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ABSTRACT 

Pentadiplandra brazzeana Baillon (Pentadiplandraceae) is known to contain benzyl-, 3-methoxybenzyl-, 

4-methoxybenzyl-, 3,4-dimethoxybenzyl-, and indole-type glucosinolates, and the essential oil obtained 

from its roots is mainly constituted of benzyl isothiocyanate and benzyl cyanide. In a previous study in 

our group, we surmised that partial hydrolytic degradation of 4-methoxybenzyl isothiocyanate — one 

major expected compound - occurred during the hydrodistillation process of essential oil preparation. 

To probe this hypothesis, a selection of diversely substituted benzylic-type isothiocyanates was 

submitted to standard hydrodistillation-mimicking conditions. After extraction with dichloromethane, 

the reaction mixtures were analyzed using GC-MS. The aqueous phases resulting from liquid-liquid 

extraction were analyzed by HPLC and GC-MS.  2-Methoxybenzyl-, 4-methoxybenzyl-, 3,4- 

dimethoxybenzyl-, and 3,4,5-trimethoxybenzyl isothiocyanates underwent conversion into 2- 

methoxybenzyl-, 4-methoxybenzyl-, 3,4-dimethoxybenzyl-, and 3,4,5-trimethoxybenzyl alcohols, 

respectively, whereas benzyl-, 3-methoxybenzyl-, and 4-chlorobenzyl isothiocyanates were converted 

into the corresponding benzylamines. 

KEYWORDS:  Pentadiplandra  brazzeana,  glucoaubrietin, hydrodistillation, isothiocyanates, 

glucosinolates, thermal decomposition.
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INTRODUCTION 

Natural essential oils, generally obtained from vegetable matter (flowers, leaves, barks, roots, woods, 

rhizomes...), contain highly volatile and fragrant organic compounds. Since ancient times, they are used 

for perfumes, flavors, and for medicinal purposes (aromatherapy). Various technologies were developed 

in order to obtain the best aromatic substances to fulfill the needs of the perfumer and flavorist! and to 

respond to the pharmaceutical industries’ demands. Some authors consider the term “essential oil” as a 

generic term which encompasses natural extracts obtained by various processes (steam distillation, 

solvent extraction, super critical fluid extraction etc.); however, this term should be strictly applied to 

volatile extracts obtained from a raw material of plant origin either by steam distillation, mechanical 

processes or dry distillation. According to the nature of the raw material, two major types of distillation 

processes are used for aromatic plant materials: water distillation (in which the plant material is 

immersed in water and boiled by an external heat source) and steam distillation (in which steam is 

pumped through the plant charge to extract the oil).2 Improvement in production technology is an 

essential element to ameliorate the overall yield and quality of the product.? Hydrodistillation, which is 

the most “traditional method” for aromatic plant treatment, is still used for the production of many 

commercial oils, specially in tropical countries, since it is a simple and cheap technology. Nevertheless, 

chemical changes are invariably associated with water or steam distillations.* Any non-optimized 

distillation conditions can lead to hydrolysis of essential oil components; the thermal degradation of 

carbohydrates and proteins may also result in the formation of highly volatile off-notes which affect the 

acceptability and the quality of freshly distilled oil.> Distillation over short periods of time helps in 

reducing hydrolysis, decomposition, and resinification. 

In damaged plant cells, glucosinolates (GLs) are transformed by the endogenous myrosinase (B- 

thioglucoside glucohydrolase; E.C. 3.2.1.147) to produce mainly pungent volatile isothiocyanates (ITCs) 

which are particularly sensitive to thermal degradation in aqueous medium.®? Indeed, in our continuous 

program of chemical investigations on aromatic and medicinal plants from Central and West Africa, a 

great chemical variability was observed for essential oils obtained from Rinorea subintegrifolia O. Ktze 
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(Violaceae family) roots and Drypetes gossweileri S. Moore (Euphorbiaceae family) bark.'®!! The 

content of benzyl isothiocyanate (BITC, 5) (Figure 1) decreased during the distillation process while the 

relative proportion of benzyl cyanide increased, suggesting a chemical transformation of the ITCs. 

Pentadiplandra brazzeana Baill. (Pentadiplandraceae family) is a climber from Cameroon, the berries 

of which are eaten and used as sweetener of beverages.'? Recently, the GLs present in root, seed, and 

leaf extracts of the plant P. brazzeana were characterized and quantified by us according to the HPLC 

analysis of desulfo-GLs.!? Glucotropaeolin (benzyl GL), glucolimnanthin (3-methoxybenzyl GL), and 

glucoaubrietin (4-methoxybenzyl GL) were shown to be present in the root extract, whereas the seed 

mainly contained glucoaubrietin. 3,4-Dimethoxybenzyl GL, glucobrassicin (indol-3-ylmethyl GL), and 

traces of glucotropaeolin were detected in the leaf extract. During this investigation, the prediction of 

the GL profile from desulfo-GL analysis and hydrodistillation products was shown to be rather tricky. 

Varying extraction and analysis techniques led to different profiles. In addition, the above results 

apparently lacked consistency with data previously obtained from hydrodistillation experiments.'4 

Therefore, this discrepancy prompted us to repeat the hydrodistillation process on a portion of the 

sample of P. brazzeana root used for the quantification of GLs.'? The essential oil, obtained after a 5 h- 

hydrodistillation at pH 5.9, was shown to contain 57% of BITC 5, 10% of benzyl cyanide, and only 5% 

of 4-methoxybenzyl ITC (4-MBITC, 2) (Figure 1).'? Several studies have shown that individual GLs 

and GLs in plant extracts are degraded under hydrodistillation-mimicking conditions.*!>!9 Benzyl 

cyanide and 5 are expected to result from the enzymatic decomposition of glucotropaeolin (benzyl 

GL).”° Despite the fact that the stability of glucoaubrietin or its ITC under hydrodistillation conditions 

has never been investigated, it is reasonable to ascribe the decrease of these compounds to thermal 

breakdown and leaching into the heating medium, during hydrodistillation. However, taking into 

account that glucoaubrietin is by far the major GL present in P. brazzeana root and that MBITC 2, the 

main degradation product originated from this GL, was only found as a minor component in the 

essential oil of P. brazzeana, it had to be surmised that partial hydrolytic degradation of 2 occurred 

during the hydrodistillation process.
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The stability of some ITCs in aqueous solutions has been investigated. In distilled water at 37°C, allyl 

ITC decomposes into N,N'-diallylthiourea, allyl allyldithiocarbamate, diallyl tetra-, and diallyl penta- 

sulfide.© Allyl ITC isomerizes to allyl thiocyanate and decomposes into allylamine, allyl 

dithiocarbamate, diallylthiourea, carbon disulfide, diallylurea, and diallyl sulfide in buffer solutions (pH 

4, 6 and 8) at 80°C for 80 min.’ Within | h in boiling water, allyl ITC degrades to diallyl di-, diallyl tri- 

and tetrasulfide, allyl thiocyanate, 3 H-1,2-dithiolene, 2-vinyl-4H-1,3-dithiin, 4H-1,2,3-trithiin, 5-methyl- 

1,2,3,4-tetrathiane, and N,N’-diallylthiourea.”! In other respects, the thermal degradation of sulforaphane 

(4-methylsulfinylbutyl ITC), in aqueous solution at 100°C, was shown to produce dimethyl disulfide, S- 

methyl methanethiosulfinate, S-methyl methanethiosulfonate, methyl (methylsulfanyl)methyl disulfide, 

1,2,4-trithiolane,  4-isothiocyanato-1-(methylsulfanyl)-1-butene, 3-butenyl ITC and N,N'-di(4- 

methylsulfinyl)butyl thiourea.2* It has long been known that indol-3-ylmethyl ITC, resulting from 

enzymaticzdegradation of glucobrassicin, is spontaneously transformed into indol-3-ylmethanol. In 

addition, approximately 50% of phenylethyl ITC degrades after 4h in a phosphate buffered saline, at pH 

7.4 and at 37°C, producing phenethylamine.# Finally, 4-hydroxybenzyl ITC, resulting from enzymatic 

hydrolysis of glucosinalbin, is unstable in aqueous media, producing 4-hydroxybenzyl alcohol under 

release of a thiocyanate ion.?>?7 

Those observations led us to study and compare the stability in water at 90°C of the major 4- 

methoxybenzyl- (2) and benzyl ITCs (5) corresponding respectively to glucoaubrietin and 

glucotropaeolin, present in P. brazzeana root, by mimicking hydrodistillation extraction conditions. 

Furthermore, in order to check the correlation of substituents on the benzyl moiety with the 

transformation of the benzylic-type ITCs under hydrolytic conditions, we chose to probe the stability of 

several diversely substituted ITCs in the same experimental conditions. Our major objective was to 

investigate and compare the stability of benzylic ITCs associated with known naturally-occurring 

arylaliphatic GLs?® under hydrodistillation-mimicking conditions. So, 2-methoxy- (2-MBITC, 1), 3- 

methoxy- (3-MBITC, 6), and 4-methoxybenzyl (4-MBTIC, 2) ITCs (Figure 1) were tested to check the 

influence of the substituent’s location; 3,4-dimethoxy-, (3,4-DMITC, 3) and 3,4,5-trimethoxybenzyl 
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oil composition. The results of that study in progress in our laboratory will be described in a separate 

report. 

ABBREVIATIONS USED 

ITC: isothiocyanate, GL: glucosinolate, DCM: dichloromethane, EA: ethyl acetate, PE: petroleum 

ether, BITC: benzyl isothiocyanate, 2-MBITC, 3-MBITC, 4-MBITC: 2-methoxy-, 3-methoxy-, 4- 

methoxybenzyl isothiocyanate, 3,4-DMITC, 3,4,5-TMBITC: 3,4-dimethoxy-, 3,4,5-trimethoxybenzyl 

isothiocyanate, 4-CIBITC: 4-chlorobenzyl isothiocyanate. 
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Figure 1. Hydrolytic degradation of benzylic-type ITCs. 
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Figure 2. GC chromatogram of the DCM fraction obtained after a 10-min degradation of 4- 

methoxybenzyl ITC (4-MBITC, 2) in water at pH 5.0 + 0.2 at 90°C (minor peaks were present in the 

starting synthesized 2). 

17



  OH 

OMe 

N
o
r
m
a
l
i
z
e
d
 
Ar
ea
 

OMe     

  

0 20 40 60 

Time (min) 

Figure 3. Degradation of 4-methoxybenzyl ITC (4-MBITC, 2) and concomitant formation of 4- 

methoxybenzyl alcohol in water at pH 5.0 + 0.2 at 90°C. 
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Figure 4. Time-course degradation of benzylic-type ITCs in water at pH 5.0 + 0.2 at 90°C a) after 1 h, 

b) after 7 h. 

19



pue CR es 

Figure 5. Proposed pathway for the conversion of 4-methoxybenzyl ITC (4-MBITC, 2) into 4- 

methoxybenzyl alcohol 
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