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Abstract: The diagnosis of serious bacterial infection (SBI) in young febrile children remains chal-
lenging. This prospective, multicentre, observational study aimed to identify new protein marker
combinations that can differentiate a bacterial infection from a viral infection in 983 children, aged
7 days–36 months, presenting with a suspected SBI at three French paediatric emergency depart-
ments. The blood levels of seven protein markers (CRP, PCT, IL-6, NGAL, MxA, TRAIL, IP-10) were
measured at enrolment. The patients received the standard of care, blinded to the biomarker results.
An independent adjudication committee assigned a bacterial vs. viral infection diagnosis based on
clinical data, blinded to the biomarker results. Computational modelling was applied to the blood
levels of the biomarkers using independent training and validation cohorts. Model performances
(area under the curve (AUC), positive and negative likelihood ratios (LR+ and LR–)) were calcu-
lated and compared to those of the routine biomarkers CRP and PCT. The targeted performance
for added value over CRP or PCT was LR+ ≥ 5.67 and LR− ≤ 0.5. Out of 652 analysed patients,
several marker combinations outperformed CRP and PCT, although none achieved the targeted
performance criteria in the 7 days–36 months population. The models seemed to perform better in
younger (7–91 day-old) patients, with the CRP/MxA/TRAIL combination performing best (AUC
0.895, LR+ 10.46, LR− 0.16). Although computational modelling using combinations of bacterial- and
viral-induced host-protein markers is promising, further optimisation is necessary to improve SBI
diagnosis in young febrile children.

Keywords: paediatric serious bacterial infection; bacterial- and viral-induced host biomarkers;
machine learning; C-reactive protein (CRP); procalcitonin (PCT); interleukin 6 (IL-6); neutrophil
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gelatinase-associated lipocalin-2 (NGAL); myxovirus resistance protein 1 (MxA); tumor necrosis
factor-related apoptosis-inducing ligand (TRAIL); IFN-γ-induced protein 10 (IP-10)

1. Introduction

Fever is one of the leading causes of consultation in paediatric emergency departments
(PED) [1]. In febrile infants younger than 3 months of age, the prevalence of serious bacterial
infection (SBI) ranges from 7% to 28% [1–3]. The differential diagnosis of SBI vs. benign
viral infections in young febrile children remains challenging. Clinical prediction and risk
stratification tools have been developed to guide antibiotherapy decision-making. These
tools include medical history, clinical examination, and laboratory data, either evaluated
alone (e.g., Rochester or Philadelphia criteria) [1,4] or in combination with the blood levels
of biomarkers of bacterial infection such as C-reactive protein (CRP) and procalcitonin
(PCT) (e.g., Lab-score, Step-by-Step approach) [1,3,5–7]. The diagnostic value of CRP and
PCT as single markers has also been extensively evaluated [1,2,8]. In one of the largest
prospective studies, including 7–91 day-old febrile children (n = 2047), CRP and PCT alone
reached a sensitivity and specificity ranging from 74% to 78%, with positive and negative
likelihood ratios (LR+, LR–) of 3.1–3.3 and 0.3, respectively [2]. While single markers of
bacterial infection cannot reliably diagnose or exclude SBI, combined approaches have
shown some value, notably in identifying patients with a low-risk of SBI or in ruling out
SBI [1,5,8–10]. However, none of these approaches have reached an acceptable diagnostic
accuracy for either the sensitivity or specificity needed for the identification of SBI in young
febrile children [1,11]. Misdiagnosis of SBI is a major health burden, as under-treatment is
associated with increased morbidity and mortality, while over-treatment is associated with
antibiotic resistance, microbiota imbalance, and toxicity in young children [12–15].

Alternative diagnostic approaches have been investigated. Among them, host RNA
biomarkers demonstrated their potential diagnostic value [1,16–20]. Although preliminary
investigations are promising, the implementation of transcriptional signature-based assays
in clinical routine using conventional RT-PCR might be limited by their practicability and
extended turnaround time [1,20]. More recently, machine learning-based algorithms have
been developed using multiple features, integrating either clinical parameters with biomark-
ers or combinations of protein biomarkers [11,16,21–26]. Notably, models combining the
markers of host immune response to bacterial and viral infections demonstrated superior
performance over routine biomarkers, to differentiate bacterial from viral infection among
young febrile children [11,22,25,26]. Hence, the triple host-protein ImmunoXpert assay,
combining the virally induced proteins tumor necrosis factor-related apoptosis-inducing
ligand (TRAIL) and IFN-γ-induced protein 10 (IP-10) with the bacterially induced protein
CRP, showed around 90% sensitivity and specificity in diagnosing a bacterial infection
from a viral infection in paediatric patients [11,22,25,27–29]. Similarly, the point-of-care
assay FebriDx, combining the bacterially induced protein CRP and the virally induced
protein myxovirus resistance protein 1 (MxA), showed good performance in both children
and adults with upper respiratory infections [11,26]. Although large cohort validation
studies are still needed, these models support a new paradigm for the identification of
diagnostic tools with improved accuracy, using machine learning computational modelling
to integrate the host-based response markers of both bacterial and viral infections.

The goal of this study was to identify new marker combinations that can differentiate
a bacterial infection from a viral infection in children younger than 3 years of age who are
suspected of SBI, with a performance superior to that of the routine bacterial-induced mark-
ers CRP and/or PCT that are measured during a clinical examination. We hypothesised
that computational modelling applied to bacteria-induced (CRP, PCT, interleukin 6 (IL-6),
the urinary tract infection marker neutrophil gelatinase-associated lipocalin-2 (NGAL—
also known as Lipocalin-2 or HNL)) [1,2,8,16,30–33], and virus-induced (MxA, TRAIL,
IP-10) [16,22,24,26] markers selected based on their reported performance could improve
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the diagnosis of SBI. The performance of the validated models to diagnose bacterial vs.
viral infections, as adjudicated by an expert panel, was compared to that of CRP and PCT
single markers.

2. Materials and Methods
2.1. Study Design and Participants

A prospective, multicentre, cohort study was conducted in three French PED (Hôpital
Femme Mère Enfant, Hospices Civils de Lyon, Bron; Hôpital Louis Mourier, Colombes;
Hôpital Nord-Ouest, Villefranche-sur-Saône) between 6 June 2017 and 12 June 2019
(clinicaltrials.gov ID: NCT03163628). Children with national health insurance coverage,
aged 7 days to 36 months, presenting to PED with suspected SBI and prescribed blood with-
drawal as part of standard care were enrolled. Suspected SBI was defined as fever > 38◦C
for more than 6 h in children aged 7 days to 3 months and fever ≥38.5◦C for more than
6 h but less than 7 days in children aged 3 to 36 months. Exclusion criteria included
antibiotics administration within the past 48 h, vaccination with an inactivated vaccine
within the past 48 h or with the MMR vaccine within the past 10 days, chronic inflamma-
tory or immune disease (immunodeficiency, auto-immune disease), and surgery in the
past 7 days. Written informed consent was obtained from at least one of the parents or
legal guardians. The study was approved by the ethics committee (Comité de Protection
des Personnes (CPP)) Sud-Méditerranée II under the registration number (ID-RCB) 2017-
A00510-53, dated 7 July 2017, and was conducted according to the recommendations of
Good Clinical Practice and the Declaration of Helsinki.

At the time of enrolment, investigators recorded demographics, medical history, and
physical examination data. Clinical variables evaluated at enrolment included: (i) signs of
poor tolerance to fever (hemodynamics, neurological, respiratory), (ii) general appearance
at clinical examination (good, intermediate, bad), and (iii) associated symptoms (meningeal
syndrome, otolaryngologic symptoms, vomiting, diarrhea, skin rash, purpura, acute otitis
media). Standard care, as per investigator assessment, included white blood cell count,
absolute neutrophil count, blood culture, CRP and/or PCT levels, urinalysis, lumbar
puncture, stool culture, ultrasound scanning, and chest radiography. The decision to
hospitalise or treat the patient with antibiotics was left to the discretion of the physician. At
day 7 post enrolment, a clinical follow-up was conducted, by phone for discharged patients
or based on medical electronic records for hospitalised patients.

In the absence of gold standard for bacterial and viral infections’ diagnosis, an ex-
pert panel reference standard was established, following existing recommendations [34].
This independent adjudication committee, composed of two panels of several infectious
disease paediatricians, one microbiologist, and one methodologist expert, assigned one
of six diagnosis categories: (i) proven bacterial infection, (ii) presumed bacterial infection,
(iii) proven viral infection, (iv) presumed viral infection, (v) mixed infection (bacterial and
viral co-infection), or (vi) unclassified fever. Classification by the adjudication committee
was based on the clinical data collected at inclusion and at day 7, including antimicrobial
treatment and hospitalisation decisions, but was blinded to all biomarker measurement
results and to the decision of other members of the adjudication committee. Classification
by the adjudication committee did not depend on age of patients. Clinical data comprised
results of the clinical examination (at inclusion and at day 7), biological and microbiological
laboratory tests, and medical imaging. Final diagnosis was determined by panel majority
agreement. In case of non-majority, members of the two expert panels made a consensus
decision on diagnosis.

2.2. Sample Collection and Biomarker Measurements

At inclusion, up to 3 mL blood was collected solely at the time of the venipuncture
prescribed for standard care, for the dosage of the seven selected host-protein markers (CRP,
PCT, MxA, TRAIL, NGAL, IP-10, IL-6). In case of venipuncture failure (when venipuncture
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could not be performed or blood volume was insufficient), the dosage of biomarkers was
not performed and the patient was defined as having no biomarker data.

The dosage of the seven biomarkers was performed in a central laboratory (Joint Re-
search Unit HCL-bioMérieux, Lyon, France), using serum (CRP, PCT, TRAIL, NGAL, IP-10,
IL-6) or heparinised blood (MxA). Sera were prepared from 2 mL whole blood collected
in BD Vacutainer Serum Separating Tubes II Advance Tube (Beckon Dickinson, BD366882,
Le Pont-de-Claix, France). After 2 h clotting at room temperature and centrifugation at
2500× g for 10 min, sera were aliquoted and stored frozen at −80 ◦C until biomarkers’
measurements. Heparinised whole blood samples (500 µL) were collected in Microtainer
tubes (Beckon Dickinson, BD365966, Le Pont-de-Claix, France) and stored frozen at −80 ◦C
until MxA measurement.

PCT was measured in serum (200 µL) using the bioMérieux VIDAS B.R.A.H.M.S
PCT assay (Marcy l’Etoile, France) and the VIDAS 30 instrument. CRP, TRAIL, IP-10, and
IL-6 concentrations were measured in serum with the automated immunoassay Simple
Plex platform (Protein simple, San Jose, CA, USA), in accordance with the instructions
of the manufacturer. Simple Plex is an integrated immunoassay system that consists of a
disposable microfluidic cartridge and an automated analyzer, the ELLA instrument. TRAIL,
IP-10, and IL-6 quantitation were simultaneously performed in a multiplex cartridge format
using 50 µL of two-fold diluted serum. CRP concentration was measured in a single analyte
cartridge format using 1:2000 diluted serum. NGAL levels were measured by using the
HNL bact ELISA kit (Diagnostic Development, Uppsala, Sweden) using 1:100 diluted
serum, in accordance with the instructions of the manufacturer. All measurements were
performed in duplicate per manual ELISA. MxA was measured by ELISA (BioVendor, Brno,
Czech Republic) from heparinised whole blood diluted 1:10 in lysis buffer (BioVendor, Brno,
Czech Republic) and lysed 30 min at room temperature, in accordance with the instructions
of the manufacturer.

Paediatric healthy samples used for the comparative biomarker quantification of CRP,
PCT, TRAIL, NGAL, IP-10, and IL-6 had leftover sera collected and provided by Eurofins
Biomnis Sample Library (Lyon, France), based on the principle of non-opposition. Parents
or legal guardians were informed of the possible use of leftover samples for research
purposes when not expressing their opposition by the end of the legal retention period, in
accordance with French regulations. Since paediatric healthy whole blood samples were
not available, MxA was measured in whole blood of adult healthy volunteers, obtained
from the national blood service (Etablissement Français du Sang [EFS], Lyon, France), based
on the principle of non-opposition.

2.3. Definitions

The primary endpoint was bacterial infection, defined by the adjudication committee
as proven bacterial infection, presumed bacterial infection, or mixed (bacterial and viral)
infection, as detailed in Appendix A. The primary aim of the study was to identify new
biomarker combinations that can differentiate bacterial from viral infection with higher
performance than CRP and/or PCT alone, in children younger than 3 years old suspected
of SBI and admitted for standard medical care. Targeted performance criteria of biomarker
combinations (i.e., superiority to CRP and/or PCT alone) were estimated based on the per-
formance of CRP and PCT in the literature [2]. A combination of biomarkers was estimated
to provide added medical value over the single markers CRP and PCT if: (i) the positive
likelihood ratio (LR+) reached a minimum of 5.67, ideally ≥ 8.5 (increased probability
of SBI diagnosis), and (ii) the negative likelihood ratio (LR–) reached a maximum of 0.5,
ideally ≤ 0.3 (decreased probability of SBI diagnosis).

2.4. Statistical Analysis

To identify and validate marker combinations, patients’ samples were divided into
a training (TRAIN) and an independent validation (TEST) dataset. Sample size was
calculated separately for the TRAIN and the TEST sets. For the TRAIN set, a minimum of
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50 patients per category was considered necessary to build combination models. Assuming
a prevalence of bacterial infection of 15%, a minimum of 333 patients was planned. For
the TEST set, aiming for the LR+ and LR− performance values defined above, a sample
size of 356 patients was calculated [35,36]. Considering 30% of patients with missing data
due to venipuncture failure and/or incomplete clinical data, the total number of planned
inclusions was increased from 689 to 985 patients. Since enrolment of patients took place
over approximately two years, as well as to reflect the whole spectra of seasonal infections,
it was decided that patients included during the first year would constitute the TRAIN
set (corresponding approximately to two-thirds of the patients), while patients included
during the second year would constitute the TEST set.

Patients without biomarker data or with fever not linked to an infection or from
unknown origin (unclassified fever) were excluded from the analysis. Patients diagnosed
with a mixed infection were assigned to the bacterial infection group for the analysis
because they were clinically managed similarly. No cutoff was pre-specified for each
investigated biomarker or for their combinations.

Quantitative variables were described by the median and interquartile range (IQR)
and compared between groups using the Mann–Whitney U test. Categorical variables were
described by the frequency and percentage of each modality, and compared between groups
using chi-squared or Fisher tests. For each marker, the area under the receiver operating
characteristic (ROC) curve (AUC) was calculated, with its 95% confidence interval (CI).
Markers (CRP, PCT, MxA, TRAIL, NGAL, IP-10, IL-6) were then combined (up to four out
of seven markers per model) by logistic regression on the TRAIN population. If necessary,
logarithmic transformations of the markers were considered to fulfill the hypothesis of
linearity of the linear predictor. The threshold with a LR− of at most 0.3 and the maximum
LR+ value was chosen. Sensitivity, specificity, and positive and negative predictive values
(PPV and NPV) associated with these thresholds were calculated, as well as the AUC of
the model, and the AUC corrected for optimism (20-times 5-fold cross validation). Models
obtained were then applied to the TEST population, with the thresholds estimated on the
TRAIN population. Models were also applied separately to the TEST population according
to the age group (7–91 days for the ≤3-month-old group and 92 days–36 months for the
>3-month-old group). Comparisons of AUC between models were performed using the
Delong test, whereas comparisons of LR between models were performed using a random
logistic mixed effect model.

Post hoc analyses were conducted using machine learning-based classifiers (see Ap-
pendix B) [37]. Modelling features included five clinical variables (signs of poor toler-
ance to fever (yes/no), general appearance (bad/intermediate/good), associated symp-
toms (yes/no), fever duration (<12 h/12—24 h/>24 h), and age) and four markers (CRP,
PCT, MxA, TRAIL) in two-marker combinations (CRP/TRAIL, PCT/TRAIL, CRP/MxA,
PCT/MxA, MxA/TRAIL). Classification models were built from the TRAIN dataset us-
ing the Caret package in R [37]. To avoid overfitting, the models were trained using
100 resampling according to the Leave Group Out Cross-Validation (LGOCV) method, also
available in Caret. Performance was assessed using the independent validation (TEST)
cohort. The AUC with a 95% CI was estimated for each dataset using the pROC package in
R [38]. Sensitivity, specificity, PPV, NPV, LR+, and LR− were defined based on a decision
threshold chosen to target a LR− of at most 0.3 and the maximum LR+. Analyses were
conducted on the whole population, as well as per age group (≤ and >3 months of age). A
subanalysis focusing on patients with proven bacterial infection was also conducted.

Statistical analyses were performed using SAS version 9.4 (SAS Institute, Cary, NC,
USA) and R version 4.0.4 (The R Foundation, Vienna, Austria). p-values ≤ 0.05 were
considered statistically significant.
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3. Results
3.1. Patients’ Characteristics

A total of 983 paediatric patients aged 7 days to 36 months with a suspected SBI were
enrolled. Forty-four patients were excluded due to either invalid informed consent or
invalid inclusion and/or exclusion criteria (Figure 1). Out of 939 eligible patients, 270 with
missing biomarker data because of venipuncture failure were excluded from the analysis
(Figure 1). Of the 669 analysed patients, 17 (2.6%) had an indeterminate infection status
(unclassified fever), according to the expert adjudication committee (Figure 1 and Table 1).
A total of 652 patients with a determined infection status were partitioned into a training
cohort (TRAIN set; n = 412) for biomarker computational modelling and a validation cohort
(TEST set; n = 240) for the confirmation of model performance on an independent cohort
(Figure 1).
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Figure 1. Study flow diagram. Out of 983 enrolled paediatric patients, 12 were ineligible due to
invalid informed consent and 32 due to invalid inclusion and/or exclusion criteria. Out of the
939 eligible patients, 270 patients with missing biomarker data due to sampling failure were excluded
from the analysis. Out of 669 analysed patients, 17 with indeterminate infection status (unclassified
fever) were excluded from computational modelling. Altogether, 652 patients with a determined
infection status were partitioned into a training (TRAIN) cohort (n = 412) and an independent
validation (TEST) cohort (n = 240).
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Table 1. Infection classification in the whole, training (TRAIN), and validation (TEST) cohorts.

Infection Class
Whole Cohort

(n = 669)
N (%)

TRAIN Set
(n = 422)

N (%)

TEST Set
(n = 247)

N (%)

Bacterial infection

Proven 90 (13.4) 53 (12.6) 37 (15.0)
Presumed 71 (10.6) 50 (11.8) 21 (8.5)
Mixed 1 45 (6.7) 20 (4.7) 25 (10.1)

Total 206 (30.8) 123 (29.1) 83 (33.6)

Viral infection
Proven 60 (8.9) 33 (7.8) 27 (10.9)

Presumed 386 (58.0) 256 (60.7) 130 (52.6)
Total 446 (66.7) 289 (68.5) 157 (63.5)

Unclassified fever 2 Total 17 (2.6) 10 (2.4) 7 (2.8)
1 Mixed (bacterial and viral) infections were assigned to the bacterial infection group because they were clinically
managed similarly; 2 patients with unclassified fever were excluded from the TRAIN and TEST sets for the
computational analysis. A chi-squared test showed no statistically significant difference in infection classification
between the TRAIN and TEST sets (p = 0.427).

Out of the 669 analysed patients, 287 (42.9%) were hospitalised, including 279 (97.2%)
in the paediatric ward, 7 (2.4%) in the intermediate care unit, and 1 (0.3%) in the intensive
care unit. In total, 338/669 (50.5%) patients were subjected to medical imaging, including
201 (59.5%) chest radiography, of which 69 (34.3%) were abnormal; 142/338 (42.0%) patients
with medical imaging received an ultrasound scanning, of which 49 (34.5%) suggested
an infection; and 219/669 (32.7%) admitted children received an initial antibiotherapy.
At the 7-day follow-up, 547/669 (81.8%) parents or legal guardians could be contacted.
Apyrexia in the last 48 h was documented in 470 (70.2%) patients. On day 7, 108/331
(32.6%) outpatients received a new medical consultation, and 9 (2.7%) necessitated a
secondary hospitalisation.

Among the 669 analysed patients, the adjudication committee diagnosed 123/422
(29.1%) and 83/247 (33.6%) bacterial infections and 289/422 (68.5%) and 157/247 (63.5%)
viral infections in the TRAIN and TEST sets, respectively (Table 1; chi-squared test TRAIN
vs. TEST sets, p = 0.427). This elevated rate of SBI in our cohort, compared to that generally
reported in the general paediatric population, which ranges from 7% to 28% [1–3], might
be due to the inclusion of children admitted to PED who required a clinical examination
and were prescribed biological sample collection and analysis.

Patients’ characteristics in terms of sex, age, and clinical variables were comparable
in the TRAIN and TEST sets (Table 2). Altogether, 163 pathogens were identified in
150 patients with proven infections (Table S1). The most prevalent detected bacterium
was E. coli, and predominant viruses were picornaviruses, respiratory syncytial virus, and
influenza virus (Table S1).
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Table 2. Patients’ characteristics in TRAIN and TEST sets, according to the viral or bacterial infection
status.

TRAIN Set TEST Set

Study Population According
to Infection Status

Viral
(N = 289)

Bacterial
(N = 123)

Total
(N = 412)

Viral
(N = 157)

Bacterial
(N = 83)

Total
(N = 240)

Sex, N (%)
Female 132 (45.7%) 55 (44.7%) 187 (45.4%) 74 (47.1%) 43 (51.8%) 117 (48.8%)
Male 157 (54.3%) 68 (55.3%) 225 (54.6%) 83 (52.9%) 40 (48.2%) 123 (51.2%)

Age in days
Median 335.0 393.0 345.0 169.0 403.0 264.5
Range 8.0–1080.0 10.0–1094.0 8.0–1094.0 12.0–1084.0 13.0–1075.0 12.0–1084.0

Interquartile range 85.0–570.0 133.5–571.5 88.7–571.2 71.0–571.0 132.5–690.0 78.0–603.0

Age class, N (%)
≤3 months 82 (28.4%) 25 (20.3%) 107 (26.0%) 62 (39.5%) 15 (18.1%) 77 (32.1%)
>3 months 207 (71.6%) 98 (79.7%) 305 (74.0%) 95 (60.5%) 68 (81.9%) 163 (67.9%)

Season, N (%)
Winter 77 (26.6%) 22 (17.9%) 99 (24.0%) 37 (23.6%) 20 (24.1%) 57 (23.8%)
Spring 50 (17.3%) 28 (22.8%) 78 (18.9%) 26 (16.6%) 18 (21.7%) 44 (18.3%)

Summer 63 (21.8%) 28 (22.8%) 91 (22.1%) 41 (26.1%) 19 (22.9%) 60 (25.0%)
Autumn 99 (34.3%) 45 (36.6%) 144 (35.0%) 53 (33.8%) 26 (31.3%) 79 (32.9%)

General appearance at clinical
examination, N (%)

Good 161 (55.7%) 59 (48.0%) 220 (53.4%) 85 (54.1%) 37 (44.6%) 122 (50.8%)
Intermediate 74 (25.6%) 41 (33.3%) 115 (27.9%) 42 (26.8%) 31 (37.3%) 73 (30.4%)

Bad 10 (3.5%) 3 (2.4%) 13 (3.2%) 6 (3.8%) 4 (4.8%) 10 (4.2%)
Unknown 44 (15.2%) 20 (16.3%) 64 (15.5%) 24 (15.3%) 11 (13.3%) 35 (14.6%)

Associated symptoms at
clinical examination, N (%) 1

No 58 (20.1%) 49 (39.8%) 107 (26.0%) 41 (26.1%) 29 (34.9%) 70 (29.2%)
Yes 229 (79.2%) 74 (60.2%) 303 (73.5%) 110 (70.1%) 54 (65.1%) 164 (68.3%)

Unknown 2 (0.7%) 0 (0.0%) 2 (0.5%) 6 (3.8%) 0 (0.0%) 6 (2.5%)

Signs of poor tolerance to
fever, N (%) 2

No 216 (74.7%) 104 (84.6%) 320 (77.7%) 114 (72.6%) 69 (83.1%) 183 (76,2%)
Yes 71 (24.6%) 17 (13.8%) 88 (21.3%) 38 (24.2%) 14 (16.9%) 52 (21.7%)

Unknown 2 (0.7%) 2 (1.6%) 4 (1.0%) 5 (3.2%) 0 (0.0%) 5 (2.1%)

Fever duration, N (%)
<12 h 59 (20.4%) 14 (11.4%) 73 (17.7%) 47 (29.9%) 14 (16.9%) 61 (25.4%)

12–24 h 76 (26.3%) 28 (22.8%) 104 (25.3%) 34 (21.7%) 21 (25.3%) 55 (22.9%)
>24 h 153 (52.9%) 81 (65.8%) 234 (56.8%) 75 (47.8%) 48 (57.8%) 123 (51.3%)

Unknown 1 (0.4%) 0 (0.0%) 1 (0.2%) 1 (0.6%) 0 (0.0%) 1 (0.4%)

1 meningeal syndrome, otolaryngologic symptoms, vomiting, diarrhea, skin rash, purpura, and acute otitis media;
2 hemodynamics, neurological, and/or respiratory symptoms.

3.2. Biomarkers’ Characteristics

The concentrations of the seven investigated biomarkers in the sera (CRP, PCT, TRAIL,
NGAL, IP-10, IL-6) or whole blood (MxA) of patients diagnosed with a bacterial vs. vi-
ral infection, in the TRAIN and TEST cohorts, are shown in Figure S1 and Table S2. A
healthy cohort was tested as a reference. Marker concentrations according to the age class
(≤3 months and >3 months of age) are shown in Figure S2 and Table S3.

3.3. Performance of Biomarker Combinations Using Logistic Regression

The seven selected biomarkers from the TRAIN set were combined, up to four markers,
by logistic regression (Table S4). The number of markers per combination was limited to
four, to remain amenable to clinical practice. The 98 trained models were then applied
to the TEST set for an independent validation. Model performance was evaluated in
terms of AUC, LR+, and LR− (Table S5). The targeted performance criteria were (i) a LR+
of minimum 5.67, ideally ≥ 8.5 (increased probability of SBI diagnosis), and (ii) a LR−
of maximum 0.5, ideally ≤ 0.3 (decreased probability of SBI diagnosis). While models
with LR− ≤ 0.3 were obtained, the maximum LR+ did not exceed 4.21 for a three-marker
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combination (model 57: NGAL/MxA/TRAIL) (Tables S5 and S6). Although the LR+ of
model 57 was higher than that achieved by PCT (LR+ = 1.03) and CRP (LR+ = 2.22), the
difference was not statistically significant (p = 0.677 and p = 0.884, respectively). The AUC
(95% confidence interval (CI)) of model 57 was 0.831 (0.777–0.886).

Importantly, model performances were consistent between the TRAIN and TEST set,
with the top five models in the TEST set being among the top nine models in the TRAIN
set (Tables S4 and S5). As for the contribution of individual markers, IL-6 did not improve
the performance of PCT or CRP, and IP-10 and NGAL did not improve the performance
of CRP and only slightly improved the performance of PCT. Altogether, IL-6, IP-10, and
NGAL minimally improved the performance of the associated models (Table S5). On the
other hand, while MxA did not improve the performance of PCT or CRP, TRAIL alone did
improve their performance. Interestingly, the MxA/TRAIL pair showed a reasonably good
performance (model 22: top 16 with AUC = 0.814, LR+ = 2.85, LR− = 0.32), which was
further increased in association with CRP (model 52: top 11 with AUC = 0.824, LR+ = 3.28,
LR− = 0.32) or PCT (model 63: top 9 with AUC = 0.834, LR+ = 3.29, LR− = 0.3) (Table S5).
Notably, the top 13 combinations in the global population all included the MxA/TRAIL pair
(both in the TRAIN and TEST sets) (Tables S4 and S5). Figure 2a depicts the representative
ROC curves and AUC forest plots, showing model 57 (black) in comparison to PCT and
CRP alone (pink) as well as models including MxA and TRAIL. Additional performance
values are shown in Table S6.
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Figure 2. Performance of marker combinations using logistic regression (TEST set). ROC curves and
forest plots of best performing models are shown for the global population (a), the ≤ 3-month-old
patients (b), and the > 3-month-old patients (c). The upper ROC curves show the comparisons to CRP
(pink curves) and the lower ROC curves the comparisons to PCT (pink curves). The forest plots depict
AUC (plain circles) and respective 95% CI (horizontal whiskers). Model 57 (NGAL/MxA/TRAIL; black
curves, black whiskers) performs best in terms of LR+ in the global population. Complete performance
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results of the depicted models are shown in Table S6. Performance results of all 98 models are shown
in Table S5. The AUC of model 57 (0.831) was not statistically different from that of PCT (0.789;
p = 0.115) but was significantly better than that of CRP (0.779; p = 0.042). The 4-marker model
PCT/NGAL/MxA/TRAIL (model 67) achieved the highest AUC (0.839; Table S5). The difference in
AUC of model 67 to that of PCT was close to statistical significance (p = 0.053), while that of model 67
vs. CRP was statistically significant (p = 0.014).

Interestingly, application of these models to the two age class populations (≤ and
>3 months) revealed better performances (higher LR+) in the younger patients’ group
(7–91 days of age; n = 77). Out of the 98 generated models, 17 fulfilled the targeted
performance criteria in the 7–91-day-old group, of which 15 included the MxA/TRAIL
pair (Table S5). AUC estimates were also globally higher in the ≤ 3-month-old group,
although the respective 95% CIs were broader (Figure 2b vs. Figure 2c and Table S6).
Regarding the AUC and LR estimates (and the number of contributing markers), the
best-performing model in the ≤3-month population was CRP/MxA/TRAIL (model 52;
AUC = 0.895, LR+ = 10.46, LR− = 0.16) (Tables S5 and S6).

Altogether, the combination of up to four out of seven biomarkers by logistic regression
allowed for reaching the predefined performance criteria in younger patients (7–91 days of
age) but not in the global population (7 days–36 months). The best marker combinations
included the viral biomarkers MxA and TRAIL.

3.4. Performance of Combinations of Clinical Variables and Biomarkers Using Machine Learning
(Post Hoc Analysis)

To identify models discriminating bacterial from viral infection more accurately, no-
tably in the 7 days–36 months population, a post hoc analysis was conducted combining
relevant clinical variables with a minimal set of biomarkers and using machine learning-
based modelling. Models integrating clinical parameters and biomarkers have indeed
proved to be more performant than clinical parameters or biomarkers alone [1,5–7,23].
The analysis was limited to two-marker combinations, to keep the approach practicable
in clinical routine. Given their good performance in the previous approach, MxA and
TRAIL were selected in addition to CRP and PCT and were tested in the following combi-
nations: CRP/TRAIL, PCT/TRAIL, CRP/MxA, PCT/MxA, and MxA/TRAIL. Five clinical
variables (5CV) normally applied during clinical examination at the participating PED
for the diagnosis of SBI were selected by the clinicians as modelling features: signs of
poor tolerance to fever, general appearance, associated symptoms, fever duration, and age
(Table 2).

The targeted performance criteria (LR− ≤ 0.3, maximum LR+) and the training and
validation sets were the same as in the previous approach. Although the performance of
machine learning-based classifiers generated by the combination of the 5CV and biomark-
ers was better than that of the 5CV and biomarkers alone, the classifiers failed to reach
the aimed performance criteria in the global population, with a maximum LR+ of 3.62
(LR− = 0.33; AUC (95% CI) = 0.826 (0.770–0.880)) for the combination 5CV/MxA/TRAIL
(Table S7, Figures 3a and 4a). As observed before, model performances were greater in
younger (7–91-day-old) patients. The top five models in this group fulfilled the aimed
performance criteria (Table S7). The best model in respect to both AUC and LR in the
≤3-month-old group was the combination of 5CV/PCT/MxA (AUC (95% CI) = 0.919
(0.770–0.880), LR+ = 21.31, LR− = 0.32) (Table S7, Figures 3b,c and 4b,c).
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Figure 3. Performance of models combining biomarkers and clinical variables using machine learning
(TEST set). ROC curves and forest plots of best performing models are shown for the global population
(a), the ≤3-month-old patients (b), and the >3-month-old patients (c). The upper ROC curves show
the comparisons to CRP (pink curves) and the lower ROC curves the comparisons to PCT (pink
curves). The clinical variables alone (5CV) are shown as black curves. The forest plots depict AUC
(plain circles) and respective 95% CI (horizontal whiskers). Complete performance results are shown
in Table S7. In terms of AUC, PCT/TRAIL performed best in the global population, with an AUC of
0.831. The difference in AUC between PCT/TRAIL and PCT (AUC = 0.789) was close to statistically
significant (p = 0.056), while that between PCT/TRAIL and CRP (AUC = 0.773) was statistically
significant (p = 0.025). In the ≤3-month-old group, the best model in respect of both AUC and LR
was 5CV/PCT/MxA (AUC = 0.919, LR+ = 21.31, LR− = 0.32). The differences in AUC between
5CV/PCT/MxA and PCT (AUC = 0.793) and between 5CV/PCT/MxA and CRP (AUC = 0.743) were
both statistically significant (p = 0.030 and p = 0.005, respectively).

Finally, the validity of the machine learning approach was verified on the group of
proven bacterial and viral infections within the global population (TRAIN set, n = 86; TEST
set, n = 64; see Table 1). As anticipated, higher performances were observed, with the
highest AUC for 5CV/CRP/MxA (AUC (95% CI) = 0.944 (0.883–1.000)). The best model
for both AUC and LR was for 5CV/CRP/TRAIL (AUC (95% CI) = 0.937 (0.882–0.991),
LR+ = 20.43, LR− = 0.25) (Figure S3).
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Figure 4. Performance of machine learning-based models including MxA and TRAIL together with
clinical variables (TEST set). ROC curves and forest plots of best performing models including
MxA and TRAIL are shown for the global population (a), the ≤ 3-month-old patients (b), and the
>3-month-old patients (c). The upper ROC curves show the combinations with CRP and the lower
ROC curves the combinations with PCT. The bad-performing model including clinical variables only
(5CV) is depicted in black, and the good-performing model (5CV/MxA/TRAIL) is depicted in brown.
Respective forest plots are shown in Figure 3. Complete performance results are shown in Table S7.

3.5. Performance of the Best Models for Antibiotherapy Management

The performances of the best models generated by logistic regression and machine
learning were next evaluated regarding antibiotherapy management, using the classifica-
tion by the expert adjudication committee as the reference standard. For 214/240 (89.2%)
patients of the validation cohort, the applied antibiotherapy protocol agreed with the
classification of a bacterial or viral infection by the adjudication committee (i.e., treated
bacterial infections and untreated viral infections) (Table 3). For 26/240 (10.8%) patients,
the antibiotherapy decision disagreed with the classification by the adjudication committee,
with 11 untreated patients classified as having a bacterial infection and 15 treated patients
classified as having a viral infection (Table 3). Importantly, none of the 11 untreated SBI
had developed clinical complications at the 7-day follow-up.

Table 3. Concordance between the classification by the adjudication committee and antibiotherapy
(TEST set; n = 240).

Treatment with Antibiotics

Yes No

Bacterial infection
Yes 72 11
No 15 142
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Reclassification by selected models of the infection status of the 26 discordant and
214 concordant classifications of the adjudication committee is shown in Table 4. While
single markers, in particular PCT, performed well to rule in SBI (10/11 (90.9%) untreated
SBI reclassified as SBI and only 4/72 (5.6%) treated SBI wrongly reclassified as non-SBI
by PCT), they were poor in ruling it out (128/140 (91.4%) untreated non-SBI reclassified
as SBI by PCT). By contrast, models tended to better rule out SBI, while showing some
benefit in ruling it in (Table 4). The benefit of these models is, however, mitigated by the
observation that only one untreated pneumococcus infection would have been correctly
classified as SBI by the best models, and a few “untreated SBI reclassified as SBI” (2/8
for NGAL/MxA/TRAIL, 1/9 for 5CV/MxA/TRAIL) were salmonella infections in older
(2 and 3 years of age) children, for which no antibiotics therapy would have been recom-
mended at our PED. In addition, one case of untreated bacterial and viral co-infection
was never correctly reclassified as SBI by the best three models (NGAL/MxA/TRAIL,
5CV/PCT/TRAIL, 5CV/MxA/TRAIL).

Table 4. Reclassification of serious bacterial infection (SBI) by the best models (TEST set; n = 240).

Selected Models

Classified as SBI 3 Classified as Non-SBI 3

Treated SBI
Reclassified
as Non-SBI

(n/N, %)

Untreated SBI
Reclassified as SBI

(n/N, %) 4

Treated Non-SBI
Reclassified as Non-SBI

(n/N, %)

Untreated Non-SBI
Reclassified as SBI

(n/N, %) 5

PCT 1 4/72 (5.6%) 10/11(90.9%) 2/15 (13.3%) 128/140 (91.4%)
CRP 1 12/72 (16.7%) 8/11 (72.7%) 7/15 (46.7%) 50/142 (35.2%)

PCT/MxA/TRAIL 1 18/72 (25.0%) 9/10 (90.0%) 8/15 (53.3%) 29/139 (20.9%)
CRP/MxA/TRAIL 1 17/72 (23.6%) 7/10 (70.0%) 8/15 (53.3%) 29/141 (20.6%)

NGAL/MxA/TRAIL (model 57) 1 18/72 (25.0%) 8/10 (80.0%) 8/15 (53.3%) 21/141 (14.9%)
5CV/PCT/TRAIL 2 17/72 (23.6%) 7/11 (63.6%) 9/15 (60.0%) 29/142 (20.4%)
5CV/MxA/TRAIL 2 19/72 (26.4%) 9/11 (81.8%) 8/15 (53.3%) 25/142 (17.6%)

1 Logistic regression-based models; 2 machine learning-based models; 3 by the expert adjudication committee;
4 denominator <11 in some cases for logistic-regression-based models, due to one patient with missing biomarker
data; 5 denominator <142 in some cases for logistic-regression-based models, due to several patients with
missing biomarker data. Abbreviations: SBI, serious bacterial infection; 5CV, 5 clinical variables selected for
computational modelling.

4. Discussion

This prospective, multicentre, observational study evaluated the potential benefit of
combining bacterial- and viral-induced host-protein biomarkers to improve the diagnosis
of SBI in febrile children aged 7 days to 36 months.

Using logistic regression applied to blood levels of selected protein markers, we
showed that combinations of biomarkers (with or without selected clinical variables)
performed slightly better than CRP or PCT alone to diagnose SBI. However, the poor
LR+ and acceptable LR− observed in the 7 days–36 months population indicate that these
models might be better to rule out SBI, rather than ruling it in. The small improvement of the
best generated models over CRP and PCT was confirmed by the reclassification of patients
that showed a discordance between the infection status assigned by the adjudication
committee and the decision to treat with antibiotics by the physician. Notably, compared
to single markers and especially to PCT, the models tended to better rule out SBI, as
previously reported by other modelling approaches [1,5,8–10]. Nonetheless, the benefit of
this reclassification was marginal, first because the concordance rate of SBI diagnosis by the
adjudication committee with antibiotherapy was already high (89.2%) and second because
the few cases of SBI diagnosis not treated with antibiotics might have benefited from
antibiotherapy. This demonstrates the good clinical performance of SBI diagnosis by the
standard of care in this study. Nevertheless, the validity of our computational approach was
supported by the better diagnostic performance achieved in the subgroup of patients with
proven bacterial infection (e.g., LR+ = 20.43, LR− = 0.25 for 5CV/CRP/TRAIL; post hoc
analysis). Importantly, satisfactory LR+ performances were also obtained when focusing on



J. Clin. Med. 2022, 11, 6563 14 of 19

the ≤ 3-months population (e.g., LR+ = 10.46, LR− = 0.16 for CRP/MxA/TRAIL; LR+ = 9.3,
LR− = 0.27 for 5CV/MxA/TRAIL), suggesting that our approach might mainly benefit this
younger age class. As the size of this age group is small in our study (n = 107 in TRAIN set,
n = 77 in TEST set; Table 2), our observations must be verified in a large cohort study of
≤3-month-old febrile patients. If confirmed, our modelling approach would distinguish
itself from previously reported clinical prediction models showing similar performances in
patients aged < 3 months and 3–12 months [7].

Our logistic regression approach confirmed previous studies showing that marker
combinations perform better than single markers and that a combination of bacterial and
viral biomarkers can improve the classification of SBI [1,11,16,22,24,25]. Indeed, most
top combinations consisted of both bacterial- and viral-induced markers. Surprisingly,
the viral markers MxA and TRAIL performed best as a two-marker combination, and
the pair MxA/TRAIL was part of most of the best performing models. The good per-
formance of MxA/TRAIL was particularly evident in the ≤3 months group (LR+ = 7.99,
LR− = 0.24), which was further increased in association with the bacterial-induced markers
PCT (LR+ = 9.43, LR− = 0.23) and CRP (LR+ = 10.46, LR− = 0.16). Why the two viral-
induced markers MxA and TRAIL performed well in combination for the diagnosis of SBI
in younger febrile patients remains to be investigated.

The ImmunoXpert host-signature assay computationally integrates the blood levels of
CRP, TRAIL, and IP-10 [22,24,25,29]. As opposed to our approach, the ImmunoXpert assay
is based on predefined cutoffs. In our study, the CRP/TRAIL/IP-10 combination (model 53)
performed worse than CRP alone or CRP/TRAIL (model 27), both in the global population
and in patients ≤3 months of age (Table S5). In patients >3 months of age, CRP/TRAIL/IP-
10 performed comparably to CRP and worse than CRP/TRAIL (Table S5). Similarly, the
FebriDx rapid test integrates blood levels of CRP and MxA based on predefined cutoffs [26].
In our study, the CRP/MxA combination (model 20) performed worse than CRP alone
in both the global and ≤3-month-old populations. These observations demonstrate the
impact of the modelling and scoring method on the potential value of biomarkers. In
the case of the ImmunoXpert assay, the definition of the age group might also impact the
diagnosis outcome, as these studies included older paediatric patients compared to our
study [22,24,25,29]. The difference between studies in the definition of bacterial infection
and SBI, due to the lack of a validated and standardised risk stratification tool, might also
influence the results.

Our study presents several strengths and limitations. The major strengths are the
large size of the young children enrolled in the study (n = 983) and the real-life setting
including proven, presumed, and mixed infections. Other strengths are the double-blinded
study design (investigator blinded to biomarker results, adjudication committee blinded to
biomarker results and to routine PCT and/or CRP results possibly ordered by the physi-
cian), and the multicentre design involving three French PED. As for the computational
analysis, a key strength is the definition of a training cohort for model generation and an
independent test cohort for model validation. Limitations include possible heterogeneity
in patient management between centres, although this might be considered a strength, as it
better reflects the real-life clinical setting. Another possible limitation is the management
of patients suspected of SBI per investigator assessment, which might have introduced
interpatient heterogeneity, albeit again reflecting the current real-life clinical setting. Fu-
ture biomarker studies would surely benefit from a standardised phenotyping and risk
stratification tool for children with suspected SBI [6]. Next, the adjudication panel might
have been influenced in their diagnosis assignment by the knowledge of the antibiotherapy
decision of the investigator, thus potentially introducing a bias in the definition of the
SBI group. In addition, the predefined age class (7 days–36 months) might have been too
broad, probably not accurately reflecting the differences in the clinical setting between
younger (≤3 months) and older (>3 months) children. This is supported by the better model
performances observed in younger children in our study. Finally, the seasonal (rather than
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random) assignment of the training and validation cohorts was epidemiologically justified
but might have introduced a time-dependent bias in the analysis.

5. Conclusions

Although our study failed to identify marker combinations outperforming CRP or PCT
alone in 7 days–36 months febrile children, it confirmed the benefit of integrating bacterial-
and viral-induced host biomarkers in computationally generated prediction models; this
appeared to be especially the case for ≤3-month-old febrile patients. Refinement of this
approach will be needed to significantly improve prediction tools. The limited increase in
performance, achieved by selecting well-known markers of bacterial and viral infections,
also suggests that clinical decision rules (e.g., Lab-score, Step-by-Step approach) [1,3,5–7]
might be more adapted to clinical practice, or that alternative, unbiased proteomics or
transcriptomics approaches might be more powerful to identify novel SBI biomarkers more
accurately, thereby better assisting paediatricians in the diagnosis and management of
febrile young children.
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Appendix A. Bacterial and Viral Infection Definitions

The primary endpoint was bacterial infection, defined by the adjudication committee
as a proven bacterial infection, a presumed bacterial infection, or a mixed (bacterial and
viral) infection. SBI, viral infection, and unclassified fever were defined as follows:

Appendix A.1. Serious Bacterial Infection (SBI)

• Proven SBI was established in the case of:

- A positive Streptotest result
- Bacteremia: pathogen detection in blood culture. A blood culture was considered

negative if symptoms improved without antibiotherapy in the case of sapro-
phytic germs (i.e., Staphylococcus coagulase-negative) or if the isolated germ was
nonpathogenic (i.e., diphteroids, nonpathogenic neisseria, α-hemolytic strepto-
coccus, etc.)

- Bacterial meningitis: pleiocytosis (≥5 cells/mm3) and pathogen detection (culture-
positive) in the cerebrospinal fluid. In the case of a hemorrhagic cerebrospinal
fluid, only a positive culture for a pathogenic germ confirmed the diagnosis of
proven SBI.

- Bacterial urinary tract infection: established from a sample collected by urinary
catheterisation or from a midstream specimen of urine (MSU), with a cytobacte-
riological examination showing white blood cells ≥10/mm3 and a pathogenic
monomorphic flora ≥105 CFU/mL.

- Bacterial respiratory infection: radiological and clinical pneumonia associated
with a rapid improvement under antibiotherapy.

- Acute bacterial gastroenteritis: liquid stool and stool culture positive for a
pathogenic germ.

- Bacterial infection of soft tissue, cellulitis, or abscess: clinical diagnosis based on
evidence of inflammatory skin changes or abscess. When possible, a microbiologi-
cal collection was carried out, and the detection of a pathogenic germ confirmed
the diagnosis of proven SBI.

- Bacterial osteoarticular infection: positive culture of the fluid of an articular puncture.

• Presumed SBI was established in the case of:

- Urinary tract infection: established from a sample collected from a urine bag (as
opposed to urinary catheterisation; see proven SBI above)

• Mixed (bacterial and viral) infection was established in the case of patients who met
the criteria for a proven or presumed bacterial infection and whose clinical or para-
clinical data suggested a viral co-infection. Mixed infections were clinically managed
like bacterial infections.

Appendix A.2. Viral Infection

• Proven viral infection was established in the case of:

http://www.ismpp.org/gpp3
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- Viral meningitis: pleiocytosis (≥5 cells/mm3) and virus detection by PCR in the
cerebrospinal fluid. In the case of a hemorrhagic cerebrospinal fluid, only virus
detection confirmed the diagnosis of proven viral infection.

- Respiratory syncytial virus (RSV) infection: respiratory or nasopharyngeal symp-
toms associated with a RSV-positive sample.

- Influenza virus infection: detection of the virus in a nasopharyngeal sample.
- Other viral respiratory infections: respiratory or nasopharyngeal symptoms asso-

ciated with the detection of a virus other than those mentioned above.
- Acute viral gastroenteritis: liquid stool and a stool that tested positive for a

gastrointestinal virus.

• Presumed viral infection was established in the case of:

- Presumed viral meningitis: pleiocytosis (≥5 cells/mm3) without evidence of a
pathogenic bacteria (culture-negative) or of a virus (PCR-negative) in the cere-
brospinal fluid. In the case of a hemorrhagic cerebrospinal fluid, only the evidence
of a negative culture and PCR confirmed the diagnosis of presumed viral infection.

- Rhinitis: only nasal discharge without evidence of a microbiological agent.
- Nasopharyngitis: pharyngitis and nasal discharge without evidence of a microbi-

ological agent.
- Varicella zoster virus infection: based on clinical diagnosis.

Appendix A.3. Unclassified Fever

- Fever of infectious origin without an identified cause: fever without clinical evidence
of an infection site, for which all microbiological investigations were negative and the
clinical course did not allow for the adjudication committee to assign a diagnosis.

- Fever of non-infectious origin: inflammatory fever (e.g., Kawasaki or Still’s disease).

Appendix B. Computational Modelling Methods Used in Machine Learning

Machine learning-based classifiers were built on the TRAIN dataset using the Caret
package in R [37]. To avoid overfitting, the models were trained using 100 resampling
according to the Leave Group Out Cross-Validation (LGOCV) method available in Caret.
The models available in the Caret package (https://topepo.github.io/caret/available-
models; accessed on 10 October 2022) used in this study are listed in Table A1.

Table A1. Models of the Caret package used for machine learning in this study.

Model Method Value Type Libraries Tuning Parameters

eXtreme Gradient Boosting xgbLinear Classification, Regression xgboost nrounds, lambda, alpha, eta

Linear Discriminant Analysis lda Classification MASS None

Stochastic Gradient Boosting gbm Classification, Regression gbm, plyr n.trees, interaction.depth,
shrinkage, n.minobsinnode

Generalized Additive Model using Splines gam Classification, Regression mgcv select, method

Random Forest rf Classification, Regression randomForest mtry

glmnet glmnet Classification, Regression glmnet, Matrix alpha, lambda

Bayesian Generalized Linear Model bayesglm Classification, Regression arm None

Generalized Linear Model glm Classification, Regression - None

Penalized Multinomial Regression multinom Classification nnet decay

Generalized Additive Model using LOESS gamLoess Classification, Regression gam span, degree

Boosted Generalized Linear Model glmboost Classification, Regression plyr, mboost mstop, prune

Conditional Inference Tree ctree Classification, Regression party mincriterion

Partial Least Squares pls Classification, Regression pls ncomp

Stabilized Linear Discriminant Analysis slda Classification ipred None

k-Nearest Neighbors knn Classification, Regression - k

Linear Distance Weighted Discrimination dwdLinear Classification kerndwd lambda, qval

https://topepo.github.io/caret/available-models
https://topepo.github.io/caret/available-models
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