
HAL Id: hal-04179324
https://hal.science/hal-04179324v1

Submitted on 9 Aug 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Your DRM Can Watch You Too: Exploring the Privacy
Implications of Browsers (mis)Implementations of

Widevine EME
Gwendal Patat, Mohamed Sabt, Pierre-Alain Fouque

To cite this version:
Gwendal Patat, Mohamed Sabt, Pierre-Alain Fouque. Your DRM Can Watch You Too: Exploring
the Privacy Implications of Browsers (mis)Implementations of Widevine EME. PETS 2023 - Privacy
Enhancing Technologies Symposium, Jul 2023, Lausanne, Switzerland. pp.306-321, �10.56553/popets-
2023-0112�. �hal-04179324�

https://hal.science/hal-04179324v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Your DRM Can Watch You Too: Exploring the Privacy
Implications of Browsers (mis)Implementations of Widevine EME

Gwendal Patat
Univ Rennes, CNRS, IRISA
gwendal.patat@irisa.fr

Mohamed Sabt
Univ Rennes, CNRS, IRISA
mohamed.sabt@irisa.fr

Pierre-Alain Fouque
Univ Rennes, CNRS, IRISA
pierre-alain.fouque@irisa.fr

ABSTRACT
Thanks to HTML5, users can now view videos on Web browsers
without installing plug-ins or relying on specific devices. In 2017,
W3C published Encrypted Media Extensions (EME) as the first of-
ficial Web standard for Digital Rights Management (DRM), with
the overarching goal of allowing seamless integration of DRM sys-
tems on browsers. EME has prompted numerous voices of dissent
with respect to the inadequate protection of users. Of particular
interest, privacy concerns were articulated, especially that DRM
systems inherently require uniquely identifying information on
users’ devices to control content distribution better. Despite this
anecdotal evidence, we lack a comprehensive overview of how
browsers have supported EME in practice and what privacy im-
plications are caused by their implementations. In this paper, we
fill this gap by investigating privacy leakage caused by EME re-
lying on proprietary and closed-source DRM systems. We focus
on Google Widevine because of its versatility and wide adoption.
We conduct empirical experiments to show that browsers diverge
when complying EME privacy guidelines, which might undermine
users’ privacy. For instance, we find that many browsers gladly give
away the identifying Widevine Client ID with no or little explicit
consent from users. Moreover, we characterize the privacy risks of
users tracking when browsers miss applying EME guidelines re-
garding privacy. Because of being closed-source, our work involves
reverse engineering to dissect the contents of EME messages as
instantiated by Widevine. Finally, we implement EME Track, a tool
that automatically exploits bad Widevine-based implementations
to break privacy.

KEYWORDS
Web Privacy, Web Tracking, DRM, EME, Widevine

1 INTRODUCTION
The use of the Web for streaming video services has increased
tremendously in past years. According to [28], the video streaming
market is projected to grow from $473 billion in 2022 to $1,690
billion by 2029. In a business model based on subscription, video
services protect their streams via encryption. These video services
put the key in a “DRM license”. If a user is subscribed, then the
DRM license is fetched from the DRM server, and only the related
DRM module, called CDM for Content Decryption Module, can
get the key and decrypt the video. We call the pair (license server,
CDM) a DRM key system. Multiple actors are involved in provid-
ing DRM key systems, three of which are distinguished: Microsoft
PlayReady [40], Google Widevine [24] and Apple FairPlay [3]. Nat-
urally, different platforms support different DRM key systems. For
instance, video streaming is protected by FairPlay on Apple devices
(i.e., iOS devices, Apple TV, and Safari on macOS), while Edge on

Windows can rely on PlayReady. The lack of cross-platform DRM
compatibility was a major reason behind DRM being ultimately
abandoned for iTunes Music in 2007.

DRM and the Web are no strangers since users often stream
video on browsers. Historically, DRM on the Web was supported
in plug-ins for a long time (e.g., Microsoft Silverlight and Adobe
Flash). However, the advent of HTML5-based media playback sys-
tems encouraged the media industry to make DRM integration
more seamless. In 2012, Google and Microsoft partnered with Net-
flix (a content provider) to propose a “built-in” DRM extension
for the Web: the W3C Encrypted Media Extensions (EME) [11],
with the overarching goal to define a standard DRM API (Appli-
cation Programming Interface) that would work across multiple
browsers or operating systems on a broad of range of devices. The
EME specification does not create yet-another DRM key system.
Instead, it allows browsers to discover, select and interact with
any DRM module automatically. Thus, EME removes the burden
of implementing content protection from browsers, whose role is
now restricted to only redirecting DRM messages to the right na-
tive key system. In 2016, all major browser vendors demonstrated
interoperable support of EME, one year before becoming a W3C
Recommendation [60].

Standardizing EME received much controversy, as EME stands
at the intersection between the desire of freedom of the Internet
and the increasing need to protect premium contents and services.
On the one hand, the EME project received the Emmy Award in
2019 [58]. Both the W3C Director (Tim Berners-Lee) [5] and the
W3C CEO (Jeff Jaffe) [31] strongly defend EME adoption. On the
other hand, opponents, such as Free Software Foundation, criti-
cized W3C for standardizing DRM at the behest of a few actors in
private industry and qualified the Firefox decision to support it as
“shocking” and “unfortunate” [16]. As summarized in [27], privacy
received much attention among the voices of dissent.
Problem Statement. Indeed, a DRM key system could cause user
tracking because it might manipulate user-specific information that
are either disclosed in EME messages or persistently stored on the
user’s device. The starting point of our work is that, as acknowl-
edged by EME, “privacy cannot be met without the knowledge of
the privacy properties of the Key System and its implementations”.
Despite the much-raised controversy, little has been done to under-
stand the privacy properties guaranteed by existing key systems,
and how they are related to the EME ones. As EME is already widely
deployed [9], we take a closer look at the privacy leakage of EME
implementations in practice. In this paper, we conduct, to the best
of our knowledge, the first privacy evaluation of EME, covering the
format of its messages and the impact of browsers default configura-
tions on user tracking. In particular, we explore the tension between
the EME privacy guidelines and its actual compliant modules. We

1

Patat et al.

only focus on EME as implemented by Widevine for two main rea-
sons. First, Widevine is the most versatile DRM key system, since
it is deployed on various operating systems (e.g., Linux, Windows,
macOS, and Android) on various devices, ranging from personal
computers to smartphones, smart TVs, and embedded devices. The
scope of other key systems, such as PlayReady and FairPlay, would
have been more limited. Second, each key system introduces nu-
merous proprietary technical details, and we preferred clarity in
our presentation and longitudinal analysis over completeness, es-
pecially since our conclusion would have remained the same: there
is a real risk of privacy leakage caused by EME key systems.

Findings Summary.Our main goal is to gain insights into how the
opaqueWidevine EME can lead to privacy leaks. In other words, we
investigate whether users have any guarantee about their privacy
with EME relying on proprietary and closed-source DRM modules
like Widevine. We refine our goal into two high-level questions:
(1) is there any gap between the EME privacy guidelines and the
browser implementations of Widevine-based EME? and (2) what is
the privacy impact of this gap? To answer our questions, we first
reverse engineer the EMEmessages as defined byWidevine. Second,
we examine the privacy mechanisms put in place by Widevine on
Windows, Linux, and Android. We conduct our experiments with a
selection of popular browsers as well as privacy-focused ones. Third,
supported by our experimental setup and reverse engineering, we
find that EME Widevine misses applying some important EME
recommendations. In our analysis, we focus on the Widevine dis-
tinctive identifier, namely Client ID, and session-related stored data,
namely persistent sessions. In that sense, we find that all desktop
browsers fail to encrypt the Client ID containing identifying infor-
mation about the user’s device. Ironically, we find that some mobile
privacy-focused browsers, such as Ghostery, do not encrypt the
Client ID, which can be obtained by a few JavaScript calls with no
or little explicit users consent, as desired by EME designers [61]. In
addition, we highlight some mobile browsers storingWidevine data
as cookies evenwhen first-party cookies are not enabled. Fourth, we
continue our study and inspect Widevine device fingerprinting and
resulting user tracking. Here, among others, we examine the nature
of the Client ID and look deeper into its different fields, uniqueness,
and stability. We show that this Client ID allows not only building
an augmented User-Agent on which browsers have no control, but
also a stable and unique fingerprint on Android mobile devices.
Overall, our work shows empirical evidence that EME constitutes
an effective privacy leakage vector, implying that the W3C claims
about “greater privacy” guaranteed by EME are just all red herrings.

Threat Model. By design, DRM systems are bound to some in-
dividualization process. Indeed, despite EME recommendations,
Widevine establishes a factory provisioning process to embed some
unique Device ID on the client side. Widevine defines a privacy
mode in which this unique identifier is encrypted before being
sent to any remote server. Only Widevine and its partnered service
providers, aka Over-The-Top (OTT) platform (e.g., Netflix, Disney+),
can decrypt it, implying that they can effortlessly fingerprint all
devices. Widevine does not publicly state the required terms for
being a partner OTT. This could be concerning, but we consider a

wider threat model: an attacker (website) with no Widevine part-
nership, meaning not having a Widevine-signed server certificate,
that can call EME JavaScript API (see subsection 5.1 for required
permissions) acting as a mirrored proxy between a client and a
license server. In this paper, we show that this attacker can achieve
three goals:

(1) Fingerprint users onAndroid devices if they are on a browser
not applying the privacy mode (e.g., firefox).

(2) Get identifying, but not unique, attributes if the privacy
mode is not always enforced (e.g., all desktop browsers).

(3) Achieve surreptitious cross-session tracking on the same
origin even when cookies are blocked and site data are
wiped. For example, this allows an attacker to link user
activity on the same site.

Contributions.We summarize our contributions as follows:

• We reverse engineer the EMEmessages as defined byWidevine.
• We analyze the browser implementations of Widevine-based
EME with respect to the EME privacy guidelines.

• Weexplore the amount of privacy leakagewhenever browsers
do not strictly comply with EME guidelines.

• We implement and open-source EME Track; a tool leveraging
our findings about EME to demonstrate user tracking.

• Our results were acknowledged by the Mozilla Hall of Fame.

2 BACKGROUND
2.1 DRM Systems
Digital Rights Management (DRM) systems aim at protecting digital
media from piracy while enabling distribution and consumption
by legitimate users. Medias consist of separate video/audio tracks
and subtitles. The DRM ecosystem enforces given business rules
to protect media using two main entities: a License Server and a
Content Decryption Module (CDM). In practice, a Content Delivery
Network (CDN) supplies encrypted content to a client, and a license
server provides the necessary keys to decrypt such content. These
keys are commonly referred to as licenses. Only the DRM module
on the user device can retrieve these keys and decrypt the content,
which makes it possible to control media consumption.

The CDM constitutes the DRM module performing sensitive
operations, such as decryption and license requests. Every DRM
scheme, known as Key System, provides its own CDM that includes
proprietarymechanisms for license server communication and rules
about license usage and renewal.

2.2 Google Widevine
Among DRM systems, Widevine [24] is a closed-source proprietary
DRM technology purchased by Google in 2010. Its early version,
Widevine Classic, was compatible with older Android versions (up
to Android 5.1) but only supported the .wmv format. Nowadays,
the most recent version, Widevine Modular, or simply Widevine,
supports various streaming protocols, including MPEG-DASH and
CENC [29, 30] regularly used by OTT platforms such as Netflix
and Disney+. Widevine is now the most deployed DRM by being
present in Android devices, Android TVs, most web browsers, and
many other devices (e.g., Chromecast, VR Headsets).

2

Your DRM Can Watch You Too

2.3 W3C EME Standard
Due to the fragmented ecosystem of DRM solutions in the 2010s, the
World Wide Web Consortium (W3C) defined the Encrypted Media
Extensions (EME) standard to provide a standardized API enabling
web applications to interact with browser-supported DRMs. EME
is designed to make the same web application run on any user-
agent regardless of the underlying DRM implementation. Despite
being optional, EME is supported by major browsers: Edge, Firefox,
Chrome, Safari, Opera, and their mobile counterparts [9].

2.3.1 EME Components. The EME API brings together multiple
entities. Here, we list the main ones used during the control flow.
User-Agent. The EME implementation lies in the user-agent (e.g., a
web browser) and is called through JavaScript to communicate with
a CDM and distant servers using opaque messages. In the rest of the
paper, we use the terms browser and user-agent interchangeably.
CDM. The Content Decryption Module DRM system in the EME
specification. It is responsible for license protection and usage en-
forcement to decrypt media content on the user’s device.
CDN. The Content Delivery Network is a distant server providing
encrypted media to the user device on demand. It also offers the
necessary information for license requests and DRM configurations.
License Server. License requests generated by the CDM are sent
to the related license server of the given key system. This server
manages licenses and policies for protected content.

2.3.2 Protocol Workflow. EME defines a uniform API centered on
CDM session management and license acquisition while abstracting
message contents. Henceforth, the EME API relies on multiple
objects and events to implement the proprietary protocols of CDMs.
We exclude user authentication to license server and CDN from
EME workflow due to it being out of scope of the EME specification.
License Acquisition. An overview of the protocol can be seen
in Figure 1. For the execution, we assume that the EME user-agent
has already received all the required information about the en-
crypted media from the CDN, such as supported codecs and used
DRM system. The EME workflow starts in step 1 by the JavaScript
running in the user-agent, taking as arguments the requested DRM
as well as configurations for media decryption and playback. Us-
ing the self-assigned UUID (universally unique identifier) [15] of
the chosen DRM system, the user-agent asks for a handler using
the requestMediaKeySystemAccessmethod of the navigator ob-
ject 2 . The EME API createMediaKeys is then used to instantiate
the desired CDM in step 3 . At this stage, the CDM is available and
represented by a MediaKeys object but cannot receive any license.
Step 4 creates a session within the CDM, represented by a Medi-
aKeySession object, and identified by a session ID. Such sessions
refer to key wallets and cryptographic environments isolated from
each other, used to receive licenses and decrypt protected media.
On creation, a session key wallet is empty and cannot decrypt any-
thing. To receive media decryption keys, referred to as licenses,
media-specific Initialization Data are sent to the CDM 5 to gen-
erate a license request using the generateRequest method. The
content of this generated request fully depends on the key system
in use 6 and is therefore managed as an opaque message by EME.
When receiving the license request 7 , the user-agent forwards
it to a CDM-compatible license server 8 . The opaque request is

License Server EME API CDMs

2 Request CDM handler for
supported configuration

3 Instantiate selected CDM

Selected CDM

4 Create a session

5 Ask for License Request LR

6 Generate LR

7 Opaque LR

10 Opaque response
11 Provide opaque response

12 Extract licenses
and fill session

13 Ask to decrypt frame

14 Decrypt frame
with license and
send to decoder

loop for each frame

8 Send LR to specific server

9 Generate opaque
license response

1 Gather configuration and
desired CDM identifier

15 Generate Renewal
Request RR

16 Opaque RR

19 Opaque response
20 Provide opaque response

21 Update licenses

17 Send RR to specific server

18 Generate opaque
renewal response

Figure 1: EME Workflow: License Acquisition and Renewal.

processed by the license server generating an opaque license re-
sponse in step 9 to send back to the user-agent 10. Using update 11,
the response is sent to the CDM session and proceeded by DRM-
specific mechanisms 12. Now containing at least one license, the
CDM session can receive frames of the encrypted media to decrypt
them 13, and forward them in clear to the decoder 14. At this point,
the session can be terminated, or renewal can happen.
License Renewal. Once received, licenses can be extended by re-
newal mechanisms. Based on DRM-specific license policies, the
CDM can be authorized to ask for key updates. After policy verifica-
tion, the CDM generates a renewal request 15 and provides it to the
user-agent by the MediaKeyMessageEvent event 16. Steps 17 to 19
are similar to the ones in the steps 8 to 10. The renewal response
is sent to the CDM with the update method 20 to refresh session
licenses 21.

3

Patat et al.

Persistent Session. In addition to license request/response API,
EME also defines CDM session types: ‘persistent-license’ and
‘temporary’ types. Standard MediaKeySession are temporary ses-
sions, meaning licenses will be destroyed on session closing. For
persistent sessions, the user-agent and CDM need to support offline
license storage. If license policies allow a persistent state, licenses
can be stored on closing for future usage (e.g., offline streaming).
They can therefore be reloaded using their session ID with the load
function of a MediaKeySession object to fill the newly created
session in step 4 of Figure 1.

2.3.3 EME Privacy Concerns. While non-normative, the EME stan-
dard raises multiple privacy concerns, especially regarding fin-
gerprinting, information leakage, and user tracking. The raised
concerns aim to guide the DRM providers while specifying the
content of the different opaque messages between license servers
and CDM modules. Among these issues, the potential presence of
so-called Distinctive Identifier and Distinctive Permanent Identifier
is highlighted multiple times since such information could lead to
user tracking. As their names suggest, these identifiers are defined
as unique or shared with a small number of users that could be used
to identify them. The main difference between the two is the prove-
nance of data. Distinctive Permanent Identifiers are any distinctive
value associated with or derived from data being at least non-trivial
for the user to remove, reset or change, such as hardware identifier,
operating system, user-agent instances, or factory values. As for
Distinctive Identifiers, they represent data produced or derived
from one or more Distinctive Permanent Identifiers and exposed
to a component other than the CDM but with the possibility of
being cleared by the OS. As mentioned in the standard, due to their
characterizing nature, such identifiers could be used by malicious
origins for fingerprinting on user devices and user tracking.

Within the EME standard, user tracking is further discussed in
the persistent session mechanism. As explained in section 2.3.2,
this feature allows the CDM to store licenses for future usage. The
specification states that the user-agent must allow the user to clear
the stored licenses as site data, such as cookies.

To limit the impact of these possible issues, EME puts forward a
per-origin and per-browsing profile policy for DRM system usage
and data storage. Moreover, users should be asked for consent when
a CDM is needed, and this consent should be linked to a specific
origin without giving away permission to untrusted websites.

2.4 Web Tracking
In practice, web user tracking can be achieved by different means
categorized into two major classes: stateful and stateless tracking.

2.4.1 Stateful Tracking. Stateful tracking refers to any mechanism
storing data on user devices to identify and track them in the future.
The first example of such mechanisms are cookies, which have
been first introduced to enable a stateful web experience but have
been rapidly used to impact privacy by third-party websites [52].
Stored values could then be used across origins to identify users and
trace navigation. With this first step, trackers pushed HTTP cookies
further using similar storage components like Flash cookies [4],
JavaScript properties, or even HTML5-specific mechanisms [63]. By
combining these systems, Cookie respawning and Evercookies [32]

were introduced to restore previously removed cookies. Using, for
instance, Flash cookie, and HTML Storage API, multiple studies
have shown its effectiveness in circumventing anti-trackers [1, 55].

2.4.2 Stateless Tracking. In 2009, Mayer [38] looked into whether
the variations resulting from browser attributes could result in the
deanonymization of web clients. He checked to see if a distant
server could make user identification possible using variations in
browsing contexts. He observed that a browser might display values
or behaviors linked to the hardware, operating system, and browser
setup creating a device fingerprint and enabling user tracking with-
out the need for data to be stored on the user device. Since then,
multiple studies have been made on even larger scales to inspect the
impact of fingerprinting on web privacy [13, 18, 35]. These studies
have added different attributes to the fingerprint, such as fonts,
timezones, JavaScript engine behaviors [41, 44] or even specific
APIs like WebGL or Canvas [42], to generate stronger fingerprints
both in terms of uniqueness and stability over time.

2.4.3 Countermeasures. To circumvent both stateful and state-
less tracking, defenses have been put in place to increase user
privacy. User tracking through third-party cookies is one of the
most used techniques for stateful tracking nowadays. In response,
web browsers are now, for most, blocking third-party from us-
ing cookies by default. In addition, Google launched in 2022 the
Privacy Sandbox [19] initiative to produce new privacy-oriented
web standards to remove third-party cookies and increase privacy
boundaries across websites.

With stateless fingerprinting, two opposed trends can be ob-
served; either increasing the fingerprint homogeneity among all
users or breaking its stability. The first solution is the one chosen
by the Tor browser [50] with the aim to blend users into the mass
without distinctive attributes. Apple also went this way with the Sa-
fari web browser, using it to reduce differences between users [17].
Oppositely, web extensions have been developing to break finger-
printing stability over time, such as Canvas Defender [45], adding
noise to the Canvas API calls between browsing sessions.

Another defense chosen by developers is to reduce the browser
APIs surface to minimize the information that can be retrieved
by origin. Web extensions, such as Canvas Blocker [33] or No-
Script [37], have been proposed with these goals in mind by reduc-
ing APIs for untrusted websites or deactivating JavaScript support
to avoid potential fingerprinting. Browsers have also incorporated
built-in protection against fingerprinting like Tor or Brave [8] block-
ing by default several APIs or JavaScript execution. Firefox has put
in place a by default Enhanced Tracking Protection [43] blocking
known trackers and fingerprint scripts based on a denylist to avoid
negatively impacting users’ browsing experience.

3 EMEWIDEVINE
As presented in subsection 2.2, Widevine is the most deployed DRM
system in the wild and is, therefore, heavily used by web-based con-
tent providers through the EME standard interface. In this setting,
Widevine specifies the content of the opaque messages in EME
for both license acquisition and renewal. Related works dissect
the Widevine CDM in Android environments [48, 49] and desktop

4

Your DRM Can Watch You Too

Widevine Protocol EME API Message Content

License Request generateRequest
Request ID
Content Key ID(s)
Client ID

License Response update

Request ID
Content Key(s)
TTLs
License Policy

Renewal Request MediaKeyMessageEvent
Request ID
Client ID†

License Policy

Renewal Response update
Request ID
Updated TTLs
License Policy

† Optional, presence defined by license policies.

Table 1: Content of Widevine Messages for License Acquisi-
tion and Renewal.

ones [25, 51]. In this section, we reverse engineer the EME instan-
tiation by Widevine regarding license acquisition and persistent
license. Our goal is not to explore all the underlying cryptographic
operations but to study the content of the opaque messages. In
addition, we examine the mechanisms put in place by Widevine to
address the various EME privacy concerns.

3.1 Reverse Engineering Settings
We conducted a two-stage approach to inspect Widevine-based
EME. The first settings are as follows: we leveraged some web
extensions that monitor all calls to EME API. Then, we requested
media from various content providers, and noticed that EME works
similarly for both paid services (e.g., Netflix and Disney+) and
experimental ones (e.g., Bitmovin). Finally, we examined all the
collected messages to determine which parts are Widevine-defined
and which are content provider-defined

As for the second settings, we developed a script calling EME
APIs, and hosted it on our web server. Our script implements the
workflow in Figure 1 with Widevine as the underlying DRM system.
To this end, we leveraged the integration platform made available
by Widevine for external developers to perform license acquisi-
tion/renewal [65]. Finally, we accessed our script, while varying
operating systems (i.e., Android, Windows, Linux, and macOS) and
browsers (e.g., Firefox, Chrome, Edge). This allows us to fine-tune
our understanding of different fields that keep unchanged or mutate
for a given execution environment.

3.2 Opaque Messages in Widevine Workflow
As studied in [48], the Widevine protocol defines four main opera-
tions: License/Renewal Requests and License/Renewal Responses.
Here, we investigate the correspondence of these operations with
the EME protocol. To acquire a media license, the EME user-agent
creates a session within the Widevine CDM to ask for a license re-
quest through the generateRequest EME API. The CDM requires
some Initialization Data to issue licenses, also stated as Content
Keys. These data include Content Key IDs associated with some
encrypted media. The corresponding request contains a Request
ID for associating subsequent responses, one or several Content

Attribute Description Example
Architecture CPU architecture arm64-v8a
Company Name Device manufacturer Google
Device Name Device codename panther
Product Name Product codename panther
Model Name Device model name Pixel 7
Platform Name Desktop OS name N/A
Application Name Calling Application org.mozilla.firefox

Package Cert Hash Hash of
Application Certificate p4ti...xmwQ=

Build Info Complete build name google/panther...
8940162..keys

CDM Version CDM protocol
version number 17.0.0

Security Patch Level
(SPL) OEM Crypto SPL 0

OEM Build Info OEM Crypto level
and build date

OEMCrypto Level3
Code May 20 2022
21:36:542

Table 2: Widevine Client Info.

Key IDs for the desired media, and a Client ID used for license
protection (further details are given in subsection 3.5). Using the
EME JavaScript API, the browser sends this request alongside its
signature to a license server, which will respond with the accord-
ing license response. This response contains the Content Keys for
media decryption, alongside key usage control data: Time-To-Live
(TTL) and license policies (refer to subsection 3.4). Using update,
the response is then forwarded to the CDM session, which is then
ready to decrypt the content.

During their lifetime, licenses can be renewed to extend license
TTLs. The CDM can generate a renewal request if the license policy
authorizes an extension to the expiration date. In Widevine, this
message includes the Request ID of the previous license request,
the related license policy, and, depending on this policy, the Client
ID of the device. The user-agent receives this request as an EME
event through the MediaKeyMessageEvent to send it to the corre-
sponding server. The license server responds with an updated TTL,
new license policy, and Request ID, all forwarded to the CDM using
the update call like a usual license response. A summary of the
content of opaque Widevine messages can be seen in Table 1.

3.3 Persistent Session
As explained in section 2.3.2, EME can define a persistent session
type. Once closed, a persistent session can be re-opened to retrieve
content keys without the need for a license acquisition phase. In
Widevine, the workflow does not differ for a temporary or persistent
session; the type is only mentioned when opening the session.
However, a persistent session becomes persistent only when a
response is processed through the update call and the associated
license policies permit it. Upon session closing, Widevine entirely
relies on the user-agent implementation to store a session blob from
the CDM. Here the user-agent is responsible for implementing a
per-origin policy as mentioned in EME using, for instance, service
storage for licenses inside dedicated databases. Sessions can then
be re-opened using their session ID through the load function.

5

Patat et al.

3.4 Widevine License Policy
License policies are included in several Widevine EME messages.
Their goal is to add management rules over content licenses. These
rules are defined on the license server side and are enforced by the
CDM. A license server can define such policy to control renewal
and persistent rights, the timing for renewal requests, license and
media playback duration, or rental duration for offline licenses.
Among these settings, a license server can ask the CDM to always
include the Client ID within license renewal requests. By leveraging
the Widevine Integration Platform, allowing a set of policies to be
defined by developers for integration testing, we reversed the inline
policies sent to the license server to identify various policy settings.
The resulting correlation between inline codes and policies can be
seen in Appendix A; note that these codes might not be exhaustive.

3.5 Widevine Client ID
In Widevine, the license request includes a Client ID being 40 times
the size of the request ID and key ID combined, representing al-
most the entire size of the request. The Client ID consists of the
Client Info and the Device RSA Public Key. These Client Info con-
tain various metadata providing information about device-specific
software versions and architectures. Among them, we can find
the CPU architecture, OS name, Original Equipment Manufacturer
(OEM) Crypto library version number, model name, or the com-
plete device build name. The complete list of Client Info attributes
can be seen in Table 2. Note that some attributes do not apply to
desktop implementations; for instance, desktop Client Info contain
the architecture, company, model, platform, and CDM version.

In addition to metadata, the Client ID includes a DRM certificate
chain composed of the device’s DRM public key, called the Device
RSA Public Key, signed up to Widevine root certificate. On request,
the Device RSA Public Key is used by the license server to encrypt
licenses based on a Widevine-specific crypto key ladder [48], while
its corresponding private key is used by the CDM to sign license
requests. The structure of the Client ID can be seen in Figure 2.

3.6 Privacy Protection Mechanisms: Privacy
Mode & VMP

The inner structure of the Client ID used during the license acquisi-
tion of Widevine has brought potential privacy issues correlated to
the ones raised by the EME standard. Indeed, the Client ID might
constitute a Distinctive Permanent Identifier, since it includes archi-
tecture, company, build, or even the certificate chain. As an example,
Table 2 shows the identifying characteristic of a Pixel 7.

To avoid the leakage of such data, Widevine has put in place the
Privacy Mode. This mode needs to be enabled by the user-agent
and forces the CDM to generate a privacy key to encrypt the Client
ID within requests between the license server and the CDM. A
privacy key is generated for each new request and used to encrypt
the Client ID using AES in CBC mode with random IV. This key,
which is a 128-bit AES key, is then encrypted by a Server Certificate,
sometimes referred to as Service Certificate, and placed within the
request. This server certificate is either provided by the default
CDM instance configuration or by the license server using the
EME API setServerCertificate. When provided by a server, its
authenticity is verified by a hard-coded public key within the CDM.

Device RSA
Public Key

Digital
Signature

verify

Provisioner
Public Key

Digital
Signature

verify

CA Public
Key Client InfoSerial

Number

Certificate Chain

Figure 2: Client ID Fields.

Closely related to the Privacy Mode, the Verified Media Path
(VMP) is used to verify the integrity of the CDM using crypto-
graphic signatures to enforce a protected video decryption and de-
coding chain. VMP implicitly mandates the usage of Privacy Mode
in desktop implementations [23]. VMP is supported in macOS and
Windows, but not Linux. Android systems rely on hardware pro-
tection for secure video decoding. VMP is, therefore, not necessary,
leaving the Privacy Mode activation to the user-agents.

4 USER-AGENTS IMPLEMENTATIONS OF
PRIVACY MECHANISMS FORWIDEVINE

4.1 Motivations and Research Questions
Recall that the main goal of our study is to gain insights into how
the opaque Widevine EME can lead to privacy leaks in practice. To
this end, we aim to answer the following high-level questions:

(1) Is there any gap between the recommendations in the EME
specifications and the browser implementations?

(2) What is the privacy impact of this gap?
In this section, we begin by refining the first question above

into three research questions (RQs) that guide our search for a
better understanding of Widevine EME in the wild. The opaque
nature of Widevine makes this task daunting since there is little
documentation related to this topic. Thus, we develop a systematic
approach to examine how browsers comply with the EME privacy
guidelines for Widevine. We detail the second question in section 5.

As mandated by EME, the usage of a DRM system shall not re-
veal any identifying information about the user device. Our reverse
engineering of the Widevine EME (refer to section 3) highlights the
primary sources of privacy leakage in Widevine: (1) the Client ID
that contains identifying or unique data per device, and (2) the data
stored for persistent sessions, since they might behave as cookies.
While Widevine has grown to be a multi-billion dollar industry
and is basically available on every platform, the Widevine EME
has never been subjected to a comprehensive privacy assessment.
Accordingly, our study aims to shed light on the less-understood
privacy impacts of Widevine in the context of EME implementa-
tions. We present our study that answers the following questions
with a methodology involving various empirical evidence and ob-
servations. Indeed, we evaluated nine mobile browsers and six of
their desktop counterparts, including both mainstream and privacy-
focused ones. With our study, we aim to answer the following
Research Questions that arise:

• RQ1: Do browsers activate the Privacy Mode of Widevine
by default for license acquisitions?

• RQ2: Does the Privacy Mode protect all occurrences of the
Client ID in the Widevine workflow?

• RQ3: How does the data related to Persistent Sessions be-
have like cookies?

6

Your DRM Can Watch You Too

4.2 Browser Selection
To investigate the privacy mechanisms of Widevine on desktops
and Android mobiles, we selected popular web browsers based on
their market share, as well as privacy-focused ones according to
the user base and download number. The exact version for each
selected browser can be seen in Appendix B.

On desktop, we opt for Chrome, Edge, Firefox, and Opera for
mainstream browsers [56]. For privacy-oriented ones, we got Brave
and Tor with respectively 50M and 2.5M monthly users [7, 59].

On Android, we used the Android versions of Chrome, Edge, Fire-
fox, and Opera, to which we added the Samsung Internet Browser to
represent the majority of users [57]. For privacy-focus ones, claim-
ing enhanced features against user tracking and fingerprinting, we
inspected Ghostery and Firefox Focus with 1M+ and 10M+ down-
loads on the Google Play Store [21, 22] respectively. In addition, we
included the mobile apps of Brave and Tor.

Note that for this study, Safari is excluded since the Widevine
DRM is not supported, and replaced when on macOS by Apple own
key system FairPlay, being out-of-scope of this study. We do not
consider iOS, since Widevine is not supported on it.

4.3 Experimental Design
4.3.1 Browsers Setup. During our experimentation, we categorized
desktop and Android mobile browsers regarding their underlying
implementations into two main families: Chromium-based and
Firefox-based. This distinction allowed us to establish similarities
in the results. In addition, we tested desktop browsers both with
VMP-compatible OS (macOS and Windows) and non-VMP, such as
Linux systems, for Privacy Mode enforcement testing. Regarding
browser configuration, we tested the default settings and privacy-
enhancing features when available.

4.3.2 RQ1. The Privacy Mode is defined to protect the Client ID.
Some might reasonably assume that the Widevine CDM enforces
it by default regardless of the underlying browsers or operating
systems. Thus, the Client ID is always encrypted, and never appears
in clear while being transferred. To challenge this claim, we perform
both static and dynamic analyses. First, we rely on our reverse
engineering settings (refer to subsection 3.1) to ask Widevine to
start the license acquisition protocol and intercept the generated
license request. Note that we keep the default configurations while
making the request. We consider that Privacy Mode is not enabled
by default if the obtained Client ID is not encrypted. Second, we
statically inspect browsers’ binaries and source code when available
to search for any Widevine Privacy Mode related calls. In particular,
Android allows explicit activation of the Privacy Mode through its
DRM API. We look for these corresponding calls. To the best of our
knowledge, there is no equivalent call on desktops.

4.3.3 RQ2. The Client ID is present in the license request, which is
encrypted when the Privacy Mode is enabled. Based on Table 1, the
Client ID can also be present in the renewal request. Therefore, we
answer our question bymakingWidevine generate license renewals
to look into their content for the Client ID. Unlike license requests,
EME does not provide a public API to create renewal requests.
Indeed, anticipating the expiration of a key, the Widevine CDM
triggers an event including the renewal request to be forwarded to

Browsers RQ1 RQ2 RQ3
Desktop VMP non-VMP VMP non-VMP

Chromium Family
Chrome # # #
Edge # # #
Opera # # #
Brave # # # N/A

Firefox Family
Firefox # # # N/A
Tor N/A N/A N/A N/A N/A

Android Mobile
Chromium Family

Chrome
Samsung #
Edge
Opera #
Brave N/A N/A N/A

Firefox Family
Firefox # # N/A
Firefox Focus # # N/A
Ghostery # # N/A
Tor N/A N/A N/A

 EME compliant.
Do not respect EME privacy recommendations.

Table 3: Results for Implementation Questions per Browsers.

the license server. The problem is that the Widevine test license
server in our experimentation settings provides licenses that do
not issue any renewal event. In order to overcome this limitation,
we leveraged once again the Widevine Integration Platform. Recall
that for testing purposes, this platform allows us to define license
policies through an argument within the license server URL. Thus,
we specify the policies so that a renewal request is generated a
few seconds after loading the related license. We also mandate
the optional Client ID to be included in this request. Finally, we
automate our script to recover the license and renewal requests
from the EME workflow that is supported by numerous browsers
in various environments. This question evaluates the adequacy of
Privacy Mode implementations in protecting the Client ID.

4.3.4 RQ3. To address this question, we need to open persistent
sessions by the Widevine CDM through custom license policies
allowing offline license storage. Here, we verified three properties
related to cookies. First, we check whether persistent sessions can
be opened even when first-party cookies are blocked. Second, we
attempt to re-open the closed persistent sessions from different ori-
gins and browsing profiles. Third, we study the impact of browsers
deleting cookies and site data on the stored data. On mobiles, we
went further and deleted all the data via the Android app settings.
Ideally, to follow EME recommendations, a persistent session is
bound to an origin, only supported when first-party cookies are
allowed, and cannot be re-opened when cookies are cleared.

4.4 Results
Here, we cover the findings obtained while following our method-
ology to answer our three research questions. A summary can be
found in Table 3. Tor and Brave mobile do not support EME, and
therefore wewere not able to perform any relevant experimentation
on them. Thus, they are noted as N/A in our table.

7

Patat et al.

4.4.1 RQ1. As presented in Table 3, we can see that the Privacy
Mode and VMP are strongly bound to each other on desktop. Indeed,
the Privacy Mode is enabled whenever the VMP is available on the
underlying operating system. Thus, Privacy Mode is activated on
Windows and macOS regardless of the browser used. In contrast,
no browser protects the Client ID in license requests on Linux
where VMP is not yet supported, as indicated by Widevine [23]. We
conclude that the Privacy Mode does only depend on the Widevine
CDM that checks VMP before enforcement. No further action is
required by browsers, explaining their identical behaviors.

As for mobiles, we find that browsers behave differently, and
can be categorized into two families: Chromium and Firefox. The
Chromium family includes Chrome (of course), Samsung Internet
Browser, Edge, and Opera. As for the Firefox family, it includes Fire-
fox, Firefox Focus, and Ghostery. Our experiments show the Client
ID in clear for the Firefox family, implying no Privacy Mode. Only
encrypted license requests were observed within the Chromium
family. We push our analysis further to understand the rationale
behind this divergence. Indeed, we reverse engineer browsers’ apks
with Jadx [53] to identify any calls to the MediaDRM class, which is
the Android component communicating with the Widevine CDM.
In particular, we spot the use of the setPropertyString method
with the parameters (’PrivacyMode’, ’enable’) for the Privacy
Mode. Enforcing our claims, we encounter the call to this set-
PropertyStringmethod only in the Chromium family. It is almost
ironic that privacy-centered browsers, such as Firefox Focus and
Ghostery, do not enable the Privacy Mode, thereby leaking sensitive
and identifying data through the EME API.

4.4.2 RQ2. In this question, our methodology is to continue the
EME workflow started previously as we force the event renewal
following the license request generation in RQ1. Then, we inves-
tigate whether the Client ID is encrypted in the renewal request.
Our evaluations complete our observations in RQ1. Indeed, we
first observe that whenever the Client ID is not protected in the
license request, it always appears in clear within renewal requests
regardless of the execution environments. This concerns Linux sys-
tems on desktop and the Firefox family on mobile, and comes in
accordance with the RQ1 findings. Second, we explore browsers on
VMP-compatible systems. Once again, we notice that all browsers
behave in the same way, strongly implying that the observed be-
havior is implemented by the CDM. Here, we witness the absence
of encryption regarding the Client ID within the renewal request.
Third, we analyze the mobile Chromium family. Our tests conclude
that the Privacy Mode is also applied to the renewal event; the
property set using the MediaDRM class enforces the Privacy Mode
on all Client ID occurrences.

4.4.3 RQ3. Unlike the Privacy Mode, browsers differ greatly re-
garding persistent sessions. Recall that we study three properties:
(1) preventing cross-origin sessions, (2) activation when blocking
first-party cookies, and (3) availability after wiping cookies and site
data. Here, we needed to exclude some browsers, since they do not
provide any support for persistent sessions: the Firefox family on
mobile as well as Firefox and Brave on desktop.

As for the examined properties, all browsers satisfy the first
property, namely that sessions are only accessible by the origin,
creating them from the same browsing profile. This implies that

no malicious website can leverage sessions from other valid OTTs.
Regarding the second property, we find that almost all browsers
prevent persistent sessions when first-party cookies are blocked.
The only exceptions are the mobile Opera and the Samsung Internet
Browser. The same trend carries on for the third property. Indeed,
only mobile Opera and the Samsung Internet Browser do not re-
move the persistent sessions after deleting cookies and site data,
here note that erasing cookies cannot be done without erasing also
site data from the browser settings. In fact, following our methodol-
ogy, sessions can still be re-opened after wiping data for these two
browsers. However, persistent sessions are indeed removed when
clearing application data from the Android app settings.

4.5 Implications and Insights
Nowadays, the EME standard is supported by almost all browsers [9],
implying that any privacy leakage might impact a large user base,
represented by our browser selection explained in subsection 5.2.
TheW3C has sought to reassure the web community by minimizing
such a risk. Tim Berners-Lee stated that “the EME system can sand-
box the DRM code to limit the damage it can do to the users privacy”.
In that sense, the EME specification includes various guidelines
to enforce user privacy. Our experiments show that these guide-
lines are not technically enforced in practice. Indeed, the opaque
nature of EME makes it hard to assess any privacy properties re-
lated to the use of a given proprietary module. More importantly,
EME states that “user-agents must take responsibility for providing
users with adequate control over their own privacy”, while allowing
DRM providers to define their own format key contents that might
involve distinguishing identifiers.

The EME specification (refer to section 11.4.2 of [11]) presents
their recommendations for a privacy-friendly EME implementation.
Of particular interest, we mention two recommendations: (1) en-
crypt distinctive identifiers, and (2) treat key systems stored data
like cookies or web storage. However, we argue that these consid-
erations lack binding requirements and are insufficiently concrete.
In that regard, users do not have any guarantee that their privacy
is safeguarded when using EME with proprietary DRM modules.

In our paper, we empirically challenge these privacy claims by
scrutinizing one of the most popular real-world functioning of
EME, namely Widevine. In our paper, we provide, to the best of
our knowledge, the first conformance test verifying EME privacy
recommendations for Widevine EME. Supported by our experi-
mental setup and reverse engineering, our findings show a gap
between these recommendations and deployed implementations of
Widevine EME, implying a rather concerning scenario.

First of all, we find that all desktop browsers fail to encrypt
the Client ID, which represents distinctive characteristics in the
Widevine protocol. Indeed, the Widevine CDM does not enable
the Privacy Mode whenever VMP is not supported (e.g., Linux).
Surprisingly, the CDM does not apply the Privacy Mode on re-
newal requests even when VMP is supported. On mobiles, privacy
browsers do not encrypt the Client ID, although the Android plat-
form provides all the necessary API for this purpose. Only the
mobile Chromium family never reveals the Client ID in clear. As
for the persistent sessions, the desktop browsers perform better,

8

Your DRM Can Watch You Too

since the related data cannot be stored when the cookies are not al-
lowed, and are always deleted when cookies are cleared. On mobile,
the Chromium family acts differently. Chrome and Edge operate
likewise their desktop counterparts. However, Opera and Samsung
do not treat the stored data like cookies or web storage. For in-
stance, there is no way to delete persistent sessions related data
other than wiping all browser data from the Android app configu-
rations. We notice that persistent sessions are not supported on all
EME browsers: Firefox and Brave desktop do not offer such support.
Overall, when supporting persistent sessions, browsers generally
tend to comply with the EME specifications by managing related
stored data as cookies. Otherwise, such data can be leveraged to
track users having no easy mechanism to prevent their storage or
even delete them.

5 PRIVACY IMPLICATIONS
Our findings in section 4 point to a gap between EME and browsers
in terms of privacy. In our analysis, we focus on the Client ID,
aka distinctive identifier, and persistent sessions, namely session-
related stored data. We continue our study to answer our second
question: what is the privacy impact of this gap? Here, we refine our
question to inspect device fingerprinting and user tracking. First, we
examine whether the Client ID certificate chain constitutes a device
fingerprint uniquely identifying the device starting EME. Second,
we consider the Client Info attributes (refer to Table 2) and compare
it with the User-Agent HTTP Header (UA) provided by browsers.
Third, We discuss how persistent sessions can be leveraged for
user tracking even when cookies are blocked or cleared. Below,
we provide answers about each investigation. However, we start
by reviewing the permissions required to perform the described
actions; namely, we probe the permissions a website needs to call
the EME API. We also present our experiment setup in a second
time.

5.1 Permissions
Our methodology is simple: we view some DRM-protected content
on different browsers’ fresh installation, and note whether users are
asked to explicitly validate any related permission. Again, the Fire-
fox and Chromium families behave differently. In the Chromium
family, content protection service is allowed by default for all ori-
gins, leaving the user unaware of EME access by the web page.
Regarding the Firefox family, permission is explicitly required for
DRM access, but differs from desktop and mobile versions. On An-
droid, permission is asked once per origin trying to access the EME
API, without key systems distinction, while for desktop browsers,
this permission is granted once for all origins and key systems. This
implies that a desktop user granting DRM access to a legitimate
OTT platform is also allowing illegitimate web pages to access EME.
Firefox asks for permission by displaying the following message:
Allow <URL> to play DRM-controlled content? With two buttons,
“Don’t allow” and “Allow” with “Allow” pre-selected.

5.2 Experimental Setup
To explore our question, we deployed our tests on multiple devices
both for desktop and Android. Note that for both experiment setups,
no real users were involved avoiding user privacy risks.

On Desktop. For our population, we used 159,923 devices with
Windows 10/11, macOS Big Sur and Linux. The majority comes
from Windows and Mac VMs of BrowserStack1, added to our own
device pool of Windows and Linux devices for comparison purpose
between real and emulated devices. To inspect Widevine Client IDs
and persistent sessions, we automated navigation to our custom site
in which we open persistent sessions when available, and perform
license renewal to obtain clear Client IDs using custom license
policies as described in subsection 4.3.
On Android. We used 317 physical devices from BrowserStack
and our own device pool, as well as 18,101 emulated ones, to col-
lect Client IDs. We developed an Android app that communicates
with the Widevine CDM, as a browser would do, to generate clear
license requests and gather Client IDs in a fully automated way.
For emulated Android devices, we used Google Pixel 1 to 6 from
Android Studio [2] with factory setting using Android version from
8.1 up to 13.
Emulated devices. As mentioned in [10], using emulated devices
for web tracking measurement could have an impact on results
relevance. Obviously, our created population cannot be used to rep-
resent a real world community; for instance, specific phone models
and Android versions might be over-represented. However, we took
great care to avoid that our results would be biased regarding the
uniqueness of the collected identifiers. Indeed, the Client ID con-
tains the RSA public key of the key pairs sent by the provisioning
server. As pointed out in [49], the provisioning server generates a
distinct Client ID for each Device ID. Provisioning with the same
Device ID results in the same Client ID for the same app. Therefore,
for license individualization on physical devices, Widevine defines
a factory provisioning process to enforce the uniqueness of Device
ID on Android devices. For our experimental settings, we built our
population of Android emulated devices, so that each emulator has
a unique Device ID, which is the default settings of the Android
SDK tools. As for Desktop, the Client ID solely depends on the
CDM version, regardless of the execution environment.

5.3 Client ID Certificate Fingerprint
In subsection 3.5, findings from our reverse engineering strongly
indicate that the Client ID contains multiple distinctive permanent
identifiers. Indeed, its inner Client Info contains device-specific
attributes related to hardware instances and software versions for
desktop and Android. In addition, it contains an RSA certificate
chain used to protect the transmitted licenses. On the one hand,
attributes can help classify devices into subgroups. On the other
hand, the Widevine certificate chain might be enough to point out
an exact device. The nature of this chain depends on the platform as
explained above. On desktop (i.e., Linux, macOS, andWindows), the
certificate chain is hard-coded within the CDM. Due to this design,
all desktop Widevine CDMs share the same DRM certificate chain
for a given CDM version. Thus, it does not enable fingerprinting
on desktop. On Android devices, a Widevine-specific factory Root-
of-Trust (RoT), called the Keybox [48, 64], is used to perform a
provisioning phase requesting a certificate. This phase occurs once
per app. The received certificate chain seems specific per device (or
more precisely, Device ID).

1available on the platform https://www.browserstack.com

9

https://www.browserstack.com

Patat et al.

Below, we conduct more experiments to explore two important
features: uniqueness and stability of the Client ID as a potential
fingerprint. We only consider the certificate chain part of the Client
ID.

5.3.1 Uniqueness. The purpose of a fingerprint is to completely
characterize a specific device. Therefore, an important related fea-
ture is uniqueness: to what extent can we affirm that two license
requests come from the same device if they contain the same chain?
Here, we performed a clean installation and factory reset of devices
for each test to evaluate certificate uniqueness in a multiple devices,
single provisioning approach using our EME website and custom
Android app as explained in subsection 5.2.

Our results are twofold. First, as expected, the Client ID is not
unique on desktop environments; we only observed two different
certificate serial numbers during our tests due to different CDM
versions available between Windows and macOS/Linux. Second,
the certificate chain is unique for Android devices. Indeed, We can
precisely distinguish all mobile devices in the test set by extracting
the certificate serial numbers of the gathered license requests. This
implies that an Android device can be tracked by any web origin
using the EME API when the Client ID is in clear, which is the case
for all browsers among the Firefox family as shown in subsection 4.4.
We agree that our experiments do not constitute a definite proof
of perfect uniqueness for an arbitrary device population, since this
would have required amuch larger test pool. Nevertheless, we argue
that the technical details presented in [48] regarding provisioning
make us believe that this fingerprint is unique by design. In fact,
the Client ID contains the RSA public key of the key pairs sent by
the provisioning server. To enforce individualization, the key pairs
are not shared among other devices, confirming our findings.

5.3.2 Stability. Recall that a unique fingerprint is not enough to
track users. The leveraged fingerprint should resist changing with
time in order to allow long-term tracking. For instance, a software-
based fingerprint changes its value when the underlying software
is updated, in contrast with a hardware-based one that is harder
to collect. Here, we show that our fingerprint gets the best of two
worlds: it is easy to collect (a few EME calls without explicit permis-
sions) and stable over time. Here, we tested the stability of Client
ID certificate with a single device, multiple provisioning approach
by removing the certificate instance to force new provisioning. On
fresh settings, the CDM asks for certificate provisioning to create a
license request. For desktop, forcing this behavior translates into
removing the CDM library from the browser repository, while on
Android, removing the stored certificate from the OS file system us-
ing privileged user rights, namely the media user level. We installed
any CDM update when available, but we did not systematically
attempt to install new applications for each provisioning.

Similar to the uniqueness results, in desktop implementations,
the certificate of the Client ID depends on the version of the CDM.
During Widevine updates, the certificate serial number changes for
all implementations, meaning stability on a version lifetime, which
is 6 months in average. On Android, we adopted two longitudinal
approaches: one device over two years, and multiple devices over
one month. In both approaches, we removed the certificate to force
triggering a new provisioning phase. In the former approach, we
recovered the Client ID and removed the certificate at different

intervals: one year, 6 months and 3 months. As for the latter, the
deleting intervals are shorter: one week, one day, and one hour.
After removal, we always get the same certificate, which strongly
implies the stability of the Client ID.

5.3.3 Comparative Analyses. In order to put our results in per-
spective, we compare ourselves to three of the most large-scale
studies of device fingerprinting on the web: Panopticlick [13], AmI-
Unique [35], and Hiding in the Crowd [18]. These works inspect the
uniqueness of fingerprints on mobile and desktop devices by gath-
ering various attributes available through HTTP headers, plugins,
and web APIs. Panopticlick, with 470,161 desktops, and AmIUnique,
with 105,829 and 13,105 desktop and mobile devices, have shown a
high proportion of uniqueness among gathered information with
at least 81% up to 94,2% of unique fingerprints.

Later, Gómez-Boix et al. pointed out, with Hiding in the Crowd,
that these results might be biased due to the tested population
being privacy-aware users conscious of the collected values by
the experiments. By fingerprinting 1,816,776 desktops and 251,166
mobiles, they found uniqueness of up to 35,7% at best.

For our tests, we took the same order of magnitude for the num-
ber of devices as AmIUnique. Unlike AmIUnique, our experimental
settings consist mainly of emulated devices. As explained previ-
ously, we took great attention to build our population, so that the
Widevine provisioning ecosystem would process our requests simi-
larly as it does to physical devices. While never unique for desktops,
Client IDs of mobile devices offer a distinctive identifier with maxi-
mum uniqueness and stability through a JavaScript API available
by any origin.

5.4 Client Info as User-Agent Header
As shown subsection 3.5 and Figure 2, the Client ID includes not
only the fingerprint certificate chain, but also multiple other at-
tributes within the Client Info structure. Here, we investigate the
privacy leakage of the latter. The Client Info attributes include the
CPU architecture, OS name, device name, and the complete device
build name. Similar to the User-Agent HTTP Header (UA), these
attributes can build a characteristic string for servers to identify the
operating system, vendor, and version of the requesting browser or
CDM. This is particularly interesting to get an augmented UA in
which fields cannot be modified by some user-controlled browser
configurations. Recall that the term user-agent in EME refers to
the software implementing the EME API (i.e., a browser). To avoid
confusion in this subsection, we will use UA to refer to the browser
User-Agent HTTP Header.

Interestingly, the UA and the Client Info contain redundant infor-
mation, such as the platform and architecture for both desktop and
Android, or even the browser package certificate hash for mobile
devices. Based on the UA structure [39], this redundant data covers
most of the UA:

UA: Mozilla /5.0 (<system-information>)
<platform > (<platform -details >)

<extensions>
e.g.: Mozilla /5.0 (Linux; Android 13; Pixel 4a)

AppleWebKit /537.36 (KHTML , like Gecko)

Chrome/113.0.0.0 Mobile Safari/537.36

10

Your DRM Can Watch You Too

The resulted redundancy can be leveraged to detect browser
instances attempting to hide or tamper with the UA in order to
access specific resources (e.g., the mobile version of a website). This
is possible since any UA modification, by spoofing for instance,
has no impact on the Client Info attributes returned by Widevine.
Therefore, Client Info can play the role of a never-lying UA. The
reliability of Client Info is appealing for services relying on UA
as a second factor authentication [36]: lying users can be detected
whenever the purported UA conflicts with the device class indicated
by Client Info. Finally, minimizing the UA sent to origins is set as a
goal for various privacy efforts, such as the Google Privacy Sandbox
User-Agent Reduction proposal [20]. The fact that some rich UA
can be built from Widevine might limit the benefit of these current
efforts.

5.4.1 Uniqueness. As explained in subsection 5.2, our dataset of
mostly emulated devices cannot be relied upon to calculate the
entropy of Client Info for a real-world population. Nevertheless, we
can still provide some insights from our collected data. On Android,
the data from Client Info can point to an exact device model and
build version using the Build Info string (refer to the example of
Pixel 7 in Table 2). On desktop, although with fewer fields than on
Android, Client Info can still narrow down devices to architecture
and OS subgroups, making entropy close to a standard browser UA
regarding system information, which was studied in [18]. In the
Chromium project, the related Widevine implementation indicates
eight possible values2: Windows (x86, x64, and arm64), Linux (x64,
arm, and arm64) and MacOS (x64, and arm64). It is important to
note that Client Info is always obtained with the certificate chain
of the Client ID, making its uniqueness less significant, especially
on Android.

5.4.2 Stability. The Client Info stability depends mainly on the
version of the Widevine CDM. On desktop, the available attributes
are the OS and architecture being fixed. This leads to strong stability
over time for desktop environment. On Android, the Client Info
is influenced by the device build version that may change with
the Widevine version, patch level, and build info, which makes
the Client Info stability dependent on both Android and Widevine
updates. The frequency of these updates depend heavily on mobile
manufacturers; varying from monthly for Google Pixel phones and
never for outdated devices no longer receiving any update. It is
worth noting that stability is less relevant for Client Info when
it is used to collect identifying data about devices, rather than
fingerprinting.

5.5 Persistent Session Tracking
Recall that all browsers from the Chromium family on Android and
desktops support persistent sessions in Widevine, except for Brave.
This support allows any web origin with EME API access to create
a persistent session and collects its session ID for future usage.
Persistent session IDs are random 16-byte identifiers represented
as a hex string. When a client visits a website, it can be asked to
open a previous session with persistent type using its ID; if the
operation succeeds, this means that the client has already visited

2https://chromium.googlesource.com/chromium/src/+/HEAD/third_party/widevine/
cdm/widevine.gni#23

the website before. Thus, any website can check for the presence
of a given session ID, revealing previous visitors. The approach is
straightforward: attempt to open all the noted session IDs until
a success occurs. This is possible because the number of failures
is not limited. The scalability of this approach can be improved
by breaking down the number of tested session IDs by device cat-
egorization. The privacy impact of re-invoking prior sessions is
to achieve surreptitious cross-session tracking on the same origin
even when cookies are blocked and site data are wiped (Android
Opera and Samsung). For example, this allows an attacker to link
user activity on the same site.

Based on our findings, persistent sessions are treated the same
way as cookie data within browsers as mandated by EME, except for
the mobile browsers Opera and Samsung Internet Browser. Oddly
enough, they are not displayed in any Storage User Interface within
navigator settings. We argue that this might mislead some users
unaware of this mechanism storing cookie-like data. As a limitation
compared to Client ID fingerprinting, this tracking mechanism
is stateful. User tracking through persistent sessions requires the
origin to keep track of session IDs due to the lack of API that lists
stored sessions within the browser file system.

6 EME USER TRACKING SCRIPTS
In sections 4 and 5, we discussed how these EME misimplementa-
tions could be exploited to track users either by a stateful cookie-like
token or by a unique fingerprint with strong stability. In this section,
we detail how a curious website could use these mechanisms to
track users over the Internet based on our threat model described
in section 1. In particular, they set renewal request intervals, force
Client ID within EME renewal messages, or even open persistent
sessions. To do so, we developed a tool in JavaScript code that
sends the Client ID of a user-agent to a malicious server and opens
persistent sessions when supported. The script is available on our
GitHub 3 for reproducibility purposes. More importantly, our tool
can test the conformance of implementations with EME privacy
concerns. In the following, we present our workflow depicted in
Figure 3.

6.1 EME Track
Like our experiment settings, we leverage the Widevine staging
license server with custom Widevine policies support to operate.

From Figure 3, in steps 1 and 2 , a user visits a curious origin
and receives the EME Track script. The user-agent starts executing
it 3 , and is asked to instantiate its underlying Widevine CDM
with a default configuration with persistent license type support.
If not supported, temporary type is used for sessions 4 . Here, we
assume that users enable EME-related permissions (according to
subsection 5.1).

In step 5 , initialization data are provided to Widevine through
the generateRequest API. These data are related to Widevine pre-
encrypted media, available with the staging license server. When
the user-agent is in Privacy Mode by default, a service certificate
is required and provided by the script to the CDM. Here, this cer-
tificate corresponds to the license.widevine.com domain. Once
processed by the CDM, the initialization data are used to create
3https://github.com/Avalonswanderer/widevine_eme_fingerprinting

11

https://chromium.googlesource.com/chromium/src/+/HEAD/third_party/widevine/cdm/widevine.gni#23
https://chromium.googlesource.com/chromium/src/+/HEAD/third_party/widevine/cdm/widevine.gni#23
https://github.com/Avalonswanderer/widevine_eme_fingerprinting

Patat et al.

5

License Server EME & CDM

3

Curious Website

1 Access website

2 Send EME Track
Script

Start script

4 Request Widevine access and open a persistent
session, fallback to temporary type if not available

Generate License Request LR

6 If LR in clear: send LR, session
type, and session ID7 Send LR with custom policies

8 Generate license response with renewal policies

9 Send license response

10
Process response and generate Renewal Request
RR

11 If LR was not in clear: send RR,
session type, and session ID

12 Close session

Figure 3: EMEWidevine Fingerprint Flow.

a license request, noted LR. If LR is in clear, we forward it in 6 ,
with its session ID and type, to the curious website. The workflow
continues from here to complete a standard license provisioning by
sending LR to the Widevine license server. While doing so, custom
Widevine policies are used (see subsection 3.4), requiring persis-
tent rights, renewable license, and renewal attempts within a few
seconds for the demanded license.

Steps 8 and 9 correspond to the license server response with
appropriate content key(s) and rights. The user-agent provides the
response to the CDM in step 10, allowing the session to be saved on
the file system if persistent. Within a few seconds, license policies
force theWidevine CDM to generate a renewal request RR including
the Client ID of the device. If the previous LR Client ID was not in
clear text, the user-agent sends RR, session ID, and session type to
the curious site in step 11 before closing the session in 12.

With either LR or RR in clear text, a malicious website can gather
unique fingerprints with device-specific attributes for mobile de-
vices and a never-lying UA for desktop implementations. With the
support of persistent licenses, the received session ID can be used
to track users if requests are not distinctive, as shown below.

6.2 Persistent Session Re-invocation
With our EME Track script, an origin can gather Client IDs in clear
when available from any user-agent and create persistent sessions
when supported within the browser file system. Here we describe
the workflow of a curious website tracking users based on their
stored Widevine persistent sessions.

At first, a user-agent visits a curious website and receives a track-
ing script starting to be executed. A Widevine access is demanded
using requestMediaKeySystemAccesswith persistent license sup-
port configuration. At this point, either by hard-coded values within
the script or by receiving it through the origin, previously gathered
session IDs are provided by the curious website to the CDM in an
attempt to load an already existing session. On return, the script
provides the result of this operation to the curious website. In the
event of user-agent revisiting the website, a persistent session can
be opened, allowing the origin to identify the user.

7 DISCUSSION
7.1 Privacy Leakage in Practice
The adoption of EME byW3C has been a controversial decision [26].
Much of the raised debate was related to the opaque design of EME
in which no technical guarantees can be given about the security
and privacy properties of an EME-compliant system. It is true that,
technically, like any software, EME has the potential to be privacy-
invasive and to have possible security issues. However, we have
shown that the controversy is well-founded due to the privacy
concerns inherent in uniquely identifying keys in Widevine.

The answers to our two high-level questions are: (1) yes, there
is a gap between the promised guarantees by EME and the actual
Widevine implementations, (2) and this leaks private information,
allowing long-term user tracking. Indeed, the Client ID is not ap-
propriately protected and can be recovered in most browsers. This
Client ID allows not only building an augmented UA on which
browsers have no control, but also a stable and unique fingerprint
on mobile environments. Moreover, EME might store some persis-
tent offline data, that can be invoked subsequently to track visitors.
All browsers mislead users by not displaying these EME data in any
Storage User Interface. Some browsers do not even include them
when wiping site data. More importantly, we show how easy it is to
leverage EME to leak data, especially since browsers mostly adopt
calling EME “without annoying and confusing consent prompts” [61].

7.2 OTTs as EME Actors
Section 3 and Table 1 show the content of EME messages when
used with Widevine. During our tests, we observed EME workflow
from various legitimate OTTs: Amazon Prime Video, Netflix, and
Disney+. We found out that in addition to these arguments, Netflix
and Disney+ were using an OTT-specific field within license re-
sponse and renewal request/response. OTTs can leverage their own
license servers to use this field and store information within the
client CDM as they please to, for instance, manage communication
between client and server statelessly. However, this particular usage
changes the EME compliance chain by introducing another actor:
OTTs themselves. With such a field, another opaque layer is added
to EME messages increasing privacy risks in the event of identi-
fying data. The complexity of involving OTTs chosen data within
EME-specific messages is illustrated with Netflix in Appendix C.

7.3 License Server as Big Brother
The EME standard specifies that CDM “implementations should
avoid use of distinctive identifiers”, otherwise, “the CDM vendor may
be able to track the activity of the user”. Despite this recommendation,
Widevine defines and shares the Client ID, which encompasses some
fingerprinting properties. As explained in subsection 3.6, Widevine
attempts to limit the damage by introducing the Privacy Mode in
which, if enabled, the Client ID gets encrypted with a public key
provided by the license server. Recall that OTTs can provide their
own Widevine-signed server certificate using setServerCertifi-
cate. Consequently, these OTTs can get the Client ID of any device,
with considerable privacy implications on Android mobiles due to
a unique and stable fingerprint.

12

Your DRM Can Watch You Too

Somemight argue that sharing such a distinctive identifier is vital
for DRM functioning to bound licenses to some individualization
process. However, this violates users’ privacy, given the fact that
all of this is done without users’ consent in an opaque way. We
are concerned that Widevine and OTTs, via their license servers,
are able to obtain identifying information on any device. Indeed,
EME states that “user-agents must take responsibility for providing
users with adequate control over their own privacy”. Our paper
shows that such a statement about EME respecting user privacy
is misleading and is contradicted by the real-world operating of
Widevine. Browsers have no choice but to share the Client ID
with license servers whenever EME is enabled, breaking privacy
in numerous contexts. We appeal that it becomes compelling for
proprietary DRM systems to take responsibility and transparently
enforce all EME design suggestions, especially for privacy and
security.

7.4 Responsible Disclosure
Our findings have been timely communicated to all concerned par-
ties following responsible disclosure processes. Mozilla Firefox was
quite responsive, and we got rewarded via their bug bounty pro-
gram. The Mozilla EME team investigated our findings and released
a patch to address the identified privacy issues and acknowledged
us in the Mozilla Hall of Fame. Regarding Client ID being in clear
in renewal requests, we first contacted the EME Chrome team that
reviewed our disclosure report and showed concerns about its pri-
vacy consequence, namely the EME user-agent. They confirmed
our intuition that the problem is caused by the Widevine CDM.
Therefore, we filed a Widevine bug report about missing Privacy
Mode on VMP systems, and are still in communication with them.

8 RELATEDWORK
8.1 Reverse-Engineering Widevine
Widevine provides a proprietary DRM solution. Despite its wide-
spread, there is not much literature studying Widevine security.
This lack of public analysis is due to the DMCA 1201 clause that
makes it illegal to study DRM systems. Fortunately, since 2018,
security researchers can freely investigate and publish security
flaws when acting with “good intentions”. Patat et al. [48] explored
the undocumented Widevine protocol and detailed its different
cryptographic components on Android. Zhao [67] investigated and
broke the TEE-based Android Widevine. Both works give deep
insights on Widevine design, but its W3C EME integration was
left unstudied. In this paper, we inspect the EME messages when
Widevine-protected content is being played over a browser to in-
vestigate privacy implication.

8.2 Privacy and W3C APIs
One of the missions of W3C is to design and standardize new APIs
to implement new features over the web. In this mission, W3C
strives for interoperability between service providers operating
with different message formats. Thus, the APIs are designed to work
smoothly with industrial-controlled messages that might contain
identifying information breaking privacy. The W3C acknowledges
this risk, highlighting the necessity to create privacy-safe features.

Certain W3C APIs have already been abused to break privacy.
Indeed, Olejnik et al. [47] investigated the privacy impact of the
HTML5 Battery Status API defined by W3C [34]. They observed a
possible fingerprint by collecting the battery charge level and charg-
ing timing. Moreover, Doty et al. [12] studied the W3C Geolocation
API used to transfer the device location information to the origin in
an opaque way and found possible abusive usage. Our work takes
a step in this direction, and provides insights into privacy leakage
caused by opaque EME implementations despite all the privacy
concerns raised in the recommendations.

8.3 Fingerprinting through DRM Systems
Our work does not constitute the first work leveraging DRM for
device fingerprinting. Indeed, in 2020, the FingerprintJs Android
project [14] (written in Kotlin) was released to collect numerous
device identifiers that are available to an Android app, including
a Widevine identifier called Device ID. This identifier is accessible
through the MediaDRM API, and is unique per device [48], allowing
device fingerprinting. Our work differs from this project in two
ways. First, the used Device ID of Widevine is uniquely accessible
from the Android MediaDRM API with getPropertyByteArray, a
method not reachable from the browser JS APIs, thereby requiring
higher privileges (e.g., app-level instead of browser enclaves). Sec-
ond, this ID is not linked to the certification chain but is directly
included in the Widevine Keybox RoT only available on Android.
Therefore, this technique does not extend to desktop.

In 2020, the Reddit website asked for DRM access to list all the
available key systems proposed by the user-agent [54]. This method
can be used to add additional attributes to other fingerprinting
values. Nevertheless, these attributes are common to many devices,
rarely narrowing down user-agents to individual groups.

9 CONCLUSION
During its standardization, EME was decried because no effective
control can be performed on the underlying closed-source DRM
systems to check whether they comply both in terms of security
and privacy. In this paper, we show that these privacy concerns
are founded by investigating the closed-source Widevine DRM
system through the EME API. We present how a curious origin
can leverage the Widevine protocol and misimplementation within
browsers to gather unique and with long-term stability fingerprints
for android mobile devices and a never-lying User-Agent header for
both mobile and desktop. In addition to this stateless tracking, we
exploit a stateful mechanism that websites can misuse to track users
online. We provide insights on current user-agent implementations’
compliance with EME privacy guidelines. We hope this work will
encourage further research on user-agent privacy compliance and
provide arguments against opaque systems within web standards.

ACKNOWLEDGMENTS
We thank the anonymous reviewers and our shepherd for their
valuable comments, helping us to improve this document. This
work benefited from the support of the project ANR-22-CE39-0005
DRAMA of the French National Research Agency (ANR).

13

Patat et al.

REFERENCES
[1] Gunes Acar, Christian Eubank, Steven Englehardt, Marc Juárez, Arvind

Narayanan, and Claudia Díaz. 2014. The Web Never Forgets: Persistent Track-
ing Mechanisms in the Wild. In Proceedings of the 2014 ACM SIGSAC Confer-
ence on Computer and Communications Security, Scottsdale, AZ, USA, November
3-7, 2014, Gail-Joon Ahn, Moti Yung, and Ninghui Li (Eds.). ACM, 674–689.
https://doi.org/10.1145/2660267.2660347

[2] Android. 2023. Android Studio. https://developer.android.com/studio/.
[3] Apple. 2023. Apple FairPlay. https://developer.apple.com/streaming/fps/.
[4] Mika D. Ayenson, Dietrich James Wambach, Ashkan Soltani, Nathaniel Good,

and Chris Jay Hoofnagle. 2011. Flash Cookies and Privacy II: Now with HTML5
and ETag Respawning.

[5] Tim Berners-Lee. 2017. On EME in HTML5. https://www.w3.org/blog/2017/02/
on-eme-in-html5.

[6] Netflix Technology Blog. 2022. Modernizing the Netflix TV UI Deployment
Process. https://netflixtechblog.medium.com/modernizing-the-netflix-tv-ui-
deployment-process-28e022edaaef.

[7] Brave. 2022. Brave Passes 50 Million Monthly Active Users, Growing 2x for the
Fifth Year in a Row. https://brave.com/2021-recap/.

[8] Brave Software, Inc. 2022. Brave Browser. https://brave.com/.
[9] Can I Use. 2023. Encrypted Media Extensions. https://caniuse.com/eme.
[10] Darion Cassel, Su-Chin Lin, Alessio Buraggina, William Wang, Andrew Zhang,

Lujo Bauer, Hsu-Chun Hsiao, Limin Jia, and Timothy Libert. 2022. OmniCrawl:
Comprehensive Measurement of Web Tracking With Real Desktop and Mobile
Browsers. Proc. Priv. Enhancing Technol. 2022, 1 (2022), 227–252.

[11] David Dorwin, Jerry Smith, Mark Watson, and Adrian Bateman. 2019. Encrypted
Media Extensions. https://www.w3.org/TR/encrypted-media/.

[12] Nick Doty, Deirdre K. Mulligan, and Erik Wilde. 2010. Privacy Issues of the W3C
Geolocation API. CoRR abs/1003.1775 (2010). arXiv:1003.1775 http://arxiv.org/
abs/1003.1775

[13] Peter Eckersley. 2010. How Unique Is Your Web Browser?. In Privacy Enhancing
Technologies, 10th International Symposium, PETS 2010, Berlin, Germany, July
21-23, 2010. Proceedings (Lecture Notes in Computer Science, Vol. 6205), Mikhail J.
Atallah andNicholas J. Hopper (Eds.). Springer, 1–18. https://doi.org/10.1007/978-
3-642-14527-8_1

[14] Fingerprintjs. 2020. FingerprintJS Android. https://github.com/fingerprintjs/
fingerprintjs-android.

[15] Dash Industry Forum. 2022. Content Protection. https://dashif.org/identifiers/
content_protection/.

[16] Free Software Foundation. 2014. FSF condemns partnership be-
tween Mozilla and Adobe to support Digital Restrictions Management.
https://www.fsf.org/news/fsf-condemns-partnership-between-mozilla-and-
adobe-to-support-digital-restrictions-management.

[17] Gizmodo. 2018. Apple Declares War on ’Browser Fingerprinting,’ the Sneaky
Tactic That Tracks You in Incognito Mode. https://gizmodo.com/apple-declares-
war-on-browser-fingerprinting-the-sneak-1826549108.

[18] Alejandro Gómez-Boix, Pierre Laperdrix, and Benoit Baudry. 2018. Hiding
in the Crowd: an Analysis of the Effectiveness of Browser Fingerprinting at
Large Scale. In Proceedings of the 2018 World Wide Web Conference on World
Wide Web, WWW 2018, Lyon, France, April 23-27, 2018, Pierre-Antoine Champin,
Fabien Gandon, Mounia Lalmas, and Panagiotis G. Ipeirotis (Eds.). ACM, 309–318.
https://doi.org/10.1145/3178876.3186097

[19] Google. 2022. The Privacy Sandbox. https://privacysandbox.com/.
[20] Google. 2022. User-Agent reduction. https://developer.chrome.com/docs/privacy-

sandbox/user-agent/.
[21] Google. 2023. Google Play Store: Firefox Focus: No Fuss Browser. https://play.

google.com/store/apps/details?id=org.mozilla.focus.
[22] Google. 2023. Google Play Store: Ghostery Privacy Browser. https://play.google.

com/store/apps/details?id=com.ghostery.android.ghostery.
[23] Google Widevine. 2021. Widevine News. https://web.archive.org/web/

20210903150435/https://www.widevine.com/news.
[24] Google Widevine. 2023. Widevine. https://widevine.com/.
[25] Tomer Hadad. 2021. Reversing the old Widevine Content Decryption Mod-

ule. https://github.com/tomer8007/widevine-l3-decryptor/wiki/Reversing-the-
old-Widevine-Content-Decryption-Module.

[26] Harry Halpin. 2017. The Crisis of Standardizing DRM: The Case of W3C
Encrypted Media Extensions. In SPACE (Lecture Notes in Computer Science,
Vol. 10662). Springer, 10–29.

[27] Philippe Le Hégaret. 2017. Disposition of Comments for Encrypted Media
Extensions and Director’s decision. https://lists.w3.org/Archives/Public/public-
html-media/2017Jul/0000.html.

[28] Fortune Business Insights. 2022. Video Streaming Market Size. https://www.
fortunebusinessinsights.com/video-streaming-market-103057.

[29] ISO Central Secretary. 2016. Information technology —MPEG systems technologies
— Part 7: Common encryption in ISO base media file format files. Standard ISO/IEC
23001-7:2016. International Organization for Standardization. https://www.iso.
org/standard/68042.html

[30] ISO Central Secretary. 2022. Information technology — Dynamic adaptive stream-
ing over HTTP (DASH) — Part 1: Media presentation description and segment
formats. Standard ISO/IEC 23009-1:2022. International Organization for Stan-
dardization. https://www.iso.org/standard/83314.html

[31] Jeff Jaffe. 2017. Reflections on the EME debate. https://www.w3.org/blog/2017/
09/reflections-on-the-eme-debate.

[32] Samy Kamkar. 2010. evercookie. https://samy.pl/evercookie/.
[33] kkapsner. 2022. CanvasBlocker. https://addons.mozilla.org/en-US/firefox/addon/

canvasblocker/.
[34] Anssi Kostiainen, Mounir Lamouri, and Raphael Kubo da Costa. 2022. Battery

Status API. https://www.w3.org/TR/battery-status/.
[35] Pierre Laperdrix, Walter Rudametkin, and Benoit Baudry. 2016. Beauty and the

Beast: Diverting Modern Web Browsers to Build Unique Browser Fingerprints.
In IEEE Symposium on Security and Privacy, SP 2016, San Jose, CA, USA, May
22-26, 2016. IEEE Computer Society, 878–894. https://doi.org/10.1109/SP.2016.57

[36] Xu Lin, Panagiotis Ilia, Saumya Solanki, and Jason Polakis. 2022. Phish in Sheep’s
Clothing: Exploring the Authentication Pitfalls of Browser Fingerprinting. In
USENIX Security Symposium. USENIX Association, 1651–1668.

[37] Giorgio Maone. 2022. NoScript Official Website. https://noscript.net/.
[38] Jonathan R Mayer. 2009. Any person... a pamphleteer: Internet Anonymity in

the Age of Web 2.0. Undergraduate Senior Thesis, Princeton University 85 (2009).
[39] Mdn Web Docs. 2023. User-Agent. https://developer.mozilla.org/en-US/docs/

Web/HTTP/Headers/User-Agent.
[40] Microsoft. 2023. Microsoft PlayReady. https://www.microsoft.com/playready/.
[41] Keaton Mowery, Dillon Bogenreif, Scott Yilek, and Hovav Shacham. 2011. Fin-

gerprinting Information in JavaScript Implementations. In Proceedings of W2SP
2011, Helen Wang (Ed.). IEEE Computer Society.

[42] Keaton Mowery and Hovav Shacham. 2012. Pixel Perfect: Fingerprinting Canvas
in HTML5. In Proceedings of W2SP 2012, Matt Fredrikson (Ed.). IEEE Computer
Society.

[43] Mozilla. 2023. Enhanced Tracking Protection in Firefox for desktop. https://
support.mozilla.org/en-US/kb/enhanced-tracking-protection-firefox-desktop.

[44] Martin Mulazzani, Philipp Reschl, Markus Huber, Manuel Leithner, Sebastian
Schrittwieser, Edgar Weippl, and FC Wien. 2013. Fast and reliable browser
identification with javascript engine fingerprinting. In Web 2.0 Workshop on
Security and Privacy (W2SP), Vol. 5. Citeseer, 4.

[45] Multilogin. 2022. Canvas Defender. https://addons.mozilla.org/en-US/firefox/
addon/no-canvas-fingerprinting/.

[46] Netflix. 2020. Message Security Layer. https://github.com/Netflix/msl.
[47] Lukasz Olejnik, Gunes Acar, Claude Castelluccia, and Claudia Díaz. 2015. The

Leaking Battery - A Privacy Analysis of the HTML5 Battery Status API. In Data
Privacy Management, and Security Assurance - 10th International Workshop, DPM
2015, and 4th International Workshop, QASA 2015, Vienna, Austria, September
21-22, 2015. Revised Selected Papers (Lecture Notes in Computer Science, Vol. 9481),
Joaquín García-Alfaro, Guillermo Navarro-Arribas, Alessandro Aldini, Fabio
Martinelli, and Neeraj Suri (Eds.). Springer, 254–263. https://doi.org/10.1007/978-
3-319-29883-2_18

[48] Gwendal Patat, Mohamed Sabt, and Pierre-Alain Fouque. 2022. Exploring
Widevine for Fun and Profit. In 43rd IEEE Security and Privacy, SP Work-
shops 2022, San Francisco, CA, USA, May 22-26, 2022. IEEE, 277–288. https:
//doi.org/10.1109/SPW54247.2022.9833867

[49] Gwendal Patat, Mohamed Sabt, and Pierre-Alain Fouque. 2022. WideLeak: How
Over-the-Top Platforms Fail in Android. In 52nd Annual IEEE/IFIP International
Conference on Dependable Systems and Networks, DSN 2022, Baltimore, MD, USA,
June 27-30, 2022. IEEE, 501–508. https://doi.org/10.1109/DSN53405.2022.00056

[50] Tor Project. 2022. Tor Browser. https://www.torproject.org/.
[51] rlaphoenix. 2022. pywidevine. https://github.com/rlaphoenix/pywidevine.
[52] John Schwartz. 2001. Giving Web a Memory Cost Its Users Pri-

vacy. https://www.nytimes.com/2001/09/04/business/giving-web-a-memory-
cost-its-users-privacy.html.

[53] Skylot. 2019. Jadx - Dex to Java decompiler. https://github.com/skylot/jadx.
[54] Smitop. 2020. Reddit’s website uses DRM for fingerprinting. https://iter.ca/post/

reddit-whiteops/.
[55] Ashkan Soltani, Shannon Canty, Quentin Mayo, Lauren Thomas, and Chris Jay

Hoofnagle. 2010. Flash Cookies and Privacy. In Intelligent Information Privacy
Management, Papers from the 2010 AAAI Spring Symposium, Technical Report
SS-10-05, Stanford, California, USA, March 22-24, 2010. AAAI. http://www.aaai.
org/ocs/index.php/SSS/SSS10/paper/view/1070

[56] Stat Counter. 2022. Desktop Browser Market Share Worldwide. https://gs.
statcounter.com/browser-market-share/desktop/worldwide/2022.

[57] Stat Counter. 2022. Mobile Browser Market Share Worldwide. https://gs.
statcounter.com/browser-market-share/mobile/worldwide/2022.

[58] The Insider Tech Emmy Awards. 2018. 70th Award Recipients. https://theemmys.
tv/tech-70th-award-recipients.

[59] Tor Project. 2023. Tor Metrics User Stats 2022. https://metrics.
torproject.org/userstats-relay-country.html?start=2022-01-01&end=2023-
01-01&country=all&events=off.

14

https://doi.org/10.1145/2660267.2660347
https://developer.android.com/studio/
https://developer.apple.com/streaming/fps/
https://www.w3.org/blog/2017/02/on-eme-in-html5
https://www.w3.org/blog/2017/02/on-eme-in-html5
https://netflixtechblog.medium.com/modernizing-the-netflix-tv-ui-deployment-process-28e022edaaef
https://netflixtechblog.medium.com/modernizing-the-netflix-tv-ui-deployment-process-28e022edaaef
https://brave.com/2021-recap/
https://brave.com/
https://caniuse.com/eme
https://www.w3.org/TR/encrypted-media/
https://arxiv.org/abs/1003.1775
http://arxiv.org/abs/1003.1775
http://arxiv.org/abs/1003.1775
https://doi.org/10.1007/978-3-642-14527-8_1
https://doi.org/10.1007/978-3-642-14527-8_1
https://github.com/fingerprintjs/fingerprintjs-android
https://github.com/fingerprintjs/fingerprintjs-android
https://dashif.org/identifiers/content_protection/
https://dashif.org/identifiers/content_protection/
https://www.fsf.org/news/fsf-condemns-partnership-between-mozilla-and-adobe-to-support-digital-restrictions-management
https://www.fsf.org/news/fsf-condemns-partnership-between-mozilla-and-adobe-to-support-digital-restrictions-management
https://gizmodo.com/apple-declares-war-on-browser-fingerprinting-the-sneak-1826549108
https://gizmodo.com/apple-declares-war-on-browser-fingerprinting-the-sneak-1826549108
https://doi.org/10.1145/3178876.3186097
https://privacysandbox.com/
https://developer.chrome.com/docs/privacy-sandbox/user-agent/
https://developer.chrome.com/docs/privacy-sandbox/user-agent/
https://play.google.com/store/apps/details?id=org.mozilla.focus
https://play.google.com/store/apps/details?id=org.mozilla.focus
https://play.google.com/store/apps/details?id=com.ghostery.android.ghostery
https://play.google.com/store/apps/details?id=com.ghostery.android.ghostery
https://web.archive.org/web/20210903150435/https://www.widevine.com/news
https://web.archive.org/web/20210903150435/https://www.widevine.com/news
https://widevine.com/
https://github.com/tomer8007/widevine-l3-decryptor/wiki/Reversing-the-old-Widevine-Content-Decryption-Module
https://github.com/tomer8007/widevine-l3-decryptor/wiki/Reversing-the-old-Widevine-Content-Decryption-Module
https://lists.w3.org/Archives/Public/public-html-media/2017Jul/0000.html
https://lists.w3.org/Archives/Public/public-html-media/2017Jul/0000.html
https://www.fortunebusinessinsights.com/video-streaming-market-103057
https://www.fortunebusinessinsights.com/video-streaming-market-103057
https://www.iso.org/standard/68042.html
https://www.iso.org/standard/68042.html
https://www.iso.org/standard/83314.html
https://www.w3.org/blog/2017/09/reflections-on-the-eme-debate
https://www.w3.org/blog/2017/09/reflections-on-the-eme-debate
https://samy.pl/evercookie/
https://addons.mozilla.org/en-US/firefox/addon/canvasblocker/
https://addons.mozilla.org/en-US/firefox/addon/canvasblocker/
https://www.w3.org/TR/battery-status/
https://doi.org/10.1109/SP.2016.57
https://noscript.net/
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/User-Agent
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/User-Agent
https://www.microsoft.com/playready/
https://support.mozilla.org/en-US/kb/enhanced-tracking-protection-firefox-desktop
https://support.mozilla.org/en-US/kb/enhanced-tracking-protection-firefox-desktop
https://addons.mozilla.org/en-US/firefox/addon/no-canvas-fingerprinting/
https://addons.mozilla.org/en-US/firefox/addon/no-canvas-fingerprinting/
https://github.com/Netflix/msl
https://doi.org/10.1007/978-3-319-29883-2_18
https://doi.org/10.1007/978-3-319-29883-2_18
https://doi.org/10.1109/SPW54247.2022.9833867
https://doi.org/10.1109/SPW54247.2022.9833867
https://doi.org/10.1109/DSN53405.2022.00056
https://www.torproject.org/
https://github.com/rlaphoenix/pywidevine
https://www.nytimes.com/2001/09/04/business/giving-web-a-memory-cost-its-users-privacy.html
https://www.nytimes.com/2001/09/04/business/giving-web-a-memory-cost-its-users-privacy.html
https://github.com/skylot/jadx
https://iter.ca/post/reddit-whiteops/
https://iter.ca/post/reddit-whiteops/
http://www.aaai.org/ocs/index.php/SSS/SSS10/paper/view/1070
http://www.aaai.org/ocs/index.php/SSS/SSS10/paper/view/1070
https://gs.statcounter.com/browser-market-share/desktop/worldwide/2022
https://gs.statcounter.com/browser-market-share/desktop/worldwide/2022
https://gs.statcounter.com/browser-market-share/mobile/worldwide/2022
https://gs.statcounter.com/browser-market-share/mobile/worldwide/2022
https://theemmys.tv/tech-70th-award-recipients
https://theemmys.tv/tech-70th-award-recipients
https://metrics.torproject.org/userstats-relay-country.html?start=2022-01-01&end=2023-01-01&country=all&events=off
https://metrics.torproject.org/userstats-relay-country.html?start=2022-01-01&end=2023-01-01&country=all&events=off
https://metrics.torproject.org/userstats-relay-country.html?start=2022-01-01&end=2023-01-01&country=all&events=off

Your DRM Can Watch You Too

[60] W3C. 2017. W3C Publishes Encrypted Media Extensions (EME) as a W3C Rec-
ommendation. https://www.w3.org/2017/09/pressrelease-eme-recommendation.
html.en.

[61] Mark Watson. 2017. Response from Director to formal objection “Turn off
EME by default and activate only with express permission from user”. https:
//lists.w3.org/Archives/Public/public-html-media/2017Apr/0013.html.

[62] Mark Watson. 2017. Web Cryptography API. https://www.w3.org/TR/
WebCryptoAPI.

[63] William West and S. Monisha Pulimood. 2012. Analysis of Privacy and Security
in HTML5 Web Storage. J. Comput. Sci. Coll. 27, 3 (jan 2012), 80–87.

[64] Widevine. 2023. Widevine DRM. https://www.widevine.com/solutions/widevine-
drm.

[65] Widevine. 2023. Widevine Integration Platform Shaka Player Tool. https://
integration.widevine.com/player.

[66] zackmark29. 2022. NetflixESNGenerator. https://github.com/zackmark29/
NetflixESNGenerator.

[67] Qi Zhao. 2021. Wideshears: Investigating and breaking widevine on QTEE.
BlackHat Asia.

A WIDEVINE LICENSE POLICY FIELDS

Code Policy Name Description
0x08 Can Play Allow playback.

0x10 Can Persist Allow the license to be
stored for offline usage.

0x18 Can Renew License can be renewed
to extend duration.

0x20 Rental Duration Seconds Time in seconds for which
playback is allowed.

0x28 Playback Duration Seconds Time in seconds for which
playback is allowed once started.

0x30 License Duration Seconds Time in seconds for which
a license is valid.

0x38 Renewal Recovery
Duration Seconds

Time in seconds for which
playback is allowed until
successful license renew.

0x42 Renewal Server URL URL of the license server
for renewal request.

0x48 Renewal Delay Seconds
Time in seconds before
trying to renew a license,
starting from its usage.

0x50 Renewal Retry
Interval Seconds

Time in seconds between
renewal requests
if renew is unsuccessful.

0x58 Renew with Usage Try to renew license
as soon as it is used.

0x60 Always include Client ID Force the Client ID presence
within renewal request.

0x70 Soft Enforce Playback
Duration

Enforce playback duration
based on license duration.

0x78 Soft Enforce Rental
Duration

Enforce rental duration
based on license duration.

0x80 Watermarking Control Specify a watermarking system.

B DETAILEDWEB BROWSER VERSIONS

Category Browser
Chrome 109.0.5114.120
Edge 109.0.1518.70
Opera 94.0.4606.76
Firefox 108.0.2
Brave 1.47.186, Chromium 109.0.5114.119

Desktop Browsers

Tor 12.0
Chrome 109.0.5114.85
Edge 109.0.1518.70
Samsung Internet Browser 19.0.6.3
Opera 73.1.3844.69816
Firefox 109.1.1
Firefox Focus 108.1.0
Brave 1.47.175, Chromium 109.0.5414.87
Tor 102.2.1

Mobile Browsers

Ghostery Browser build #2015907851

15

https://www.w3.org/2017/09/pressrelease-eme-recommendation.html.en
https://www.w3.org/2017/09/pressrelease-eme-recommendation.html.en
https://lists.w3.org/Archives/Public/public-html-media/2017Apr/0013.html
https://lists.w3.org/Archives/Public/public-html-media/2017Apr/0013.html
https://www.w3.org/TR/WebCryptoAPI
https://www.w3.org/TR/WebCryptoAPI
https://www.widevine.com/solutions/widevine-drm
https://www.widevine.com/solutions/widevine-drm
https://integration.widevine.com/player
https://integration.widevine.com/player
https://github.com/zackmark29/NetflixESNGenerator
https://github.com/zackmark29/NetflixESNGenerator

Patat et al.

C THE CASE OF NETFLIX
When considering the EME messages generated by Netflix, we ob-
serve the usage by Netflix of an OTT-specific field in the license
response, renewal request, and renewal response. Our experiments
show that this field includes the required Movie ID and the de-
vice ESN (Equipment Serial Number) defined by Netflix. According
to [6], the Netflix ESN (NESN) is used in production to send updates
to a specific pool of devices to beta-test new fixes and features. This
NESN is generated by appending several data [66]: device category
(e.g., Chrome browser, aka ChromeCDM for all desktops, Smart-
phones, Tablets, Android TVs, Smart Displays, Google TVs), the
version of the OEMCrypto Library, the manufacturer and the model
of the device followed by a random string that is constant for a
given device. Therefore, similar to the Client ID, the NESN should
be encrypted to protect users’ privacy in case a proxy is used while
streaming.

Thus, we extend our research questions and investigate NESN
leakage: (1) is it encrypted? and (2) how does the NESN constitute
a fingerprint? While focusing on Netflix, we consider the same
experiment settings as described in subsection 3.1. It is worth not-
ing that, in license response, Netflix transmits licenses that require
renewal a few seconds later. Therefore, we were able to easily ob-
serve the whole EME workflow without particular policies from
the user-agents context. For both desktop and mobile, from the
point of view of EME, the NESN is never protected on license and
renewal responses. Nevertheless, Netflix EME messages contain-
ing this NESN are always encrypted through the Message Security
Layer (MSL) protocol, leveraging Widevine as a cryptographic li-
brary, therefore not relying solely on HTTPS. As a matter of fact,
the Web Cryptography API [62] on browsers has been specifically
standardized by Netflix within the W3C for this purpose [46]. We
conclude that Netflix attempts to keep the NESN private by mask-
ing EME messages over the network. On mobile, Netflix only runs
with its own application, with no browser support; however, the
presence of this NESN within EME-specific messages in desktop
implementations involves the OTT in the protocol consideration
for privacy. The MSL being out of the EME recommendation, this
encryption does not comply with privacy concerns by adding the
NESN as a distinctive identifier within opaque messages.

Concerning the second question, we examine the privacy loss
from a possible NESN leakage. As often in our study, the fallout
depends on whether the leakage occurs on mobile or desktop. For
mobile, the NESN ends with a 64-byte string. This string is unique
per device for a given Widevine security level (i.e., L1 and L3). In
addition, we note that the related fingerprint is stable since it is
preserved even after wiping all app data using the Android settings.
For desktop, the ending string is composed of 30 bytes. Unlike the
Client ID, the NESN is unique per device, therebymight constituting
a fingerprint if leaked through EME before MSL usage. Fortunately,
the desktop NESN value is linked to cookies and updated after cook-
ies and site data deletion, falling back to standard cookie concerns.
We performed our tests on Windows, macOS, and Linux.

Our study of Netflix shows that the privacy guarantees of EME
are quite brittle. Indeed, it depends on the implementations of three
parties that are proprietary and reluctant to communicate: web
browsers, DRM systems, and streaming services. The Netflix case

is an example of how complex the streaming ecosystem is. Netflix
defines an identifying ESN and argues that it is necessary to beta
test its new features, thereby compliant with GDPR. However, at
the same time, this same ESN brings a distinctive identifier, within
the EME protocol, under the responsibility of the OTT.

16

	Abstract
	1 Introduction
	2 Background
	2.1 DRM Systems
	2.2 Google Widevine
	2.3 W3C EME Standard
	2.4 Web Tracking

	3 EME Widevine
	3.1 Reverse Engineering Settings
	3.2 Opaque Messages in Widevine Workflow
	3.3 Persistent Session
	3.4 Widevine License Policy
	3.5 Widevine Client ID
	3.6 Privacy Protection Mechanisms: Privacy Mode & VMP

	4 User-Agents Implementations of Privacy Mechanisms for Widevine
	4.1 Motivations and Research Questions
	4.2 Browser Selection
	4.3 Experimental Design
	4.4 Results
	4.5 Implications and Insights

	5 Privacy Implications
	5.1 Permissions
	5.2 Experimental Setup
	5.3 Client ID Certificate Fingerprint
	5.4 Client Info as User-Agent Header
	5.5 Persistent Session Tracking

	6 EME User Tracking Scripts
	6.1 EME Track
	6.2 Persistent Session Re-invocation

	7 Discussion
	7.1 Privacy Leakage in Practice
	7.2 OTTs as EME Actors
	7.3 License Server as Big Brother
	7.4 Responsible Disclosure

	8 Related Work
	8.1 Reverse-Engineering Widevine
	8.2 Privacy and W3C APIs
	8.3 Fingerprinting through DRM Systems

	9 Conclusion
	Acknowledgments
	References
	A Widevine License Policy Fields
	B Detailed Web Browser Versions
	C The Case of Netflix

