρ = max{ρ0, ρC}, for all x ∈ A it satisfies

α3(|x|) ≤ V (x) ≤ α4(|x|),
V (f(x)) ≤ ρV (x), (23)

V (x) = 0 ⇐⇒ x = 0

with α3, α4 ∈ K∞. This implies that V is a Lyapunov
function for system (1) on A. Define the following sets

∂Vd̄(V ) := {x ∈ A : V (x) = α1(d̄)},
Vd̄(V ) := {x ∈ A : V (x) ≤ α1(d̄)}.

(24)

Due to the definitions of VC in (22) and its lower bound,
we have

α1(d(x, C)) ≤ VC(x) ≤ V (x).

Hence, d(x, C) ≤ d̄ for all x ∈ Vd̄(V ). As a consequence,
for all x ∈ Vd̄(V ), we have ν ≥ V0(x) and by (22) it holds

VC(x) = α1(d̄)

(
1− V0(x)

2ν

)
> 0.

These last relations imply C ⫋ Vd̄(V ) ⊆ D ⫋ A. Now, let
us identify by v > 0 a scalar such that if V (x) ≤ v then
x ∈ V ε

2
(Π), namely x⊤Πx ≤ ε

2 for all x ∈ A : V (x) ≤ v.
Define

δ4 := min

 inf
(y′,y′′)∈∂Vd̄(V )×∂C

|y′ − y′′|, (1− ρ)v

sup
x∈Vd̄(V )

∣∣∂V
∂x (x)

∣∣


(25)
and consider (11) with (25). We can define the function
p : R≥0 → R as

p(s) = max
x∈C,|v|=1

{V (f(x) + sv)− α1(d̄)}.

Then, by the first argument of (25) and (24), for all s ∈
[0, δ4] we have p(s) < 0. Note that for all x in C such that

f(x) ̸= f̂(x),

V (f̂(x))− α1(d̄) = V (f(x) + sv)− α1(d̄) (26)

with s = |f̂(x)− f(x)|, v = f̂(x)−f(x)

|f̂(x)−f(x)|
. Consequently, for

all x in C,

V (f̂(x))− α1(d̄) ≤ p(|f̂(x)− f(x)|) ≤ 0. (27)

Thus, f̂(x) ∈ Vd̄(V ) for all x ∈ C and

f(x) + s(f̂(x)− f(x)) ∈ Vd̄(V ), ∀(x, s) ∈ C × [0, 1].

Then, by picking s ∈ [0, 1] and a function H : R → R as

H(s) = V (f(x) + s(f̂(x)− f(x))), we have

V (f̂(x))− V (f(x)) = H(1)−H(0)

=

∫ 1

0

∂V

∂x

(
f(x) + s(f̂(x)− f(x))

)
ds

[
f̂(x)− f(x)

]
.

Consequently, for all x ∈ Vd̄(V ), we obtain

V (f̂(x)) ≤ V (f(x)) +

∫ 1

0

sup
x∈Vd̄(V )

∣∣∂V
∂x (x)

∣∣ds∣∣f̂(x)− f(x)
∣∣

< ρV (x) + sup
x∈Vd̄(V )

∣∣∂V
∂x (x)

∣∣ δ < ρV (x) + (1− ρ)v.

Since ρ ∈ (0, 1), it holds{
V (f̂(x)) < V (x) ∀x ∈ C \ V ε

2
(Π)

V (f̂(x)) < v ∀x ∈ V ε
2
(Π).

(28)

Therefore, we may pick any function f̂ satisfying condi-
tions (11), (12) with δ < min{δ3, δ4}. The analysis shows
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that bound (25) ensures trajectories of the perturbed sys-
tem (2) initialized in C converge to V ε

2
(Π). Moreover, we

previously proved Vε(Π) is included in the exponentially
stable domain of attraction of xe. Hence, xe is an asymp-
totically stable equilibrium for (2) and it is locally expo-
nentially stable with domain of attraction including C. 2

Theorem 1 states that, in the presence of bounded mis-
matches, existence of a stable equilibrium is preserved for
the perturbed system (2). This new equilibrium may not
coincide with the original one, yet it is guaranteed to be
in its neighborhood. As a particular example, we may
study the case in which x+ = f(x) + δ with δ being a
constant small perturbation. In such scenario, the equilib-
rium of the perturbed system slightly shifts (it is actually
computed as the solution xe to f(xe) + δ = xe), and we
recover the result proposed in [11, Theorem 2.7]. Hence,
even if we highlight that the proof proposed by the authors
is either incorrect or missing some arguments, we believe
that the general statement may be correct.

Finally, we highlight that the existence of a (possibly
shifted) equilibrium may be of great value in some appli-
cations. A direct example is the control of systems via
integral-action, see e.g., [8, 24, 25], as detailed in the next
section.

3. Application to integral action control

As stated at the end of the previous section, the results
of Theorem 1 can be of interest for the output regula-
tion problem and, in particular, in the context of integral-
action controllers, see e.g. [26]. Such control schemes are
commonly employed for (constant) perturbation rejection
or (constant) reference tracking. The most trivial exam-
ples are PI and PID laws. In particular, consider the fol-
lowing system

w+ = w,

ξ+ = F (w, ξ, u), e = H(w, ξ),
(29)

where ξ ∈ Rq is the state of the plant, u ∈ Rm is the
control input and e ∈ Rp represents the output to be regu-
lated to zero (without loss of generality), with p ≤ m. For
instance, in a tracking problem, one can set e = y − yref
where y is an output that must converge to a desired refer-
ence yref . In the representation (29), w ∈ Rnw are constant
signals representing references to be tracked or (unknown)
perturbations to be rejected. Following the output regu-
lation theory and the celebrated internal-model principle,
asymptotic regulation of the output e can be achieved ro-
bustly with respect to model uncertainties of the functions
F and H only if the controller contains an integral action
(able to perfectly compensate unknown constant pertur-
bations), see, e.g. [7, 8, 24] for the continuous-time case.
We take inspiration from the results of the previous sec-
tion, where constant perturbations can be included in a

more general context of perturbed functions (e.g. instead
of considering f(x) +w with f(0) = 0 we can simply con-

sider a new function f̂(x) possibly with f̂(0) ̸= 0). Then,
we set a nominal value for the model (29) and for the sig-
nals w. We describe the nominal system, possibly after a
change of coordinate, in the form

ξ+ = φ(ξ) + g(ξ, u), e = h(ξ)

with φ(0) = 0, g(ξ, 0) = 0 and h(ξ) = 0, so that the origin
represents the nominal desired equilibrium on which the
regulation objective e = 0 is satisfied. Our objective is to
show that the use of an integral action allows to robustly
preserve the desired asymptotic regulation property e =
0 in the presence of model uncertainties in the nominal
functions φ, g, h (that may come from different values of
w or uncertainties in F,H). For this reason, the explicit
use of the variable w in the state dynamics is not used
anymore. Still, one can keep in mind that all the functions
may depend on some nominal value w⋆. Then, consider the
following extended system{

ξ+ =φ(ξ) + g(ξ, u), e = h(ξ),

z+ =z + k(ξ, e)
(30)

where z ∈ Rp represents a generalized integral discrete-
time action with k being a C1 function satisfying the fol-
lowing set of conditions

k(ξ, e) = 0 ⇐⇒ e = 0

|k(ξ, ya)− k(ξ, yb)| ≤ L1(ξ)|ya − yb|∣∣∣∣∂k∂ξ (ξ, ya)− ∂k

∂ξ
(ξ, yb)

∣∣∣∣ ≤ L2(ξ) |ya − yb|
(31)

for all ξ ∈ Rq, for all (ya, yb) ∈ Rp × Rp and for some
continuous functions L1, L2 : Rn → R≥0. It can be easily
seen that by selecting k(ξ, e) = e we recover a standard
discrete-time integrator

z+ = z + e

that trivially satisfies the previous requirements with
L1(ξ) = 1, L2(ξ) = 0. Under a feedback controller
u = α(ξ, z), we can define the extended dynamics for
x = (ξ⊤, z⊤)⊤ as

x+ = f(x) :=

(
φ(ξ) + g(ξ, α(ξ, z))

z + k(ξ, h(ξ))

)
. (32)

As previously explained, variations of the nominal value
of the signals w and model uncertainties of the functions
f, g, h can be fully captured and represented with a closed-
loop perturbed model

x+ = f̂(x) :=

(
φ̂(ξ) + ĝ(ξ, α(ξ, z))

z + k(ξ, ĥ(ξ, α(ξ, z))

)
. (33)

Thus, the goal is to study the robustness properties of
the closed-loop x+ = f(x) and, in particular, to establish
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conditions under which the existence of an equilibrium is
preserved. As a matter of fact, the properties of the gen-
eralized integral action (31) allow concluding the desired
regulation property e = 0 is still preserved at the equilib-
rium in the presence of model uncertainties. To this end,
we introduce the following compact notation that will be
used in the following sections:

∆ξ(x) := |φ̂(ξ)− φ(ξ) + ĝ(ξ, α(ξ, z))− g(ξ, α(ξ, z))|,

∆e(x) := |ĥ(ξ, α(ξ, z))− h(ξ)|,

∆z(x) := |k(ξ, ĥ(ξ, α(ξ, z)))− k(ξ, h(ξ)|,

∆∂ξ(x) :=

∣∣∣∣∂φ̂∂ξ (ξ)− ∂φ

∂ξ
(ξ)

+
∂ĝ

∂ξ
(ξ, α(ξ, z))− ∂g

∂ξ
(ξ, α(ξ, z))

∣∣∣∣ ,
∆∂u(x) :=

∣∣∣∣∂ĝ∂u (ξ, α(ξ, z))− ∂g

∂u
(ξ, α(ξ, z))

∣∣∣∣ ,
∆∂e(x) :=

∣∣∣∣∣∂ĥ∂ξ (ξ, α(ξ, z))− ∂h

∂ξ
(ξ)

∣∣∣∣∣+
∣∣∣∣∣∂ĥ∂u (ξ, α(ξ, z))

∣∣∣∣∣ .
(34)

3.1. Existence of equilibria

We first study the existence of equilibria where regula-
tion is achieved for the perturbed system (33). Hence, we
assume φ, g, α, h to be continuous functions.

Proposition 2. Let Assumption 1 hold for the closed-loop
system (32). Moreover, assume h(0) = 0, g(ξ, 0) = 0 for
all ξ ∈ Rq and let k satisfy (31). Then, for any positive
c ≤ c̄ there exists a positive real number δ̄ > 0 such that,
for any continuous functions φ̂ : Rq → Rq, ĝ : Rq ×Rm →
Rq, ĥ : Rq × Rm → Rp satisfying

∆ξ(x) + ∆e(x) ≤ δ̄, ∀x ∈ Vc̄(V ), (35)

with ∆ξ,∆e defined in (34), the corresponding system (33)
admits an equilibrium point (ξe, ze) ∈ Vc(V ) on which out-

put regulation is achieved, i.e. ĥ(ξe, α(ξe, ze)) = 0. Fur-
thermore, system (33) has no other equilibrium in the set
Vc̄(V ) \ Vc(V ).

Proof. The proof relies on Proposition 1. It can be eas-
ily checked that (35) implies (11) for the extended system
(32). Since Rq×Rp is a finite dimensional space, all norms
are equivalent. Hence, there exist a strictly positive con-
stant ℓ such that |x| ≤ ℓ

∑n
i=1 |xi| where xi denotes the

i-th component of x. Hence, recalling the compact nota-
tion (34), we have |f̂(x) − f(x)| ≤ ℓ(∆ξ(x) + ∆z(x)) for
all x ∈ Rq+p. By defining L := supξ∈Vc̄(V ) L1(ξ) ≥ 0, we
obtain |∆z(x)| ≤ L|∆e(x)| for all x ∈ Vc̄(V ) and therefore

equation (31) yields |f̂(x)−f(x)| ≤ ℓ(1+L)(∆ξ(x)+∆e(x))
for all x ∈ Vc̄(V ). Hence, (35) implies (5) if δ̄ < δ

ℓ(1+L) .

Then, Proposition 1 guarantees the existence of an equi-
librium (ξe, ze) ∈ Vc(V ). In such an equilibrium, z+e = ze
and consequently k(ξ, ĥ(ξe, α(ξe, ze))) = 0. By (31), the

last relation implies ĥ(ξe, α(ξe, ze)) = 0 and this concludes
the proof. 2

Proposition 2 is a direct application of Proposition 1
to the extended system (32). Hence, it guarantees the
existence of (at least one) equilibrium for the perturbed
closed-loop dynamics (33). In turn, due to the presence
of the integral action, in such equilibrium the outputs e
are identically 0, even in presence of model mismatches of
the function φ, g. Thus, Proposition 2 shows that the ad-
dition of discrete-time generalized integrator dynamics to
discrete-time nonlinear systems guarantees the existence
of equilibria where (constant) reference tracking and (con-
stant) disturbance rejection is achieved.

In other words, if the controller (designed for a nominal
system) is able to make the trajectories of the perturbed
model converge to an equilibrium, then asymptotic regu-
lation e = 0 is achieved.

3.2. Robust regulation

Proposition 2 does not provide any characterization of
the attractivity properties of the equilibria. In other
words, it doesn’t characterize the asymptotic regulation
objective when starting from an initial condition different
from any of the equilibra. As a matter of fact, the gener-
ation of attractive and stable equilibria is often the main
objective of control designs. Hence, we build on Theo-
rem 1 to show that the addition of a discrete-time inte-
gral component to stabilizing controllers allows for robust
asymptotic (constant) reference tracking and (constant)
disturbance rejection.

Assumption 2. There exists an open set A ⊆ Rq × Rp

and a C1 function α : Rq×Rp → Rm such that the control
law u = α(ξ, z) makes the origin of system (32) asymptot-
ically stable with domain of attraction A and locally expo-
nentially stable.

Under Assumption 2, we can infer robust setpoint-
tracking properties for the extended system (32) by means
of the results in the previous section.

Proposition 3. Let Assumption 2 hold and let C be an
arbitrary compact subset of A including the origin. More-
over, let functions φ, g, h be C0 for all (ξ, z) ∈ A and C1

for all (ξ, z) ∈ C. Finally, assume h(0) = 0, g(ξ, 0) = 0
for all ξ ∈ Rq and let k satisfy (31). Then, for any for-
ward invariant compact set C verifying {0} ⫋ C ⫋ C ⫋ A,
there exists a strictly positive scalar δ̄ such that, for func-
tions φ̂, ĝ, ĥ that are C0 for all (ξ, z) ∈ A and C1 for all
(ξ, z) ∈ C, and satisfy

∆ξ(x) + ∆e(x) ≤ δ̄, ∀x ∈ C, (36)

∆∂ξ(x) + ∆∂u(x) + ∆∂e(x) ≤ δ̄, ∀x ∈ C, (37)

with ∆ξ,∆e,∆∂ξ,∆∂u,∆∂e defined in (34), the cor-
responding system (33) admits an equilibrium point
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(ξe, ze) ∈ C which is locally exponentially stable and
asymptotically stable with domain of attraction containing
C. Moreover, on such an equilibrium, ĥ(ξe, α(ξe, ze)) = 0.

Proof. To prove the existence of an asymptotically stable
equilibrium for (33) with a locally exponential behavior,
we rely on Theorem 1. As in the proof of Proposition 2,
it can be easily checked that (36) implies (11) for the ex-
tended system (32). By following the same steps, we define
L := supξ∈C L1(ξ) ≥ 0. With the same definition of ℓ as in

the proof of Proposition 2, (36) implies (11) for all x ∈ C
if δ < min{δ3,δ4}

ℓ(1+L) , with δ3, δ4 defined in Step 4 of the proof

of Theorem 1. Similarly, we can check that (37) implies
(12) for the extended system (32). Let us define

Lα := sup
(ξ,z)∈C

{∣∣∂α
∂ξ (ξ, z)

∣∣, ∣∣∂α∂z (ξ, z)∣∣} ,

Lk := sup
ξ∈C

{L1(ξ), L2(ξ)} ≥ L.

To show this, let ℓ̄ > 0 such that |A| ≤ ℓ̄
∑n

i=1 |Ai| where A
is any (rectangular) matrix and Ai denotes the i-th row.
Then, by recalling the notation introduced in (34) and
using the previous inequalities, we obtain∣∣∂f̂

∂x (x)−
∂f
∂x (x)

∣∣
≤ ℓ̄∆∂ξ(x) + 2ℓ̄Lα∆∂u(x) + 2ℓ̄LαLk

∣∣∂ĥ
∂u (ξ, α(ξ, z))

∣∣
+ 2ℓ̄Lk

∣∣∂ĥ
∂ξ (ξ, α(ξ, z))−

∂h
∂ξ (ξ)

∣∣
≤ ℓ̄(1 + 2(Lα + Lk + LαLk))(∆∂ξ +∆∂u +∆∂e)

for all x ∈ C. Then, by picking

µ = max
{
ℓ(1 + L), ℓ̄(1 + 2(Lα + Lk + LαLk))

}
and δ̄ < min{δ3,δ4}

µ . Theorem 1 guarantees the existence

of an asymptotically stable equilibrium xe = (ξe, ze)
which is close to the origin and locally exponentially sta-
ble. In such an equilibrium, z+e = ze and consequently

k(ξ, ĥ(ξe, α(ξe, ze))) = 0. By (31), ĥ(ξe, α(ξe, ze)) = 0 and
this concludes the proof. 2

Proposition 3 states that discrete-time stabilizing con-
trollers exploiting integral actions achieve robust output
regulation to constant setpoints. As an intuitive exam-
ple, we may consider controllers designed for a nonlinear
model, whose constant parameters are identified through
data. Then, Proposition 3 guarantees that, if the approx-
imation error is sufficiently small, the controller will still
stabilize the system and the output will reach the desired
constant setpoint.

We finally remark that Proposition 3 holds for small
model perturbations, i.e. for small variations of the value
of w from its nominal value w⋆, when considering the orig-
inal problem (29). Such a result parallels the works [8] in
continuous-time. If one wants to guarantee output regu-
lation in the presence of large variations of the values of
w, it is generally needed to rely on incremental properties,
e.g., [24].

3.3. About Assumption 2 and Forwarding approach

It is not straightforward to see when and how Assump-
tion 2 can be satisfied, namely how to design the feedback
law α(x, z) for the extended dynamics (30). An elegant so-
lution comes from discrete-time forwarding technique [20].
If the origin of the autonomous system ξ+ = φ(ξ) is glob-
ally asymptotycally stable and locally exponentially sta-
ble, the origin of the extended system (32) can be stabi-
lized via a feedback controller. By considering the SISO
scenario m = p = 1, the result in [20, Theorem 4.2] pro-
vides a feedback law u = α(ξ, z) achieving global asymp-
totic and local exponential stability of the origin of the
extended system (32).

In particular, suppose that W : Rq → R≥0 is a Lya-
punov function for system (1) which is locally quadratic.
Assume also that the linearization of (32) around the
origin is stabilizable and suppose to know a mapping
M : Rq → R satisfying M(ξ+) = M(ξ) + k(ξ, h(ξ)). Then,
we can perform a change of coordinates η = z − M(ξ)
and consider ζ = (ξ⊤, η⊤)⊤. This leads to the stabilizing
controller u = ᾱ(ζ) given by the (implicit) solution to

u = − 1

u

∫ u

0

∂V
∂ζ G(ζ+(v), v)dv

with

V (ζ) = W (ξ) + η2, G(ζ, u)⊤ =
(

∂g
∂u (ξ, u),−

∂M
∂ξ

∂g
∂u (ξ, u)

)
.

In the original coordinates, we obtain α(ξ, z) = ᾱ(ξ, z −
M(ξ)). The function V above defined is a Lyapunov func-
tion for the closed-loop systems. Moreover, note that if the
function W has the desired homeomorphicity properties
(see in particular Section 2.3), so has V by construction.
We refer to [20] and references therein for more details
about the existence of such a mapping M , and the exten-
sion to the MIMO scenario.

4. Conclusion

In this paper, we proved that stability properties of a
discrete-time nonlinear system transfer to plants described
by sufficiently similar models. The results are indepen-
dent of the structural properties of the system. We ap-
plied these results to the robust output regulation prob-
lem, showing the rejection of constant disturbances via
integral action for nonlinear systems. The application to
the problem of robust output regulation in the presence
of more complex exogenous signals is subject of ongoing
research. As a future research direction, it would be also
interesting to study whether the total stability property of
a continuous-time nonlinear system [8] is preserved under
sampling.

Acknowledgement. The authors thank Lucas Brivadis
for suggesting the example in Section 2.3.
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