Léo Brunot

Nicolas Canovas

Alexandre Chanson

Nicolas Labroche

Willème Verdeaux

Preference-based and Local Post-hoc Explanations for Recommender Systems

published or not. The documents may come

Preference-based and local post-hoc explanations for recommender systems

Introduction

Explainable AI (XAI) [START_REF] Molnar | Interpretable Machine Learning[END_REF][START_REF] Samek | AI: interpreting, explaining and visualizing deep learning[END_REF] aims at understanding the rationale about the factors driving the decision process in complex machine learning models and how their prediction can be altered by changing their input [START_REF] Doshi-Velez | Accountability of AI under the law: The role of explanation[END_REF]. In this context, post-hoc or model-agnostic explanations have gained some attention in the past years, as they are produced by explanation methods that are agnostic of the internals of the model to explain, and thus need not balance accuracy of the model to explain with the quality of the explanation [START_REF] Molnar | Interpretable Machine Learning[END_REF]. and thus need not balance model accuracy and quality of explanation

The definition of surrogate models is a well-accepted approach in XAI [START_REF] Hara | Making tree ensembles interpretable: A bayesian model selection approach[END_REF], that builds upon the successful LIME algorithm. Figure 1 illustrates the main steps of LIME to define simpler, interpretable models trained to locally mimic the behavior of more complex, possibly black-box, models [START_REF] Guidotti | A survey of methods for explaining black box models[END_REF]. Defining such surrogate models involves: [START_REF] Abdollahi | Using explainability for constrained matrix factorization[END_REF] the definition of a binary interpretable feature space in which the explainable model is defined, (2) a (ideally bijective) function to pair each instance in the original space to its binary counterpart in the interpretable space and vice-versa (Fig 1 In this paper, we consider the specific case of recommender systems [START_REF] Koren | Matrix factorization techniques for recommender systems[END_REF], that are notoriously complex prediction systems and for which computing explanation raises new challenges [START_REF] Zhang | Explainable recommendation: A survey and new perspectives[END_REF]. In this context, we propose to extend recommender systems explanations by reproducing and extending LIME principles. This task is challenging for two main reasons.

First, because transposing LIME principles to the recommender systems paradigm is not straightforward, as the traditional instances / features data are replaced by a sparse and possibly very large user-item matrix of ratings. In this new context, several issues arise: What is an instance to explain, as the features and class labels are not clearly identified? What are the interpretable features? What is a perturbation? When perturbations are generated in the interpretable space, how to project them back to the original space to predict their ratings with the black-box so as to build a training set?

Second, LIME relies heavily on an estimation of locality around an expla-Figure 1: Main steps of LIME to build a simple surrogate model and an explanation to a black-box model prediction.

nation instance to ensure the quality of its prediction. However, surrogate models as proposed by LIME are not robust, in the sense that they sometimes fail to estimate correctly the explanation model around a specific instance, producing a too general explanation model that accounts for a broader range of input instances [START_REF] Alvarez-Melis | On the robustness of interpretability methods[END_REF]. We argue in this paper, that these problems are related to: (1) the binary perturbation mechanism that does not ensure that perturbed instances falls in the vicinity of the original instance when projected back to the original space, and (2) the definition of locality as a decreasing neighborhood function to balance the aforementioned effect of binary perturbation and that does not take into account decision boundary. Noticeably, in the case of recommender systems, this problem is even more critical since there is no explicit decision boundary per se.

To tackle these challenges, we propose a new local surrogate model dedicated to recommender systems, named LIRE -Local and Interpretable Recommendations Explanations -that improves over the reference in the literature, the LIME-RS model [START_REF] Nóbrega | Towards explaining recommendations through local surrogate models[END_REF] which is a direct port of LIME, in terms of quality of the explanation by better estimating the locality of an instance to explain, while still maintaining consistent recommendation fidelity to the original recommender system.

The core idea of our proposal, as illustrated in Figure 2, lies in the definition of an interpretable feature space (Figure 2-(1)) that is a reduction of the original user-item ratings space, in which it is possible to represent each user over a set of directly understandable dimensions, here the items. This representation is paired with several methods to define the locality around an instance in this item space rather than in a binary interpretable space as in LIME. Three main types of locality definitions are envisioned (Figure 2-(2)): gradual perturbations of ratings, clustering of users or more directly a set of k-nearest neighbors. Finally, contrary to most explanation models such as LIME that learns a linear surrogate model in a pointwise manner, we also introduce a pairwise loss for our linear explanation model (Figure 2

-(3)).

Figure 2: Schema of the main pipeline of LIRE algorithm, from user-item ratings matrix, to item weights as an explanation. Contributions relate to points (1), (2) and [START_REF] Alelyani | Feature selection for clustering: A review[END_REF].

As such, our work introduces several new methodological and experimental contributions over existing approaches [START_REF] Ribeiro | Explaining the predictions of any classifier[END_REF][START_REF] Nóbrega | Towards explaining recommendations through local surrogate models[END_REF][START_REF] Chanson | Towards local post-hoc recommender systems explanations[END_REF]:

1. a simplified definition of a user-item recommender system explanation instance, that relies on a real valued interpretable feature space rather than a binary interpretable space as in [START_REF] Ribeiro | Explaining the predictions of any classifier[END_REF],

2. an out-of-sample prediction mechanism to predict ratings for yet unseen "perturbed" users, for the specific case of matrix factorization recommender systems, instead of limiting the perturbation to existing users as in [START_REF] Nóbrega | Towards explaining recommendations through local surrogate models[END_REF],

3. an in-depth analysis of locality that studies the impact of the method used to construct the neighborhood around the explanation instance to train the interpretable surrogate model. The paper discusses several possible neighborhood approaches: (i) Gaussian noise perturbation rather than binary perturbation as in [START_REF] Ribeiro | Explaining the predictions of any classifier[END_REF][START_REF] Nóbrega | Towards explaining recommendations through local surrogate models[END_REF], (ii) clustering of explanation instances or k-nearest neighbors (k-NN) search in the explanation instance space. Both clustering and k-NN rely on a distance between explanation instances, which is subject to the curse of dimensionality as our interpretable feature space can indeed be very large (up to tens of thousands interpretable features). The paper investigates several approaches to deal with high-dimensionality such as (i) replacing Euclidean distance by a cosine distance that is more traditional in the context of recommender systems, and (ii) projecting high-dimensional instances into manageable spaces with state-of-the-art dimensionality reduction techniques such as UMAP [START_REF] Mcinnes | UMAP: uniform manifold approximation and projection for dimension reduction[END_REF].

4. the first, to the best of our knowledge, recommender system explanation model that builds an explanation as a linear regression surrogate model based on pairwise preferences rather than more traditional pointwise approaches as in [START_REF] Nóbrega | Towards explaining recommendations through local surrogate models[END_REF][START_REF] Chanson | Towards local post-hoc recommender systems explanations[END_REF].

5. an extensive set of experiments on the MovieLens 100k benchmark to support the previous more theoretical contributions and to assess that our new local surrogate approaches are comparable in terms of prediction accuracy to LIME-RS [START_REF] Nóbrega | Towards explaining recommendations through local surrogate models[END_REF], while proposing more relevant and local set of interpretable features as explanations. This paper also introduces extensive new experimental tests to observe the impact of training set size or the importance of oversampling to obtain reasonably sized training sets when learning the surrogate interpretable model.

6. a more complete set of black-box recommender systems used in our evaluations, each with different properties and internal behaviors. We not only consider Matrix Factorization method as in [START_REF] Chanson | Towards local post-hoc recommender systems explanations[END_REF] but also considers 3 classical recommender system models: two k-nearest neighbor models and a baseline model as described in Section 6.1.

7. finally, additional tests on MovieLens 20M show that our explanation models can scale efficiently to deal with data volume in recommender systems contrary to previous works [START_REF] Nóbrega | Towards explaining recommendations through local surrogate models[END_REF].

This paper is organized as follows: Section 2 details related works in the domain of recommender systems explanation and then noticeably details how LIME and LIME-RS work and highlights some difficulties inherent to the implementation of these types of methods in the context of recommendation. Next, Section 3 presents the problem formulation while Section 4 presents how we handle locality and Section 5 details our main contributions to learn the linear surrogate model feature weights. Section 6 presents our extensive comparative experiments and Section 2 presents a discussion about the problematic in the field of explainable AI and recommender systems, before Section ?? finally concludes and opens future works.

Related work 2.1 Explainable recommendation

Explainable recommendations refers to personalized recommendation algorithms that "not only provide the user with recommendations, but also make the user aware why such items are recommended" [START_REF] Zhang | IEEE Now Foundations and Trends[END_REF]. This question has been studied for a long time now [START_REF] Tintarev | Explaining recommendations[END_REF] and has led to the definition of taxonomy of recommendation problems and their explanations [START_REF] Friedrich | A taxonomy for generating explanations in recommender systems[END_REF] where a recommendation explanation is defined as "information about recommendations and as means to support objectives defined by the designer of a recommender system". Interestingly, [START_REF] Friedrich | A taxonomy for generating explanations in recommender systems[END_REF] discuss the dimensions that relate to design principles of an explanation such as: the reasoning model, the recommendation paradigm, the category of exploited information, the argumentation traces between a user and the explanation system, the presentation format (text, visualization) or the provision mechanism (who asks for the explanation). More recently, Gedikli et al. [START_REF] Gedikli | How should I explain? A comparison of different explanation types for recommender systems[END_REF] evaluate different explanation types and propose a set of guidelines for designing and selecting suitable explanations for recommender systems. Indeed, state-of-the-art recommender systems [START_REF] Koren | Matrix factorization techniques for recommender systems[END_REF] are notoriously complex prediction systems for which computing explanation raises new challenges [START_REF] Zhang | Explainable recommendation: A survey and new perspectives[END_REF]. Model-intrinsic explanations correspond to recommender systems whose decision process is simple enough to be clear for the users or that embed mechanisms to provide users with an explanation [START_REF] Abdollahi | Using explainability for constrained matrix factorization[END_REF].

However as pointed out in [START_REF] Lipton | The mythos of model interpretability[END_REF], this kind of explanations suffer from a tradeoff between transparency and accuracy of the model. Indeed, adding internal mechanisms to explain a process or a result may slow down this process or bias this result as the sole focus of the recommender system is no more the accuracy of item scores prediction but to produce a justification for these scores as well.

On the contrary post-hoc or model-agnostic explanations do not require to access or to adapt the internals of the recommender system and thus do not decrease their accuracy [START_REF] Molnar | Interpretable Machine Learning[END_REF]. Moreover, these systems can be easily added on top of pre-existing recommender systems by companies.

Many of those post-hoc approaches have been proposed such as [START_REF] Peake | Explanation mining: Post hoc interpretability of latent factor models for recommendation systems[END_REF] for Matrix Factorization or similar approaches that relies on the elicitation of latent factors to perform recommendation [START_REF] Tao | The fact: Taming latent factor models for explainability with factorization trees[END_REF][START_REF] Gao | Explainable recommendation through attentive multi-view learning[END_REF][START_REF] Zhang | Explicit factor models for explainable recommendation based on phrase-level sentiment analysis[END_REF][START_REF] Peake | Explanation mining: Post hoc interpretability of latent factor models for recommendation systems[END_REF]. The inherent difficulty facing these methods is to determine an efficient way to relate the latent model to explicit interpretable features that make sense for the user. [START_REF] Tao | The fact: Taming latent factor models for explainability with factorization trees[END_REF] integrate regression trees to guide the learning and further explain latent space while [START_REF] Gao | Explainable recommendation through attentive multi-view learning[END_REF] introduce a framework based on deep multi-view learning to model an explanation as multi-level features template. Finally, [START_REF] Zhang | Explicit factor models for explainable recommendation based on phrase-level sentiment analysis[END_REF] propose an Explicit Factor Model that builds an alignment between interpretable features and the latent space while [START_REF] Peake | Explanation mining: Post hoc interpretability of latent factor models for recommendation systems[END_REF] search for association rules expressed on features. All these explanation approaches however are tightly related to only one specific recommendation system. More recently, [START_REF] Tsang | Feature interaction interpretability: A case for explaining ad-recommendation systems via neural interaction detection[END_REF] introduces GLIDER, a system that provides an interpretation for any black-box recommender system based on features interactions rather than features significance as in the original LIME algorithm.

Model agnostic local explanations

In our work, we are interested in model agnostic local explanations as provided by LIME, in other words, models that can provide explanations as a set of feature weights, for any recommender system, given an input instance. In this respect, the LIME-RS approach [START_REF] Nóbrega | Towards explaining recommendations through local surrogate models[END_REF] provides a model agnostic explanation system, that can be applied on any black-box recommender system and that outputs a set of interpretable features and their relative importance. LIME-RS builds upon the well-known LIME approach [START_REF] Ribeiro | Explaining the predictions of any classifier[END_REF] to explain recommendation by retrieving the top-n binary interpretable features as computed by LIME.

LIME

An explanation produced by LIME for an input instance x ∈ X , and a prediction model f is as follows [START_REF] Ribeiro | Explaining the predictions of any classifier[END_REF]

ξ(x) = argmin g∈G L (f, g, π x) + Ω(g) (1)
where L is a fidelity function to the original (black-box) model f and g ∈ G is one explanation model among all possible explainable models G. The most common explanation model is a linear prediction model and in this case an explanation corresponds to the weights of the most significant interpretable features whose combination minimize the deviation to the black-box model. Interestingly, π x is a locality measure around instance x ∈ X and is introduced to balance the perturbations introduced in the training set. Finally, Ω(g) measures the complexity of explanation model g.

LIME assumes (i) an interpretable feature space Z to learn a surrogate model of f and (ii) at least a surjective function from X to Z.

The fidelity function L is expressed as a quadratic error between the predictions f (x ′), for instances x ′ ∈ X and the surrogate prediction g(z ′) for their interpretable counterparts z ′ ∈ Z:

L (f, g, π x) = ∑ x ′ ∈X ,z ′ ∈Z π x (x ′) (f (x ′) -g(z ′)) 2 (2)
where the locality measure π x = exp(-D(x, x ′) 2 /σ 2) crucially weighs the importance of training instances x ′ based on their distance D(x, x ′) with instance x. This locality importance is better illustrated when reformulating Equation 2 with the surjective function p : X → Z, where p -1 is to be determined and relates the generated perturbed instances z ′ ∈ Z to their antecedent x ′ ∈ X as follows:

L (f, g, π x , p) = ∑ z ′ ∈Z π x (p -1 (z ′)) (f (p -1 (z ′)) -g(z ′)) 2 (3)
Equation 3 clearly shows that, as p -1 does not guarantee that neighbors in Z are still neighbors in the antecedent space X , we need a mechanism to counterweight these possibly uninteresting training samples. Earlier works [START_REF] Ribeiro | Explaining the predictions of any classifier[END_REF][START_REF] Nóbrega | Towards explaining recommendations through local surrogate models[END_REF] consider binary explanation spaces, and perturbations are uniform random changes in the binary signature of the explanations. As noted before, a binary change may have a drastic impact on potential expression of the antecedents in X , which, again, exemplifies the role of π x in LIME-like systems. For this reason, we discuss in this paper new ways to deal with locality around and explanation instance by introducing a more gradual interpretable space and perturbation mechanism as well as a strict locality as defined by an adapted clustering algorithm.

Difficulties to set up a LIME-like approach

Further properties are discussed to create its own LIME explanation algorithm in [START_REF] Sokol | Surrogate prediction explanations beyond LIME[END_REF]. Noticeably, [START_REF] Sokol | Surrogate prediction explanations beyond LIME[END_REF] discusses one of the key restriction of LIME that consists in knowing by advance the relationship between the interpretable space and original space. [START_REF] Sokol | Surrogate prediction explanations beyond LIME[END_REF] indicate that, whenever possible, bijective functions should be considered to limit errors when projecting from the interpretable space to the original one. This hypothesis is very strong and explains the simplifying choices that are made by [START_REF] Nóbrega | Towards explaining recommendations through local surrogate models[END_REF] not to perturb instances outside already existing instances, to avoid the definition of a proper Out-Of-Sample (OOS) process that we implement in this paper. This problem is even more crucial in the context of recommendation where famous models, like Matrix Factorization, are defined to predict ratings for instances that are known beforehand.

Tightly related to this problem of OOS prediction is the ability of the explanation instance representation chosen in LIME-RS to effectively capture locality via the perturbation mechanism. Indeed, one drawback of LIME-like approaches is that they sometimes fail to estimate a proper local surrogate model [START_REF] Laugel | Defining locality for surrogates in post-hoc interpretablity[END_REF] and rather produce a model not solely focused on the explanation instance but influenced by more general trends in the data as well.

In our proposal, we want to achieve the same flexibility as LIME-RS by extending the principle of LIME algorithm [START_REF] Ribeiro | Explaining the predictions of any classifier[END_REF] and to circumvent the locality problem with the introduction of two mechanisms: (1) a more gradual perturbation mechanism and its dedicated OOS prediction, and (2) a neighborhood that can possibly better capture local decision boundaries around the explanation instance.

Existing improvements over LIME

Following the popularity of LIME, several works have proposed to tackle some of its aforementioned issues.

First, in [START_REF] Ribeiro | Anchors: Highprecision model-agnostic explanations[END_REF] the authors of LIME address the problem of the coverage of an explanation. Here, explanations are conjunctive if-then rules of attributevalue pairs, named "anchors", and the coverage of the explanation is the set of instances that share attribute-values of the rule such that changes in the other attributes values does not impact the prediction outcome. To estimate this coverage as well as building the rules, a beam search approach is proposed that grows iteratively a rule by adding new attribute-value pairs and then estimates their coverage by sampling instances to verify the proportion of instances that does not change the prediction. This method, although related to LIME as it searches for the smallest set of features, is limited to classification problems while, in our case, recommendation is related to regression as we estimate a score. Moreover, the dimensionality of our data may strongly penalize the exploration of possible rules. DLIME [START_REF] Zafar | A deterministic local interpretable model-agnostic explanations approach for computer-aided diagnosis systems[END_REF] addresses the problem of the random perturbation of LIME, and replaces it with a deterministic method to generate points in the locality of an instance, based on a hierarchical clustering of training data, similar to what we propose. However, this paper does not address the problem of handling very large dimensionality as in the recommendation case, nor does it address the minimum size of a cluster to train a proper surrogate model.

Finally, ALIME [START_REF] Shankaranarayana | Autoencoder based approach for local interpretability[END_REF] and VAE-LIME [START_REF] Schockaert | Vae-lime: deep generative model based approach for local data-driven model interpretability applied to the ironmaking industry[END_REF] address the problem of non realistic training set obtained by perturbation in LIME. To do so, both approaches address the problem of locality as a distance estimated in a latent space. ALIME [START_REF] Shankaranarayana | Autoencoder based approach for local interpretability[END_REF] first generates a batch of perturbed instances for all possible explanation instances. According to the authors, this helps reach stability across multiple explanations on diverse instances. Then, to select instances that are local, ALIME trains a denoising autoencoder and defines the locality as a distance between instances in a latent space. VAE-LIME [START_REF] Schockaert | Vae-lime: deep generative model based approach for local data-driven model interpretability applied to the ironmaking industry[END_REF] first employs the latent space to generate realistic perturbed points before determining the distances similarly to ALIME. Still, each of these methods bears limitations related to the training of the latent-space.

Clustering users for recommendation systems

As such, our proposal pertains to the definition of locality around an explanation instance, which, in turns, translates into a clustering problem of user-item matrix. This problem is generally addressed in the group recommender systems community [START_REF] Seo | Group recommender system based on genre preference focusing on reducing the clustering cost[END_REF][START_REF] Felfernig | Designing explanations for group recommender systems[END_REF] that groups similar users together to speed up the whole recommendation process. In [START_REF] Seo | Group recommender system based on genre preference focusing on reducing the clustering cost[END_REF], authors propose to rely on metadata of items (here the movie genres) so as to reduce dimensionality and accelerate the clustering. In our case, we expect a general solution, and we don't want to rely on any possibly available metadata that could represent more efficiently the user space. [START_REF] Seo | Group recommender system based on genre preference focusing on reducing the clustering cost[END_REF] also raises some interesting points as they study and take into account how a rating should be perceived in terms of what it represents for the user. Indeed, their experiments reveal that, depending on if a user is familiar with a movie genre or not, similar ratings should not be interpreted the same way. This consideration could be integrated in future work on explainability to weight accordingly the relevant features and to produce more personal explanations.

Evaluation of an explanation

Our paper also raises the question of the evaluation of an explanation, as reflected by the experiments and metrics that we use. This question has been raised in [START_REF] Doshi-Velez | Towards a rigorous science of interpretable machine learning[END_REF] where they define a continuum of evaluation methods from "Function-based" that relies on benchmarks and formalized evaluation metrics with low validity and cost of explanation, to "Cognition-based" where the objective is to quantify the driving factors of features that are related to the task and finally to "Application-based" that relies on experts from the domain to evaluate in a real-use case the validity of an explanation that have high validity and cost.

In [START_REF] Narayanan | How do humans understand explanations from machine learning systems? an evaluation of the human-interpretability of explanation[END_REF], the authors are interested in the type of explanations that humans are able to understand and define a set of user-studies to evaluate the cost for human to understand the rationale of an explanation based on input, output of prediction model and its explanation.

In our tests, we focus on accuracy of the surrogate model (fidelity to the black-box) and relevance of the interpretable features. Other quantitative quality measures have been proposed in the literature. For example, [START_REF] Nóbrega | Towards explaining recommendations through local surrogate models[END_REF] describes a fidelity measure that does not rely on an absolute rating prediction error, but rather on differences in top-k item ratings between the black-box and its surrogate model. In this paper we also compare rankings but focus on interpretable features which is more local to an explanation instance and more related to the quality and interpretability of the explanation je n'ai pas bien compris cette phrase while [START_REF] Nóbrega | Towards explaining recommendations through local surrogate models[END_REF] focus on the ability of the surrogate model to mimic the black-box behavior.

Several other quantitative metrics for explanation evaluation could be considered in the context of recommender systems. Noticeably, the robustness of an explanation following the principle of locally Lipschitz continuity in the classification context seems to be a promising idea [START_REF] Alvarez-Melis | On the robustness of interpretability methods[END_REF] that we plan to adapt to the recommendation context in the near future.

Finally, in [START_REF] Molnar | Interpretable Machine Learning[END_REF] the author describes several properties of an explanation and what would make an explanation human-friendly. These concepts and ideas should be borrowed and adapted to the context of recommender systems.

Problem formulation

In what follows, we consider a (black-box) recommendation system as a function f : U × I → R + where U is the set of users, I is the set of items and R + is the definition domain of the ratings. We do not consider in this paper the case of recommender systems based on implicit user feedback, that is to say, when user activity is tracked continuously as clicks, time spent per item, or any other interaction revealing an interest from the user (such as printing a web page or purchasing the item) rather than explicit ratings for the items. Several works have been proposed to optimize and personalize off-the-shelves recommender systems in this case (for example [START_REF] Rendle | BPR: bayesian personalized ranking from implicit feedback[END_REF][START_REF] Rendle | Improving pairwise learning for item recommendation from implicit feedback[END_REF]), but these systems are not meant to provide an explanation. Although one of the proposals discussed in this paper, based on a pairwise loss function, could be adapted to this context, we leave as future work a proper study of the explanation of implicit feedback recommender systems.

Explanation instances, interpretable features and explanations

We call an explanation instance the 3-tuple ⟨u, i, f (u, i)⟩ where u ∈ U , i ∈ I and f (u, i) ∈ R + denotes a prediction f (u, i) that we want to explain and that is produced by the (black-box) recommender system for the user u and item i. Importantly, our objective is not to explain the process by which the black-box recommender system works, but instead to highlight the main interpretable features that explain a specific prediction f (u, i) similar to LIME. In [START_REF] Nóbrega | Towards explaining recommendations through local surrogate models[END_REF][START_REF] Ribeiro | Explaining the predictions of any classifier[END_REF], interpretable feature relates to feature names that supposedly represent directly understandable and actionable pieces of domain knowledge for the user that receives the explanation. The representation of an (explanation) instance in the interpretable space is a binary vector that indicates the presence or absence of an interpretable feature. This representation is very convenient as it allows to simply "switch on or off" any interpretable feature to observe its importance in the prediction, and to generate perturbed interpretable instances that still make sense for the final user. We will show in this paper that, because of this representation, LIME-like approaches are not able to capture precisely a locality around an instance, and may not produce interesting explanation in the context of recommender systems [START_REF] Anelli | Adherence and constancy in LIME-RS explanations for recommendation (long paper)[END_REF].

In our work, we propose to follow the same idea that is developed since the inception of recommender systems explanations [START_REF] Schafer | Recommender systems in e-commerce[END_REF] which consists in relying on other similar items Qu'est ce qu'on entend par other ici ? car il faut savoir qu'on peut mettre dans l'explication des items vues/rated par l'utilisateur et c'est même ceux là qui sont priviligiés en générale par le modèle. that are familiar to the user who receives the recommendation. The advantage is that we do not rely on external knowledge that could be understandable by the user and that our interpretable space is very close to the initial definition space of users.

In our case, and similarly to [START_REF] Nóbrega | Towards explaining recommendations through local surrogate models[END_REF][START_REF] Ribeiro | Explaining the predictions of any classifier[END_REF], an explanation is a set of interpretable feature names, but it is technically represented by a real-valued feature name vector: each interpretable feature name is associated with a real weight representing the importance of the feature for the explanation instance.

Specifically, if I is the set of all possible interpretable features comprised of n items, an explanation instance ⟨u, i, f (u, i)⟩ is a vector defined over the set J = I \ {i}, that contains n -1 elements and whose real values are the ratings observed for the items j ∈ J. j'ai un peu de mal ici. On dit plus haut qu'une explanation instance est un 3-tuple et la on dit que c'est un vecteur de taille J.

Noticeably, and contrary to previous works, this representation of an explanation instance is not binary but associates a real value to each feature name as the score of the corresponding item for this user u. This allows to express more gradual perturbation mechanisms as presented in Section 4 and to better preserve locality as shown in experiments in Section 6.

Explanation model

Traditionally, explaining a recommendation boils down to determining the top-n [START_REF] Nóbrega | Towards explaining recommendations through local surrogate models[END_REF] or minimal [START_REF] Ribeiro | Explaining the predictions of any classifier[END_REF] subset of interpretable features that maximizes the fidelity of the surrogate model to the original model. As in [START_REF] Ribeiro | Explaining the predictions of any classifier[END_REF], we restrict our work to the class of linear explanation models g(z) = w • z, where z denotes the vector of values attached to the set of interpretable features.

Consider that t u ça fait bizarre on se demande pourquoi on ne l'a pas appelé z u . Ou bien il faudrait dans la phrase d'avant remplacer le z par un t ? is the vector of values attached to interpretable features of user u to explain instance ⟨u, i, f (u, i)⟩. The explanation model e f (u, i) is defined as follows:

e f (u, i) = argmin w∈R n L (f (u, i), w • t u) + Ω(w) (4)
where L is a loss function that penalizes any difference between the original prediction f (u, i) and the value predicted by the surrogate model. As in LIME [START_REF] Ribeiro | Explaining the predictions of any classifier[END_REF], Ω(w) represents the complexity of the linear explanation model.

Here, we expect our feature weighting to be parsimonious, i.e., we want that our approach discards as many as possible of the interpretable features to ease the posterior interpretation of the explanation. As a conclusion, our problem reduces to determining the most appropriate interpretable features weights vector w ∈ R n . Our hypothesis in this paper is that it is possible to improve the quality and the relevance of w by introducing locality in the sampling process to generate the training set to learn w, as well as introducing a new pairwise loss function to train the linear surrogate model.

Locality estimation

As mentioned in the previous sections, our first proposal concerns the introduction of locality during the sampling of instances to train our linear surrogate model following two complementary directions: (1) by generating gradually perturbed instances around the explanation instance, and (2) by discovering natural grouping of neighbor users that share similar items scoring behaviors and for which a robust explanation system should provide close explanations.

This first two objectives raise secondary questions. Noticeably, (1) raises the problem of being able to predict a recommendation for never-seen-before users in the rating matrix, as perturbed instances may not correspond to preexisting ones. This mechanism is called Out-Of-Sample (OOS) prediction hereafter, and we present a solution to this problem in the context of the popular matrix factorization recommendation approach. [START_REF] Agrawal | Automatic subspace clustering of high dimensional data for data mining applications[END_REF] necessitates to be able to cluster points expressed as very large item scores vectors efficiently without falling into the curse of dimensionality problem.

Locality via the perturbed instances generation

In LIME [START_REF] Ribeiro | Explaining the predictions of any classifier[END_REF] and LIME-RS [START_REF] Nóbrega | Towards explaining recommendations through local surrogate models[END_REF] surrogate models are trained on instances of the original space that are antecedent of perturbations generated in the binary interpretable feature space associated to each explanation instance. Then for each perturbed instance, a prediction is performed to build a training set to learn the surrogate model in the interpretable space. We develop hereafter how we adapt these two steps in our proposal.

Perturbation of user instance

Given our definition of an explanation instance denoted ⟨u, i, f (u, i)⟩ for a user u and an item i, and its representation as a real valued vector attached to feature names (see Section 3) denoted t u , we define perturbations as a random modification of the values of vector t u based on some Gaussian distribution N (0, σ j). The value of σ j for each item j ̸ = i ∈ I is computed as the average observed deviation of all ratings in the training sample.

Then, we model as a Bernoulli process of probability p B the chance to modify each element of t u . For simplicity sake, we will denote by p u a perturbation of t u .

Out-Of-Sample prediction

In terms of LIME methodology, Out-Of-Sample prediction plays the role of the surjective function p -1 between interpretable feature space and original space as well as the prediction f (p -1 (z ′)) attached to this new instance z ′ (following notations in Equation 3). The role of this function is, given an interpretable feature description of a perturbed user p u , to find a representation in the original space for this perturbation, and most importantly, as this user is totally new to the recommender system, to predict his/her rating for the item i ∈ I.

In our proposal, where we generate never-seen-before user-items signatures, determining a prediction for these new instances can be challenging. Indeed, the difficulty to implement such OOS procedure depends heavily on the recommender system: in case of random normal predictor that relies on the estimation of the distribution of ratings, k-nearest neighbor or baseline approach, it is trivial to implement a recommendation for a new user. The same holds for deep embedded recommender systems [START_REF] Zhang | Deep learning based recommender system: A survey and new perspectives[END_REF] which, by design, can produce prediction for any new input.

In our work as in [START_REF] Nóbrega | Towards explaining recommendations through local surrogate models[END_REF] however, we also consider the special case of Singular Value Decomposition recommender system [START_REF] Rendle | Factorization machines[END_REF][START_REF] Bokde | Role of matrix factorization model in collaborative filtering algorithm: A survey[END_REF], a Matrix factorization method that expresses the user-item matrix:

R = WΣV t (5)
with R a m × n real valued user-item matrix, and where Σ can be reduced to a diagonal matrix Σ kk of size r × r (r < m and r < n) containing only the r largest singular values of R. In this context, the ratings for an out-of-sample user v are determined as follows:

R(v, .) = r v ΣV t (6)
where r v represents the 1 × r vector representing user v in user latent space. In this context, producing an OOS prediction accounts for determining the latent representation r v for OOS user v.

To this aim, we formulate the search of latent representation r v as a least square optimization of the residual sum of square (RSS) defined as:

RSS = (p u -r v ΣV t)(p u -r v ΣV t) t (7)
between estimated ratings computed on r v and the perturbation vector p u that provides, in our case, all ratings but the one for item i ∈ I.

Finally, the ground truth rating for item i ∈ I is obtained by re-injecting the optimal r v into Equation 6.

Locality via instance neighborhood generation

Ideally, our locality definition should also be coherent with existing decision boundaries. In the context of recommender systems, such decision boundaries are not explicit. Our contribution concerns the determination of such explicit decision boundaries via the definition of natural neighborhood for each explanation instance. In our context, determining the neighborhood reduces to a clustering problem of the dataset T = {t u } u∈U . We mean by "natural", a grouping of user vectors in T such that a traditional clustering quality criterion is met, for example minimizing the intra-cluster variance as in k-means clustering [START_REF] Macqueen | Some methods for classification and analysis of multivariate observations[END_REF][START_REF] Jain | Data clustering: 50 years beyond k-means[END_REF] or ensuring that there exists a transitive density relation between connected neighbors as in DBSCAN algorithm [START_REF] Ester | A density-based algorithm for discovering clusters in large spatial databases with noise[END_REF][START_REF] Schubert | DBSCAN revisited, revisited: Why and how you should (still) use DBSCAN[END_REF].

However, searching for a locality around an instance as a clustering problem induces new challenges. First, following our previous definitions of an explanation instance, an input t u ∈ T representing a user in an interpretable feature space can still have several thousands of features as in our case, this relates to the set of items. This makes clustering useless because of the loss in discrimination attached to the metric used to perform the clustering, what is known as curse of dimensionality. Second, the cluster containing the instance to explain, may be too small to properly train a surrogate model. Third, by defining a neighborhood search around an explanation instance as a clustering problem, our solution becomes heavily dependent on the clustering algorithm parameters and metrics properties. The following subsections present our solutions to these problems.

Handling very large dimensionality

Several solutions exist in the literature to solve this dimensionality problem. The first solution is to perform a feature selection or weighting process on the instances in T prior to the clustering. This research domain has been extensively studied in the past years as attested by numerous publications [START_REF] Kumar | Feature selection: A literature review[END_REF][START_REF] Alelyani | Feature selection for clustering: A review[END_REF][START_REF] Boutsidis | Unsupervised feature selection for the k-means clustering problem[END_REF][START_REF] Li | Localized feature selection for clustering[END_REF]. The difficulty lies in the definition of an objective to drive the feature selection process (as, contrary to supervised classification, there is no ground truth). An other solution would be to define clusters and their respective set of features at the same time with subspace clustering methods [START_REF] Kriegel | Subspace clustering, ensemble clustering, alternative clustering, multiview clustering: what can we learn from each other[END_REF][START_REF] Parsons | Subspace clustering for high dimensional data: A review[END_REF][START_REF] Agrawal | Automatic subspace clustering of high dimensional data for data mining applications[END_REF]. However, these approaches are generally complex and will not scale with the size of datasets in the recommender systems world. Moreover, as our final objective is not to build a clustering per se, but to build neighborhoods as clusters from which we estimate a local explanation, we do not want to remove beforehand any information that could explain a local behavior.

For these reasons, this paper introduces several possible solutions that are discussed hereafter:

1. k-means algorithm paired with a dimensionality reduction technique k-means clustering [START_REF] Macqueen | Some methods for classification and analysis of multivariate observations[END_REF] is well known and builds clusters by minimizing their intra-clusters variance, which leads to compact and somehow more understandable clusters than non-convex or elongated clusters that exhibit large variability on some dimensions. k-means is also likely to scale more efficiently than other traditional clustering algorithms to large number of instances but it is bound to an Euclidean distance by construction that does not scale to larger number of features. For this reason, it is advisable to pair k-means with dimensionality reduction techniques such as t-SNE [START_REF] Van Der Maaten | Visualizing high-dimensional data using t-sne[END_REF] or the more recent UMAP [START_REF] Mcinnes | UMAP: uniform manifold approximation and projection for dimension reduction[END_REF] to overcome the curse of dimensionality problem as in [START_REF] Chanson | Towards local post-hoc recommender systems explanations[END_REF]. UMAP builds a relationship graph in high dimensionality by growing around each instance a radius that denotes the strength of the relationship with neighbors. Similar to t-SNE this high dimensional graph is then reproduced in a lower dimension space. Interestingly, UMAP provides parameters (a number of neighbors and a minimum projection distance) to balance the importance of respecting the local relationship versus the global structure of a data set. In this paper, we consider UMAP in conjunction with a simple k-means clustering as in [START_REF] Chanson | Towards local post-hoc recommender systems explanations[END_REF].

We consider a simple k-nearest neighbors paired with a cosine distance that is still very popular for simple recommender systems.

Handling small neighborhood around an explanation instance and dependency to clustering settings

As mentioned earlier, there are two key problems remaining when clustering instances to define a neighborhood to train our surrogate model: (i) clusters may not be large enough to have sufficient training data for all explanations scenarios, (ii) clustering is sensitive to the number of clusters and any other hyper-parameters.

Regarding Problem (i), none of the aforementioned solutions ensures that clusters or nearest neighbors sets are large enough to define a proper training set. In some cases, being it because of the size of the input dataset or because of the size of the clusters / neighborhoods, there might not be enough instances to train the surrogate model. For this reason, all neighborhood approaches might be paired with an oversampling mechanism. In [START_REF] Chanson | Towards local post-hoc recommender systems explanations[END_REF], the authors evaluate a simple solution consisting in randomly duplicating points to the desired training set size, in conjunction with k-means and UMAP approach.

As the objective of this paper is not to dig into the oversampling problem that is a complex problem by itself, we rather consider off-the-shelf algorithms for this task. Section A.1 focuses on the SMOTE method introduced in [START_REF] Bowyer | synthetic minority over-sampling technique[END_REF] and studies its influence on explanation quality. Interestingly, as a side effect, in our case, using SMOTE produces never-seen-before Out-Of-Sample instances, for which the approach detailed in Section 4.1.1 should be used when dealing with Matrix Factorization approaches.

Regarding Problem (ii), Sections A.1 and A.2 also address different parameter settings for the considered approaches so as to provide the reader with a first robustness study of the proposed approaches to their main parameters.

Attention aux références vers les sections résultats qui vont sans doute changer dans la version finale

Learning the surrogate model weights

Previous sections details how locality is introduced in the sampling of instances to build a proper training set for our surrogate model. We now present the different variants of our approach LIRE depending on how the training set is constructed from perturbed points, clusters or nearest neighbors. Finally, the last subsection describes how the linear weights w ∈ R n of our local surrogate model are learned as a linear regression model with L1 regularization either based on pointwise supervision, or based on pairwise preferences as a learning to rank problem.

Building the training set for the surrogate model

In our proposal we consider 4 different scenarios to define the training set of the explanation instance t u , each one related to a locality definition. LIRE-P First, in the LIRE-P approach, we only consider perturbations p u as presented in Section 4.1.1 following the LIME principles. This approach is supposedly the most accurate as it allows to generate numerous training examples in the close vicinity of an explanation instance and by modifying gradually the importance of each interpretable feature. However, this control over the dispersion of training samples around the original instance, comes at the price of possible Out-Of-sample prediction for matrix factorization recommender systems.

LIRE-C

Second, in the LIRE-C approach, we consider real users u as a training set for the surrogate. These users can either be randomly picked from the cluster to which user u belongs, or alternatively, can be the set of nearest neighbors of user u. By definition, these neighbors represent observed examples of users in the close vicinity of u. As such, their rating for the item i ∈ I can be estimated by the black-box directly, which in turn serves as ground truth. This approach is expected to be faster as there is no Out-Of-Sample prediction involved. However, in case the cluster is smaller than the expected number of training instances, new instances are duplicated as discussed in Section 4.2.2. other half is generated from the cluster neighbors. The idea is to reduce the computation time of a pure perturbed approach, while considering possibly larger and more "natural" (in the sense of data distribution) neighborhood around the explanation instance.

Explanation as a weighted regression with L1 regularization

In our context, learning the best explanation amounts to determining the weights of the most appropriate interpretable features. We formalize this problem as a simple regression problem between a training set T train of instances expressed on interpretable features composed of either perturbations or cluster neighbors of user u, and their respective predictions Y train obtained either by direct prediction of the black-box or by our OOS prediction. We further want to achieve the simplest explanation by only retaining the most interesting features.

To do so, we consider a LASSO regression model [START_REF] Tibshirani | Regression shrinkage and selection via the lasso[END_REF] introducing a penalty term ∥w∥ 1 similar to Ω(w) in Equation 4. In the end, our explanation can be optimized following:

diff = Y train -wT train (8) e f (u, i) = argmin w∈R n { diff • diff t + λ∥w∥ 1 } (9)
where formally, λ denotes the Lagrangian coefficient attached to the constraint that minimizes the sum of weights w. Noticeably, in our implementation, we use a LARS [START_REF] Efron | Least angle regression[END_REF] algorithm with no intercept to find the optimal value w.

Learning explanations from pairwise preferences

The previous method estimates the importance of each feature by optimizing a loss as a prediction error between the recommender system and the linear model point-wisely, that is to say with only one instance at a time in the loss function. However, we show in this section that it is possible to envision a more complex loss function, and to train a surrogate model to mimic the black-box's behaviour given preferences between pairs of instances. This approach is related to the fact that the recommendation task may also naturally be defined as a ranking problem where the objective is to provide the end user with a list of items that are ranked in descending order of their relevance.

Learning to rank as a surrogate model loss function In this context, the loss function of our surrogate model falls in the category of the pair-wise approaches [START_REF] Karatzoglou | Learning to rank for recommender systems[END_REF][START_REF] Nguyen | A multi-objective learning to re-rank approach to optimize online marketplaces for multiple stakeholders[END_REF] that are well-established methods within the learning to rank framework. In [START_REF] Karatzoglou | Learning to rank for recommender systems[END_REF][START_REF] Nguyen | A multi-objective learning to re-rank approach to optimize online marketplaces for multiple stakeholders[END_REF], the objective of the recommendation is to optimize the rank of an item when compared to other items potentially interesting for the user. More precisely, according to [START_REF] Karatzoglou | Learning to rank for recommender systems[END_REF], there are three kinds of learning to rank loss functions for recommender systems, depending on their input: point-wise for a single item, pair-wise for a pair of items and list-wise when the whole catalog of items is provided as input. These approaches generally optimize directly a performance criterion such as Normalized Discounted Cumulative Gain (NDCG) instead of a classical quadratic error loss function. Noticeably, we focus on pairwise learning-to-rank techniques since [START_REF] Burges | From RankNet to LambdaRank to LambdaMART: An overview[END_REF] reported that some of the most popular learning to rank models such as RankNet, LambdaRank and LambdaMART are pairwise approaches. To the best of our knowledge, those kind of loss functions are not yet employed to explain a recommendation and to train a surrogate model.

Discussion

This implementation of preference learning is not common as the rationale of RankNet approaches for recommender systems is to learn preferences between items of a single user (or features of a single instance [START_REF] Li | Learning to Rank for Information Retrieval and Natural Language Processing[END_REF]). In our case, however, we apply this method to compare preferences over a single item for several users. We justify this choice, following the philosophy of LIME that relies on the perturbation of an instance to observe if a small change in a feature ends up with a noticeable difference in the prediction. As a consequence, the explainability weight of a feature relates to its robustness relatively to the black-box model prediction. In our case, we consider that our distinct users are only minor perturbations of a single user, i.e. that exhibit controlled changes over the original user. Similar to LIME, the idea is to observe if a small variation in a feature modifies the observed preferences as revealed by the scores of the black-box we want to explain. This is a classical counter-factual setting, where we answer the question: "If these features would have been slightly different for that user, would the black-box modify the preferences over this (explained) item?".

Formalizing the surrogate model as a RankNet

Let's now detail how a rank-based approach works in our context and how it can be efficient to explain a recommendation. If we consider the global LIME illustration proposed in Figure 1, it can be seen that in step (d), the black-box model is used to label the training set of the surrogate model.

In this example, the first training instance exhibits a predicted rating of 5 and is implicitly preferred over the second instance (rating = 1) and the third instance (rating = 4) by the black-box. With that in mind, we then propose a new loss function formulation to find a surrogate model that takes advantage of those pair-wise preferences. The objective is still to find a simpler model g (e.g: a simple regression) but its goal is now to minimise the discrepancy between its pair-wise preferences probability distribution and the one displayed by the complex recommender system on the training set like so:

L(f, g, p) = ∑ (z ′ i ,z ′ j)∈Z C(P (z ′ i ≻ g z ′ j), P (z ′ i ≻ f z ′ j | p)) (10)
with z ′ i and z ′ j two perturbed instances drawn from Z the training set of the surrogate model, P (z ′ i ≻ w z ′ j), being the probability that the surrogate model g, prefers z ′ i over z ′ j . Then, P (z ′ i ≻ f z ′ j | p) represents the same probability, but now from the point of view of the black-box model f , given p the function to transpose an instance from interpretable space to the original space. Finally, C is a cost function that computes how close both distributions are from each other. Note that Z could in our case also contain real points derived from clustering or nearest neighbors techniques, even if these cases are not reported in this work. For simplicity sake, we only consider perturbed instances.

In order to solve the aforementioned problem, we employ a 1-layer RankNet without bias. In our case, similar to Section 5.2 we consider linear surrogate model g where the learning objective are the weights w. For this reason, we rewrite in the following the probability P (z ′ i ≻ g z ′ j) as P (z ′ i ≻ w z ′ j). On the other hand, target probability of the RankNet is defined as follows:

P (z ′ i ≻ f z ′ j | p) = { 1 if f (p -1 (z ′ i)) > f (p -1 (z ′ j)) 0 otherwise. (11
)
Basically, if the recommender system f labels z ′ i with a higher score than z ′ j it is said that f prefers z ′ i over z ′ j with a probability of 1. It is a rather simple binary target probability, but one can develop a more gradual ground truth based on the difference between scores of the black-box for both instances. The modeled probability that is supposed to approximate this true probability distribution is:

P (z ′ i ≻ w z ′ j) = 1 1 + e (z ′ i .w T -z ′ j .w T) (12)
where the computation of estimated ratings r i = z ′ i .w T for instance z ′ i and r j = z ′ j .w T for instance z ′ j is similar to the linear explanation model presented in Section 5.2. The probability distribution is a sigmoid function that inputs the score difference between both instances. The higher is the score of the first instance compared to the second one, the closer to 1 will be the sigmoid output.

Finally, to measure how good is that approximation, a classical crossentropy between the ground truth and the predicted probabilities for each pair of instances is used as follows:

C(S i,j , Y i,j) = -Y i,j log(S i,j) -(1 -Y i,j)log(1 -S i,j) (13)
where, for the sake of readability, we note S i,j = P (z

′ i ≻ w z ′ j |) and Y i,j = P (z ′ i ≻ f z ′ j | p).
Interestingly, given that all functions in the RankNet framework, namely S i,j and Y i,j , are differentiable, the optimisation can be performed by a traditional back-propagation algorithm [START_REF] Goodfellow | Deep Learning. Adaptive computation and machine learning[END_REF].

Learning an explanation with RankNet model

In this paper, we propose, as illustrated by Figure 3, to use an adapted 1layer RankNet model without bias [START_REF] Burges | Learning to rank using gradient descent[END_REF] to learn a proper explanation model as a linear combination of interpretable features. This RankNet architecture inputs two instances from the surrogate training set Z, z ′ i and z ′ j and determines the best feature weights w so that the corresponding score for each instance, computed as r i = z ′ i .w T and r j = z ′ j .w T , does not violate the pairwise preference relation implied by the black-box ratings.

Interestingly, we add to a generic 1-layer RankNet model a sigmoid activation function that ensures that the computed scores r i and r j are constrained in the range of the use case. For example, we use this sigmoid normalization Figure 3: Illustration of the main principles of the simple 1-layer RankNet adapted for LIRE: the idea consists in determining the best feature weights that ensures the respect of pairwise preferences between items scores. A sigmoid activation function is introduced to ensure that ratings are set in an acceptable range depending on the use case. For the sake of simplicity, there are only 3 interpretable features represented in the example.

to bound score values in the range [0, 5] when dealing with 5 star ratings recommendation datasets. This activation function g(r) is traditionally defined as follows:

g(r) = 1 1 + e -r , ∀r ∈ R (14
)
In order to train this pairwise RankNet, any neighborhood as defined in Section 4 can be used. We propose in this paper, following LIME methodology, to use perturbed points to train the model as in the LIRE-P setting.

Finally, in this configuration, the explanation still provides a set of weights w paired with a surrogate model prediction as a simple regression without bias. This allows us to directly compare results found by this new LIRE-P pairwise method with other approaches such as LIME-RS or the methods described in the paper such as LIRE-P, LIRE-C, and LIRE-M.

Experiments

This section describes the experiments conducted to assess the interest of our approach and the way it deals with locality to provide explanations. To do so, we have set up several experiments reported hereafter that aims more specifically at answering the following questions:

1. what is the impact of the local sampling in the performance of our approach? Should we exclusively use perturbed points around the explanation instance, neighbors from the cluster to which the explanation instance belongs or a mix of the two?

2. how our approach compares with LIME-RS [START_REF] Nóbrega | Towards explaining recommendations through local surrogate models[END_REF]? What is the comparative accuracy of surrogate models when confronted to different black-box models?

3. how to evaluate explanation in a more realistic way for a recommendation task? Next to accuracy of surrogate models, is there a difference in the produced explanation quality when explaining for top, random or "flop" (the lowest rated) items?

4. how meaningful and relevant is our explanation? Does each surrogate model rank correctly the features based on their actual relevance in the black-box model?

5. how good our approach deals with locality in the recommendation process? Are LIRE approaches' local sampling able to differentiate between two simulated recommendation models, one in the close vicinity of the explanation instance and one more general?

6. is "maximizing the fidelity to the black-box in terms of MAE", the best way to learn a surrogate model? Is it possible to rely on more complex loss functions and on ranking of items "instances" est mieux non ? rather than score accuracy as in RankNet models?

7. how well our LIRE approaches scale to larger datasets? How well do they compare to LIME-RS in this context?

8. what is the sensitivity of the proposed approaches to their parameters? Noticeably, what is the impact of the clustering approach on the quality of the local sampling in LIRE-C and to which extent oversampling hampers performances? What is the impact of the training set size on the surrogate model? In LIRE-P Pairwise, what is the sensitivity to its optimization process?

Main protocol

This subsection introduces the main common elements in the protocols of each reported experiment: the datasets, the black-boxes, the evaluation metrics and finally a summary of all compared approaches based on their respective properties. This information is further completed when necessary in each experiment subsection.

Datasets Two well-known datasets from the movie recommendation service MovieLens have been used. Each describes 5-star rating and free-text tagging activity from MovieLens. We limit our main tests to the 100K Movie-Lens dataset [START_REF] Harper | The movielens datasets: History and context[END_REF] with 610 users and 9.724 items, as answering our research questions involves multiple runs with different parameters that would be too time consuming on larger datasets. Then, a first evaluation on the Movie-Lens 20M entries dataset is provided in Section 6.5 as a testimonial that our approaches can scale to larger volume of data. This dataset contains 20.000.263 ratings generated by 138.493 users for 27.278 movies.

Black-boxes we consider several types of black-boxes algorithms. Similar to [START_REF] Nóbrega | Towards explaining recommendations through local surrogate models[END_REF] we first implement a simple Matrix Factorization method. The interest of such approach lies in its ability to produce meaningful recommendation from a latent space of users and items even in the context of very sparse data.

The difficulty for post-hoc explanation approaches such as LIME [START_REF] Ribeiro | Explaining the predictions of any classifier[END_REF], that relies on perturbed points to train a surrogate model, is that it is not trivial to produce an Out-Of-Sample (OOS) prediction for these perturbed instances.

In our contribution, and contrary to previous works that avoid this situation by considering only pre-existing user-items recommendations as training, we propose a proper method to perform the OOS prediction as introduced in Section 4.1.2. Section ?? details the performances of LIRE variants on 3 new simple black-boxes from the recommender system literature. First, we consider the Normal Predictor which associates a rating to a random normal variable whose parameters are learned from the observed distribution in the training set. Second, we consider 2 k-NN inspired recommender systems: (i) k-NN-B, a basic k-NN where the predicted rating is computed as an average of neighbors ratings weighted by their similarity with the explanation instance and (ii) k-NN-M, a k-NN with Means that takes into account the mean ratings of each user. Next, when a ground truth on the relevant features is needed in our experiments, we consider linear white-box model. In this case, for a given explanation instance ⟨u, i, f (u, i)⟩, we pick at random 10 items that were evaluated by user u (excluding item i). The weights of these 10 items are randomly set between 0 and 1 Rephrase de cette partie pour le reviewer: We initialize a weight vectors with zeros. Its size is |I| -1, that is all the items besides i. Then we pick 10 items at random rated by the user and we assign for them a non zero value in the range of]0,1] within this vector.. The linear combination of weighted items / features produces the expected linear white-box recommendation model that our surrogate models in turn tries to mimic. In the case of research question (5), we consider 2 whitebox models at the same time, each model using only 5 out of 10 of the previously selected items / features, so as to be clearly differentiated. In these comparisons with white-boxes, all compared methods are asked to produce an explanation over the 10 most interesting features that they identify among the set of all 9724 features. Figure 4 illustrates the main principles of the single and double white-box experiments. On the left side, in the single whitebox experiment, a single model is generated, here depicted in green, while on the right, in case of double white-box, two distinct and non-overlapping white-box models are generated, one being local to the explanation instance (here represented in blue). In both scenarios, the aim is to evaluate the ability of each surrogate model to identify and to rank correctly the most relevant features of the white-box models. In the case of a double white-box, the underlying idea is that if a surrogate model fails to estimate locality, it will most likely learn a model closer to the more distant white-box model, pictured in green in Figure 4-right, instead of the more local, blue model. Noticeably, in these experiments, the selected features for each white-box do not bear any significance, but just serve as a ground truth that is to be rediscovered by surrogate models.

Evaluation metrics

We consider several evaluation metrics to assess the quality of our post-hoc explanation approach:

• the accuracy to the black-box model is classically computed as a Mean Absolute Error (MAE) between the prediction of the black-box and the prediction of the surrogate model in the interpretable space;

• the computation time is estimated in seconds for one run of an approach. Here we measure the computation time of our LIRE approaches to observe the impact of OOS prediction computation versus clustering and the impact of training a more complex model such as LIRE-P Pairwise. Table 5 also presents our estimation of LIME-RS computation times for reference ;

• the relevance of our interpretable model g is expressed as the ratio of features from the white-box model that are discovered by g (i.e. features whose weights exceed 0 in the model g). Let F be the set of features of a model, this ratio can be expressed as follows:

rel(f, g) = F(f) ∩ F(g) F(f) (15)
• the feature ranking quality is more discriminant than the previous relevance metric since it takes into account the rank of the relevant features and not only their presence / absence in the set of retrieved features. Ranks of interpretable features are provided by their weights, either set randomly in the white-box model, or learned by the surrogate model. To measure the quality of the agreement between the expected and the learned ranking, we use the traditional Normalized Discounted Cumulative Gain (NDCG) measure at rank ρ (NDCG@ρ) for values of ρ ∈ {3, 5, 10}.

Compared approaches

We consider many approaches and variants in our experiments. In order to make the reading more accessible, we report in Table 1 for each method its main properties.

Comparative results

Comparative accuracy of surrogate models

Motivation These tests aim at determining how our new LIRE surrogate models compare to the reference LIME-RS [START_REF] Nóbrega | Towards explaining recommendations through local surrogate models[END_REF] in terms of Mean Average Error on the rating scores and depending on the black-box models described in Section 6.1: Matrix Factorization, k-NN-B, k-NN-M and Normal Predictor.

Experiment For each method, we report evaluation metrics averaged over 200 explanation instances ⟨u, i, f (u, i)⟩. Ajouter la ref aux tableaux Remarkably, these 200 instances are the same for all compared approaches, which in turn allows to determine how many times each approach performs better than the others out of 200 comparisons. Specifically, only the method that reaches the best MAE increments its win score in our setting. There are no tie, even if other approaches may be very close in terms of performance. This explains why the number of wins scores may be more skewed than the average MAE and its standard deviation suggest. Noticeably, we let the MAE score available mostly to be comparable to previous works [START_REF] Chanson | Towards local post-hoc recommender systems explanations[END_REF][START_REF] Nóbrega | Towards explaining recommendations through local surrogate models[END_REF].

In the random scenario, explanation instances are generated by picking at random a user u and an item i from the MovieLens 100K dataset and by predicting the rating for ⟨u, i⟩ based on the black-box function f . In the top and flop scenarios, only the user u is picked at random, then the black-box is used to determine items with the highest and lowest scores for user u and their respective scores as ground truth. Following the parameters of LIME-RS, the training set size of the surrogate for each explanation instance is set to 1000. In LIRE-P, 1000 perturbed points are generated with a probability p B = 0.1 in the Bernouilli process with a perturbation range following the estimated overall variance set to 1.04 on the non-zero ratings.

In LIRE-P Pairwise, the training set is also set to 1000 perturbed instances. As this is a relatively small training set, even for a simple architecture as our 1-layer RankNet, we use batch gradient optimization with 50 batch per epochs and 50 random combinations of instances per batch to train the RankNet model and to obtain the interpretable features weights. We consider 100 epochs to converge. This solution is implemented in Python with Pytorch library that implements the Adam optimizer.

In LIRE-C, 1000 neighbors from the same cluster are considered. This is a huge constraint in our clustering model since this size of training set may not allow for a finer clustering algorithm that captures small tendencies in the dataset. As a compromise, in case the cluster is too small, we propose to replicate its data, which allows to use a k-means clustering algorithm set with 75 clusters to preserve small clusters and locality. Clustering is applied on top of a UMAP dimensionality reduction as implemented in Python umap package with 30 neighbors and a minimum projection distance of 0.01.

The linear regression is based on LARS implementation and uses default parameters as presented in its sklearn version. All code is written in Python and is available as a Git project1 . ca tombe un peux de nul part, on peux mettre ca dans le main protocol non ?

Out-Of-Sample Prediction

The OOS predictors run for 120 epochs of gradient descent using the optim package of pytorch. More specifically, within this package we use the Adagrad optimiser using its defaults parameters, exception made of the learning rate set to 0.1. Discussion Tables 2 3, First, it can be observed from these tables that, according to the number of wins, not a single approach manages to cover correctly all 200 explanation instances. In other words, there is always a situation where one of the method does not manage to correctly estimate locality around an explanation instance. That being said, there are some cases where one of the approach is clearly more appropriate than the others. We detail hereafter some of the most interesting findings from Tables 2 3 and 4 group by surrogate model.

LIME-RS

LIME-RS is a direct port of LIME and holds a binary perturbation mechanism. By selecting random users that are randomly spread all over the user-item space, LIME-RS tends to exhibit an "average rating behavior". As a consequence, LIME-RS performs the best in the Random scenario with the matrix factorization black-box (113 wins out of 200), since the model is mainly implemented as learning a deviation from the average rating of each user. For the same reason, LIME-RS performs very poorly with the k-NN black-box since they tend to produce more focused localities around the explanation instance (only 9 to 25 wins in the Random scenario). Noticeably, things are even more visible in the Top and Flop scenarios where kNN-B and kNN-M produces very highly rated top predictions and very low rated flop predictions, that strongly deviate from the average, and which make it difficult for LIME-RS to capture the correct feature weights (the maximum number of wins is below 2 in these cases). Finally, N-Pred tends to predict ratings around the global average rating with a smooth normal decrease on both side of the average, and as such, it is independent from the local context of a specific user explanation. As expected, LIME-RS manages to capture well the behavior of this black-box, since it exhibits a global behavior, even if in this case, results are comparable to those of LIRE-P. As a main conclusion, this test shows that the perturbation mechanism in LIME-RS does not allow to capture efficiently a local context as illustrated with kNN-B and kNN-M Top and Flop scenarios. One question that we leave as future work is to study more complex and contextual recommender systems to observe if this conclusion still holds for LIME-RS. LIRE-P LIRE-P introduces a gradual perturbation mechanism that aims at a better locality definition around an explanation instance. It is the best approach in terms of cumulative number of wins on all our experiments: it has larger win scores for 3 out of 4 black-box models in the Random scenario, and most interestingly, it is better or comparable than all other approaches in the Top scenario, when dealing with the best scored items, i.e. those that will be preferentially presented to the user. According to our analysis, this result is mainly due to the fact that in these specific cases, the neighborhood around the top and flop instances may be very small which induces large deviation from the average user behavior which penalizes LIME-RS. On the contrary, this local behavior seems better captured by the perturbed instances mechanism, which allows for a smoother estimation of the model around the local instances. This best locality estimation is also an advantage when dealing with k-NN black-box models as observed with very high number of wins (above 123 out of 200) in all 3 scenarios. Similarly, the perturbation mechanism of LIRE-P that acts as a random normal deviation around features allows to reach good performances comparable to all other approaches with the Normal Predictor black-box. As a conclusion, LIRE-P, depending on its (perturbation) setting, appears to be a potentially good solution to preserve locality while not sacrificing performances when dealing with recommender systems that have an "average rating behavior" such as Matrix Factorization or the Normal Predictor. LIRE-PP LIRE-P Pairwise approach generally does not manage to compete with the other methods in terms of MAE. Indeed, the method is tailored to find a ranking of the most relevant features that is compatible with the black-box preferences, but not to optimize the predicted ratings to mimic those of the black-box, hence the observed results. Technically speaking, LIRE-P pairwise heavily depends on the internal neural network optimization and noticeably depends on the initial feature weights that are fed to the model. From our tests, not reported here, a classical 1-layer RankNet model would produce even worst scores as the optimization process in neural network would generate very large features weights, ending in very large ratings with the linear regression. This illustrates why we propose a modified 1-layer RankNet that adds a normalization step with a sigmoid function to keep the generated ratings in an acceptable range. Interestingly, LIRE-PP still manages to reach around 30 wins in the case of local black-box models such as k-NN and Normal Predictor in the Top scenario. This is due to the locality inherited from the perturbation mechanism and, as shown in Section 6.3, to the ability of LIRE-PP to identify correctly the most important features for users based on their preferences. This explains also the very low scores in the Flop scenario where the prediction relies on non relevant features that are not identified by LIRE-PP. Finally, as LIRE-P, LIRE-PP benefits from its perturbation mechanism that is aligned withe the behavior of the Normal Predictor to achieve correct results. As a conclusion, LIRE-PP needs further improvements to deal at the same time with the pairwise preference to respect the most relevant features, and the fidelity to the black-box ratings. We leave this as future work.

LIRE-C and LIRE-M

We consider in these tests, LIRE-C 1 that relies on cluster neighbors to train the surrogate model and whose precision in locality estimation is tightly related to the metric and the distribution of user-item scores. As such, it is expected that this approach may be less accurate than LIRE-P for which the locality is directly controlled as a random dispersion around the actual score for an item. This can be observed in all 3 scenarios where LIRE-C performances decreases as black-box models tends to be local such as k-NN (max. 9 wins are observed in the Random scenario). Noticeably, LIRE-M, that mixes perturbed points and original instances shows much better performances than LIRE-C on the local model, while also obtaining good scores with more general black-box models: best score in the Top scenario with up to 61 wins on Matrix Factorization. When observing the win scores on the different scenarios and black-boxes, LIRE-M seems to be an interesting compromise as it balances the possible inadequacy of discovered clusters as in LIRE-C, by a more controlled neighborhood as in LIRE-P. Still, LIRE-C may not be discarded as it allows to win in some situations. Section A.1 brings some new insights to improve these results but we leave as future work an in-depth study of the most efficient clustering for sampling.

Comparative running time

Motivation Next to accuracy, it is interesting, in a recommender system context, to compare computation times of different variants of LIRE and how they compete with LIME-RS. Noticeably, we are interested in the cost sensitive steps of our approaches such as OOS prediction or clustering of (relatively) large scale datasets.

Experiment For this experiment, we consider 50 random explanation instances. The black-box is set to the Matrix Factorization as it involves OOS prediction and we consider all 3 scenarios: Random, Top and Flop. For all these tests, we have monitored the computation times of the main variants of LIRE as reported in Table 5. Reported running times are computed on MovieLens 100K and were run on a laptop with an Intel Core i7 CPU at 2.50GHz and 8 GB of RAM. Noticeably, larger scale tests were also conducted and reported in Section 6.5.

Discussion

Only Random scenario is reported as the other scenarios are exactly as intensive in terms of computation. Noticeably, LIRE-C 1 based on cluster neighbors is the fastest approach and LIRE-P and LIRE-P pairwise are the slowest of the batch. This was expected since LIRE-C does not require the computation of the OOS prediction in LIRE-P. The latter is very costly when considering matrix factorization black-box. Interestingly, LIRE-M provides a good speed-up over LIRE-P without degrading the accuracy in Top and Flop scenarios. Finally, similar to LIRE-P, LIRE-P pairwise computes OOS prediction, and adds an overall optimization time for the batch gradient descent that is repeated for each single batch and during 100 epochs in our test. Section A.3 investigates the quality of our main type of approaches depending on the size of the training set as, for example, a LIRE-P with only 500 training instances may have the same performance and the same computation time as LIRE-M, depending on the quality of the clustering used to define the neighborhood. Clustering may not be as efficient as expected because in many real world situations, the size of clusters follows a Zipf law with one very large cluster and many very small clusters. As a consequence, we set up our clustering parameters so as to perform a compromise between the ability to capture small trends in the data as well as more general tendencies. In the case where a cluster is too small to contain 1000 points to produce an equivalent training sample as the other approaches, we use an oversampling technique that may bias the convergence of the surrogate model, hence the performance. Section A.2 details tests that evaluate to which extent oversampling with a state-of-the-art approach impacts the performances of our methods while Section A.3 details the impact of the training set size.

Single white box experiment

This section reports the results of a Single White Box experiment, where we generate a random linear model for which the ground truth feature weights are known and that our surrogate models try to mimic.

Motivation Similar to LIME, our approach outputs a weighted vector of interpretable features. We cannot only evaluate a surrogate explanation model based on its accuracy to the black-box as it does not reflect the whole complexity of the recommendation process. We also need to determine if the interpretable features used as an explanation are the one that were expected. To do so, we propose an experiment called Single White Box in which we define a linear white box model relying on 10 items (our features) that have been scored randomly as described in Section 6.1. This white box is supposedly the recommendation model that the surrogate model tries to replicate.

Experiment

We evaluate the ratio of interpretable features discovered versus those expected from the white-box model as formalized in the relevance Equation 15. As we are in a recommendation context, we also produce a ranking of the interpretable features that our approach discovers and compares it to the ranking of the white-box features based on their respective weights. We produce Normalized Discounted Cumulative Gain (NDCG) [START_REF] Järvelin | Cumulated gain-based evaluation of IR techniques[END_REF] measure as it is a common way to evaluate the agreement between two items rankings [START_REF] Nguyen | A multi-objective learning to re-rank approach to optimize online marketplaces for multiple stakeholders[END_REF]. In our case, we use NDCG measure to evaluate how many of the most important features our approach mines among the top 3, top 5 and top 10.

Discussion Table 6 contains for each method the evaluation of its ability to identify correctly the interpretable features used to generate the whitebox model. Relevance does not consider the relative importance of each interpretable feature while NDCG score takes into account the ranking of the most important interpretable features of the white-box model. This is a very difficult test as it boils down to identifying 10 features out of 9724. These features may be correlated and so in this case our surrogate has to determine which one of the correlated features to pick to explain the general behavior of the white-box. Finally, the difficulty of the task is also related to the number of items that were scored by the user for which the explanation is produced. Indeed, even when limiting the exploration of interpretable features to the set of scored items, this resolves to a possibly large search space: on average each user of the dataset scored around 614 ± 642 items. This shows that the search space may be very small or very large depending on the selected user.

First, it is interesting to notice that in this experiment, LIME-RS is not able to identify any correct interpretable feature from the set of 9724 candidates. This is due to the internal behaviour of the approach as we use in this experiment the "item mode" from the original code that is emphasized in the original paper [START_REF] Nóbrega | Towards explaining recommendations through local surrogate models[END_REF]. In this mode, the sampling to train the surrogate model only varies, for a specific fixed user, the items that are considered. As a consequence, because of the nature of the white-box that is a linear combination of fixed items, the output for all training instances is the same. As a consequence, LIME-RS has no real information to decide from all features locally and tries to minimize the prediction error but on the basis of uninteresting features that are certainly correlated to some extent to the one used in the white-box (hence the good accuracy score).

Second, the baseline random approach chooses from the set of scored items for the user. This constraints greatly helps to find more easily some relevant features (but otherwise this baseline would have been pointless since it would have had 10 chances out of 9724 to find a correct feature), but does not favor the discovery of a proper ranking of the important interpretable features as illustrated by the very low NDCG scores.

Finally, LIRE in general, and more specifically LIRE-P manages to better embrace the local behavior of the white-box and identify a ratio of 0.212 features over which its model is constructed. This is clearly due to the perturbation mechanism that will slightly affect the scores of items to explore the neighborhood of an explanation instance gradually and thus can better evaluate the relative importance and correlation between features. Finally, new to this paper, LIRE-P pairwise achieves very good results on this test with an average relevance of 0.860 and NDCG scores all above 0.8. This was expected as the method is designed to determine the relative feature weights that respects most of the black-box pairwise ratings induced pref-erences. The good performances are related to the combinatorial nature of the batch gradient descent that evaluates each time 50 random combinations of perturbed instances and repeats this process for each of the 100 epochs. With our current settings, LIRE-P pairwise produces its decision based on 5000 expressed preferences. This allows for a fine estimation of what feature is relevant or not. Interestingly, tests reported in Section A. [START_REF] Alvarez-Melis | On the robustness of interpretability methods[END_REF] shows that other settings could be envisioned as LIRE-P pairwise does not seem to be sensitive to the batch size and the number of combinations per batch, the most discerning factor being the number of epochs.

Double white box experiment

Motivation The double white-box experiment aims at showing to which extent each surrogate model learns locally the black-box model and to which extent it performs well doing so, based on the previous quality measure of an explanation (see Section 6.3).

Experiment

In order to set up a decision boundary between the 2 randomly generated linear white-box models as presented in Section 6.1, we define a distance threshold around each explanation instance. For each RAN-DOM explanation instance, we define a decision threshold that is set as the distance to the k th nearest neighbors or as the distance to the farthest point in the same cluster, if there are less than k instances in the cluster. Then, for all training instances whose distance to explanation instance is below the distance threshold, a first white-box model is used to generate the score of the recommender system, while the second model is used otherwise for the remaining training instances. Discussion Table 7 presents the results obtained when comparing all the methods based on an adapted relevance metric: "Relevance In" indicates the ratio of features from the first model (the one applied inside the neighborhood delimited by the decision threshold) that are identified by the surrogate model, while "Relevance Out" designates the ratio of features from the outof-neighborhood model. A surrogate model that better approximates a local behavior is likely to have a better "Relevance In" score.

First, it can be seen in Table 7 that LIRE-P and LIRE-P pairwise approaches perform the best for the "Relevance In" score with respectively 0.328 and the very high 0.988 score, followed by LIRE-M and the random baseline. This shows that LIRE-P and LIRE-P pairwise are the most effective locally to capture the important features of the in-neighborhood white-box model. This is due to its gradual perturbation mechanism that stays in the vicinity of the explanation instance, contrary to the binary perturbation of LIME-RS that does not guarantee that a perturbed instance stays in a close neighborhood. Second, concerning LIRE-M and LIRE-P, it can be observed that adding training instances from the cluster decreases the quality of the explanation. Indeed, LIRE-C has very poor results which tend to show that clusters are generally much larger than the radius defined by the decision threshold and that, in this case, training instances are often labelled by the out-of-neighborhood white-box model prediction. Third, when comparing LIRE-P to its pairwise counterpart, the latter is much more efficient to determine the set of relevant features. This was expected as LIRE-P pairwise benefits from the same locality as LIRE-P, but then tries to identify the important features rather than reducing the MAE score with the black-boxes. Finally, LIME-RS obtains very poor results with 0.036 in "Relevance In". In fact, this is due to the setting of the approach for this test, where we have changed the item mode of the previous test (that would not have performed correctly for the same reasons as previously, see Section 6.3) to the useritem mode, present in the original code from [START_REF] Nóbrega | Towards explaining recommendations through local surrogate models[END_REF] but not detailed much in the paper. In this mode, training set is constructed by picking at random (user, item) pairs and their associated black-box predictions, which, as the locality is by definition smaller than the whole explanation instances space, leads to favor the out-of-neighborhood white-box to label its predictions. However, even in the case of the "Relevance Out" score, LIME-RS does not perform well because of the binary perturbation that does not ensure locality correctly. NDCG scores confirm that LIRE-P and LIRE-P pairwise also manage to discover more of the main features coming from one or the other white-box model and better respects their ranking with a good score of 0.355 for NDCG@3 for LIRE-P, while LIRE-P pairwise achieves the very high score of 0.741 for NDCG@3. Interestingly, LIRE-P pairwise appears to be better at identifying the most important features as the NDCG@3 score is significantly better than the NDCG@10 score (p-value = 1.3e -5), and contrary to LIRE-P for which scores are comparable.

Test on MovieLens 20M

Motivation This section evaluates our surrogate models in the context of larger datasets that are more realistic use cases in the recommender system community. Noticeably, we want to evaluate to which extent the OOS prediction or the RankNet model complexity are efficient when dealing with larger user-items matrices.

Experiment We consider the larger 20M entries dataset proposed by Movie-Lens in this test, and consider average accuracy and execution times. Table 8 reports the comparative results of our 4 main methods: LIRE-P, LIRE-C 1 , LIRE-M and LIRE-P Pairwise. All tests were conducted on a AMD Ryzen 3700X with 32 GB of memory, and as such, keep? computation times with previous experiments cannot be compared, but are on the same order of magnitude.

Discussion First, it should be observed that all our approaches run on 20M entries while the code provided for LIME-RS [START_REF] Nóbrega | Towards explaining recommendations through local surrogate models[END_REF] is not able to run on the full dataset. Second, it can be seen that LIRE-M has better results compared to the test on MovieLens 100K and has similar performances in terms of MAE than LIRE-P. Indeed, differences are not significant when considering a bilateral t-test with a p-value equals to 0.18. This is interesting as it may indicate that in this very large dataset scenario, the clustering could help improving the results of the perturbation mechanism. This should be investigated more in future work. However, the cluster neighbors only training set is too dependent on the quality of the clustering algorithm to be efficient on average as shown with LIRE-C 1 results. Finally, and similarly to our experiments on MovieLens 100K, LIRE-C 1 is the fastest approach as it does not involve the OOS prediction mechanism. Similarly to the tests reported in the previous sections, LIRE-P pairwise obtains the highest MAE score and computation times. Noticeably the computation times are 2 orders of magnitude higher than the other LIRE approaches. This test shows that the main reason for that is the training of the simple 1-layer RankNet neural network as the OOS prediction is the same as in LIRE-P which performs in a few seconds for a single explanation. In this case, the size of the interpretable space is clearly a limit as each RankNet has to deal with twice the size of the feature space as inputs.

A Supplementary material: robustness analysis

A.1 Alternatives to LIRE-C Motivation As detailed in Section 4.2, LIRE-C main idea is to build a neighborhood around each explanation instance to train a surrogate model. This can be done in several ways and in this paper, we explore new alternatives in two main directions: (i) we evaluate 3 distinct approaches to sample instances around the one to explain and (ii) we pair each neighborhood method with a method to handle the large dimensionality of the interpretable user-item space.

Experiments We consider the following approaches, each with its own parameters:

1. LIRE-C 1 a k-means clustering paired with UMAP dimensionality reduction technique. This method depends on 3 main parameters, the number of clusters k, the number of nearest neighbors and a minimum projection distance threshold that define to which extent UMAP preserves local neighborhood or more global structures in the data (such as clusters). This approach corresponds to the LIRE-C approach [START_REF] Chanson | Towards local post-hoc recommender systems explanations[END_REF] where the simple duplication mechanism is replaced by a more sophisticated oversampling mechanism as discussed in Section A.2.

2. LIRE-C 2 a hierarchical clustering paired with a cosine distance. This methods also depends on a number of clusters denoted k although it could be set automatically via the L-method [START_REF] Salvador | Determining the number of clusters/segments in hierarchical clustering/segmentation algorithms[END_REF] or the Kneedle approach [START_REF] Satopaa | Finding a "kneedle" in a haystack: Detecting knee points in system behavior[END_REF], which determines the knee in a curve of discrete observations such as the errors in agglomerative clustering, 3. LIRE-C 3 a k-nearest neighbors algorithm paired with a cosine distance that solely depends on the number of considered nearest neighbors

We compare the different clustering and dimensionality reduction settings in the context of their corresponding surrogate models in LIRE-C. These models are then evaluated in terms of MAE on 50 runs against the matrix factorization black-box recommender system in the Random scenario as described in Section 6.1. We compare several combinations of number of clusters k ∈ {10, 25, 50, 75, 100} for k-means and the hierarchical clustering with complete link criterion. For UMAP, we vary the parameters as follows: (i) the number of nearest neighbors N N ∈ {10, 30, 50} and (ii) the minimum projection distance D ∈ {0.1, 0.01, 0.001}.

As pointed out in Section A.2, LIRE-C may not be able to provide the expected training set size as the latter is conditioned to the discovered cluster to which the explanation instance belongs. To overcome this limit, we propose, in this section, in addition to the duplication method included in the original LIRE-C, to evaluate an off-the-shelves oversampling technique such as SMOTE [START_REF] Chawla | synthetic minority over-sampling technique[END_REF][START_REF] Bowyer | synthetic minority over-sampling technique[END_REF]. Indeed, it is known that balancing small or minority classes to learn a model, even based on artificial instances, is most of the time beneficial [START_REF] Weiss | The effect of class distribution on classifier learning: an empirical study[END_REF]. In the following tests, we use the extension of SMOTE with Tomek links [START_REF] Batista | Balancing training data for automated annotation of keywords: a case study[END_REF] as implemented in Python package scikitlearn, to ensure that oversampled points are not on the border of the neighborhood and thus avoids violating the locality constraints with artificial instances.

Discussion Table 9 introduces the exhaustive results for all the aforementioned combinations of parameters. Noticeably, if we consider the same number of clusters (k = 75) as in experiments reported in Table ?? for LIRE-C, the most likely best configurations in Table 9 are:

• (C1) LIRE-C 1 (N N = 10, D = 0.001), • (C2) LIRE-C 1 (N N = 25, D = 0.001), • (C3) LIRE-C 1 (N N = 50, D = 0.1), • (C4) LIRE-C 1 (N N = 75, D = 0.001), • (C5) LIRE-C 1 (N N = 100, D = 0.001), • (C6) LIRE-C 2 , • (C7) LIRE-C 3
For the sake of completeness, we also run two more configurations so as to reproduce settings as close to results of Table ??: (C8) LIRE-C 1 (N N = 30, D = 0.01) and (C9) LIRE-C 1 (N N = 30, D = 0.01) but with duplicate instance instead of SMOTE oversampling.

Three main conclusions can be learned from this experiment. First, although some differences may be noticeable as highlighted by the 9 representative configurations, our statistical tests do not clearly show any significantly best approach. This can be easily explained when observing the variability of the results and by their dependency to the choice of explanation instances. This observation motivates a research question that we leave as future work that would consist in identifying the situations where an explanation can be computed and when an explanation should not be provided as the surrogate model is likely to fail to estimate the correct behavior. In the context of LIRE-C, one simple answer from our tests is the number of instances in the cluster, as it is obviously easier and more relevant to train a model from a large number of real instances.

Second, the most significant difference in terms of statistical test is observed between configurations (C8) and (C9) with a p-value equals to 0.0058 (when compared to a significance threshold classically set to 0.05). This result shows that duplicating instances may lead to slightly better results on average. Although this test would need to be reproduced on more datasets to be confirmed, it is clear that duplicating points favors the local overfitting of the surrogate model which is, in the end, expected to some extent in this kind of surrogate explanation model.

The third conclusion supported by this experiment, is that the observed differences tends to be more significant (the p-value of the t-test tends to decrease), when comparing solutions that have a larger difference in the number of neighbors in UMAP, particularly when using SMOTE oversampling afterwards. For example, the p-value between Configuration (C8) which considers 30 nearest-neighbors in UMAP and Configuration (C4) (resp. (C5)) that considers 75 neighbors in UMAP (resp. 100) is 0.056 (resp. 0.02) which is slightly above (resp. below) our significance threshold. This shows that the explanation model is sensitive to the locality, as implemented in UMAP in our test, and that considering smaller neighborhood around to capture the structures is more efficient, especially in the case where an oversampling such as SMOTE is performed afterward on the neighborhood. In this case, where UMAP adds a complex projection mechanism that can be prone to errors, reducing the locality seems to prevent the generation of noise during the oversampling step.

Finally, these experiments validate our first choice of UMAP paired with K-Means as LIRE-C 1 method, although other competitive approaches can be designed with more traditional metrics such as cosine to handle the large dimensionality. In the end, one way to decide which approach better suits our needs will be their ability to scale to the volume of data in recommender systems.

A.2 Impact of oversampling

Motivation As mentioned in the previous sections, in LIRE-C the neighborhood is built by clustering or k-nearest neighbors approaches. As such, depending on the size of the cluster the explanation instance belongs to, LIRE-C may not be able to guarantee that the training set is large enough. One solution could be to search for fewer and larger clusters, but at the price of loosing some locality and thus possible specificity in the vicinity of the explanation instance. We propose in this experiment: (i) to evaluate the impact of oversampling a neighborhood to match a reasonable training set size for the surrogate model, and (ii) to evaluate the trade-off between the size of the original neighborhood and the expected training set size that can be achieved without sacrificing the quality of the surrogate model. In this experiment, we consider LIRE-C 3 that relies on a k-nearest neighbors model (k-NN) for 2 reasons: (1) k-NN is fast and has shown similar performances with the original LIRE-C 1 based on UMAP and k-means [START_REF] Chanson | Towards local post-hoc recommender systems explanations[END_REF], and (2) k-NN allows to simply define the size of neighborhood around an explanation instance when the latter is chosen at random, which is not the case for clustering. This last point is crucial in this test where we need to control the ratio between the size of the original neighborhood and the number of oversampled instances.

Experiment We evaluate the MAE of a simple k-nearest neighbors surrogate model when compared to a Matrix factorization black-box as in Section ?? on the MovieLens 100k data set. The training set is composed of distinct number of nearest-neighbors (10, 25, 50, 75 and 100) and number of oversampled instances constructed by SMOTE (from 0 to 1000 instances). Discussion First, it can be generally observed in Table 10, that, for a fixed number of nearest-neighbors, the more oversampled points and the larger the training set size, the better the surrogate model fits to the black-box model in terms of MAE. Interestingly, this difference is even more significant for 100 than for 10 nearest-neigbors, which shows that oversampling is even more profitable to the surrogate model if there is enough variety in the instances to oversample.

Second, in the specific context of the MovieLens 100k dataset, no significant difference (t-test p-value equals 0.89) can be noticed when considering 500 or 1000 oversampled instances. In all the tests, we keep 1000 instances as a training set size as LIME-RS achieves its best results in this configuration as proposed in [START_REF] Nóbrega | Towards explaining recommendations through local surrogate models[END_REF].

Third, when fixing the number of oversampled instances and varying the size of the original neighborhood, results are mixed. When, considering a large number of oversampled instances, the size of the initial neighborhood is not significant in the observed MAE scores. In this case, SMOTE seems to be a good solution to overcome the limit of a possibly very small neighborhood around an explanation instance. When considering only 20 oversampled SMOTE instances, the difference in MAE becomes more significant as the difference between the size of neighborhoods increases. This can be explained by the fact that more training instances are better to train the surrogate model, when the locality is preserved.

Finally, 3 conclusions can be drawn from this experiment: (i) the more oversampling the better until 500 instances for this specific dataset, (ii) SMOTE is efficient to oversample without deteriorating the performance of LIRE-C, and (iii) increasing the locality size is always efficient in the reported tests with k-NN paired with cosine and augmented with SMOTE. However, as shown with previous experiments reported in Section A.1 where, in the case of UMAP, smaller locality is better, setting the limit of the size of the neighborhood is a complex problem related to the topology of the input useritem matrix and the sensitivity of the method used to compute the distance, that should be addressed in a future work.

A.3 Impact of the training set size

Motivation In [START_REF] Nóbrega | Towards explaining recommendations through local surrogate models[END_REF] and in [START_REF] Chanson | Towards local post-hoc recommender systems explanations[END_REF], the proposed studies exclusively consider surrogate model training sets containing 1000 instances. However, this parameter is critical: setting a large training set allows to better fit the blackbox model but (i) consumes more time to train our models and (ii) implies a heavier use of the oversampling SMOTE approach which adds to the overall complexity and may introduce some biases in the way perturbed instances are generated. Experiment Table 11 illustrates the impact of the training set size on the performances of the surrogate model for 2 main variants of LIRE-C, namely LIRE-C 2 based on a Hierarchical Agglomerative Clustering (HAC) with 75 clusters and LIRE-C 3 based on a k-nearest neighbor (k-NN), similarly to the results discussed in Section A.1. As previously mentioned, LIRE-C 3 allows to set the size of the initial neighborhood. On the contrary, LIRE-C 2 aggregates clusters producing the smallest diameter and thus possibly condensed neighborhoods around explanation instances, but for which we do not a priori bound the size. We also consider for the sake of completeness our perturbation-based approach LIRE-P. We do not report here results for LIRE-P Pairwise as it is by construction less sensitive to the training set size, but rather to the number of epochs, the number of batches at each epoch and the number of combinations of instances considered in each batch as discussed in Section A.4.

Discussion Table 11 presents average MAE scores of LIRE-C and LIRE-P when compared to the Matrix Factorization black-box in the Random scenario. It can be observed that for all methods, the training set size is critical as differences are significant when considering either 50 or 1000 instances in the training set. However as expected, LIRE-P is much more impacted ranging from 3.523 of MAE for a training set composed of 50 instances to a MAE of 0.455 for a 1000 instances training set and as illustrated by the lowest p-value in this test, equal to 1.85E -41 . Interestingly, differences in MAE scores between 1000 and 2500 instances are not significant with p-values at least equal to 0.269 in the case of LIRE-P. This means that we can limit the size of the training set to 1000 instances without loosing any fidelity to the black-box model. Finally, if we compare the MAE scores between the 3 approaches K-NN, HAC and LIRE-P for 250 and 500 training instances respectively, it can be observed that:

• for 250 instances, differences between LIRE-P and the 2 others are not significant, even if the p-value equals 0.08 when comparing LIRE-P to LIRE-C 3 is borderline ;

• for 500 instances, differences are significant between LIRE-P and the other 2 approaches.

This indicates that perturbations in LIRE-P are more beneficial than considering a cluster to produce a local surrogate training set and even if the latter performs correctly based on our test results. The only advantage of clustering in our setting lies in the fact that in some scenarios with larger cluster, oversampling is not mandatory and thus using cluster instances rather than perturbed instances avoids the cost of Out-Of-sample prediction.

A.4 Sensitivity analysis of LIRE-P Pairwise

Motivation This section presents experiments on the sensitivity of our new LIRE-P Pairwise to its parameters, the number of epochs, the batch size and the number of combinations evaluated in each batch to learn the ratings.

Experiment Due to the number of parameters. We consider 2 main experiments. In Experiment 1 we fix the batch size to 50 and the number of combinations to 100 and we run 30 explanation tests to observe if the algorithm converges as the number of epochs increases and what could be a reasonable number of epochs. In Experiment 2, we consider a fixed number of 100 epochs to converge and vary the batch size in {10, 25, 50, 100} and the number of combinations κ ∈ {10, 25, 50, 100}. In this experiment, the quality is evaluated based on average MAE in Random scenario with Matrix Factorization over 20 runs to keep the running times under control. Discussion Figure 5 illustrates for one explanation scenario the progression of the loss function versus the number of epochs in the context of Experiment 1. This result is representative of what was observed on all 30 explanation instances evaluated for this test. It can be seen from Figure 5 that the training loss decreases relatively fast as expected and that depending on the explanation instance, an elbow can be observed in the curve around 100 epochs. For this reason, we set the number of epochs to 100 in all the tests in this paper.

Table 12 summarizes the results of Experiment 2. Importantly, when the batch size does not allow enough combinations (a batch size of 10 instances allows for 55 distinct combinations) comparisons are duplicated giving randomly more importance to some black-box preferences over others. In all other cases, the larger the batch size and the lower the number of combinations, the less duplicates in the training set. Although, some combinations 12 shows that results are comparable for all the settings considered in this test with no clear best configuration. Indeed, the major difference can be observed between 10 combinations and 10 instances per batch (MAE score = 1.23) and 50 combinations and 50 instances per batch (MAE score = 0.93) for which the difference is borderline significant (p-value = 0.051). In this test, it can be observed that the simple RankNet converges very quickly. This is to be expected as a comparison bears more information than a simple linear regression to define the relative importance of feature weights. As a conclusion, this test shows that: (i) our test parameters used in previous sections are a reasonable choice (with 50 batches over 1000 training instances and 50 random combinations) and (ii) that by choosing lower settings, it could be possible to slightly accelerate LIRE-P pairwise. We leave this study as future work.

B Acknowledgments

 (a)(c)), (3) a binary perturbation mechanism to generate a training set for the explainable model around the binary interpretable image of the original explanation instance (Fig 1(b)), (4) the labelling of these training instances by the black-box model when projected back to the original feature space (Fig 1(d)) and finally (5) the learning of a simple model, generally a linear regression model, whose weights attached to the binary features form the expected explanation (Fig 1(e)(f)).

Figure 4 :

 4 Figure 4: Illustration of the single and double white-box experiments. Colors represent the region of the user-item matrix where each artificial black-box model applies in the single (left) and double (right) black-box scenarios.

 4 detail the comparative MAE errors and their number of win scores for each surrogate model and each black-box model they try to replicate locally, respectively in the Random, Top and Flop scenarios.

Figure 5 :

 5 Figure 5: Illustration of the training loss of the 1-layer RankNet algorithm of LIRE-P pairwise versus the number of epochs.

 Founding for this work was provided by the University of Tours, Kalidea UP and French ANRT under CIFRE 2018/1086

	Random		Matrix Facto.	kNN-B	kNN-M	Norm. Pred.
	LIME-RS MAE	0.17 ± 0.25	0.69 ± 0.36 0.37 ± 0.25 0.77 ± 0.55
		# wins	113	9	25	44
	LIRE-P	MAE	0.39 ± 0.43	0.11 ± 0.13 0.13 ± 0.15 0.77 ± 0.55
		# wins	31	136	123	56
	LIRE-PP	MAE	1.02 ± 0.50	1.36 ± 0.42 1.24 ± 0.60 1.05 ± 0.69
		# wins	8	1	3	22
	LIRE-M	MAE	0.31 ± 0.24	0.25 ± 0.22	0.260.20	0.69 ± 0.51
		# wins	36	45	40	58
	LIRE-C	MAE	1.47 ± 1.30	1.48 ± 1.30 1.54 ± 1.40 1.62 ± 1.17
		# wins	12	9	9	20

Table 2 :

 2 Random scenario comparative results of LIRE approaches versus LIME-RS in terms of Mean Average Error (MAE) and number of tests where each approach has the best score over 200 tests (# wins) for all black-box models.

	Top		Matrix Facto.	kNN-B	kNN-M	NormalPred.
	LIME-RS MAE	0.66 ± 0.58	1.73 ± 0.02 1.27 ± 0.41	0.75 ± 0.58
		# wins	54	0	2	43
	LIRE-P	MAE	0.62 ± 0.58	0.13 ± 0.23 0.13 ± 0.18	0.79 ± 0.50
		# wins	59	125	130	42
	LIRE-PP	MAE	1.54 ± 0.67	2.38 ± 1.45 1.91 ± 1.21	1.07 ± 0.69
		# wins	4	33	27	35
	LIRE-M	MAE	0.55 ± 0.49	0.34 ± 0.32 0.39 ± 0.33	0.78 ± 0.61
		# wins	61	35	38	54
	LIRE-C	MAE	1.82 ± 1.40	2.04 ± 1.71 2.17 ± 1.69	1.57 ± 1.23
		# wins	22	7	3	26

Table 3 :

 3 Top scenario comparative results of LIRE approaches versus LIME-RS in terms of Mean Average Error (MAE) and number of tests where each approach has the best score over 200 tests (# wins) for all black-box models.

	Flop		Matrix Facto.	kNN-B	kNN-M	Normal Pred.
	LIME-RS MAE	0.57 ± 0.72	2.76 ± 0.02 3.61 ± 0.12	0.74 ± 0.55
		# wins	58	0	0	45
	LIRE-P	MAE	0.85 ± 0.91	0.01 ± 0.02 0.04 ± 0.06	0.71 ± 0.52
		# wins	27	148	146	47
	LIRE-PP	MAE	0.76 ± 0.55	2.19 ± 1.20 2.61 ± 0.50	0.91 ± 0.65
		# wins	48	0	0	39
	LIRE-M	MAE	0.68 ± 0.79	0.04 ± 0.08 0.10 ± 0.13	0.77 ± 0.51
		# wins	35	47	49	48
	LIRE-C	MAE	1.37 ± 1.23	0.23 ± 0.31 0.42 ± 0.47	1.60 ± 1.19
		# wins	32	5	5	21

Table 4 :

 4 Flop scenario comparative results of LIRE approaches versus LIME-RS in terms of Mean Average Error (MAE) and number of tests where each approach has the best score over 200 tests (# wins) for all black-box models.

	Methods	Computation times (sec.)
	LIRE-P	27.00 ± 1.98
	LIRE-C 1	0.57 ± 0.08
	LIRE-M	12.85 ± 2.08
	LIME-RS*	1.60 ± 0.36
	LIRE-P Pairwise	43.66 ± 3.90

Table 5 :

 5 Average computation times (in sec.) and their standard deviations for the Random scenario for the LIRE variants. LIME-RS computation time is only provided as a reference only as its implementation is not optimized from the original source code. ±0.930 3.539 ±0.924 3.446 ±0.918 3.303 ±0.910 2.863 ±0.900 25 3.513 ±0.923 3.444 ±0.924 3.323 ±0.923 3.169 ±0.922 2.703 ±0.919 50 3.361 ±0.941 3.278 ±0.919 3.176 ±0.913 3.000 ±0.911 2.541 ±0.907 75 3.195 ±0.945 3.107 ±0.944 2.997 ±0.937 2.875 ±0.930 2.408 ±0.962 100 3.007 ±0.941 2.912 ±0.954 2.807 ±0.943 2.667 ±0.939 2.245 ±0.952

	Nearest Neighbors

Table 10 :

 10 Mean Average Error (MAE) of surrogate model on random scenario on MovieLens 100k dataset over 50 tests. Training set for the surrogate model is the set of k-nearest neighbors possibly augmented with SMOTE oversampled instances. NN-75 3.106 ± 0.763 2.856 ± 0.762 2.406 ± 0.773 1.598 ± 0.831 1.484 ± 0.728 1.374 ± HAC-75 3.107 ± 0.764 2.921 ± 0.805 2.462 ± 0.865 1.703 ± 0.913 1.589 ± 0.906 1.503 ± LIRE-P 3.523 ± 0.716 3.449 ± 0.668 2.759 ± 1.198 0.552 ± 0.590 0.455 ± 0.506 0.499 ±

	Training set size

Table 11 :

 11 Impact of training set size on performances for 2 LIRE-C alternatives either based on k-nearest neighbors (k-NN) or Hierarchical Agglomerative Clustering (HAC) and the LIRE-P method. ± 0.42 1.08 ± 0.60 1.01 ± 0.49 1.08 ± 0.42 25 1.05 ± 0.60 0.97 ± 0.47 0.99 ± 0.57 0.99 ± 0.44 50 1.04 ± 0.51 1.02 ± 0.45 0.93 ± 0.53 1.05 ± 0.45 100 1.01 ± 0.70 1.01 ± 0.44 0.95 ± 0.41 1.17 ± 0.32

	Combinations		Batch size	
		10	25	50	100
	10	1.23		

Table 12 :

 12 MAE score of LIRE-P Pairwise for different number of random combinations of instances per batch and batch sizes

Hierarchical agglomerative clustering paired with a cosine distanceWe consider hierarchical agglomerative clustering[START_REF] Kaufman | Finding Groups in Data: An Introduction to Cluster Analysis[END_REF] with complete link criterion as it minimizes the clustering error at each step of the aggregation of clusters and, by minimizing the maximum distance in each cluster, it produces very compact clusters, or neighborhoods in our use case. Of course, traditional agglomerative clustering may not scale efficiently to very large user-item matrices. In this case, improved hierarchical agglomerative clustering algorithms[START_REF] Zhang | an efficient data clustering method for very large databases[END_REF][START_REF] Guha | User modeling for a personal assistant[END_REF] may be considered in the future. As this algorithm only relies on the expression of a distance between 2 instances, it is possible to pair it with the cosine distance that is widely used in the context of recommender systems. Indeed, cosine distance relies on the angle between two, possibly high dimensional, vectors. It is less prone to curse of dimensionality than regular Euclidean distance, as only common dimensions between the two vectors account in the

comparison.3. k-nearest neighbors paired with a cosine distance Our last proposal is not a clustering algorithm per se, and as such, needs to be run for each new explanation instance, contrary to both previous approaches that can be run only once at the beginning to determine homogeneous groups of users delimiting the expected neighborhoods.

https://github.com/wil0u/Lire-DOLAP2021

Methods

Features Locality

Int → Original Loss

LIME-RS

Binary Decreasing exp. + random binary perturbation

Id

Point-wise + pars. reg.

LIRE-P Real Gaussian perturbation

Id / OOS Point-wise + pars. reg.

LIRE-C