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Abstract 

Resonant plate testing is a common laboratory test method for qualifying space equipment which needs to 

withstand strong high-frequency shocks, usually activated by pyrotechnic devices and transmitted to the 

structure. Given their impulsive nature, shocks could critically damage onboard equipment and jeopardize 

the success of the mission. NASA-STD-7003A international standards are usually adopted to establish the 

requirements, in terms of a Shock Response Spectrum (SRS), for the qualification of space equipment 

according to the launch vehicle characteristics. To foster repeatability and safety in laboratories, the most 

common test facilities exploit the launch of an impacting object (e.g., hammers, dropping masses, pistons, or 

bullets) on a resonant plate on which the component under test is mounted. In this work, a numerical model 

able to completely simulate a pyroshock test is used to perform a shape and size heuristic optimization of a 

resonant plate to match the required SRS. Limiting the energy inputs, the performances of regular polygonal 

rather than irregular quadrilateral shapes and sizes are investigated and compared. The algorithm features an 

embedded Computer-Aided Design (CAD) modeler, a Finite Element (FE) solver, and a Genetic Algorithm 

(GA) optimizer, ensuring accuracy and flexibility in predicting the behavior of a resonant plate with a 

complex shape. The optimized design of a resonant plate permits improvements in both the SRS accuracy 

and the time and cost efficiency of its tuning. 

 
1 Introduction 

When dealing with space and aerospace equipment, international standards require the manufacturers to 

test their ability to withstand the strong excitations produced during the launch. In fact, structural subsystems 

of the rockets are commonly released by explosive charges of pyrotechnic nature, producing strong shocks. 

The important impulsive nature of such “pyroshocks” (as are commonly referred to) produces transient 

structural responses whose intensity could easily damage the carried equipment in the vicinity of the energy 

release zone. Hence, the mechanical resistance of these equipment must be tested experimentally as 

prescribed by standards such as the NASA 7003 [1], the MIL-STD-810F, Method 517 [2], the IEST RP 

Pyroshock Testing Technique [3] and the ESA ECSS experimental standard [4]. In these documents, a Shock 

Response Spectrum (SRS) is usually defined as a testing requirement, as the SRS provides a measure of the 

damage-ability of the pyroshock [5,6]. Also, many testing procedures for emulating the effect of a pyroshock 

in a more controlled and safer environment are described. Among the others, one of the most effective and 

widely used is the resonant plate pyroshock testing [7,8]. The object under test is mounted on one side of a 

huge metal plate, which is hit by a impacting object (e.g., a dropping mass, a pendulum, a projectile, a 

hammer, a piston, etc.), providing the energy necessary to excite the item within the SRS requirement range. 

In this regard, despite remaining the standard requirement (see [9] for other possible alternatives), the SRS 

lacks intuitiveness, as many different combinations of testing parameters can produce similar curves. That’s 

why the effect of the main test parameters was experimentally explored over the years, as in [10,11], where 

the plate constraint conditions, the impacting body material and geometry, the impact velocity and location 
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and the anvil plate material were studied. At the same time, numerical models were also used so as to 

simulate the contact and the produced pyroshock based on NASTRAN and DYTRAN models (see [12]). 

Different from these Finite Element Analysis (FEA) tools, but sharing the same computational complexity, 

Statistical Energy Analysis (SEA) methods can be used [13,14], as well as Transient Statistical Energy 

Analysis (TSEA) [15,16], which can be even combined in Virtual Mode Synthesis and Simulation (VMSS) 

[17] or with FEA, as proposed in [18,19]. 

Unfortunately, such Advanced Models are too complex and computationally expensive to be used to 

automate the test parameters selection. In this respect, papers [20,21] proposed a simpler way to numerically 

simulate the behavior of the plate exploiting a simplified m-dof model, with lumped masses and stiffnesses, 

and a Frequency Domain Convolutional scheme, allowing a quick and reliable tuning of all the main test 

variables. 

In this work, the m-dof simplified model is substituted by a more advanced FE model (FEM), which 

improves the results accuracy at the cost of slightly larger computational times. Being the computational 

burden not too high anyway (as the contact is not accounted in the FEM), this enables to set a heuristic 

optimization of the shape and size of the plate, which can be automatically designed by the algorithm 

minimizing the distance of the simulated SRS from the requirement. The complete model description is 

given in Section 2. The optimization results are reported and discussed in Section 3, while final conclusions 

will be derived in Section 4. 

 

2 Methodology 

The proposed approach is meant to provide a reasonably fast yet accurate model for simulating the 

resulting SRS generated by a shock due to the hit of a projectile on the base plate. The idea is that of 

decomposing the physical model, as depicted in Figure 1, into 3 sub-models: 

1. A FEM model of a plate able to compute the point inertance of a metal plate of any shape and 

material; 

2. A numerical model for the impact, defining the input pulse signal as a function of the contact 

materials and projectile momentum in terms of mass and speed; 

3. A numerical model for computing the maximax SRS with a Q factor of 10, i.e., the maximum of the 

absolute value of the time acceleration of the (negligible) mass of an equivalent, calibrated s-dof 

mounted on the plate with a damping factor of 5% (and iterated while increasing the natural 

frequency of the s-dof to cover the entire range of frequency of interest, commonly from 100 to 

10.000 Hz) 

The three sub-models are then merged by a Frequency Domain Convolutional scheme so as to speed up 

the procedure. From a practical point of view, the Convolution Theorem of the Fourier Transform is 

exploited, so as to produce the final equation: 

𝑋 𝑆𝑅𝑆
𝛺𝑐  𝜔 = 𝐹𝑗  𝜔 ⋅ 𝐼𝑗𝑘 𝜔 ∙ 𝑇𝑆𝑅𝑆

𝛺𝑐  𝜔   (1) 

Given the spectrum of the input impact force , then, and multiplying it by the Inertance  and 

by the Transmissibility of a s-dof  it is possible to directly find the corresponding  as: 

 

 (2) 

 

 

𝑆𝑅𝑆 Ω𝑐 = max  abs  𝑥 𝑆𝑅𝑆
𝛺𝑐  𝑡    
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Figure 1: A scheme of the physical model. 

 

The single sub-models are described in the following sub-sections. 

 

2.1 Numerical Model of a resonant plate Pyroshock test (FEM) 

In this work, the FEM model of the resonant fixture is innovatively solved in Matlab. To cope with the 

need of automation, the size and geometry of the plate are directly governed by the software by integrating 

OpenSCAD [22] as a 3D modeller. By setting free-free boundary conditions and selecting the centre of the 

plate as input force application point and acceleration measurement point, a discrete estimate of the point 

inertance  can be obtained by the software at a desired frequency resolution, in a desired range.  

Being the scope of this work the design of the shape and size of the plate provided a requirement, it was 

decided to test the family of shapes defined by regular n-sided polygons, i.e., equilateral and equiangular 

shapes defined by the number of sides  and the radius of the circumscribed circle .  

A summary of all the relevant parameters for the plate FEM is reported in Figure 2 and Table 1. 

 

 

 

Figure 2: Block scheme for the FEM analysis and the useful parameters. 
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Parameter Name Parameter Description 

 Radius of the circumscribed circle  

 Number of sides of the polygon 

 Thickness of the plate 

 Mesh size - range 

 Density of the plate material 

 Young’s modulus of the plate material 

 Poisson’s ratio of the plate material 

 
Yield stress of the plate material 

 Type of Boundary conditions 

 Range of frequency for the study 

 Input Force intensity and direction 

 Frequency resolution for the Inertance 

 Modal damping factor of the plate 

 

Table 1: FEM model Parameters Description. 

 

2.2 Input force (Pulse) Definition 

In this work, the impact force  is modelled by two half windows (left and right) whose shape is 

defined as half a raised cosine (i.e., the von Hann window). The total time duration  (as shown in Figure 3) 

is estimated by Hertzian contact theory as a function of the projectile geometric parameters ,  and , 

respectively the mass, the velocity and the contact radius of the bullet and the bullet-plate contact materials. 

The exploited equation [23] is here reported:  

 

 (3) 

 

This total time is divided into a left and a right time (i.e.,  and ) by considering the Weir-Tallon's 

coefficient of restitution  [24]: 

 

 
(4) 

  

Finally, to simplify the computation, the total integral is normalized to the unit area to produce a , 

and the momentum is left as a multiplier (see eq. 5).  is sampled in the time domain and the Fast Fourier 

Transform (FFT) is used to derive . 

𝐹𝑗  𝑡 = 𝑚𝑠𝑣𝑠 1 + 𝑒 𝐹0(𝑡)   (5) 
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Figure 3: Definition of the relevant impulse parameters. 

 

A summary of all the relevant parameters for the input pulse signal is reported in Figure 4 and Table 2. 

 

 

 

Figure 4: Definition of the pulse numerical model parameters. 

 

 

Parameter Name Parameter Description 

 Bullet mass  

 Bullet speed 

 Bullet contact radius 

 Density of the plate material 

 Young’s modulus of the bullet 

 Poisson’s ratio of the bullet 

 Window shape (von Hann window) 

 

Table 2: Pulse numerical model parameters. 

 

2.3 SRS Definition 

The maximax SRS with a Q factor of 10 is finally evaluated from the acceleration of the equivalent, 

calibrated single degree of freedom (s-dof) system. This is obtained in the Frequency Domain as a product 

by a well-known FRF called Transmissibility [25], defined as: 
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(6) 

where  is the imaginary unit,  is the damping factor and  is the adimensional normalized 

frequency . 

Iterating the computation while increasing the natural frequency  of the s-dof with steps of  of 

octave, the entire range of frequency of interest from 100 to 10.000 Hz can be covered, so that eq. (2) can 

finally be used to find the resulting SRS, to be compared to the requirement. 

 

 
 

Figure 5: Definition of the SRS computation parameters. 

 

 

2.4 Genetic Algorithm Shape and Size Optimization 

The frequency model just described makes it possible to predict the SRS with good precision as the 

operating conditions vary. In fact, the numerous parameters introduced guarantee the high flexibility of the 

model. Among these, the geometric parameters are usually fixed since the plate geometry does not vary and 

the objective is to determine the appropriate momentum to meet the shock test requirements. However, the 

present model can be extended to solve the inverse problem, i.e. optimizing the resonant plate provided the 

requirements. 

In the literature, most of the test facilities for shock tests use a squared or - in general - quadrangular 

resonant plate. For instance, in [10] and in [26] two square aluminum alloy plates are used with dimensions 

equal to 1x1x0.03 m
3
 and 1x1x0.05 m

3
, respectively. In [27] a rectangular plate with dimensions 

1.2x0.5x0.03m
3
 is analyzed. 

The goal of this work is to investigate how the shape and size of the resonant plate affect the SRS 

profiles. In particular, the optimal plate is searched using a Genetic Algorithm. The implementation of an 

embedded Computer-Aided Design (CAD) modeler and a Finite Element (FE) solver allows the prediction 

of the behavior of a resonant plate with a complex and variable shape. 

The model has been set up in such a way that the plate geometry is defined on the basis of three 

parameters: the circumscribed radius rp to the regular geometry of the plate, the number of sides np of the 

defined polygon, and the plate thickness zp. Thanks to these parameters it is possible to investigate the 

behavior of plates with variable shape and size. Furthermore, since the mass of the plate is proportional to its 

size, the mass ms and velocity vs of the impacting object have also been optimized. In fact, more massive 

plates need higher momentum and vice versa. In this way, it is possible to optimize the SRS profile 

independent of other confounding factors. All these parameters have been discretized in specific ranges to 

avoid local minima problems typical of heuristic optimizers. 

It is finally necessary to define a score function to solve the minimization problem. Among the most used 

evaluation criteria, the Root Mean Square Error (RMSE) and the Mean Absolute Error (MAE) could be 

found. However, the score function has been determined according to this specific case. Given that 

pyroshock requirements are usually established with the related tolerances, the score function is adapted to 

evaluate the error only when the SRS falls outside the tolerances region. In addition, the score function 

should also take into account the fact that undertesting conditions are more critical than the overtesting ones. 

For all these reasons, the score function adopted in the present work has been defines as reported in Eq. (1). 

 

𝑇𝑆𝑅𝑆
𝛺𝑐  𝜔 =

1 + 2𝑟𝜁𝑆𝑅𝑆𝑖

1 − 𝑟2 + 2𝑟𝜁𝑆𝑅𝑆𝑖
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(7) 

where  is the calculated value of the acceleration synchronized to the resonant frequency  of the 

-th s-dof system for the SRS calculation,  is the test requirement (or the generic reference curve) in 

terms of SRS acceleration,  and  are respectively the values of the lower and upper tolerances. For 

the sake of clarity, Figure 6 shows the colormap representing the score applied to the SRS predictions, 

considering a standard requirement. 

 

 
Figure 6: Colormap describing the adopted score function according to the specified requirements and the 

related tolerances. 

 

 

3 Results and Discussion 

The shape and size optimization of the resonant plate has been obtained by minimizing the cost function 

in a discrete multidimensional space. This multivariate space is generated by the five parameters previously 

defined, which are summarized in Table 3. The upper and lower bounds were established based on typical 

applications, ensuring consistency between parameters. Similarly, discretization was established considering 

the best trade-off between the total number of combinations and the computational burden. The number of 

sides np of the polygon has been set in order to consider all the regular shapes from np = 3 (triangular case) up 

to np = 8 (octagonal case) and, in addition, np = 100 to simulate a circular plate. 

 

Parameter Lower Bound Discretization Upper Bound 

rp 0.45 m 0.05 m 0.60 m 

zp 0.02 m 0.01 m 0.05 m 

np 3 sides 1 side 8 sides + circle 

ms 1 kg 1 kg 10 kg 

vs 1 m/s 1 m/s 10 m/s 
 

Table 3: Discretization of the parameters optimized by GA. 

 

𝑠𝑐𝑜𝑟𝑒𝐺𝐴 =

 
 
 

 
 
𝑙𝑜𝑔10  

𝑥 𝑆𝑅𝑆  Ωc  

𝑥 𝑟𝑒𝑞  Ωc  
 
𝑙𝑜𝑔10 

𝑥 𝑡𝑜𝑙
+  Ω c  

𝑥 𝑆𝑅𝑆  Ω c  
 

0

𝑙𝑜𝑔10  
𝑥 𝑆𝑅𝑆  Ωc  

𝑥 𝑟𝑒𝑞  Ωc  
 
𝑙𝑜𝑔10 

𝑥 𝑡𝑜𝑙
-  Ω c  

𝑥 𝑆𝑅𝑆  Ω c  
 

       

𝑖𝑓 𝑥 𝑆𝑅𝑆 Ωc > 𝑥 𝑡𝑜𝑙
+  Ωc 

𝑖𝑓 𝑥 𝑡𝑜𝑙
−  Ωc < 𝑥 𝑆𝑅𝑆 Ωc < 𝑥 𝑡𝑜𝑙

+  Ωc 

𝑖𝑓 𝑥 𝑆𝑅𝑆 Ωc < 𝑥 𝑡𝑜𝑙
−  Ωc 
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Given that the total number of possible combinations is equal to 11200 cases, the size of the population 

used to seed the genetic algorithm has been set equal to 50, while the number of iterations has been fixed 

equal to 10 to ensure the convergence of the algorithm and – at the same time – reduce the running time. GA 

found the best configuration as a triangular plate (np = 3) inscribed in a circle with radius rp = 0.6 m and 

thickness zp = 0.04 m, hit by an impacting object with mass ms = 9 kg and velocity vs = 1 m/s. All the other 

parameters present in the model have been established based on design decisions and are reported in Table 4. 

Figure 7 shows the optimized plate geometry with vectors indicating the input and output directions fixed in 

the model.  

 

 
Figure 7. Shape and size optimized resonant plate. 

 

 

Parameter Value 

rp* 0.60 m 

zp* 0.04 m 

np* 3 sides 

ms* 9 kg 

vs* 1 m/s 

Plate material Al6082 

Impact location Center of mass (0 m; 0 m) 

Measurement location Center of mass (0 m; 0 m) 

Boundary conditions Free 

Impacting object material SS303 

Impacting object curvature 0.2 m 

Force profile shape von Hann window 

 

Table 4: Fixed and optimized (indicated by the superscript *) parameters adopted to simulate the optimal 

configuration. 

 

The simulation of the optimized resonant plate in the described operating conditions led to the SRS 

prediction shown in Figure 8. It is worth noting that the required tolerances are almost totally accomplished, 

and the results prove to be satisfactory. 

 



9 

 
Figure 8. Simulated SRS inherent to the GA-optimized resonant plate. 

 

 

4 Conclusions 

The proposed work presents a numerical model able to completely simulate a pyroshock test exploiting 

an embedded CAD modeler and a FE solver. The model flexibility and accuracy allow to perform a shape 

and size GA optimization of a resonant plate to match the required SRS. The proposed results showed that a 

triangular plate inscribed in a circle with radius rp = 0.6 m and thickness zp = 0.04 m – hit by an impacting 

object with mass ms = 9 kg and velocity vs = 1 m/s – is the configuration that best meets the requirements. 

The predicted SRS faithfully satisfies the requirements and the related tolerances. The obtained results 

permit improvements in both the SRS accuracy and the time and cost efficiency of its tuning. 

Nevertheless, it is necessary to remember that simplifications have been applied to reduce the model 

complexity and the computing time. In fact, the anvil plate and the object under test have been neglected by 

the geometry. These aspects require specific attention and, therefore, have been analysed in [28]. 
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