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A B S T R A C T 

Direct detection of the Cosmic Dawn and Epoch of Reionization via the redshifted 21-cm line of neutral Hydrogen will have 
unprecedented implications for studying structure formation in the early Universe. This exciting goal is challenged by the 
difficulty of extracting the faint 21-cm signal buried beneath bright astrophysical foregrounds and contaminated by numerous 
systematics. Here, we focus on improving the Gaussian Process Regression (GPR) signal separation method originally developed 

for LOFAR observations. We address a key limitation of the current approach by incorporating covariance prior models learnt 
from 21-cm signal simulations using variational autoencoder (VAE) and interpolatory autoencoder (IAE). Extensive tests are 
conducted to e v aluate GPR, VAE–GPR, and IAE–GPR in different scenarios. Our findings reveal that the new method outperforms 
standard GPR in component separation tasks. Moreo v er, the impro v ed method demonstrates robustness when applied to signals 
not represented in the training set. It also presents a certain degree of resilience to data systematics, highlighting its ability 

to ef fecti v ely mitigate their impact on the signal reco v ery process. Ho we ver, our findings also underscore the importance 
of accurately characterizing and understanding these systematics to achieve successful detection. Our generative approaches 
provide good results even with limited training data, offering a valuable advantage when a large training set is not feasible. 
Comparing the two algorithms, IAE–GPR shows slightly higher fidelity in reco v ering power spectra compared to VAE–GPR. 
These advancements highlight the strength of generative approaches and optimize the analysis techniques for future 21-cm signal 
detection at high redshifts. 

Key words: methods: data analysis – methods: statistical – techniques: interferometric – cosmology: observations –
reionization, first stars. 
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 I N T RO D U C T I O N  

bservation of the redshifted 21-cm transition line of neutral hy- 
rogen from the Cosmic Dawn (CD; 15 < z < 30) and the Epoch of
eionization (EoR; z ∼ 6 −15) promises to shed new light on the first
illion years of our Universe. It will explore the properties of the first
tellar population, the detailed timing of the heating and reionization 
ra, as well as the sources that dro v e them (see e.g. Pritchard & Loeb
012 ; Furlanetto 2016 , for e xtensiv e reviews). 
Many observational programs are underway to detect the 21-cm 

ignal. Current radio interferometers (LOFAR, 1 MWA, 2 NenuFAR, 3 

nd HERA 

4 ) will provide a statistical characterization of this signal 
 E-mail: florent.mertens@gmail.com 

 Low-frequency array, http://www.lofar.org 
 MWA, http://www.mwatelescope.org 
 New extension in Nancay upgrading LOFAR, https://nenufar.obs-nancay.fr/ 
n/ homepage-en/ 
 Hydrogen Epoch of Reionization array, http://reionization.org 
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rovided the original work is properly cited. 
nd are paving the way to the next-generation SKAO 

5 that promises
n exceptional gain in sensiti vity, allo wing one to obtain images of
hese distant epochs, and, in particular, of the ionized hydrogen bub-
les, sources of incomparable information on the physical conditions 
o v erning the EoR (Koopmans et al. 2015 ). 
Detecting the 21-cm signal is extremely challenging, mainly due to 

he difficulty of extracting this very faint signal buried beneath astro-
hysical foregrounds several orders of magnitude brighter and con- 
aminated by numerous systematics. Although the emission mecha- 
isms of the foregrounds are well known, primarily synchrotron and 
ree–free emission, the intrinsic chromatic response of the instrument 
nd calibration errors create an additional impediment, introducing 
apid spectral variations to otherwise spectrally regular foregrounds 
e.g. Morales et al. 2012 ; Th yag arajan et al. 2015 ; Ewall-Wice
t al. 2017 ). Mitigating these sources of chromaticity is complex.
an y e xperiments hav e adopted a so-called ‘foreground a v oidance’

trategy, which only looks for the signal inside a region in k -space
 SKA Observatory, https:// www.skao.int/ 
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here the thermal noise and 21-cm signals dominate (e.g. Parsons
t al. 2012 ; Jacobs et al. 2016 ; Kolopanis et al. 2019 ), discarding the
o-called foregrounds-wedge part where the foregrounds dominate,
ut at the cost of a reduced sensitivity (a factor of ∼3 for HERA,
nd even a factor of ∼6 for LOFAR). In practice, also, leakage abo v e
he wedge is often observed (e.g. Patil et al. 2016 ; Kern et al. 2019 ;
ffringa, Mertens & Koopmans 2019 ). We refer to the recent review
y Liu & Shaw ( 2020 ), and reference therein for a more detailed
escription of the challenge of extracting the 21-cm signal. 
To take full advantage of the sensitivity of the instruments,

ore ground remo val algorithms hav e been dev eloped, particularly
lgorithms that do not depend on a precise foreground model, which
s often difficult to obtain. For instance, blind source separation (BSS)
ethods have been applied in the EoR context (e.g. Chapman et al.

012 , 2013 ; Bonaldi & Brown 2015 ; Patil et al. 2017 ). BSS methods
inearly decompose data in a set of components in pixel/visibility
pace modulated in frequency, only assuming statistical properties of
he components (e.g. independence or sparsity). For a recent re vie w
nd comparison of the most used BSS methods, see Spinelli et al.
 2021 ). 

Mertens, Ghosh & Koopmans ( 2018 ) introduced a method based
n Gaussian Process Regression (GPR) that has been employed in
nalysing observations of various 21-cm experiments (Gehlot et al.
019 , 2020 ; Ghosh et al. 2020 ; Mertens et al. 2020 ) and is the
ethod of choice of the LOFAR-EoR and NenuFAR CD projects.
his approach involves constructing a statistical model prior encom-
assing all components contributing to the observed signal, including
oregrounds, mode mixing components, 21-cm cosmological signal,
nd noise. The method exploits the distinct spectral signatures of
hese components by utilizing parameterized frequenc y–frequenc y
ovariance functions. Initially, the GPR method employed generic
nalytical covariance models commonly used in Gaussian Processes
GP) literature. Ho we ver, with the increasing integration time of
OFAR observations and the prospect of an SKAO CD/EoR sur-
 e y, the need for impro v ed accurac y has driv en the dev elopment
f adapted and more realistic covariance models. Moreover, an
 xcessiv e mismatch of the prior covariance to the true covariance
ay also bias the reco v ered 21-cm signal (Kern & Liu 2021 ). Here,

ies the moti v ation and objective of this work. 
Analytical formulations of foreground covariance have been de-

eloped (Trott et al. 2016 ; Murray, Trott & Jordan 2017 ). Ho we ver,
hey are incomplete, not including, for example, the anisotropy of
he galactic emission or the full complexity of the instrument’s
rimary beam. Concerning the 21-cm signal, analytical simulations
re far too elementary, and numerical or semi-analytical codes
imulating this signal are often incompatible with each other in
heir parametrizations. Cheng et al. ( 2018 ) have also illustrated
he risks associated with employing empirically estimated covari-
nce. This approach results in significant signal loss when utilized
ithin the optimal quadratic estimator formalism with PAPER data.
imulations would be more suitable to provide a more physically
oti v ated cov ariance, whether for the foregrounds, the systematics

r the 21-cm signal. The task at hand is thus to transform a set
f simulations into a covariance function, able to reproduce the
ovariance matrices of these simulations and replace the generic
nalytical covariance models used until now in our GPR formalism.
ere, we consider two machine-learning (ML) methods for doing

o, variational autoencoders (VAE, Kingma & Welling 2013 ) and
nterpolatery Autoencoders (IAE, Bobin et al. 2023 ). We train the
wo with the same set of simulations and compare their performances.
inally, we test both against the Mertens, Ghosh & Koopmans ( 2018 )
tandard GPR pipeline. 
NRAS 527, 3517–3531 (2024) 
The paper is structured as follows. Section 2 reviews the GPR
ramework and introduces a generalization to learnt kernels based
n VAE and IAE. Section 3 describes the 21-cm and foregrounds
imulated data sets used to test the new algorithm. Section 4 reports
n the results of these simulations, emphasizing the comparisons
etween autoencoder-based and standard GPR in various scenarios
ith increasing complexity. 

 M E T H O D S  

fter re vie wing the GPR frame w ork, this section describes tw o
ifferent learning-based algorithms to build a covariance model of
he 21-cm cosmological signal using simulations: VAE and IAE,
ariational and IAE. The combination of the GPR algorithm to
erform signal separation with ML-trained kernel is later called ML–
PR. 
All methods in this work operate on a gridded visibility cube

 ( u , ν), which is the Fourier transform along the angular direction
f the observed image cube, and where u = ( u, v) is the vector
epresenting the coordinates in wavelength in the visibility plane
nd ν is the observing frequency. This choice aligns with the nature
f radio interferometric observations, where visibilities are directly
easured. 

.1 Gaussian process regression 

n the context of 21-cm signal detection, we are interested in
odelling our data d observed at frequencies x by a foreground,
 21-cm and a noise component n (Mertens, Ghosh & Koopmans
018 ): 

d = f fg ( x ) + f 21 ( x ) + n . (1) 

he foregrounds and 21-cm signal components are expected to have
istinct frequenc y–frequenc y co variance; we can then build a covari-
nce prior model of the data composed of a foreground covariance
unction (also called kernel) K fg , a 21-cm signal covariance function
 21 , and a noise covariance K n = diag ( σ 2 

n ( x )). The joint probability
ensity distribution of the observations d and the function values f 21 

f the 21-cm signal component at the same frequencies x are then
iven by (Rasmussen & Williams 2005 ), [
d 

f 21 

]
∼ N 

([
0 
0 

]
, 

[
K fg + K 21 + K n K 21 

K 21 K 21 

])
(2) 

sing the shorthand K ≡ K (x, x ′ ). The reco v ered 21-cm signal is then
 Gaussian process, conditional on the data: 

f 21 ∼ N 

(
E( f 21 ) , cov ( f 21 ) 

)
(3) 

ith expectation value and covariance defined by 

( f 21 ) = K 21 

[
K fg + K 21 + K n 

]−1 
d , (4) 

ov ( f 21 ) = K 21 − K 21 

[
K fg + K 21 + K n 

]−1 
K 21 . (5) 

ne may also decide to reco v er the fitted foregrounds component
nstead, f fg (x), and subtract it from the input data to obtain the
esidual, as is done in Mertens, Ghosh & Koopmans ( 2018 ) and

ertens et al. ( 2020 ). 
In GPR, we perform prior covariance model selection under a

ayesian framework by choosing the model that maximizes the
arginal likelihood, i.e. the integral of the likelihood times the prior.
he functional form of the covariance is first selected, guided by our
nowledge of the fluctuations we aim to model. We then use standard
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ptimization or Markov chain Monte Carlo (MCMC) methods to 
etermine the optimal hyperparameters of the chosen covariance 
unctions, like the coherence-scale or the variance. The marginal- 
ikelihood is given by 

( d | x , θ ) = 

∫ 
p( d | f , x , θ ) p( f | x , θ ) d f , (6) 

ith θ being the hyperparameters of the covariance function. Under 
he assumption of Gaussianity, we can integrate over f analytically, 
ielding the log marginal likelihood (LML), 

og p( d | x , θ ) = −1 

2 
d T  ( K + σ 2 

n I ) 
−1 d − 1 

2 
log | K + σ 2 

n I | −
n 

2 
log 2 π

(7) 

ith n the number of sampled points and K = K fg + K 21 . The posterior
robability density of the hyperparameters is then found by applying 
ayes’ theorem, incorporating here the prior on the hyperparameters 

og p( θ | d , x ) ∝ log p( d | x , θ ) + log p( θ ) . (8) 

he Mat ́ern class of covariance functions are commonly used as prior
ovariance for the different components of the data. It is defined by 

Matern ( r) = 

2 1 −η

�( η) 

(√ 

2 ηr 

l 

)η

K η

(√ 

2 ηr 

l 

)
, (9) 

here K η is the modified Bessel function of the second kind. Func-
ions obtained with this kernel class are at least η-time differentiable. 
pectrally smooth components (typically foregrounds) are best 
odelled with higher η, while for the 21-cm signal, we set η = 1/2

r 3/2 (Mertens, Ghosh & Koopmans 2018 ). Component separation 
s most ef fecti ve when the coherence-scale hyperparameter l of the
ore grounds co variance is significantly larger than that of the 21-cm
ignal cov ariance. Ho we ver, generic cov ariance functions may not
l w ays accurately represent the true covariance and in the low signal-
o-noise regime, an inaccurate prior covariance can introduce biases 
n the results (Kern & Liu 2021 ). To address this, we can enhance
he prior covariance model by learning from simulations, allowing 
or a more accurate representation. 

.2 Learning co v ariance prior model from simulations 

he learning-based approach aims to build a surrogate model for 
he covariance that can be deployed efficiently at inference time. 
ovariances are derived from simulations that are fully characterized 
y a few parameters, for example, 3 for the 21cmFAST of the
resent paper. Building a surrogate model then results in computing 
 low-dimensional representation of the covariances. To that end, 
 straightforward approach would be using principal component 
nalysis (PCA); in our tests, it did not provide satisfactory results.
he latter is due to the non-linear dependency of the covariances 

o the underlying physical parameters. While PCA provides a 
ow-dimensional linear representation, an accurate surrogate model 
andates non-linear models. To that end, we propose investigating 

he application of autoencoders (AE). 
We assume we have access to T simulations of the 21-cm 

osmological signal that allows building a training set of covariances: 
 train = 

{
K 

t 
}

t= 1 , ··· ,T . 
6 The prime goal of learning is to derive a low-

imensional representation or model of these covariances. From the 
 We note here that we are not describing a full covariance, but a partial 
o variance av eraged o v er some dimensions. Here, we use the frequency–
requenc y co variance. 

a  

t  

d
a  

i  
athematical modelling point of vie w, physically rele v ant cov ari-
nces generally evolve smoothly, meaning they are likely to belong to
 low-dimensional manifold . When derived from parametric models, 
he dimensionality of this manifold is exactly the number of free
arameters in the model. Ho we ver, we notice that the dependency
etween the underlying parameters and the measured covariances is 
enerally non-linear and either unknown or challenging to handle in 
 component separation process. Consequently, one has to resort to 
earning a non-linear model of the covariances to build an efficient
nd reliable model, relying on an unsupervized manner. 

.2.1 Variational autoencoders 

mong ML strategies, autoencoders (AE, Hinton & Salakhutdinov 
006 ) represent the most straightforward dimensionality reduction 
echnique. In our context, the VAE (Kingma & Welling 2013 )
s particularly well adapted since it allows building a potentially 
omplex statistical description of the data. 

More formally, the set of covariances K is statistically charac- 
erized by some unknown probability distribution p ψ ( K ), which
epends on some parameters ψ . This distribution can be described as
he marginalized distribution of the joint distribution p ψ ( K , z) with
espect to some latent parameters z. In practice, the latent parameters
ill represent a low-dimensional description of the covariances. The 
arginalized distribution is obtained as follows: 

 ψ ( K) = 

∫ 
z 

p ψ ( K| z ) p ψ ( z )d z , (10) 

here p ψ ( z) is the prior distribution of the latent variable and p ψ ( K | z)
s the conditional distribution of the covariances with respect to z.
his equation defines how the distribution of K can be derived from

he latent v ariables, e ventually defining a generative model for the
ovariances. 

In practice, the training stage corresponds to learning the param- 
ters ψ that define the abo v e distributions. To do so, we need a
escription of the conditional distribution of the latent variables with 
espect to K , which requires the knowledge of p θ ( z| K ). Ho we ver, this
uantity is generally unknown and cumbersome to compute. In the 
ramework of the VAE, it is approximated by a surrogate distribution
 φ( z| K ), where φ stands for some parameters to be learnt. 
The training stage then boils down to learning the parameters ψ 

nd φ so that q φ( z| K ) is as close as possible to p θ ( z| K ) according to
he Kullback–Leibler divergence D KL . The learning loss eventually 
rites as (Kingma & Ba 2014 ) 

min 
φ,ψ 

−E q φ { log ( p ψ ( K| z)) } + D KL 

(
q φ( z| K) , p ψ ( z) 

)
(11) 

Essentially, the VAE can be described with the following ingredi- 
nts: 

(i) The encoder: The distribution q φ( z| K ) defines a statistical
ncoder that samples the latent space conditionally to the covariances. 
he encoder builds upon a neural network � to describe q φ( z| K ),
nd the parameters φ stand for the network parameters. The latent 
ariable is then defined as follows: 

 t = 1 , · · · , T ; z t = � ( K 

t ) 

(ii) The decoder: As stated earlier, the distribution of the covari- 
nces p ψ ( K ) can be defined as the marginalization with respect
o z of the joint distribution p ψ ( K , z) = p ψ ( K | z) p ψ ( z). The prior
istribution is generally chosen as a normal distribution, whose mean 
nd covariance matrix are trained. Sampling the distribution p ψ ( K )
s then obtained by first drawing from the prior distribution of the
MNRAS 527, 3517–3531 (2024) 
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atent variable: ˜ z t ∼ p ψ ( z) and then applying a non-linear function
 to map it back to the input domain: 

 t = 1 , · · · , T ; ˆ K 

t = ψ( ̃ z t ) . 

he so-called decoder � is generally described with a neural network,
hose parameters φ are learnt during training. 

Details of the VAE implementation we used in the experiments
re in Appendix A . 

.2.2 Interpolatory AE 

s mentioned abo v e, AE are po werful architectures to build lo w-
imensional non-linear signal approximations. Ho we ver, their train-
ng can be difficult, especially when the training samples are scarce.
 w ay forw ard to f ace these limitations is to impose additional

onstraints and better organise the latent space. In this context, the
AE (Bobin et al. 2023 ) 7 aims to capture the geometrical structures of
he space in which the data live, which is generally well approximated
y some (unknown) low-dimensional manifold M . 
In contrast to standard AE architectures, IAE maps its latent

pace with so-called anchor points, which are fixed signal examples
nown to be on (or close to) the manifold M . These anchor points
re generally chosen within the training set. They serve as fixed
oints from which new samples can be built through a non-linear
nterpolation scheme. 

While standard AE looks for a global description of the manifold
 , the IAE learns to travel on the manifold M by interpolating the

nchor points. 
Like the VAE, the IAE architecture is defined with an en-

oder/decoder scheme. Ho we v er, a ke y difference is that IAE decodes
ow-dimensional linear approximations of the input data in the latent
pace. The IAE is therefore trained so that the code of each sample
an be expressed as a linear combination, or barycenter , of anchor
oints in the latent domain. Bobin et al. ( 2023 ) emphasize how this
rocedure allows more robustness of the model with respect to the
carcity of the training samples. 

We first draw at random d samples from the training T that will
erve as anchor points { K 

n 
a } n ∈ [1 . . d] . Similarly to the VAE, we define

 and � as the encoder and the decoder, respectively. The IAE
etworks is then defined by the three following steps: 

(i) Mapping the data to latent space: The encoder � maps the data
o the latent space, defining some latent vector  i = � ( K 

i ). 
(ii) Interpolation step: Each sample is approximated as a linear in-

erpolation from the anchor points, i.e. we compute the interpolating
eights λi as the projection coefficients of  i on to the vector space
enerated by the latent codes of the anchor points { � ( K 

n 
a ) } n ∈ [1 . . d] : 

 λ[ n ] } n = 1 , ··· ,d = argmin λ

∥∥∥∥∥� ( K 

t ) −
d ∑ 

n = 1 

λ[ n ] � ( K 

n 
a ) 

∥∥∥∥∥
2 

2 

(12) 

he interpolated samples are then defined as 

˜ 
 

t = 

d ∑ 

n = 1 

λt [ n ] � ( K 

n 
a ) . (13) 

he interpolation step is denoted as I so that ˜  t = I ◦ � ( K 

t ). 
(iii) Mapping the interpolated samples back to the data domain:

he decoder ψ maps back the interpolated samples from the latent
pace to the data domain: ˜ K 

t = �( ̃   t ). 
NRAS 527, 3517–3531 (2024) 

 https:// github.com/ jbobin/ IAE 

h  

s  

(

In this model, both the encoder and the decoder are learnt. Model
ptimization is done by minimizing the reconstruction error between
he training data { K 

t } j and their approximation, i.e.: 

argmin 
φ,ψ 

∑ 

j 

∥∥∥∥∥K 

t − � 

( 

N ∑ 

n = 1 

λj [ n ] � 

(
K 

n 
a 

)) 

∥∥∥∥∥
2 

2 

+ β
∑ 

j 

∥∥∥∥∥� 

(
K 

t 
) −

N ∑ 

n = 1 

λj [ n ] � 

(
K 

n 
a 

)∥∥∥∥∥
2 

2 

. (14) 

nce the IAE is learnt, any point of M can be approximated as an
nterpolant of the anchor points in the code domain back-projected
o the sample domain: 

 ≈
{ 

x, ∃{ λ[ n ] } n ∈ [1 . . N] ∈ R 

N , x = ψ 

( 

N ∑ 

n = 1 

λ[ n ] � 

(
K 

n 
a 

)) } 

. 

(15) 

etails of the architecture we used in the experiments as well as its
mplementation, are described in Appendix A . 

.2.3 Application of AE-based models for covariance estimation 

E-based models can be interpreted and applied in different ways.
o that respect, it is customary to use AE-based models to compute
on-linear, low-dimensional approximations of the classes of signals
s sampled by the training set. For instance, once learnt, one can use
he IAE model to produce a low-dimensional approximate of some
ignal K by composing the application of the encoder, the interpolator
nd the decoder: 

ˆ 
 = ( � ◦ I ◦ � )( K) . 

We can interpret this operation as a projection on to the low-
imensional manifold implicitly defined by the encoder and the
ecoder. 

From a different viewpoint, the decoder of AE-based models boils
own to a learnt parametric model for the covariances. Combined
ith a sampling process, as in the VAE, it leads to generative models.
Let us now consider the case of observations involving the 21-cm

ignal along with foreground and noise components. The observation
odel is described as follows: 

 d = K fg + K 21 + K n . 

In the scope of covariance estimation from observations, one can
ubstitute standard analytic kernels, such as Mat ́ern of Gaussian
ernels, with the decoder, which can be treated as any parametric
odel �( λ), where λ lives in the latent space of a given AE-based
odel. The observation model then reads as 

 d = K fg + �( λ) + K n . 

Covariance estimation then boils down to estimating the hy-
erparameter λ during the inference procedure. The a posteriori
istribution now reads as 

og p( θ, λ| d , x ) ∝ log p( d | x , θ, λ) + log p( θ ) + log p( λ) , (16) 

here the LML is defined in equation ( 7 ), and where the hyper-
arameters λ are related explicitly to the parameterization of the
E-based models that act as the covariance of the 21-cm signal. The
yperparameters θ are related to modelling additional components
uch as noise and foregrounds, depending on the model we consider
see Section 2.1 ). 

https://github.com/jbobin/IAE
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To compute the maximum a posteriori and estimate uncertainties 
n the hyperparameters θ and λ, we use a Markov chain Monte 
arlo (MCMC). Such methods aim to sample the model parame- 

ers’ posterior probability distribution given the observed data. In 
ractice, this is performed with the ensemble sampler algorithm 

f Goodman & Weare ( 2010 ), implemented in the emcee python
ackage (F oreman-Macke y et al. 2013 ). 

.2.4 Training the 21-cm signal kernel 

n the generic description of the learnt kernel, the kernel is trained on
 set of covariance K . However, when it comes to the specific case of
he 21-cm signal, we can exploit the isotropic nature of the signal and
rain the AE on a set of 21-cm power spectra, denoted as P HI (k). This
raining is equi v alent to training on the covariance K . With the AE,
e learn the shape of the power spectra while keeping the variance

s a separate parameter. Therefore, during the pre-processing of 
ur learning step, our 21-cm power spectra of the training set are
caled to have the same power. The trained decoder of the AE thus
akes n parameters as input; it then outputs a normalized spherically 
veraged power spectrum, which is then converted to frequency–
requenc y co variance matrix, using the expression of the angular 
ower spectrum, in the flat-sky approximation (Datta, Choudhury & 

haradwaj 2007 ): 

 l ( �ν, k ⊥ 

) = 

T 2 

πr 2 ν

∫ ∞ 

0 
P HI 

(√ 

k 2 ⊥ 

+ k 2 ‖ 

)
cos ( k ‖ r ν�ν)d k ‖ , (17) 

here T is the differential brightness temperature of the 21-cm signal, 
 

2 
ν is the comoving distance at the mean frequency of the observation
ube. Additionally, k ⊥ 

and k � represent the Fourier modes in the 
ransverse (spatial) and line-of-sight (frequency) directions, respec- 
i vely. A more comprehensi ve description of these concepts and their
efinitions can be found in Section 2.3 . Combining these elements, 
e form the 21-cm trained kernel, which takes n + 1 parameters

 n corresponding to the dimension of the latent space of the AE),
nd one parameter for the variance of the kernel. We note here the
ependence of C l on k ⊥ 

which provides a significant advantage over 
he generic kernel traditionally used in the standard GPR method as
ater tests will demonstrate. 

.3 Power spectra estimation 

urrent generation of redshifted 21-cm experiments aims at charac- 
erizing the power spectra of the signal at different redshift to quantify 
he scale-dependent second moment of the signal and its evolution as
unction of redshift. We compute it by taking the Fourier transform
f the gridded visibility cubes V ( u , ν) in the frequency direction.
e can then define the c ylindrically av eraged power spectrum as

Mertens, Ghosh & Koopmans 2018 ): 

 ( k ⊥ 

, k ‖ ) = 

X 

2 Y 

�PB B 

〈 ∣∣ ˆ V ( u , τ ) 
∣∣2 〉 

, (18) 

here ˆ V ( u , τ ) is the Fourier transform in the frequency direction,
 is the frequency bandwidth, �PB is the integral of the square of

he primary beam, X and Y are conversion factors from angle and
requenc y to como ving distance, and 〈 .. 〉 denote the av eraging o v er
aselines of the same length. The Fourier modes are in units of
nv erse como ving distance and are given by (Morales, Bowman &
ewitt 2006 ; Trott, Wayth & Tingay 2012 ) 

 ⊥ 

= 

2 π| u | 
D M 

( z) 
, (19) 
 ‖ = 

2 πH 0 ν21 E( z) 

c(1 + z) 2 
τ, (20) 

 = 

√ 

k 2 ⊥ 

+ k 2 ‖ , (21) 

here D M 

( z) is the transv erse co-mo ving distance, H 0 is the Hubble
onstant, ν21 is the frequency of the hyperfine transition, and E ( z)
s the dimensionless Hubble parameter (Hogg 1999 ). We also define
he dimensionless power spectrum by averaging the power spectrum 

n spherical shells as 

 

2 ( k ) = 

k 3 

2 π2 
P ( k ) . (22) 

he latter is well suited for characterizing the 21-cm signal, which
e expect to be isotropic at a given redshift. We limit our analysis to
 bandwidth of 12 MHz to limit the effects of signal evolution, which
ould introduce anisotropy (Mertens et al. 2020 ). 
To compute the power spectrum and its uncertainty for a specific

omponent, say the 21-cm component, we start by taking m samples
rom the posterior distribution of the hyperparameters, that we can 
ake directly from the MCMC chain. We then generate E( f 21 ) and
ov(f 21 ) using equation ( 4 ) and equation ( 5 ), and produce the power
pectrum of ( E + δ21 ) with δ21 a sample drawn from the Gaussian
istribution with covariance cov(f 21 ). We then compute the power 
pectrum and associated 1 σ uncertainty of the 21-cm component by 
aking the median and standard deviation of the m power spectra thus
enerated. 

 SIMULA  TED  DA  TA  

his section provides a description of the simulated data sets used
or testing the new ML–GPR method. We focus on SKA-low and
imulate a gridded visibility cube using the planned SKA array 
onfiguration and the expected SKA thermal noise level. Noise 
imulation is performed using ps eor. 8 To produce the 21-cm 

ignal component, we use 21cmFAST (Mesinger & Furlanetto 2007 ; 
esinger, Furlanetto & Cen 2011 ) simulated cubes for both the

raining set of the learnt kernel and the reference signal that we
ill attempt to reco v er. To model the foreground component, we
se a similar strategy as in Mertens, Ghosh & Koopmans ( 2018 )
nd use GP with a frequenc y–frequenc y co variance model e xpected
or an SKAO observation. As our primary focus is on validating
he 21-cm learnt kernel, we use a simple foreground simulation 
enerated with the same GP covariance function used for the signal
eparation to a v oid bias from a mismatched foregrounds kernel: The
ame covariance model will be used as a foreground component in
ur GP model. Ho we ver, we plan to try more realistic foreground
imulations in future work. 

The simulation spans a frequency range of 122 −134 MHz with a
pectral resolution of 0.2 MHz, corresponding to a redshift z ∼ 10.1.
he maps co v er a field of view of 4 . ◦5 with a baseline ranging from 35

o 300 λ, which gives us a maximum angular resolution of 10 arcmin.
e chose these parameters to get an optimal sensitivity to the 21-cm

ignal. 

.1 For egr ounds 

ollowing Mertens, Ghosh & Koopmans ( 2018 ), we model fore-
rounds using two components: the intrinsic astrophysical fore- 
MNRAS 527, 3517–3531 (2024) 
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Figure 1. Spherically averaged power spectra of 450 selected 21cmFAST 

simulations from the training set. The total training set is made of 5000 
simulations. In red is shown the power spectra of the reference signal. 
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9 The SKA-low design is given at https:// www.skao.int/ sites/ 
default/ files/ documents/ d18- SKA- TEL- SKO- 0000422 02 SKA1 
LowConfigurationCoordinates-1.pdf. 
10 The SKA LFAA station design report is available at https:// arxiv.org/ abs/ 
2003.12744v1 
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rounds and the instrumental effects, also known as the mode-mixing
omponent. 

At the radio frequencies at which 21-cm experiments operate,
he astrophysical foregrounds emission foregrounds can be classified
nto two primary groups: (i) galactic foregrounds, which are primarily
inked to the diffuse synchrotron and, to some degree, free–free
mission from the Milky Way; and (ii) extragalactic foregrounds,
hich are linked to radio emission from star-forming galaxies and

ctive galactic nuclei, and to a lesser extent, radio halos and relics.
he emission mechanisms are well known and are characterized by
 power-law spectrum. Our approach in this work is not to model
he spatial distribution of astrophysical foregrounds. Instead, we
imulate this component using a Gaussian covariance with an 80-

Hz frequenc y–frequenc y coherence scale. We do so because the
L–GPR method mainly accounts for frequenc y–frequenc y corre-

ations (also we account for some spatial information through the
ependence of the frequenc y–frequenc y co variance to the baseline
ength). Hence, our treatment is appropriate, given the limitations
f our current implementation. The variance of this component
s matched to the variance observed in LOFAR observations after
irection-dependent calibration and sky model subtraction (see fig.
 in Mertens et al. 2020 ). 
We use a Gaussian Process to simulate instrumental effects, which

an arise from various sources, such as instrument chromaticity and
alibration imperfections. Our approach is moti v ated by the analysis
f LOFAR data, which suggests that medium-scale fluctuations
an be accurately modelled using a Mat ́ern covariance function, as
reviously done in Mertens, Ghosh & Koopmans ( 2018 ). The mode-
ixing typically appears in k ⊥ 

, k � -space as a wedge-like structure
Datta, Bowman & Carilli 2010 ; Morales et al. 2012 ), with the level
f spectral fluctuations increasing as the baseline length grows. To
ddress this effect, we scale the frequenc y–frequenc y coherence scale
ith the angular scale, with values ranging from 4 MHz for a baseline

ength of 35 λ to 2 MHz for a baseline length of 300 λ. Here, we set
= 5/2 for the Mat ́ern function. In our study, the primary focus is on
odelling the 21-cm signal. While analytically defined covariance

or instrumental effects has been developed in prior works (Liu,
arsons & Trott 2014a , b ), we opted here for a simple method to
enerate foregrounds, including instrumental effects). 
In this work, we also investigate the resilience of our method to

eco v er the 21-cm signal in the presence of additional, less spectrally
mooth components. Specifically, we consider an excess component
bserved in LOFAR observations (Mertens et al. 2020 ) that cannot be
ttributed to astrophysical foregrounds, instrumental effects, or the
1-cm signal. To simulate this component, we use a Mat ́ern kernel
ith η = 5/2 and a coherence scale of 0.4 MHz, which captures its

tatistical characteristics. We aim to e v aluate the robustness of our
ethod in handling such contaminants. 

.2 21-cm signal 

e simulate the 21-cm signal with 21cmFAST (Mesinger & Furlan-
tto 2007 ; Mesinger, Furlanetto & Cen 2011 ), a semi-numerical code
hat characterizes the rele v ant physical processes with approximate

ethods, resulting in faster and less e xpensiv e computations than
ccurate radiative transfer simulations. The semi-analytic codes
enerally agree well with hydrodynamical simulations for comoving
cales > 1 Mpc . 

Several parameterization options are available in 21cmFAST (e.g.
ark et al. 2019 ). In our study, we opt for the simpler three-parameter
arameterization, where ζ 0 represents the ionizing efficiency of high-
 galaxies, T vir denotes the minimum virial temperature of star-
NRAS 527, 3517–3531 (2024) 
orming haloes, in units of M �, and R mfp which represents the mean
ree path, in cMpc, of ionizing photons within ionizing regions. We
roduce a total of 5000 simulation co-e v al cubes at z ∼ 10.1, with
0 ranging between 10 and 250 with a step of 5, log( T vir ) ranging
etween 4 and 6 with a step of 0.1 and R mfp ranging between 5 and
5 cMpc with a step of 2 cMpc. For the fiducial simulation, we use
he parameters [ ζ 0 , log( T vir ), R mfp ] = [102, 4.65, 14], outside of the
raining set. In Fig. 1 , we plot in red the spherically average power
pectrum of the fiducial simulation against the spectra of some of the
imulations from the training set (grey lines). 

.3 Noise 

e test the signal separation algorithm in the context of a SKA-
o w observ ation. With this aim, we simulate realistic SKA thermal
oise using the ps eor code. At completion, the SKA-Low will
e made of 512 stations, each of 256 elements, providing exquisite
ensitivity at our scale of interests. Our simulation process involved
reating the uv -co v erage of the instruments by simulating the uv -
racks of each individual baseline and then gridding them to a uv -
rid. The uv -co v erage grid is simulated assuming the current plan
or antennae distribution of SKA-Low. 9 We simulate the uv -tracks
orresponding to a 10-h long observation, with an integration time
 int = 10 s targeting the Murchison Widefield Array (MWA) EoR-0
eep field (RA = 0h00, Dec. = −27 ◦) (Trott et al. 2020 ), which is a
otential future target for SKA-Low observations. The noise in each
v -cell, and for each frequency channel ν is then generated following
 Gaussian distribution with standard deviation: 

( u, v, ν) = 

k B T sys ( ν) 

A eff 

√ 

1 

2 δνN ( u, v, ν) t int 
. (23) 

ith T sys is the system temperature, 10 A eff is the ef fecti ve collecting
rea, δν is the spectral resolution (0.2 MHz in our case) and N ( u ,
, ν) is the number of visibilities that are fall into a uv -co v erage
rid. Noise cube emulating the integration of up to t obs = 1000 h ,

https://www.skao.int/sites/default/files/documents/d18-SKA-TEL-SKO-0000422_02_SKA1_LowConfigurationCoordinates-1.pdf
https://arxiv.org/abs/2003.12744v1
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Figure 2. Power spectra of all simulated components used in our tests: foregrounds (blue), SKA thermal noise for 100 h of observation (orange), excess 
component (green), reference 21-cm signal (dashed black line), and synthetic 21-cm signal (dotted black line). We show their variance as function of frequency 
(top-left panel), the spherically averaged power spectra (top right panel), the cylindrically averaged power spectra as function of k � (averaged over k ⊥ , bottom 

left panel) and as function of k ⊥ (averaged over k � , bottom right panel). 
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f observations are generated by scaling down the noise cube by a
actor of 

√ 

( 10 /t obs ) . 

.4 Tests scenarios 

n Fig. 2 , we summarize all the components of our reference
imulation and their differences in terms of variance (top left panel), 
pherically average power spectrum (top right) and cylindrically 
verage power spectra averaged (bottom panel). We also include 
 dif ferent, synthetic , po wer-law-like 21-cm signal that we will later
mploy in additional tests. 

We assess the performance of the ML-GPR methods by testing 
hem against various scenarios which are made of different compo- 
ents: 

Without foregrounds: This test will e v aluate the raw performance 
f the algorithm with an ideal scenario including only the 21-cm 

ignal and noise components. 
With foregrounds: Evaluating the impact of foregrounds by 

ncluding the 21-cm signal, noise, and foregrounds. 
Without 21-cm signal: This will be a null test in which no 21-cm

ignal is present in the data, just noise and foregrounds. 
With an excess component: In addition to the foregrounds, an 
xtra component is added to the observation. In this case, we will
est two possibilities: if the excess is accounted for or not in the GPR
ovariance model. 

Synthetic 21-cm signal: Finally, the robustness of the methods is 
ested in reco v ering a class of models which are v ery different from
hat is used in the training set by employing a power-law-like 21-cm

ignal. 

For all these scenarios, we will compare the performance of 
he IAE and VAE kernels to the approach of Mertens, Ghosh &
oopmans ( 2018 ), which uses an analytically defined covariance. 

 RESULTS  

n this section, we first e v aluate the reconstruction performance of
he VAE and IAE and we later conduct various 21-cm signal reco v ery
ests across different scenarios. 

.1 Model evaluation 

he quality of the VAE- and IAE-based models are first e v aluated
ndependently of the regression task that we will eventually do. 
MNRAS 527, 3517–3531 (2024) 
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M

Figure 3. Normalized MSE distribution between the estimated and true 
power spectra from the test set for the VAE (orange) and IAE (blue) models, 
for n = 2 (top panel) and n = 3 (bottom panel). 
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Figure 4. Normalized fractional ratio distribution between the estimated 
and true power spectra from the test set for the VAE (orange) and IAE (blue) 
models, for n = 2 (top panel) and n = 3 (bottom panel). 
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he goal is to assess the trained models’ accuracy and ability to
apture the structure of the 21-cm power spectra. Whether it is IAE
r VAE, both methods are used to build a low-dimensional and non-
inear signal representation of the 21-cm. To that purpose, these two
pproaches are e v aluated with respect to two key parameters: 

(i) The dimensionality n of the latent space. n sets the complex-
ty of the trained models. An accurate low-dimensional model is
mportant because a compressed representation allows for better
iscrimination between the 21-cm signal and spurious contamination
e.g. foregrounds, noise, etc.). 

(ii) The size of the training set. Evaluating the reliability of the
rained model with respect to the size of the training set is crucial
ecause the ability to train accurate models from scarce training
amples will make possible the applications to more realistic EoR
imulations, whose computational cost limits the number of samples
or an eventual training stage. 

Fig. 3 displays the normalized mean squared error (NMSE) in
ecibels of the estimated 21-cm signal power spectrum across the
est set for latent space dimensionality n = 2 and 3. Comparing the top
nd bottom panels, and as expected, increasing the dimensionality
mpro v es the accurac y of trained models for the IAE, especially when
he training set is large enough (e.g. the number of samples larger
han 500 in this experiment). The improvement for the VAE is very

arginal. For a small training set, the accuracy of the models is likely
imited by the limited number of available training samples. 

For n = 2 and 3, and as expected, both the IAE and VAE provide
ncreasingly more accuracy as the number of training samples
ncreases. The IAE provides more accurate models in all cases, with
 significant NMSE 

11 gain close to 10 dB for n = 3 and a number of
NRAS 527, 3517–3531 (2024) 

1 The NMSE of an estimate ˆ x of a signal x is defined as −20 log ( ‖ x −
ˆ  ‖ 2 / ‖ x‖ 2 ). 

4

W  

r  

a  
raining samples of 5000. The scatter of the NMSE across the test set
s similar for both methods and decreases slightly when the number
f training set samples increases. 
The NMSE measures the discrepancy between the estimated and

nput power spectra, which will be dominated by errors on its largest
alues located at large k modes. The relative error ratio displayed
n Fig. 4 is more sensitive to the lowest values of the power spectra
i.e. at small k modes). In this case, the VAE and IAE yield quite
omparable average accuracy. Except for the case of 50 training
amples, the IAE yields slightly smaller dispersion across the test
et. Considering the limited impro v ement gained by the higher
imensionality of the latent space and the increased complexity in the
ovariance model, we will focus on the n = 2 case for the remainder
f this paper. 
In Fig. 5 , we present the reconstructed power spectra correspond-

ng to the best and worst cases of relative absolute errors for both VAE
nd IAE. For these experiments, we use the model trained with 5000
amples and n = 2. Overall, the IAE tends to produce more accurate
ow-dimensional models of the 21-cm power spectra than the VAE.
ven when the VAE exhibits the best reconstruction performance,

he IAE performs similarly. Moreo v er, the relativ e absolute error of
he worst IAE case is significantly lower than that of the worst VAE
ase. In general, The VAE and IAE generally perform better when
ealing with ‘monotonous’ power spectra, while their performance
egrades when confronted with power spectra that contain more
omplex features. The next sections will focus on extending these
omparisons in the context of power spectra estimation from noisy
nd contaminated signals. 

.2 21-cm signal power spectrum estimation 

e now evaluate the performance of the VAE and IAE models in
etrieving the 21-cm EoR signal from a contaminated data cube
nd compare them with the standard GPR method (using a Matern
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Figure 5. Reconstructed spherically averaged power spectra (top panel) and residual (bottom panel) in the best VAE case (first panel), best IAE case (second 
panel), worst VAE case (third panel), and worst IAE case (fourth panel), estimated across the test set, showing both the VAE (blue) and IAE (orange) results for 
the four cases. For comparison, we show in grey the input signal. The averaged fractional absolute reconstruction error is also shown as a dashed line. 
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ovariance for the 21-cm component with η = 3/2. We use the VAE
nd IAE models trained with dimensionality n = 2 and a training set
f 5000 samples. We will refer to the ML–GPR method employing 
he VAE model as VAE–GPR. Similarly, the ML–GPR method using 
he IAE model will be IAE–GPR. 

.2.1 Scenario I: 21-cm signal and noise 

e begin by considering a simple scenario involving a data cube 
omprising only instrumental noise and the 21-cm signal. The results 
f the reconstruction are presented in the left panels of Fig. 6 ,
here we compare the spherically averaged power spectra (top 
anel) and the c ylindrically av eraged power spectra along the line
f sight (middle panel) and perpendicular to it (bottom panel). Even 
n this simple setup, both the VAE–GPR (in blue) and IAE–GPR
in orange) methods outperform the traditional GPR (in green), 
f fecti v ely reco v ering the input 21-cm signal. The GPR approach
ends to underestimate the power at larger scales while o v erestimating 
t at smaller scales, particularly evident in the perpendicular direction. 
nterestingly, the scale (or k ⊥ 

) dependence inherent in the new 

ethods pro v es advantageous, contrasting with the lack of scale 
ependence in standard GPR, which result in o v erfitting at large and
nderfitting at small angular scales. Moreo v er, we report minimal 
ncertainties in the reconstruction, with slightly larger uncertainties 
t smaller scales (larger k ) due to the lower signal-to-noise ratio
SNR) in those regions. It is important to note that the uncertainty in
he 21-cm signal estimated by GPR is smaller than the thermal noise
ncertainty because of the additional constraint provided by the 21- 
m signal prior. The reconstructed power spectra of the 21-cm signal
esult from a regression process in which the prior knowledge of the
1-cm signal can influence the outcome, particularly in low SNR 

cenarios, such as the thermal noise-dominated part of the power 
pectra. In this context, our approach can be considered model- 
ependent. Ho we ver, our frame work incorporates specific design 
hoices, such as the independence between variance and shape 
arameters, the diverse range in the simulation training set, and the
tilization of generative neural networks. These choices enable our 
ethod to be flexible and accommodate various possibilities, as our 

atest scenario demonstrates. 

.2.2 Scenario II: 21-cm signal, noise and foregrounds 

n the middle column of Fig. 6 , we consider the scenario where
he data cube comprises the 21-cm signal, noise, and foregrounds, 
epresenting the ideal case without additional systematics in the data. 
espite the presence of larger uncertainties, both the VAE–GPR 

nd IAE–GPR methods successfully reco v er the 21-cm signal. In
ontrast, the standard GPR approach exhibits a worsened deviation 
rom the ground truth. Notably, the limitations of the standard 
PR arise from its inability to accurately capture the shape of

he input power spectra, primarily due to the lack of baseline
ependence of the covariance prior model. The latter is particularly 
MNRAS 527, 3517–3531 (2024) 
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M

Figure 6. Reco v ered 21-cm signal power spectra using different methods: GPR (green), VAE–GPR (blue), and IAE–GPR (orange). The left panel shows the 
results when the data consist of only noise and the 21-cm signal. In the middle panel, a foregrounds component is added to the data, and in the right panel, the 
21-cm component is absent. The power spectra of the noise component are shown in yellow, and the dashed black line represents the power spectra of the 21-cm 

component. The shaded area represents the 2 σ uncertainty on the reco v ered 21-cm signal. The top panel displays the spherically averaged power spectra, while 
the center and bottom panels show the cylindrically averaged power spectra as a function of k � and k ⊥ (averaged over k ⊥ and k � , respectively). 
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vident when considering the power spectrum as a function of k ⊥ 

bottom panel), which presents a flat behaviour. In contrast, the
L–GPR methods perfectly reco v er the shape of the input power

pectra. This result can be attributed in part to the addition of
he spatial information through the dependence of the frequency–
requenc y co v ariance to the base-line length. Ho we ver, this is not
he sole factor in the enhanced performance of the ML-GPR method.
elying solely on an Exponential or Matern covariance function
ith k ⊥ 

dependence would not suffice. The pivotal advantage of
ncorporating the autoencoder in this context lies in its ability to
stablish a more informative prior for the 21-cm signal. Even with k ⊥ 

ependence, Exponential or Matern covariance functions might not
omprehensively capture all the potential 21-cm signal frequency–
requenc y co variance. These functions – inherently generic – might
ot encapsulate the intricate complexity of the intrinsic covariance
n the 21-cm signal. The uncertainty is highest in regions dominated
NRAS 527, 3517–3531 (2024) 
y foregrounds ( k < 0 . 3 h cMpc −1 ) or noise ( k > 0 . 5 h cMpc −1 ).
omparing the performance of the IAE and VAE, both methods
xhibit equi v alent recovery, although the IAE demonstrates a slightly
maller bias. 

.2.3 Scenario III: noise only 

n this particular scenario, we e v aluate the performance of the
lgorithm when the 21-cm signal is significantly below the sensitivity
hreshold of the instrument, resulting in a data cube consisting only
f foregrounds and noise components. When looking at the result of
he MCMC, in all three cases (VAE–GPR, IAE–GPR, and standard
PR) the hyperparameters that control the shape of the power spectra

the two latent space parameters for the VAE and IAE, and the Matern
oherence-scale for the standard GPR) are unconstrained: There
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Figure 7. Reco v ered 21-cm signal power spectra using different methods: GPR (green), VAE–GPR (blue), and IAE–GPR (orange). In the left panel, an excess 
component is introduced into the data without being accounted for in the GPR model. The middle panel demonstrates the results when the excess component 
is properly accounted for. In the right panel, the reference 21-cm signal is replaced with a synthetic 21-cm signal modelled by power-law power spectra. The 
power spectra of the noise component are shown in yellow, and the dashed black line represents the power spectra of the 21-cm component. The shaded area 
represents the 2 σ uncertainty on the reco v ered 21-cm signal. The top panel displays the spherically averaged power spectra, while the center and bottom panels 
shows the cylindrically averaged power spectra as a function of k � and k ⊥ (averaged over k ⊥ and k � , respectively). 
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osterior is flat. The variance of this component is also unconstrained 
ith a large right-tail which is set by the sensitivity (all variance
yperparameters are inferred in log-space). This is the reason why, 
lso the reco v ered power spectra in the left panel of Fig. 6 is below the
oise power spectra (yellow line), the corresponding 2 σ uncertainty 
s large and reach region which can be just below the noise. This is
he case for all three methods. 

.2.4 Scenario IV: 21-cm signal, noise, foregrounds, and extra 
omponent 

o assess the robustness of our algorithm against more realistic 
ystematic effects, we introduce an additional foreground component 
nto the data cube, as described in Section 4.2 . This component is
esigned to mimic the statistical properties of the ‘excess’ observed 
n current LOFAR–EoR analysis (Mertens et al. 2020 ). Notably, this
xcess component is currently not subtracted from LOFAR data, 
aking it a limiting factor in the current analysis. While impro v ed

alibration and processing techniques may potentially mitigate or 
liminate this excess component, the ability to robustly separate it 
rom the 21-cm signal is crucial for maximizing the experiment’s 
ensitivity. 

In the initial analysis, we examine the recovered 21-cm signal 
ithout including any additional component in our prior covariance 
odel, considering only the foregrounds, noise, and 21-cm compo- 

ent. The results presented in the first column of Fig. 7 indicate poor
erformance for all three methods. We find that the reco v ered signal
omprises both the excess component and the 21-cm signal. The 
xcess present in the data is being absorbed by additional variance
n the 21-cm component. Since this excess component was not 
MNRAS 527, 3517–3531 (2024) 
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Figure 8. Ratios of reco v ered o v er input 21-cm power spectra using a VAE 

(top panel) and IAE (middle panel) trained with 5000 samples and for different 
level of noise in the data: between 50 and 1000 h of equivalent SKA noise. 
Each case is depicted with a small offset around the measured k -bin for clarity. 
The 2 σ uncertainty is also indicated for each case. In the bottom panel, the 
power spectra of the noise for the different cases are shown, along with the 
power spectra of the 21-cm signal, illustrating the SNR due to the noise. 
F ore grounds dominate the power spectra for k < 0 . 3 h cMpc −1 . 
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ccounted for in the covariance prior model, the algorithm effectively
ttributes the unexplained variance to the 21-cm signal. Ho we ver,
e also observe a discrepancy in the shape of the reco v ered signal
ower spectra compared to the shape of the excess power spectra.
his disparity arises from the fact that the covariance prior model for

he 21-cm signal does not include this specific class of shape. 
To address this limitation, we introduce a second step in our

nalysis where the same Matern covariance used to simulate the
xcess component is added to the GPR covariance prior model.
y doing so, we account for the statistical properties of the excess
omponent. This assumes that we have a thorough understanding of
he systematic and can perfectly account for it in our analysis. The
esults (middle panel of Fig. 7 ) demonstrate that while the uncertainty
n the power spectra significantly increases, the input signal lies well
ithin the 2 σ uncertainty range of the reco v ered signal. Both IAE–
PR and VAE–GPR show successful reco v ery, while standard GPR
erforms significantly worse. We observe a greater mixing between
he excess and 21-cm components in standard GPR, resulting in
 stronger bias. This discrepancy is particularly pronounced when
xamining the power spectra in the k ⊥ 

direction, highlighting the
mportance of properly accounting for all components, including
ystematics, in the covariance prior model. 

.2.5 Scenario V: synthetic 21-cm signal, noise, and foregrounds 

n the last test scenario, we aim to reco v er a completely synthetic and
on-physical model, which represents a case where the true power
pectra significantly deviate from current model predictions, and is
hus not present in the training set. To simulate this scenario, we
dopt a power-law model with the equation � 

2 ( k) = σ 2 
21 k 

2 , where
2 
21 is chosen to match the variance of the fiducial 21-cm signal.
he results of this test, presented in the last column of Fig. 7 , reveal

hat while none of the methods are able to perfectly reco v er the
1-cm signal, the IAE–GPR, and VAE–GPR methods exhibit better
eco v ery of the shape compared to the standard GPR method. This
mpro v ement is particularly evident for k modes greater than 0.1, h ,
Mpc −1 . Upon examining the power spectra as a function of k � , we
bserve that the discrepancy between the input and recovered signal
s more pronounced for modes where the foregrounds dominate,
pecifically the low k � modes. 

This test underscores the importance of having a sufficiently wide
rior for the 21-cm signal in order to account for unexpected 21-cm
ignal. It also highlights the need for a feedback loop with theoretical
odels, where simulations can be updated to explain observations,

ignal separation can be re-run with the updated models, and the
esulting signal can be refined accordingly. 

.2.6 Effect of varying the noise level 

n this section, we explore the influence of varying thermal noise
evels on the recovery of the 21-cm power spectra. To investigate this,
e conduct simulations with different integration times, ranging from
0 to 1000 h. For this analysis, we used the same noise realization,
hich is subsequently scaled to match the desired integration time

evel. This was done to prevent any fluctuations in the results solely
ue to different noise realizations. The results of this analysis are
resented in Fig. 8 , illustrating the ratio between the reco v ered and
nput 21-cm power spectra using the VAE- and IAE-trained kernel. 

Our findings indicate that reducing the thermal noise level has min-
mal impact on the uncertainty of the reco v ered signal for the k -modes
ominated by foregrounds ( k < 0 . 3 h cMpc −1 ). This suggests that the
NRAS 527, 3517–3531 (2024) 
rimary source of uncertainty in the foreground-dominated region
tems from the foreground itself rather than the noise. Ho we ver,
or k -modes where noise dominates ( k > 0 . 4 h cMpc −1 ), increasing
he integration time substantially decreases the uncertainty. These
esults underscore the crucial role of foregrounds in contributing to
he uncertainty in the reco v ery of the 21-cm power spectra. 

.2.7 Varying the size of the training set 

n this section, we examine the influence of the training set size
n the reco v ery of the 21-cm signal using our trained kernel. While
athering a large training set is feasible for seminumerical simulation
odes like 21cmFast, it may become computationally prohibitive for
ull 3D radiative transfer simulation codes (e.g. Ciardi et al. 2001 ;
emelin et al. 2017 ). Ho we ver, the generati ve nature of our methods
nables us to achieve satisfactory recovery even with a relatively
mall data set. 

We assess the behaviour of the reco v ery using different training set
izes, and the results are presented in Fig. 9 . Remarkably, even with
nly 100 samples, we can still reco v er the 21-cm signal, albeit with
igher bias and uncertainty. This effect is predominantly observed
n the region dominated by foregrounds ( k < 0 . 3 h cMpc −1 ), while
he noise-dominated region remains relatively unaffected. Notably,
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Figure 9. Ratios of reco v ered o v er input 21-cm power spectra using a VAE 

(top panel) and IAE (bottom panel) with different numbers of samples in the 
training set, ranging from 50 (blue) to 5000 samples (yellow). Each case is 
depicted with a small offset around the measured k -bin for clarity. The 2 σ
uncertainty is also indicated for each case. 
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he case with 500 samples performs nearly as well as that with 5000
amples. 

These findings demonstrate the capability of our methods to 
chiev e reliable reco v ery of the 21-cm signal, ev en with limited
raining data. While a larger training set generally leads to impro v ed
erformance, our approach pro v es robust in cases where computa- 
ional constraints limit the availability of e xtensiv e training samples. 

 DISCUSSION  A N D  C O N C L U S I O N S  

etecting the redshifted 21-cm radiation of neutral hydrogen is the 
ltimate probe of the early stages of the observable Universe (Dark 
ges and EoR). Even though a tremendous observational effort is 
ngoing – culminating with the SKA Observatory being online by 
he end of this decade – these observations are hard to perform 

s the signal is dwarfed by astrophysical contaminants shining at 
he same wavelengths, which are coupled to intricate systematics. 
mong the strate gies dev eloped to address these challenges, we 
nd GPR, introduced in the 21-cm context by Mertens, Ghosh & 

oopmans ( 2018 ) and that has become the method of choice of
everal 21-cm experiments. 

The scope of this work has been improving GPR, making it more
daptable to the component separation task to retrieve the 21-cm 

ignal. In particular, standard GPR assumes that the frequency–
requenc y co v ariance of the dif ferent components can be expressed
nalytically. We substituted that framework with covariance models 
earnt from 21-cm signal simulations. To do so, we relied on two
ifferent AE: variational and interpolatory AE. We tested the three 
ethods (GPR, VAE–GPR, and IAE–GPR) in various scenarios to 

ssess their ability to pinpoint the accurate power spectra of the 
1-cm signal. 
First, we demonstrated that using n = 2 latent variables is sufficient

o characterize the spherically averaged power spectrum of the 21- 
m signal using both the VAE and IAE schemes based on our study’s
pecific 21cmFast simulation set. Increasing the number of samples 
n the training sets enhances the reconstruction capability of the 
E, resulting in a representation that better reflects the true signal.
o we ver, it is important to note that this impro v ement in training
oes not necessarily translate to better inference when reco v ering
he 21-cm signal from a simulated observation. Generally, the AE 

econstruction is more successful for power spectra with flatter 
rofiles compared to those with more complex features. In the best
ases, both VAE and IAE perform similarly. Still, VAE is more prone
o mismodel power spectra with intricate features. 

We then demonstrated the advantages of employing ML–GPR for 
omponent separation tasks by e v aluating v arious scenarios. The
nherent k ⊥ 

dependence in the learned kernel pro v ed significant,
istinguishing it from the standard GPR approach, which lacks this 
nformation. In general, both VAE and IAE-based kernels exhibited 
mpro v ed reco v ery of the 21-cm signal power spectra, characterized
y reduced bias and lower uncertainty than standard GPR. This can be 
ttributed to the learnt kernel being constrained to a set of covariances
hat align with our expectations for the 21-cm signal. 

Promisingly, when an additional contaminant, simulating a sys- 
ematic in the data, was introduced to the data cube, both VAE–
PR and IAE–GPR demonstrated their ef fecti veness. When the 

ystematic was properly accounted for in the prior covariance model, 
hese methods successfully reco v ered the power spectra of the 21-
m signal, although with higher uncertainty. Moreo v er, ev en when
he systematic was not accounted for, VAE–GPR and IAE–GPR still 
rovided a correct upper limit on the power spectra of the 21-cm
ignal, by not o v erfitting the unknown component. This highlights
he robustness of VAE–GPR and IAE–GPR in the presence of 
ystematics, showcasing their capability to deliver accurate signal 
stimates in challenging scenarios. 

Significantly, the two ML–GPR outperform GPR in the scenario 
here we use a 21-cm signal not represented in the training set

nor in the GPR analytical kernel framework). The latter test is
ssential before applying ML–GPR in a real observational context, 
s it assesses the importance of the unkno wn representati veness of
he training set. 

In general and expectedly, uncertainties are higher in the k -regions
here foregrounds or noise are dominant. When increasing the total 
bserving time, we observed a decrease in uncertainty, as anticipated, 
n the noise-dominated region. Ho we ver, the decrease in uncertainty
as only marginal in the fore ground-dominated re gion. We also

ound that for this specific 21cmFast simulation set, the number of
amples in the training set does not play a significant role in the
omponent separation task. 

As for the differences between the two new algorithms, IAE–GPR 

ends to have a slightly higher fidelity recovery of the signal power
pectra than VAE–GPR. We remind that VAE looks after a global
escription of the manifold where the 21-cm power spectra live, 
ending to generalize. Ho we ver, IAE works with true anchor points
n the manifold from which the algorithm can interpolate the output
ower spectra, making it more flexible in the reconstruction. 
For real applications in the short term, we expect the different

erformances of the two ML-GPR to be insignificant as we deal with
ighly contaminated and noise-dominated data. None the less, the 
AE architecture is robust also in the case of few available training
amples, which, in the short term, can allow us to train it with 21-
m simulations that are more realistic than what we have exploited
ere, but also more computationally e xpensiv e and thus more
carce. 

The 21-cm from the EoR and CD still needs to be better
nderstood; many simulation codes are integrating more complex 
hysics. We should combine multiple simulations code and train on 
MNRAS 527, 3517–3531 (2024) 
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Table A1. Details of the architecture of both the IAE and VAE used in this 
work. 

VAE IAE 

No of layers 3 3 
Encoder [20, 20, 20] [12, 12, 12] 
Decoder [20, 20, 20] [12,12,12] 
Batch size 128 64 
Batch size 128 64 
Epochs 2000 5000 
Beta 1e-4 1e-3 
Latent dim 2 3 
Learning rate 0.02 0.01 
Learning rate decay 10 −5 No learning rate decay 
Minimiser Adagrad Adam 

Implementation Pytorch JAX 
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 combined set to widen the prior of the 21-cm component and co v er
ll possibilities. 

As another future outlook, we plan to further test these methods’
obustness against more realistic contaminants. The test with the
xcess component (Scenario IV, left column of Fig. 7 ) shows that
n the presence of an unaccounted component, its contribution to
he variance in the data will be absorbed by other components –

ost likely by the 21-cm part which is flexible enough. As such,
onstructing the correct covariance prior model that can account for
ll data systematics is of utmost importance, informed in this stage
y solid statistical techniques. 
Moreo v er, we e xpect AE to be of use also for modelling the

ontaminant part of the observed signal, which is the foreground for
hich it is harder to obtain, for example, an analytical covariance,

specially if we want to incorporate more realistic effects due to, for
xample, the beam and ionosphere. For that to be feasible, we first
eed to assemble more sensible simulations. The latter is part of our
onger endea v or as we approach the SKAO era. 

Summarizing, the critical outcomes of our work are that GPR with
 trained kernel can reco v er a 21-cm signal that was not described in
he training set and, to some extent, can do so also when an unknown
omponent – which we will not be able to simulate – contaminates
he data cube. Our results show the strength of these generative
pproaches and represent a further step forward in optimizing the
nalysis techniques that will make the detection at z > 6 of the
1-cm signal possible. 
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Figure B1. Reco v ered 21-cm signal power spectra using different methods: 
VAE–GPR (blue) and IAE–GPR (orange) for a more ‘extreme’ model, with 
simulation parameters outside the range typically considered. The power 
spectra of the noise component are shown in yellow, and the dashed black 
line represents the power spectra of the 21-cm component. The shaded area 
represents the 2 σ uncertainty on the reco v ered 21-cm signal. The top panel 
displays the spherically averaged power spectra, while the center and bottom 

panels show the cylindrically averaged power spectra as a function of k � and 
k ⊥ (av eraged o v er k ⊥ and k � , respectiv ely). 
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xplicitly ensured by projecting the encoded samples on to the affine 
ull of encoded so-called anchor points. In the present experiment, 
he number of anchor points is fixed to 3 and have been chosen at
andom from the training set. The loss functions of both AE are
omposed of two terms: a reconstruction fidelity term that fa v ors
econstruction and a latent space regularization term. For the VAE, 
he regularization term enforces the distribution to be close to a 
aussian distribution. In the case of the IAE (see equation 14 ),

t acts differently by enforcing the encoded training samples to be 
lose to the affine hull of the encoded anchor points. In both cases, the
arameter β controls the trade-off between these two terms. When 
vanishes, the training loss boils down to the reconstruction term 

nly. 

PPENDIX  B:  TEST  WITH  A  M O R E  

EXTREME’  M O D E L  

n this section, we conduct a test in which the input signal is
eliberately chosen to fall outside the range co v ered by the power
pectra in our training set. The purpose is to assess the generative
apabilities of the VAE and IAE models. We simulated a 21-cm 

ignal using 21cmFast with a virial temperature of T vir = 10 7 , which
s beyond the usual range considered. We also conducted this test
ith a noise level equivalent to 1000 h of SKA, because this signal
as of lower amplitude compared to the one considered until now. 
he results of this test for the VAE and IAE models are shown in Fig.
1 . While the reco v ery is not perfect, the input signal falls within the
 σ uncertainty for almost all k -modes. This e x ercise giv es a similar
utcome as our test in Section 4.2.5 . 
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