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Abstract 

In industrial machining processes, tool failures may result in losses in surface and dimensional accuracy of a 

finished part, or possible damage to both the work piece and the machine. Consequently, tool condition 

monitoring has become essential to achieve high-quality machining as well as cost-effective production. 

Moreover, cutting tool degradation may vary considerably under different operation conditions and materials 

behaviour. Therefore, real time identification of the tool state during machining, before it reaches its failure 

stage, is critical. 

In this study the vibrations of the cutting tool and of the workpiece material are online measured. Features 

are then calculated in time domain from the raw signals. Transient zones, when the cutting tool enters or 

exits the material, can be considered or not. All the calculated features are normalized and stored in a table. It 

is then necessary to make a dimensional reduction of that feature table in order to avoid overfitting and to 

reduce the computing time of the learning algorithm. In this study, 54 milling experiments were conducted 

from which features were calculated and then split into two groups: 80% for the machine learning model 

training, 20% for the test phase. The first part of this study proposes an analysis on the impact of the features 

on the robustness of the models, and a second part focuses on a real-time data driven prognostics and health 

management (PHM) approach for tool condition monitoring, based on supervised machine learning 

techniques (i.e. the model training needs labeled data). The fusion of decision coming from several machine 

learning algorithms (kNN, decision trees (DT) and random forest (RF)) is then used to predict the tool 

quality in real time. All parameters and configurations of the algorithms are optimized in order to maximize 

the real time diagnosis accuracy. The experimental results show that our proposed approach achieves good 

accuracy and real time performances in dry milling operations. Results of our study are implemented in real 

tool wear diagnosis, and thus give new opportunities toward realizing Industry 4.0. 

 

1 Introduction 

Prognostics and Health Management (PHM) is offering insights on the health of the assets and acts as a 

decision support for the different actors of the maintenance and production [1, 2]. In fact, predictive 

maintenance benefits greatly from the health indicators provided by PHM. Consequently, an effective 

predictive maintenance strategy provides information leading to an optimized on-time replacement of the 

faulty part. 

The three main tasks of the PHM consist of fault detection (detection of abnormal or unknown 

behaviour), diagnosis / fault identification (State of the system, origin / cause of the faulty behaviour), fault 

prognostic (Prediction of the system’s future sate). 
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In this paper, we focus on the supervised machine learning based approaches, based on the training of 

predictive models with labeled data. Features are computed from raw data, generating a dataset used for the 

model training. Once trained, the model can perform either a classification task or a regression task based on 

the chosen learning algorithm. The performances of such approaches are heavily reliant on the quality of the 

data both during the training and the application stage [9]. 

Several Machine learning based PHM approaches have been applied in the industry, Zhaoyi Xu et al. 

(2021) give a comparative study between machine learning classification and regression methods applied to 

the industry [6]. Sylvain Chabanet et al. (2021) applied an Active Learning method to optimize the lumber 

productions in sawmill industries. Their strategy relied upon the smart selection of instances, using a “digital 

twin”, a simulation coupled with a kNN based Machine Learning model. At each new instance, they 

calculate criterion to determine when the simulation, which is more demanding in resources, must be called 

to make the prediction [10]. 

 

More specifically, machine learning algorithms have been used to monitor milling operations, and to 

diagnostic the tool’s state. For example, Emiliano Traini et al. (2019) used machine learning algorithms such 

as Random Forest (RF), Boosted Decision Trees (BDT) and Artificial Neural Network (ANN) for the 

diagnosis (classification) and prognosis (regression) of the tool’s condition during milling operations [7]. In 

another study, T. Mikołajczyk et al. developed an Artificial Neuronal Network (ANN) for tool-life prediction 

in machining with a high level of accuracy, especially in the range of high wear levels, which meets the 

industrial requirements [8].  

However, the implementation of a good data acquisition method/system can become expensive and time 

consuming [16]. Saeed Shurrab et al. (2021) reduced instrumentation to a maximum by using CNC available 

measurements and G-code elements such as actual position, velocity, and acceleration as well as various 

electrical values from the different axis motors. They also exploit other information contained in the G-code 

such as the executed subprogram or code lines. They tested different classification algorithms, the DT 

(decision trees) was performing the best [15]. 

Another problematic would be the adaptation of the models. Most of the methodologies used to generate 

predictive models do not deal with unknown cases. The work presented in [10] proposes an auto generation 

of LSTM models for CNC machine type diagnosis. The performances can be improved when models are 

iteratively generated, adding or subtracting classes [16]. 

 

2 Experimental setup 

All experimental milling tests illustrated in this paper were carried out on a vertical machining center. For 

assessing the performance of the machining process, we monitored and measured the cutting forces and 

torques generated during cutting, by using the Kistler dynamometer model 9129AA [11]. The Kistler table is 

mounted below the metal sample to measure the three components of the machining force as shown in figure 

1. During the measurements, the x-axis of the dynamometer is aligned with the feed direction of the milling 

machine. The three orthogonal components of machining force (Fx, Fy and Fz) were measured according to 

figure 1 using the Kistler table. 

 

Fig 1: Experimental milling setup (located at LEM3, St Dié des Vosges) 



3 

 

Fig. 2. Good milling tool (left) and damaged milling tool (right) 

Many milling experiences have been made in our study, by setting different spindle speeds and feed rates. 
All measured signals have been stored and analyzed. For example, figure 3 and figure 4 show respectively 
the milling force and torque along the X-axis, for a given experiment. 

 

Fig. 3. Measured effort in the x- axis 

 

Fig. 4. Measured torque in the x-axis 
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3 Offline milling diagnosis using machine learning approaches 

Supervised learning techniques are implemented in our approach, with labeled measurements for the 

model training. The labels here correspond to the milling tool’s quality. Features associated to the 

measurements were calculated for this approach. 

 

Machine learning techniques can be separated mainly in two categories [12, 14]: 

- Unsupervised approaches: techniques based on unlabeled input data, where the goal is to form groups 

(clustering). 

- Supervised approaches based on labeled inputs. Supervised learning algorithms can be split in two 

categories [14]: Classification models which partition observations in categorical groups (leads to a 

predictive model for discrete responses), Regression models which describe the relationship between 

outputs and variables through mathematical functions (leads to a predictive model for continuous 

responses). 

 

Here, the data have been labeled : “obtained signals with a good milling tool”, “obtained signals with a 

damaged milling tool”. Features are then calculated offline, resulting in a table linking a label to a set of 

features. All the experiments are then split into two groups: 80% to train the machine learning model 

(training set) and 20% to test the model (test set). In this experiment, the ratio between the labels was 

respected in the training set as well as the test set. 

 

3.1 Features calculation 

The features are calculated only in time domain from the raw signals (effort and torque time series) in all 

3 axes. In our study, transient zones, when the cutting tool enters or exits the material, are not considered. 

Other used features are deduced from the envelope of the signal. In fact, features are not calculated in 

frequency domain (i.e. by using Fast Fourier transformation) because the signal can have nonlinearities. 

All the calculated features are then normalized and stored in a table whose lines and columns respectively 

represent the experimental number (also called sample or instance), the label corresponding to associated 

feature values. 

 

3.2 Features reduction 

The obtained normalized features table contains several hundred calculated features and 3 input values for 

each experiment. The input values are the tool rotation speed, the cutting speed, and the depth of cut. To 

avoid overfitting, a dimensional reduction was necessary. To reduce the size of a set of features, there exists 

two kinds of methods: features reduction (for example with the PCA algorithm [17, 18]) and features 

selection. For the features selection, an optimal subset of features is chosen according to an objective function. 

In  this work, we opted for the Relieff algorithm [20]. 

 

3.3 Applied supervised learning algorithms 

In this work, several classification algorithms have been implemented in the Matlab software 

environment [13] and in Python in real time) : k-Nearest Neighbor (kNN), Decision tree (DT), Support 

Vector Machine (SVM), Naïve Bayes. Several variants of each model have been implemented (various 

distances, different kernels, etc.). 

- The kNN algorithm was implemented by keeping the default Euclidean distance, with a limited 

number of neighbors k=3. The kNN algorithm has also been modified by using the Chebyshev 

distance. 

- The Decision Tree algorithm is a fitted binary classification decision tree. The tree has been pruned 

to a level we optimized. 

- Two SVM algorithms have been implemented using different kernel functions. The first one is a 

linear SVM which is the default function for a two-class data set. The second one is the Gaussian 

SVM algorithm which is a normalized polynomial kernel. 

 

To compare the efficiency of the algorithms, the accuracy (1) is calculated (for the test signals) for each 

algorithm and compared: 
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   (1) 

 

with TP (True Positive), TN (True Negative), FP (False Positive), FN (False Negative) 

 

For this study, 54 milling experiments were conducted from which features were calculated and then split 

into two groups: 80% for the machine learning model training, 20% for the test phase. All combinations are 

explored, by keeping the same ratio for the two labels “with a good milling tool” and “with a damaged 

milling tool”: we obtained 27 allocation tables (with 80% - 20 % distribution). Then each machine learning 

algorithm is applied to each allocation table and the accuracy is deduced. Thus, for each algorithm, 27 

accuracies (corresponding to 27 allocation tables) are calculated and only the worst cases are compared, for a 

given number of features (This step was made for the same weighted classified features). The number of the 

weighted classified features is then increased, and the procedure repeated until all the features are included in 

the building of the model. In the next step of the experiment, white noise was added to each signal before 

calculating the features to test the robustness of the process. 

The computation for the whole procedure is heavy, and therefore it needed a long time to yield its results. 

The results of the process currently described in this section took several hours for a recent computer to be 

delivered. It follows that such a process can only be applied to offline applications. With this procedure the 

robustness (to the different splits) is insured. Although the mean accuracy can be useful as an indicator, the 

most interesting results to estimate the robustness of the models would be the worst cases. 

 

Accuracies for the features from EZ and MY signals without noise are shown on figure 5: 

 

Fig. 5: Worst accuracy result for each algorithm, depending on the number of classified features 

The figure 5 presents the worst accuracy (worst of all the 27 allocation tables) for each algorithm, 

depending on the order-classified features. The weights and cumulated weights of the features are also 

indicated on this figure. The objective is to select, in a robust manner, the best algorithm and the adequate 

features for the machine learning approach. We can see on figure 5 that the most robust results are obtained 

with the kNN algorithm with nearly 100 features. Good accuracy can also be obtained with only 50 features. 

The approach indicates which features must be selected to achieve a reliable and robust performance of the 

models. 

As well as the robustness against the training / test partitions, the models’ robustness was also tested 

against noisy inputs. On the effort signals is applied a Gaussian noise of 20dBW, and on the Torque signals a 

Gaussian noise of amplitude -10dBW. Accuracies for the features from EZ and MY signals with noise are 

shown on figure 6: 
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Fig. 6: Worst accuracy result for each algorithm, depending on the number of classified features 

As expected, with a small gaussian noise added to the signals, the performances are slightly lower. Even 

with enough features the models never reach the best accuracies obtained by models without noise.  

By studying mean accuracy values, instead worst accuracy, less of features are needed, but the robustness 

is not guaranteed. Therefore, improving the worst-case scenario is important to find a robust combination of 

algorithm and/or features that guaranties correct predictions (i.e good accuracy) whether the resulting 

model’s inputs are disturbed. 

 

3.4 Conclusion of the offline application 

It is known that the milling's performance is qualified by evaluating the roughness of the resulted surface. 

In this work, different supervised machine learning algorithms have been implemented and compared. To do 

this, features were firstly calculated from measured milling forces and torques and then each machine 

learning model has been trained with the labeled set of features. From the prediction results, kNN algorithm 

seems to be the most efficient diagnosis algorithm in this application of aluminum material milling. The 

robust developed diagnosis approach can also be applied to the milling of other materials. 

 

4 Real time milling diagnosis using machine learning approaches 

Based on the same measurements, a solution for real time diagnostics was developed: a python 

development environment has been used with the functionalities of scikit-learn library. Contrary to the 

offline version of the diagnostics, which provided a one-shot prediction for a given signal part, now the 

model analyses the whole signal through a “sliding window”. Multiple labels are contained within the signal 

to analyze.  

 

Fig 7: Example of a sliding window going through the signal 
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This method is divided into 2 steps: first a predictive model needs to be trained, then it can be applied in 

real time on the signal in step 2. Studied signals are divided into 3 parts: the training set, the validation set 

and the test set. 

 

4.1 Training phase 

To calculate instances (features vector and labels), a sliding window is applied to the labeled of the 

training signals, and time domain features are then calculated for each window. Window sizes are fixed, 

there is no overlap, but its size will be shortened to avoid an overlap on 2 different labels. Once the dataset 

has been obtained, different learning algorithms are tuned to optimize their performances. Models are thus 

trained with different partitioning for different hyper-parameters thanks to the cross-validation method. The 

models obtaining the best precision are then selected to be applied in real time. Three learning algorithms 

have been tested: Decision Trees (DT), Random Forest (RF), kNN. 
 

4.2 Application in real time 

Once the models are trained, they are applied on the test signal. Like the training phase, a sliding window 

is running on the signal. The same data processing done during the training phase (signal filtering, features 

calculation and normalization, …) must obviously be reproduced. The new instance (features vector) is then 

ready to be fed, the model outputs being the predictive labels (diagnostics). 

 

4.3 Real time results 

To evaluate and visualize the performances of the diagnostic models running in real time, a Human 

Machine Interface (HMI) was built in the Grafana environment.  

 

 

Fig 8: Example of a supervision destined to the operator or the production / maintenance manager 

 

Fig 9: Example of a supervision destined to the model developers 
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The different features and the diagnostics results were computed periodically (depending on the window 

size) and transferred to a database (MySQL). Then the results can be accessed through the Grafana platform. 

Two versions were made, displaying different results according to the user’s profile: an industrial version 

(figure 8) and a laboratory version (figure 9) for research purpose. The diagnostic result (predicted labels) is 

compared online with the real label (if it is known), and a confusion matrix is online visualized. 

 

5 Conclusion 

The features selection approaches show that the reduction of the number of features lead to better 

diagnostic models (i.e. with higher accuracy) and more robust to signal noise. The results of the first part of 

this study have then been implemented in a real time diagnostics platform. Once trained, the different 

machine learning models predicted online the milling tool’s state. To evaluate and visualize the 

performances of the models running in real time, a Human Machine Interface (HMI) was built in the Grafana 

environment. Two versions were built, displaying different results according to the user’s profile: an 

industrial version and a laboratory version for research purpose. 
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