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SPINAL CONSTRUCTIONS FOR CONTINUOUS TYPE-SPACE

BRANCHING PROCESSES WITH INTERACTIONS

CHARLES MEDOUS

Abstract. We consider branching processes describing structured, interacting populations in
continuous time. Dynamics of each individual’s characteristics and branching properties can
be influenced by the entire population. We propose a Girsanov-type result based on a spinal
construction, and establish a many-to-one formula. By combining this result with the spinal
decomposition, we derive a generalized continuous-time version of the Kesten-Stigum theorem
that incorporates interactions. Additionally, we propose an alternative approach of the spine
construction for exact simulations of stochastic size-dependent populations.

Introduction

Spine techniques and spinal trees are classical tools in the general context of branching processes
since the work of Kallenberg [36], Chauvin and Rouault [12, 13], and later Kurtz, Lyons, Pemantle
and Peres [45, 44, 38]. Spinal trees are constructed based on the original branching process by
distinguishing a lineage, called the spine. Its only living representative- the spinal individual-
follows a biased reproduction law compared to the other individuals in the process, ensuring
that the spine does not die out. In the specific yet widely studied case of size-biased trees, the
reproductive law (p̂n, n ≥ 0) of the spinal individual is defined by

p̂n =
npn
m

, for n ≥ 0,

where m is the mean value of the law of reproduction (pn, n ≥ 0) in the branching process. This
size-biased reproductive law of the spinal individual is closely related to the biased ancestral
reproduction [13, 27]. In fact the spine was used to characterize the process of the trait of a
uniformly sampled individual, in a large population approximation see e.g. [46]. The sampling
of k ≥ 2 distinct individuals from those living in a population at a time t is associated with a
k-spines construction. For further literature on multiple-particles sampling we refer the reader to
[31, 30, 35, 14] and the references herein.

Many-to-One formulas [32, 27] are prominent among classical spine results. Such formulas
are derived from a Girsanov-type result on the change of probability measure associated with
the spine, which can be regarded as a Doob’s h transform with h = 1, as described in [15, 2] for
instance. However for non harmonic functions h, these formulas express expectations of sums over
particles in the branching process in terms of a Feynman-Kac path integral expectation related
to the spinal individual. Consequently, the spinal individual is often referred to as a ”typical
individual” within the population. The connection to Feynman-Kac path integrals implies a
shared foundation between these concepts. For a comprehensive overview on this subject, we
refer to [19].

Another interesting property of spinal constructions is the ”spinal decomposition” [12, 45].
It is a representation of the spinal tree as a branching process with immigration, where the
immigration events are governed by a biased reproductive law specific to the spine, while the
distribution of offspring remains consistent with that of the original process. In recent decades, the
spinal decomposition has emerged as a highly valuable tool for investigating branching processes.
One of its notable contributions is providing a new proof of the L logL criteria, which were
originally proved by Kesten and Stigum for Galton-Watson (GW) processes [37] and by Biggins
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for continuous-time branching processes [9] using analytical methods. These results give specific
conditions on the reproductive law, ensuring the non-degeneracy of the martingale involved in the
spinal change of measure at infinity. By combining the spinal decomposition with a previously
known result from measure theory, Lyons, Pemantle, and Peres [45] provided a probabilistic
”conceptual” proof of Kesten and Stigum’s theorem for single-type GW processes. This method
proved to be easily generalizable to continuous-time structured branching processes [2, 27, 8] as
well as branching Brownian motions [39, 23, 28]. More recently Bertoin and Mallein extended
this proof to general branching Levy processes [7]. For similar results on superprocesses we
refer to [41, 42, 43, 22, 54]. Finally, we mention Hardy and Harris [29] who adapted the spinal
decomposition to prove the Lp-convergence of some key martingales, which was later used to
establish strong laws of large numbers [24].

The fundamental assumption in the aforementioned works is the branching property, which
assumes that the behavior of all particles in the process during their life is independent of one
another. However, in various systems of population dynamics such as genetics, epidemiology,
chemistry, and even queueing systems, interactions between individuals do occur and this fun-
damental hypothesis falls apart. Recently, Bansaye [3] established a spine construction and
Many-to-One formulas for interacting branching populations, where the branching rates and re-
productive laws depend on the traits of all individuals in the population. These traits belong
to a finite set and are fixed during the life of the individuals. Using the spinal decomposition,
Bansaye has found an L logL criterion for a single-type, density-dependent population. We also
mention a recent work on spine processes for density-dependent individual-based models in a
large population approximation [34].

In this article we consider a wide class of continuous-time structured branching processes
with general interactions. These processes are used to model structured populations, where the
behavior of each individual is influenced by the overall population state. Every individual in the
population is characterized by its trait, taking values in a subset of Rd. The lifespan of each
individual is exponentially distributed with a rate that depends on the traits of all individuals.
Upon an individual’s death, a random number of children are generated, each inheriting random
traits at birth, that are influenced by the traits of all individuals in the population. Between these
branching events, the evolution of the traits of all individuals in the population is deterministic
and also influenced by the entire population’s state, extending the work of Bansaye in [3] to include
many physical models. Notice that the branching parameters are determined by the traits of all
individuals, thereby the branching property no longer holds in this framework. We introduce a
comprehensive ψ-spinal construction for those processes, using a change of measure associated
with a positive weight function ψ that depends on the trait of the spinal individual and of those
of all other individuals. For a fixed function ψ both the spinal individual and those outside
the spine are subject to a bias. We derive a Girsanov-type formula associated with this change
of measure, taking the form of a path-integral formulation that involves a non-linear operator.
A classical approach to establishing limiting results, such as the central limit theorem or large
deviations, involves determining the eigenfunctions of such operators [8, 23, 16]. However, due
to the presence of interactions, this operator is contingent on the entire population, necessitating
the eigenfunctions to be dependent on the traits of all individuals. Thus, the weight function ψ
must rely on both the trait of the spinal individual and the traits of all individuals in order to
account for this dependency. Under certain non-explosion assumptions regarding the branching
parameters and the set of weight functions, we obtain a modified Many-to-One formula. Unlike
the classical Many-to-One formula- that describes the behavior of the branching process using
only the behavior of the spine- our formula relies on the whole spinal population.

Subsequently, we use this result in conjunction with the spinal decomposition to establish
L logL type necessary and L logL type sufficient conditions for processes with interactions, gen-
eralizing the work of [3] for non constant functions ψ. More precisely, we exhibit both a sufficient
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condition and a necessary condition for the non-degeneracy at infinity of the additive martingale
associated with the ψ-spinal change of measure, for a large set of ψ functions.

Finally we propose an alternative use of the spinal construction, where the function ψ is not
chosen as an eigenfunction but to simplify the dynamics of the associated spine process. As an
example we study a particular case of structured Yule process with mass loss events happening at
size-dependent rates. Yule processes are pure birth processes that are widely used in population
genetics to model and reconstruct phylogenetic trees, see e.g. Aldous’ review [1]. We use the spinal
construction with a multiplicative weight function to retrieve a conditional branching property
in the associated spine process, and propose an efficient algorithmic construction based on this
property.
Notation. In the sequel N∗ = {1, 2, · · · } will denote the set of positive integers, R+ := [0,+∞)
the non-negative real line, R+ := R+ ∪ {+∞} and R∗

+ := (0,+∞). We will denote respectively

by B (A,B) (resp. Ci (A,B)) the set of measurable (resp. i times continuously differentiable)
B-valued functions on a set A. For every couple (f, g) of real-valued measurable functions on a
set A, we denote for all x, fg(x) the product f(x)g(x).

The set of trait X is a subset of Rd and for all (x, y) ∈ X 2, we will denote x · y and |x|
respectively the canonical scalar product and the ℓ1-norm on Rd.

We introduce the Ulam-Harris-Neveu notations [50] to label the individuals of the population:

U := {∅} ∪
⋃
k≥0

(N∗)k+1 .

We consider branching processes starting from multiple initial individuals, thus the root ∅ will
be treated as a phantom individual and its direct descendants will be the ancestor generation.
For two elements u, v of U\ {∅}, there exist two positive integers n, p such that u = (u1, . . . , un)
and v = (v1, . . . , vp) and we write uv := (u1, . . . , un, v1, . . . , vp) the concatenation of u and v. We
identify both ∅u and u∅ with u. An individual v ∈ U is a descendant of u if there exists w ∈ U
such that v = uw. In this case we denote u ⪯ v.

Let us introduce V the set composed of all finite point measures on U × X

V :=

{
N∑
i=1

δ(ui,xi), N ∈ N,
(
ui, 1 ≤ i ≤ N

)
∈ UN ,

(
xi, 1 ≤ i ≤ N

)
∈ XN

}
.

We also define the set of marginal population measures, that is

V :=

{
N∑
i=1

δxi , N ∈ N,
(
xi, 1 ≤ i ≤ N

)
∈ XN

}
.

For any measure ν̄ =
∑N

i=1 δ(ui,xi) in V, we will write ν :=
∑N

i=1 δxi its projection on V. By
convention, if the number of points in the measure is N = 0, ν̄ and ν are the trivial zero measures
on U ×X and X . We introduce for every ν̄ ∈ V, every g ∈ B (U × X ,R) and every f ∈ B (X ,R)

⟨ν̄, g⟩ :=
∫
U×X

g(u, x)ν̄(du,dx), and ⟨ν, f⟩ :=
∫
X
f(x)ν(dx).

Finally, we denote by D (A,B) the Skorohod space of B-valued càdlàg functions on a subset A of
R+. For every process (νt, t ∈ A) ∈ D (A,B) and x ∈ B, we will denote

Ex [f (νt)] := E [f (νt) |X0 = x] .

1. Definition of the population

In this section we describe informally the population process. In Section 5.1 we give a rigorous
definition as a strong solution of a stochastic differential equation (SDE).
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The population is described at any time t ∈ R+ by the finite point measure ν̄t ∈ V giving the
label and the trait of every individual living in the population at this time. We introduce

G (t) :=

{
u ∈ U :

∫
U×X

1{v=u}ν̄t (dv,dx) ≥ 1

}
the set of labels of living individuals at time t. Each individual is assigned a unique label u ∈ G (t),
and is given a trait that we denote by Xu

t , and with a slight abuse of notation, Xu
s will denote

the trait of its unique ancestor living at time s ∈ [0, t]. Using these notations, we can write

ν̄t =
∑
u∈G(t)

δ(u,Xu
t )

and νt :=
∑
u∈G(t)

δXu
t
.

The initial population is given by a measure z̄ =
∑N

i=1 δ(ui,xi). During their lives, the traits
of the individuals in the population evolve according to population-dependent dynamics. We
introduce µ ∈ B(X × V,X ), such that, in a population ν̄t at time t, for all u ∈ G (t)

dXu
t

dt
= µ (Xu

t , νt) .

The branching rate is given by a function B ∈ B(X × V,R+). Thus, an individual with trait x
in a population ν at time t dies at an instantaneous rate B (x, νt).

It produces an offspring of n individuals, where n is randomly chosen with distribution (pk (x, νt) , k ∈ N)
of first moment m (x, νt). Thus branching events that lead to n children happen at rate Bn(·) :=
B(·)pn(·). If n ≥ 0, we denote by y =

(
y1, · · · , yn

)
∈ X n the offspring traits at birth, randomly

chosen according to the law Kn(x, νt, ·)Mn(d·), where Kn(x, νt, ·) ∈ B(X n,R+) and Mn(·) is
a finite positive measure on XN such that, for all A = (A1, · · · , An, An+1, · · · ) ∈ XN with
A1 = · · · = An = 0, Mn (A) = 0. For example, Mn(·) could be the product measure of
the Lebesgue measure on X n and the null measure z(·) for the other components of the vector
y ∈ XN, such that

Mn(dy) :=
n⊗
i=1

dyi
⊗
i≥n+1

z(dyi).

The labeling choice for these children is arbitrary yet necessary to uniquely define a stochastic
point process in D

(
R+,V

)
. Here, for a parent individual of label u, for all 1 ≤ i ≤ n, the i-th

child is labeled ui and its trait is yi, the i-th coordinate of the vector y.
We denote by TExp ∈ R+ the explosion time of the process (ν̄t, t ≥ 0), defined as the limit of

its jumps times (Tk, k ≥ 0). In order to ensure the non-explosion of this process in finite time we
introduce the following set of hypotheses.

Assumption 1. We consider the following assumptions:

(1) There exists µ0 ∈ R+, such that for all (x, ν) ∈ X × V

|µ (x, ν) | ≤ µ0
(
1 + |x|+

∣∣∣∣
∫
X yν(dy)

⟨ν, 1⟩

∣∣∣∣) .
(2) For all (x, ν) ∈ X × V, B1 (x, ν) < +∞.
(3) There exists b0 ∈ R+, such that for all (x, ν) ∈ X × V∑

n̸=1

nBn (x, ν) ≤ b0 (1 + |x|) .

(4) For all (x, ν, n) ∈ X × V× N∗,

Kn (x, ν,An(x)) = 0, where An(x) :=
{
(yi, 1 ≤ i ≤ n) ∈ X n :

n∑
i=1

|yi| > |x|
}
.
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The growth rate of the traits of individuals is bounded in the first hypothesis by an exponential
growth rate controlled by the trait of each individual and the mean trait in the population. The
second point ensures that events that do not change the number of individuals do not accumulate
in finite time. The third hypothesis uniformly controls the minimum lifetime of an individual
and is used in the proof of Proposition 1.1 to control the first moment of the total mass. This
hypothesis, together with the first one, ensures that the lifespan of each individual decreases
exponentially at most with its trait. Note that this assumption does not constrain the function
B1(·). The last hypothesis restricts the framework under consideration to fragmentation processes
that do not create matter or energy. This set of hypotheses is sufficiently large to cover a large
portion of models in physics [52] and ecology, subexponential growth being a classical assumption
in many stochastic models in ecology and evolution, see e.g. [53, 17]. The results presented in
this work can be easily extended in a time-inhomogeneous framework, see [48].

Proposition 1.1. Under Assumption 1, the sequence (Tk, k ≥ 0) of jumps times of the process
(ν̄t, t ≥ 0) tends to infinity almost surely.

This proposition will be later proved in Section 5.1. We can thus conclude, following the
proof of Theorem 2.1 in [46], that under this set of hypotheses, the process (ν̄t, t ≥ 0) is uniquely
defined on R+. Notice that the spinal construction introduced in Section 2 can be established
with less restrictive hypotheses. In this case, accumulation of jumps times may happen in finite
time and the spinal construction holds until this explosion time. However, accurately quantifying
the explosion time may be impractical, necessitating the identification of such conditions that
guarantee the non-explosion of the process. Furthermore, to study the long-term behavior of
branching processes, it is crucial that the process does not explode in finite time.

2. Results

In this section, we consider the law of a randomly sampled individual in the general branching
population described in Section 1. Our main result gives the appropriate change of measure
linking this distribution at time t to the trajectory of an auxiliary process until this time. We
then explicitly construct this auxiliary process as a spinal decomposition.

The spinal construction generates a V-valued process along with the label of a distinguished
individual that can change with time. When there is no possible confusion, the label of the spinal
individual at any time will be denoted e, and xe its trait. For convenience, we will denote by W
and W the sets such that

W :=
{
(u, ν̄) ∈ U × V : ⟨ν̄,1{u}×X ⟩ ≥ 1

}
, and W :=

{
(x, ν) ∈ X × V : ⟨ν,1{x}⟩ ≥ 1

}
.

Thus, the spine process is a W-valued branching process and its marginal is a W-valued branching
process. We propose here a generalized spinal construction, where branching rates are biased with
weight functions chosen in a set D, defined by

D :=
{
Ff ∈ B

(
W,R∗

+

)
s.t. (f, F ) ∈ C1 (X ,R)× C1

(
X × R,R∗

+

)}
, (2.1)

where for every (x, ν) ∈ W, Ff (x, ν) := F (x, ⟨ν, f⟩). In order to alleviate the notations, we will
omit the subscript f when there is no ambiguity.

In the following, for every (u, ν̄) ∈W we denote by xu the trait of the individual of label u in
the population ν̄, and for every n ≥ 0 and every y = (yi, 1 ≤ i ≤ n) ∈ X n we write

ν̄+(u,y) := ν̄ − δ(u,xu) +
n∑
i=1

δ(ui,yi), and ν+(x,y) := ν − δx +
n∑
i=1

δyi . (2.2)
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We introduce the key operator G involved in the spinal construction. It is defined for all F ∈ D
and (x, ν) ∈W by

GF (x, ν) := GF (x, ν)

+
∑
n≥0

{
Bn(x, ν)

∫
Xn

[ n∑
i=1

F
(
yi, ν+(x,y)

)
− F

(
x, ν+(x,y)

) ]
Kn (x, ν,y)Mn(dy)

+

∫
X
Bn(x, ν)

∫
Xn

[
F
(
x, ν+(x,y)

)
− F (x, ν)

]
Kn (x, ν,y)Mn(dy)ν(dx)

}
, (2.3)

where the operator G is the generator of the deterministic evolution of the traits between branch-
ing events, given for every F ∈ D, and (x, ν) ∈W× R+ by

GF (x, ν) := D1F (x, ⟨ν, f⟩) · µ (x, ν) +D2F (x, ⟨ν, f⟩)
∫
X
f ′(x) · µ (x, ν) ν(dx),

where DiF (·, ·) denotes the derivative of the function F ∈ C1(X × R,R∗
+) with respect to i-th

variable. We recall that the dot product between two elements of Rd denotes the canonical scalar
product. Rigorously, the previously introduced objects are families of operators (Gx,ν , (x, ν) ∈
X × V) and (Gx,ν , (x, ν) ∈ X × V). This abuse of notation will be used for the operators
subsequently introduced in this work.

Note that the operator G is generally not the generator of a conservative Markov process on
W. Indeed G1(x, ν) = B(x, ν)(m(x, ν) − 1), which is non-zero if there exists (x, ν) ∈ X × V
such that the mean number of children m (x, ν) ̸= 1. As pointed out in [16], these operators
can be seen as Schrödinger operators of the system. In particular, martingales of the system
with eigenfunctions ψ satisfy a similar equation as solutions of the Schrödinger equation, giving
a conceptual interpretation of eigenvalues as energy eigen states of the system and eigenfunctions
as stationary configurations or conseved quantities.

To ensure that the functions GF are finite on W, we make an assumption on the functions
F ∈ D, that will be necessary to establish the spine Dynamics 2.2 and 2.3.

Assumption 2. Let (pn, n ∈ N) and (Kn, n ∈ N) be the reproduction parameters of the original
branching process and F ∈ D a weight-function. For all (x, xe, ν) ∈ X ×W,

∑
n∈N

pn(x, ν)

∫
Xn

F
(
xe, ν

+(x,y)
)
Kn (x, ν,y)Mn(dy)

+
∑
n∈N

pn(x, ν)

∫
Xn

n∑
i=1

F
(
yi, ν+(x,y)

)
Kn (x, ν,y)Mn(dy) < +∞.

Notice that for a chosen set of parameters of the original branching process (νs, s ≥ 0), this
assumption restricts the set of suitable weight functions.

Now we can introduce the W-valued spine process associated with a function ψ ∈ D satisfying
Assumption 2, that will be called the ψ-spine process in order to keep track of the function used

in its construction. For such functions ψ, the generator L̂ψ of the ψ- spine process is defined for
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all h ∈ C1(U × X ,R), H ∈ C1(U × R,R∗
+), and for all (e, ν̄) ∈W by

L̂ψH(e, ⟨ν̄, h⟩) := ĜH(e, ⟨ν̄, h⟩) +
∑
n≥0

∫
U×X

Bn(x, ν)

×
∫
Xn

Kn (x, ν,y)

{
1{u=e}

n∑
i=1

[
H (ei, ⟨ν̄+(e,y), h⟩)−H(e, ⟨ν̄, h⟩)

]ψ(yi, ν+(xe,y))
ψ(xe, ν)

+ 1{u̸=e}
[
H (e, ⟨ν̄+(u,y), h⟩)−H(e, ⟨ν̄, h⟩)

]ψ(xe, ν+(xu,y))
ψ(xe, ν)

}
Mn(dy)ν̄(du,dx), (2.4)

where

ĜH(e, ⟨ν̄, f⟩) := D2H (e, ⟨ν̄, h(·)⟩)
∫
U×X

∂h

∂x
(u, x) · µ (x, ν) ν̄(du,dx).

Notice that the branching rates of both spinal and non-spinal individuals are biased by the func-
tion ψ. Assumption 2 ensures that the total branching rate is finite from every state of the spinal
process, however it is not sufficient to avoid explosion of this process in finite time. Dynamics 2.2
and 2.3 below will provide a more detailed explanation of the spine process associated with this
generator.

Finally, we introduce for all t ≥ 0, the U-valued random variable Ut that picks an individual
alive at time t. Its law is characterized by the function pu (ν̄t) which yields the probability to
choose the individual of label u in the set G (t). We can now state our main result, that is a
Girsanov-type formula for the spinal change of measure. It characterizes the joint probability
distribution of (Ut, (ν̄s, s ≤ t))- that is the randomly sampled individual in the population ν̄t at
time t and the whole trajectory of the population until this time- and links it to the law of the
spine process through a path-integral formula.

Theorem 2.1. Let t ≥ 0, and z̄ ∈ V. Let ψ ∈ D satisfying Assumption 2. Let ((Et, χ̄t) , t ≥ 0) be
the time-inhomogeneous W-valued branching process with interactions defined by the infinitesimal

generator L̂ψ introduced in (2.4). Let T̂Exp denote its explosion time and ((Yt, χt) , t ≥ 0) its
projection on W.

For every non-negative measurable function H on U × D ([0, t],V):

Ez̄
[
1{TExp>t,G(t) ̸=∅}H (Ut, (ν̄s, s ≤ t))

]
=

⟨z, ψ(·, z)⟩Ez̄
[
1{T̂Exp>t}ξ (Et, (χ̄s, s ≤ t))H (Et, (χ̄s, s ≤ t))

]
,

where:

ξ (Et, (χ̄s, s ≤ t)) :=
pEt (χ̄t)

ψ (Yt, χt)
exp

(∫ t

0

Gψ (Ys, χs)

ψ (Ys, χs)
ds

)
.

We take inspiration from the work of Bansaye [3] for the proof. The idea is to decompose both
processes on their possible trajectories, then establish by induction on the successive jumps times
the equality in law for the trajectories between these times.

The process ((Et, χ̄t) , t ≥ 0) gives at any time t ≥ 0 the label of the spinal individual- that
encodes the whole spine lineage- and the spinal population. Our result thus links, for every
ψ, the sampling of an individual and the trajectory of the population to the trajectory of the
spine process. The path integral term that links these two terms is difficult to handle in gen-
eral and finding eigenfunctions of G may greatly simplify the expression [16, 2, 3]. Finding such
functions for single type, density-dependent populations is possible in models with simple inter-
actions [3][Section 3]. Nevertheless, this becomes a challenging issue in the majority of scenarios.
Subsequent sections of this work will explore applications of this formula where the path-integral
component is tractable.
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We first introduce additional notations concerning the dynamics of the spine process given
by the generators introduced in (2.4). Following notations of Section 1, and disregarding the
dependency on the chosen function ψ ∈ D satisfying Assumption 2 in the subsequent branching
parameters, we introduce the dynamics of the traits in the spine process. As previously discussed,
the construction distinguishes dynamics of the spine from the rest of the individuals. We first
introduce the branching parameters of the individuals outside the spine in a spinal population.

Dynamics 2.2 (Individuals outside the spine). For all (n, x, (xe, ν)) in N∗ ×X ×W,

(1) K̂n (xe, x, ν, ·) ∈ B (X n) is the density of the traits at birth of the n children generated by
a non-spinal individual of trait x in a spinal population (xe, ν).

K̂n (xe, x, ν, ·) :=
1

Γ̂n (xe, x, ν)
ψ
(
xe, ν

+(x, ·)
)
Kn (x, ν, ·) , (2.5)

where Γ̂n(·) is the normalization function, defined as

Γ̂n (xe, x, ν) :=

∫
Xn

ψ
(
xe, ν

+(x,y)
)
Kn (x, ν,y)Mn(dy).

We recall the definition of ν+ in (2.2).
(2) The law (p̂n (xe, x, ν) , n ∈ N) of the number of children of a non-spinal individual of trait

x branching in a spinal population (xe, ν), is defined for all n ∈ N as

p̂n (xe, x, ν) :=
1∑

k∈N Γ̂k (xe, x, ν) pk (x, ν)
Γ̂n (xe, x, ν) pn (x, ν) .

Note that Assumption 2 ensures that the sum in the denominator is finite.
(3) Each individual of trait x outside the spine of trait xe in a population ν , branches to n

children at rate B̂n (xe, x, ν), defined as

B̂n (xe, x, ν) :=
Γ̂n (xe, x, ν)

ψ (xe, ν)
Bn (x, ν) .

The total branching rate outside the spine is defined, for all (xe, ν) ∈W by

τ̂ (xe, ν) :=

∫
X

∑
n≥0

B̂n (xe, x, ν) ν(dx)−
∑
n≥0

B̂n (xe, xe, ν) .

We now introduce the branching parameters of the spine in a ψ-spinal construction.

Dynamics 2.3 (Spinal individual). For all (n, (xe, ν)) in N∗ ×W,

(1) K̂∗
n (xe, ν, ·) ∈ B (X n) is the density of the traits at birth of the n children generated by

the spinal individual of trait xe in a population ν. For all y ∈ X n,

K̂∗
n (xe, ν,y) :=

1

Γ̂∗
n (xe, ν)

n∑
i=1

ψ
(
yi, ν+(xe,y)

)
Kn (xe, ν,y) , (2.6)

where Γ̂∗
n(·) is the normalization function, defined as

Γ̂∗
n (xe, ν) :=

∫
Xn

n∑
i=1

ψ
(
yi, ν+(xe,y)

)
Kn (xe, ν,y)Mn(dy).

(2) The law (p̂∗n (xe, ν) , n ∈ N) of the number of children of the spinal individual of trait xe
branching in a population ν, is defined for all k ∈ N as

p̂∗n (xe, ν) :=
1∑

k∈N Γ̂∗
k (xe, ν) pk (xe, ν)

Γ̂∗
n (xe, ν) pn (xe, ν) . (2.7)
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(3) The spinal individual of trait xe in a population ν at time t, branches to n children at a

rate B̂∗
n (xe, ν), defined as

B̂∗
n (xe, ν) :=

Γ̂∗
n (xe, ν)

ψ (xe, ν)
Bn (xe, ν) . (2.8)

(4) When the spinal individual of trait xe branches in a population ν and is replaced by
n children with trait y, the integer-valued random variable J(xe, ν,y) choosing the new
spinal individual after a spinal branching event is given, for all 1 ≤ j ≤ n by

P (J(xe, ν,y) = j) =
ψ
(
yj , ν+(xe,y)

)∑n
i=1 ψ (yi, ν+(xe,y))

. (2.9)

The first spine in an initial population z is chosen according to the same law.

The total branching rate from every spinal state (xe, ν) ∈W is denoted by

τ̂tot (xe, ν) :=
∑
n≥0

B̂∗
n (xe, ν) + τ̂ (xe, ν) . (2.10)

The finiteness of the series
∑

k≥0 Γ̂
∗
k, and

∑
k≥0 Γ̂k is ensured by Assumption 2. Notice that

K̂∗
0 = 0, therefore the spinal individual cannot die without children and the spinal population

never goes extinct. Notice that for ψ ≡ 1, individuals outside the spine follow the same dynamics
as the individuals in the population (νt ≥ 0). In this case, the spinal individual of trait xe branches
in a population ν with rate m(xe, ν)B(xe, ν), where m(·) is the mean number of children that
is finite under Assumption 2. The random number of children at a branching event thus follows
the size-biased law npn(·)/m(·) and the new spinal individual is chosen uniformly among the
offspring.

The assertion of Theorem 2.1 is proved to be valid until the first explosion time of both
processes. We established in Proposition 1.1 that under Assumption 1 the branching process
does not explode in finite time. To ensure the non explosion of the spine process, we have to
consider an additional assumption on the weight function ψ used for the construction.

Assumption 3. There exists a positive continuous function b̂0 on R+, such that for all (x, ν) ∈
X × V ∑

n̸=1

n
(
B̂n (x, ν) + B̂∗

n (x, ν)
)
≤ b̂0(t) (1 + |x|) .

This assumption, involving both the branching parameters and the function ψ, is stronger than
Assumption 2. The set of weight functions that can be used to construct a spine process that
does not explode in finite time may differ from one model to another. However, one may rather
use more restrictive conditions that are sufficient for every branching process under Assumption
1. For example, in mass-conservative models, taking ψ(x, ν) = x ensures the non-explosion of the
spine process regardless the initial branching process that satisfies Assumption 1.

Proposition 2.4. Under Assumption 1, for every ψ ∈ D satisfying Assumptions 2 and 3, the ψ-

spine process ((Et, χ̄t) ≥ 0) defined by the infinitesimal generator L̂ψ introduced in (2.4) does not

explode in finite time. Furthermore the generator L̂ψ of the marginal spine process ((Yt, χt), t ≥ 0)
given by Dynamics 2.2 and 2.3, is defined for all function F ∈ D and all (x, ν) ∈ X × V by

L̂ψF (x, ν) :=
G [ψF ] (x, ν)
ψ (x, ν)

− Gψ (x, ν)

ψ (x, ν)
F (x, ν) .

The proof of non-explosion is shown following the proof of Proposition 1.1, and the expression
of the generator of the marginal spine process is purely computational. The detailed proof is
presented in Appendix A.
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It follows that the marginal law of the spine process is characterized by the operator G and the
weight function ψ.

Corollary 2.5. Let t ≥ 0 and z̄ ∈ V. Let ψ ∈ D satisfying Assumption 3. Under Assumption 1,
for any f non-negative measurable function on U × D

(
[0, t],X × V

)
,

Ez̄

 ∑
u∈G(t)

ψ (Xu
t , ν̄t) f (u, (X

u
s , ν̄s) , 0 ≤ s ≤ t)


= ⟨z, ψ(·, z, 0)⟩Ez̄

[
exp

(∫ t

0

Gψ (Ys, χs)

ψ (Ys, χs)
ds

)
f (Et, (Ys, χ̄s) , 0 ≤ s ≤ t)

]
.

Proof. We use Assumptions 1 and 3 to ensure that TExp and T̂Exp are almost surely infinite. Let

f be non-negative measurable function on U×D
(
[0, t],X × V

)
. We introduce H the non-negative

measurable function defined for all (u, z̄s, s ≤ t) ∈ U × D ([0, t],V) by
H(u, z̄s, s ≤ t) := ψ(Xu

t , zt)f (u, (X
u
s , z̄s) , s ≤ t) ⟨zt, 1⟩.

The corollary is thus a direct application of Theorem 2.1 to the function H with a uniformly
sampled individual. □

This formula gives a change of probability that involves the function Gψ/ψ with a path-integral
formula. This study is related to Feynman-Kac path measures and semigroups. We refer to [19] for
an overview on this subject. In the case of a branching process with interactions, the integral term
depends on the trajectory of the whole spinal population. In general cases with interactions, the
branching property is not satisfied and the so-called Many-to-One formula- see e.g. Proposition
9.3 in [4]- falls apart. However, if ψ is an eigenfunction of the operator G, then we have the
following Many-to-One formula for any non-negative measurable function g on D ([0, t],X )

Ez̄

 ∑
u∈G(t)

ψ (Xu
t , ν̄t) g (X

u
s , s ≤ t)

 = CtEz̄ [g (Ys, s ≤ t)] ,

where Ct is a time-dependent positive constant. This formula, established in [16] for branching
processes without interactions, reduces the empirical measure of the trajectories of all the indi-
viduals until time t to the law of the trajectory of a unique individual in the spinal construction,
the spinal individual. The spinal individual in this case can be considered as a typical individual,
reflecting the average behavior of the whole population.

Remark 2.6. If we assume for all (x, ν) ∈ X × V, that B(x, ν) and for all k ≥ 0, pk(x, ν) = pk
in the considered branching process, taking ψ ≡ 1 gives the classical Many-to-One formula [5]:

Ez̄

 ∑
u∈G(t)

g (Xu
s , s ≤ t)

 = Ez̄ [⟨νt, 1⟩]Ez̄ [g (Ys, s ≤ t)] ,

where the average number of individuals in the population is given by

Ez̄ [⟨νt, 1⟩] = ⟨z, 1⟩ exp (B(m− 1)t) .

3. Kesten-Stigum criterion

In this section, we present a generalized Kesten-Stigum theorem for structured processes with
interactions. For every functions ψ ∈ D, we exhibit a non-negative martingale of the original
branching process with interactions (νt ≥ 0) associated with the ψ-spinal construction and, under
some assumptions on the set of functions ψ, we present a result on the degeneracy of its limiting
martingale. For this section, we will suppose that Assumption 1 holds to prevent explosion of
the process in finite time.
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Proposition 3.1. Under Assumption 1, for every ψ ∈ D satisfying Assumption 2,

Wt(ψ) :=
∑
u∈G(t)

exp

(
−
∫ t

0

Gψ (Xu
s , νs)

ψ (Xu
s , νs)

ds

)
ψ (Xu

t , νt) (3.1)

is a non-negative martingale with respect to the filtration (Ft, t ≥ 0) generated by the original
process. It almost surely converges to a random variable W (ψ) ∈ [0,∞).

Notice that if the process (νt, t ≥ 0) goes extinct almost surely, then W (ψ) = 0 almost surely.
However, even on the survival event, the martingale (Wt(ψ), t ≥ 0) may also almost surely
converge to 0.

We will establish necessary and sufficient L logL criteria for the non-degeneracy of the limiting
martingale. First we present the result for bias function ψ ≡ 1 and retrieve classical results. Then
we propose an extension to a large class of functions ψ, to establish result on various martingales
of the system.

3.1. The particular case ψ ≡ 1. When ψ ≡ 1 or any positive constant value, we have for all
x, ν ∈W× R+

Gψ(x, ν)
ψ(x, ν)

= B(x, ν) (m(x, ν)− 1) , K̂∗
n(x, ν) = Kn(x, ν), and p̂∗n(x, ν) =

npn(x, ν)

m(x, ν)
.

To prove a Kesten-Stigum theorem, we need some assumptions on the considered branching
processes.

Assumption 4. Assumptions 1 and 3 hold true and there exist c, C,B,B ∈ R∗
+ such that, for

all x, ν ∈W
c ≤ B(x, ν)(m(x, ν)− 1) ≤ C and B ≤ B(x, ν) ≤ B.

This assumption ensures that the process is strongly supercritical in the sense that the uniform
lower bound of the reproductive law is strictly greater than 1 and the only absorbing state for the
branching process is the null measure ν ≡ 0. This uniform hypothesis could be partially relaxed
under strong positivity assumptions on the generator of the branching process with interactions,
see [38] in the discrete case and [33] Chapter 3 for continuous time. It also restricts the setting
to branching processes with bounded branching rates.

Proposition 3.2. We assume that ψ ≡ 1 and that Assumption 4 holds true. Let

pn := sup
(x,ν)∈W

pn(x, ν) and p
n
:= inf

(x,ν)∈W
pn(x, ν).

If
∑

n≥1 pn < +∞ and
∑

n≥1 pn > 0, we can introduce L̄ and L the N∗-valued random variables

of law given respectively by (pn/
∑

k≥1 pk, n ≥ 0) and (p
n
/
∑

k≥1 pk, n ≥ 0).
In this case, we have the following results on the limiting martingale:

• If E
[
L̄ log

(
L̄
)]
< +∞, then for all initial measure z ∈ V, Ez [W (1)] = ⟨z, 1⟩.

• If E [L log (L)] = +∞, then W (1) = 0 almost surely.

Proof. This proposition is a corollary of Theorem 3.4, with ψ ≡ 1. □

Notice that these conditions are similar to the conditions (16b) and (18b) in [2]. In the case
of constant reproductive law (pn, n ≥ 0), these two conditions become a dichotomy [37]. Athreya
[2] showed that this dichotomy remains valid for multitype Galton-Watson processes with a finite
set of traits and no interactions.

Remark 3.3. We recall that for non-structured branching processes the size Nt := ⟨νt, 1⟩ of the
population, is such that E [Nt] = N0 exp

(∫ t
0 B(m− 1)ds

)
. One may ask under what conditions

this exponential growth accurately reflects the rate of increase in the population size. In this
particular case, Wt(1)/N0 = Nt/E [Nt], thus finding conditions for the non-degeneracy of this
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martingale gives a direct answer to the question. In the general case with interactions, Corollary
2.5 gives

Wt(1)
E [Nt]

N0
=
∑
u∈G(t)

e−
∫ t
0 B(Xu

s ,νs)(m(Xu
s ,νs)−1)dsEz̄

[
e
∫ t
0 B(Ys,χs)(m(Ys,χs)−1)ds

]
,

that is close to Nt if the mean behavior of the spinal individual is not far from the averaged
behavior of all the individuals in the branching process with interactions.

3.2. The general case ψ ∈ D. Note that Proposition 3.1 holds true for every function ψ ∈ D.
However, in order to prove the Kesten-Stigum result on the limiting martingale, we have to
restrict the set of functions ψ.

Assumption 5. We recall the notation ν+(x,y) := ν+
∑n

i=1 δyi−δx, introduced in (2.2). For all
(xe, (x, ν)) ∈ X ×W, for all k ≥ 0 and for all y in a subset A ⊂ X n with Kn (x, ν,y)Mn (A) > 0:

ψ
(
xe, ν

+(x,y)
)
= ψ(xe, ν).

Note that this assumption is weaker than assuming that the function ψ is independent of the
population. In fact the function ψ is allowed to depend on a quantity that is conserved at non-
spinal jump events, for example the total population mass if the jumps are mass conservative.
Another interesting case is when ψ is a function of a coupling variable that derives from the
population, like the quantity of available resources for the individuals. This technical assumption
is necessary to establish a spinal decomposition.

Assumption 6. There existsM ∈ R∗
+ such that, for all ((x, ν), n) ∈W×N∗ and for all 1 ≤ j ≤ n:∫

Xn

ψ
(
yj , ν+(x,y)

)
log
(
ψ
(
yj , ν+(x,y)

))
Kn(x, ν,y)Mn(dy)

≤M
∫
Xn

n∑
i=1

ψ(yi, ν+(x,y))Kn(x, ν,y)Mn(dy).

This technical assumption ensures that the function ψ does not assign too much load to any
specific child at a branching event. Notice that bounded functions satisfy this hypothesis. This
hypothesis is sufficient to ensure the degeneracy of the limiting martingale.

Assumption 7. Assumptions 1 and 3 hold true and there exist c, C, τ , τ ∈ R∗
+ such that, for all

(x, ν) ∈W

c ≤ Gψ(x, ν)
ψ(x, ν)

≤ C and τ ≤
∑
n≥0

B̂∗
n(x, ν) ≤ τ ,

where G and B̂∗
n are respectively defined in (2.3) and (2.8).

The hypothesis on Gψ/ψ controls the range of variations of the exponential term in the mar-
tingale Wt(ψ). Note that all eigenfunctions of the operator G satisfy this hypothesis. This
assumption is also satisfied in all cellular models with exponential growth and mass conservative
branching mechanisms, when ψ(x) = x and the branching rates are bounded functions. The
second point ensures that the branching events of the spinal individual in the ψ-spinal process
do not stop nor accumulate too fast.

As an example to illustrate Assumption 7, we consider a toy model, used to describe cellular
growth and division mechanisms [6], where the trait space is X = (0, xM ) with xM > 0, and the
branching events are mass conservative, i.e.

Kn (x, ν,y) = 1{∑n
i=1 y

i=x}.



A SPINAL CONSTRUCTION FOR GENERAL TYPE-SPACE POPULATIONS WITH INTERACTIONS 13

We also assume that in this model, the trait grows at a logistic rate, such that µ(x, ν) =
µ0(ν)x(xM − x). We consider a bias function ψ(x) = x. In this case Assumption 6 is satis-
fied and for all (x, ν) ∈W

Gψ (x, ν)

ψ(x)
= µ0(ν)(xM − x)−B0(x, ν).

In this case, a sufficient condition for the upper bounds in Assumption 7 to be satisfied is the
boundness of the growth rate and the branching rates. For instance logistic functions of the trait
and population size satisfy this condition.

We can now express the main result of this section.

Theorem 3.4. Let ψ ∈ D satisfies Assumption 7 and introduce for all n ∈ N

p̂
∗
n := sup

(x,ν)∈W
p̂∗n(x, ν), p̂∗

n
:= inf

(x,ν)∈W
p̂∗n(x, ν),

K̂
∗
n(·) := sup

(x,ν)∈W
K̂∗
n(x, ν, ·) and K̂

∗
n(·) := inf

(x,ν)∈W
K̂∗
n(x, ν, ·),

where (p̂∗n, k ≥ 0) and K̂∗
n are respectively the law of the number of children and the measure

giving the offspring traits for the spine, defined respectively in (2.7) and (2.6).

(1) Under Assumption 5, if∑
n≥1

p̂
∗
n < +∞, sup

n≥1

∫
Xn

K̂
∗
n(y)Mn(dy) < +∞

and ∑
n≥1

p̂
∗
n

∫
Xn

sup
(x,ν)∈W

[
log

(
n∑
i=1

ψ(yi, ν+(x,y))

)]
K̂

∗
n(y)Mn(dy) < +∞ (3.2)

then, for all initial measure z ∈ V, the limit of the martingale Wt(ψ) satisfies

Ez [W (ψ)] = ⟨z, ψ(·, z)⟩.

(2) Under Assumption 6,∑
n≥1

p̂∗
n

∫
Xn

inf
(x,ν)∈W

[
log

(
n∑
i=1

ψ(yi, ν+(x,y))

)]
K̂

∗
n(y)Mn(dy) = +∞ (3.3)

implies that W (ψ) = 0 almost surely.

The idea of the proof, based on the conceptual proofs established in [45, 27, 3], is to use
Theorem 2.1 to consider the dual problem associated with the ψ-process. Then consider the
spinal process as a process with immigration where the spinal individual provides new individuals
at a ψ-biased rate, and the new spine is the new source of immigration. However as the function
ψ is not constant, the spinal construction also changes the dynamics of individuals outside the
spine, that do not behave as those in the original process (νt, t ≥ 0). Assumptions 5 and 6 are
used to control the behavior of the individuals outside the spine. In fact only the upper bounds
in Assumption 7 are necessary to ensure the non-degeneracy of the limiting martingale. In our
previous toy model, with bounded branching and growth rates, this condition is satisfied with the
bias function ψ(x) = x. The ’L logL’ condition (3.2), is also satisfied in this framework. Thus
the martingale

Wt(ψ) :=
∑
u∈G(t)

Xu
t exp

{∫ t

0
(µ0(νs)(xM −Xu

s )−B0(X
u
s , νs)) ds

}
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satisfies, for all z =
∑n

i=1 δxi , the asymptotic equality

Ez

 lim
t→∞

∑
u∈G(t)

Xu
t exp

{∫ t

0
(µ0(νs)(xM −Xu

s )−B0(X
u
s , νs)) ds

} =

n∑
i=1

xi.

This equality gives an information about the asymptotic growth rate of the biomass
∑

u∈G(t)X
u
t

of the population. It grows at an exponential rate, that is the difference between the growth rate
and the death rate of each individual in the population.

4. A Yule process with competition

In this section, we take interest into simulation methods based on the spinal construction.
When an eigenfunction of the operator G is available, relevant information on the original process
can be captured by simulating only the spine, thereby reducing the need to simulate the entire
population, which can be computationally expensive. We propose here an alternative application
of the spinal construction method, when an eigenfunction of the operator G is out of reach. In
this case, as the path integral term does not simplify, the entire spinal population needs to be
simulated to obtain relevant information. Nevertheless, it is possible to use the change of measure
associated with the spine construction to simplify the interactions and considerably enhance the
simulation efficiency.

As a toy model to illustrate this idea, we consider a time-inhomogeneous Yule process with
competitive interactions between the individuals, affecting their traits. The individuals in the
population are characterized by their trait x ∈ R∗

+ that can be for example a mass or a size. An
individual with trait x divides at an instantaneous rate rx where r > 0, into two children of size
Λx and (1 − Λ)x, where Λ is a [0, 1]-valued random variable with probability density function
(p.d.f) q. We assume that:

mdiv := E [Λ] ∈ (0, 1), and Kdiv := E
[

1

Λ(1− Λ)

]
< +∞. (4.1)

This mass-conservative mechanism of division is classical in cell modeling [26]. Moreover, each
individual experiences the influence of the whole population, leading to a reduction of their trait.
Consequently, at an instantaneous rate dNt - where Nt is the population size at time t, and d > 0
- each individual loses a fraction (1 − Θ) of its size. Θ is a [0, 1]-valued random variable with p
its p.d.f and we assume that

mloss := E [Θ] ∈ (0, 1) and Kloss := E
[
1

Θ

]
< +∞. (4.2)

These events can be interpreted as an inhibition of reproductive material in cells due to com-
petitive interactions within the population. Finally, we consider that the trait of each individual
grows exponentially at an instantaneous rate µ(t). The dependency in time of these parameters
can represent an external control or the effect of a deterministic environment. This defines a
branching process with interactions (νt, t ≥ 0), whose law is characterized by the infinitesimal
generators (J t, t ≥ 0). For all t ≥ 0, J t is defined on the set DJ , where

DJ :=
{
Hh ∈ B (R+) ,∃ (h,H) ∈ C1 (R+,R)× C1

(
R+,R∗

+

)
: ∀ν ∈W Hh (ν) = H (⟨ν, h⟩)

}
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by

J tHh(ν) = H ′ (⟨ν, h⟩)
∫
R+

h′(y)µ(t)yν(dy)

+

∫
R+

ry

∫ 1

0

[
Hh

(
ν − δy + δλy + δ(1−λ)y

)
−Hh (ν)

]
q(λ)dλν(dy)

+ d⟨ν, 1⟩
∫
R+

∫ 1

0
[Hh (ν − δy + δθy)−Hh (ν)] p(θ)dθν(dy).

We notice that Assumption 1 is verified by the parameters of this branching process, and thus
it does not explode in finite time almost surely. Note that in this population, the dynamics
are correlated such that an increase in population size accelerates the rate of loss, while loss
events slow the rate of division. Even for such a simple model, finding analytic expression of
eigenfunctions for the non-local operator G for all t is a complex task, and the existence of
such eigenfunctions is not guaranteed in general, see [10, 18]. Furthermore, the ψ-spinal process
associated with an eigenfunction ψ might have highly intricate dynamics.

Here we propose a new approach to spinal constructions: we use the change of measure asso-
ciated with the spinal construction in order to simplify the dynamics within the spine process.
For this model, we exhibit an appropriate function ψ for which the ψ-spinal process is a Markov
process indexed by an independent binary tree where every branch lives for an exponential time
of mean 1. We believe that this method can be generalized to different models.

We choose ψ ∈ C1(R∗
+ × R,R∗

+) and ϕ ∈ C1(R∗
+,R) such that for all (x, y) ∈ R∗

+ × R× R+

ψ(x, y) := xe−y and ϕ(x) := ln (xrKdiv) . (4.3)

Applied to a spinal state (xe, χ) ∈W where χ :=
∑

u∈G(t) δxu , this weight function verifies

ψ(xe, χ) =
xe∏

u∈G(t)(rKdivxu)

and ensures Assumption 2. We can now determine the parameters of the spinal process using this
function ψ. The behavior of the traits between branching events remains unchanged compared to
the Yule process under consideration. The division events occur at rate 1 for both the spinal and

the non-spinal individuals. The random variable Λ̂, which determines the distribution of mass
during division in the spinal construction, has a density function q̂ given by:

q̂(λ) :=
1

Kdiv

q(λ)

λ(1− λ)
. (4.4)

As a result, in this ψ-spinal process, division events are no longer dependent on the size of the
individuals.

Individuals outside the spine lose a random fraction 1− Θ̂ of their mass at a rate B̂1(x, ν) :=

Klossd⟨ν, 1⟩ where Θ̂ follows a probability density function p̂ given by:

p̂(θ) =
1

Kloss

p(θ)

θ
. (4.5)

The loss events for the spinal individual follow the same dynamics as those in the Yule process

being considered. It is worth noting that Assumption 3 holds in this case, leading to T̂Exp = ∞
almost surely. Therefore, by using appropriate function ψ in the spinal construction, we can make
division events independent of loss events. In this case, the spinal process verifies the branching
property, moreover it is a piece-wise deterministic Markov process with a distinguished individual
indexed on a binary tree with unit branching rate. This ψ-spinal process falls within the scope
of [5], and the limits theorems within it apply to this process. However, concluding on the long
time behavior of the original branching process with interactions is not direct as Theorem 3.4
does not apply for this chosen function ψ
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In the following we show that we can use this property to enhance the simulation complexity of
the branching process with interactions. A classical exact method to simulate non-homogeneous
Poisson processes is the thinning algorithm, introduced by Lewis and Shedler [40]. It is used to
simulate Poisson processes of intensity c(t) on a window [0, T ] for a fixed T > 0. The idea is
to generate possible jump times (ti, 1 ≤ i ≤ n) at a rate c̄ := sup[0,T ] c(t) and accept them with

probability c(ti)/c̄. When the intensity c(·) depends not only on time t but also on the entire past
of the point process, one can use Ogata’s modified thinning algorithm [51]. Given the information
of the first k points, (ti, 1 ≤ i ≤ k) the intensity c(·) is deterministic on [tk, Tk+1] with Tk+1 the
next time of jump. As a result, generating the next point in such processes can be considered as
generating the first point in an inhomogeneous Poisson process. This idea has been more recently
adapted for branching process, see e.g. [25, 11, 26]. The main limitation of this method is that c̄
can become excessively large even for small simulation windows T . This results in the rejection
of most of the generated points. Another exact method, based on inverse transform sampling,
consists in generating the arrival times of the process by sampling a uniform random variable
U in [0, 1], see e.g. [20]. The arrival times tk are thus generated by inversion of the cumulative

distribution function of the jumps times, such that 1 − exp(
∫ tk
0 c(s)ds) = U . However, an exact

inversion is inaccessible in general cases, and in this model in particular.
Here, we propose a new simulation method, based on the spinal construction, that can be

much faster than the Ogata’s algorithm. The idea is to use the fact that the division events are
independent from the mass in the spine process. Thus, we can first generate a binary tree with
unit rate, then draw a realization of the distribution of masses at division and choose the spinal
individual, and finally spawn a Poisson point process indexed on this tree that distributes the
loss events. Theses three steps are illustrated in Figure 1. At last, the trait of each individual
at every time is computed using the deterministic growth and the encountered loss events. A
general detailed algorithm can be found in Appendix C.

Figure 1. Algorithm description

We then use Theorem 2.1 to compute various statistics of the branching process based on the
statistics obtained from the spine process. For all (x, ν) ∈ R∗

+×V, the expression of the operator
G applied to the chosen ψ, defined in (4.3), is given by

Gψ (x, ν)

ψ (x, ν)
= µ+ (1− µ+ d(N − 1) (Kloss − 1))N − rB,

where for all ν ∈ V, N := ⟨ν, 1⟩ and B :=
∫
R∗
+
xν(dx) denote respectively the size of the population

ν and its total biomass.
Algorithm efficiency. In order to compare Ogata’s method and our spinal method we fix

the parameters r, d and µ. The random variables Θ and Λ follow beta laws, respectively β(a, b)
and β(α, α). We will take the values a = 10, b = 2 that correspond to small losses and α = 20
to get a narrow symmetrical distribution at division. With these distributions, the parameters
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introduced in (4.1) and (4.2) become

mdiv =
1

2
, Kdiv = 4 +

2

α− 1
, mloss =

a

a+ b
and Kloss =

a+ b− 1

a− 1
.

We construct two spinal processes using ψ1 and ψ2 such that, for every state (xe, χ) ∈W where
χ :=

∑
u∈Ĝ(t)

δxu ,

ψ1(xe, χ) :=
xe∏

u∈Ĝ(t)
(rKdivxu)

, and ψ2(xe, χ) :=
xe∏

u∈Ĝ(t)
(Kdivxu)

.

The dynamics of both spinal processes constructed with these functions ψ are summarized in
Figure 2 where we use rψ := 1{ψ=ψ1} + r1{ψ=ψ2}.

division
rate

loss rate distribution at
division

distribution at
loss

Spine rψ dN̂t Λ̂∗ ∼
β(α− 1, α− 1)

Θ̂∗ ∼ β(a, b)

Non-spinal rψ KlossdN̂t Λ̂ ∼ β(α−1, α−1) Θ̂ ∼ β(a− 1, b)

Figure 2. Dynamics of the ψ−spinal processes

In order to benchmark these two spinal methods and the Ogata’s method, we estimate the mean
size x̄ of an individual picked at random in the population at time t, starting from a population
z̄ of size N0 := ⟨z, 1⟩ and total mass B0 :=

∫
xz(dx). For i ∈ {1, 2}, the ψi-spinal processes at

any time t are denoted by χit and we denote by N̂ i
t := ⟨χit, 1⟩ and B̂i

t :=
∫
xχit(dx) the size and

total mass of the population Ĝi
t at any time t. We will also use the following notation for any t

Πit :=
∏
u∈Ĝi

t

Xu
t .

Theorem 2.2 applied with the ψ-spinal constructions gives

x̄ :=
B0e

µt

(rψi
Kdiv)

N0
Ez̄

[
(rψi

Kdiv)
N̂ i

t

N̂ i
t

exp

(
Ci1

∫ t

0
N̂ i
sds+ C2

∫ t

0

(
N̂ i
s

)2
ds− r

∫ t

0
B̂i
sds

)
Πit
Π0

]
where

Ci1 := rψi
− µ− d (Kloss − 1) , and C2 := d (Kloss − 1) .

We developed python functions, based on the algorithm detailed in Appendix C, to generate these
trajectories. In this case, the difficulty in the implementation lies in optimizing the computation
of the integral terms. We present in Appendix C the formula used to compute these integral
terms. Figure 3 compares the running times TS of the two spinal methods with the running time
TO of the Ogata’s method for the estimation of x̄ with 100.000 sample paths for different sets
of parameters. At each line of Figure 3, we change one parameter at a time and the remaining
parameters are fixed at a base value that changes at each row. The code used to generate this
figure is available in a github repository [47].

Notice that the spine methods complexity does not depend on the individual traits, unlike
Ogata’s complexity that grows exponentially with the biomass. This point explains the exponen-
tial difference in complexity with the parameters x0 and µ. The evolution of the efficiency with
the initial size is due to the fact that the division rate in the spine method does not depend on
the size of the population. Also the division rate in the first spinal method is independent of r,
explaining the evolution of the efficiency with the division parameter r. However this is not the
case for the second spinal method that has a more intricate dependency on r. Finally, notice that
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Figure 3. Running time comparison

Running time for generating 50000 exact trajectories of the population with the spinal method,
normalized by the running time of Ogata’s method. At each column, one parameter is modified and at
each line, we change the parameters base values: from the first to the third line, (N0, x0, µ, r, d) are
respectively (2, 0.5, 0.4, 0.4, 0.4), (2, 3, 0.8, 0.8, 0.8) and (2, 6, 1.2, 1.2, 1.2). The grey lines indicate a

comparable efficiency between spinal and Ogata’s methods.

the complexities of the spine methods with the loss parameter d are linear, unlike the complexity
of the Ogata’s method. In fact, the number of generated Poisson points increases with d but the
probability of rejection of those points decreases with d, resulting in a complex dependency with
the parameter d. Depending on the parameter values, using a spine method to sampling paths
instead of the classical Ogata’s one, can be exponentially faster.

5. Proofs

5.1. Proof of Section 1. In this section, we derive the result on the existence and uniqueness
of the considered branching process.

Proof of Proposition 1.1. The description of the process (ν̄t, t ≥ 0) introduced in Section 1 leads
to a canonical SDE driven by the dynamics of the trait and a multivariate point process. This
SDE is then used to show that the mean number of individuals in the population and the trait
are bounded at any time t ≥ 0. Using Assumption 1.2 we conclude that there is no explosion
in finite time of the population, and thus, following the proof in [25], it is sufficient to establish
uniqueness and existence of a solution of this SDE by construction.

We recall that the offspring traits at birth y = (y1, · · · , yn) of an individual of trait x in a
population ν is given by the law Kn(x, ν,y)Mn(dy). A classical way to define the associated
SDE is to assume that the random traits depend only on a uniform random variable on [0, 1],
see [5, 46]. However this method correlates the trait at birth between every child. To solve this
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issue, we will introduce the measureM on N×XN such that

M(dn, dy) :=
∑
i≥1

δi(dn)Mi(dy).

Let E = R+ × U × R+ × N × XN and Q (ds, du,dr, dn,dy) be a Poisson point measure on E
with intensity q such that

q (ds, du,dr, dn,dy) = ds

(∑
v∈U

δv(du)

)
drM(dn, dy).

We denote by (Ft, t ≥ 0) the canonical filtration associated with this Poisson point measure and
(Tk, k ≥ 0) the sequence of jumps times, that is the random sequence of times of arrivals given
by the Poisson point measure Q.

Let z̄ ∈ V. For every function g ∈ C1 (U × X ,R) and t ≥ 0, the process (ν̄t, t ≥ 0) starting
from z̄ verifies

⟨ν̄t, g⟩ := ⟨z̄, g⟩+
∫ t

0

∫
U×X

∂g

∂x
(u, x) · µ (x, νs) ν̄s(du,dx)ds

+

∫
E
1{

u∈G
(
ν̄
s−
)}1{

r≤Bn(Xu

s−,νs−)Kn(Xu

s−,νs−,y)
}
(

n∑
i=1

g
(
ui, yi

)
− g(u,Xu

s−)

)
×Q (ds, du,dr, dn,dy) . (5.1)

The first line in this stochastic differential equation corresponds to the deterministic evolution of
the trait between the branching events. The second line describes the branching events where u
is the label of the branching individual, n is the number of children and y their traits at birth.

Note that the dynamical construction of the marginal measure-valued process only does not
ensure uniqueness: the individual for the next branching event is chosen according to its trait,
and thus two individuals with the same trait can be indistinctly chosen to be the branching one.
The labeling of individuals allows us to overcome this problem. However, any other labeling
method could work, see e.g. [25]. Here we consider non-bounded rates and we follow with small
adaptations the proof of Lemma 2.5 in [46]. Let T > 0. We prove the non-accumulation of
branching events on [0, T ]. First we use equation (5.1) applied to the constant function equal to
1, that gives the number of individuals in the population, denoted (Nt, t ≥ 0). Using Assumption
1.3, we have for all t < Tk ∧ T

Ez̄ [Nt] ≤ N0 +

∫ t

0
b0

Ez̄
[ ∑
u∈G(t)

|Xu
s |
]
+ Ez̄ [Ns]

 ds.

Next, we take a sequence of functions (gn, n ∈ N) where for all n, gn ∈ C1(U × X ,R+) and

limn→∞ gn(u, x) = |x| and limn→∞
∂gn
∂x (u, x) · µ(x, ν) ≤ |µ(x, ν)| for all ν. Applying equation

(5.1) to these functions and using Assumptions 1.1 and 1.4, we have when n→ +∞,

Ez̄
[ ∑
u∈G(t)

|Xu
t |
]
≤⟨z̄, | · |⟩+

∫ t

0
µ0

Ez̄
[ ∑
u∈G(s)

|Xu
s |
]
+ Ez̄

[∣∣∣ ∑
u∈G(s)

Xu
s

∣∣∣]+ Ez̄ [Ns]

 ds.

According to Grönwall’s lemma, for all t < Tk ∧ T , we have

Ez̄ [Nt] + Ez̄
[ ∑
u∈G(t)

|Xu
t |
]
≤ (N0 + ⟨z̄, | · |⟩) e(b0+µ0)t <∞.

The number of individuals is thus almost surely finite at finite time as well as the trait of every
individual. Assumption 1.2 ensures that in finite time, there is no accumulation of branching
events that does not change the size of the population. □
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5.2. Proof of Section 2. Theorem 2.1 is proved following the steps of the proof of Theorem 1 in
[3]. Let ψ ∈ D satisfying Assumption 2, and ((Et, χ̄t) , t ≥ 0) be the W-valued branching process

of generator L̂ψ, defined in (2.4). We will first need to introduce some notations. We will denote
(Uk, k ≥ 0) the sequence of U-valued random variables giving the label of the branching individuals
at the jumps times (Tk, k ≥ 0). Let (Nk, k ≥ 0) be the sequence of N-valued random variables
giving the number of children at each branching event and we denote for brevity Ak := (Uk, Nk)
for all k ≥ 0. At the k-th branching time Tk, we denote Yk the XNk -valued random variable giving
the vector of offspring traits. Finally we introduce for all k ≥ 0, Vk := (Tk, Ak,Yk). We similarly

define ((T̂k, Ûk, N̂k, Ŷk), k ≥ 0), the sequence of jumps times, labels of the branching individual,
number of children and trait of these children at birth in the spinal construction. Notice that the
distribution of number of children and traits depend on whether the branching individual is the

spinal one or not. We will also use for all k ≥ 0, V̂k := (T̂k, Âk, Ŷk) where Âk := (Ûk, N̂k). At time

s ∈ [T̂k−1, T̂k), the label of the spinal individual is denoted Ek and its trait Yk. For a given initial
population z̄ =

∑n
i=1 δ(i,xi) ∈ V, we use by convention U0 = ∅, N0 = n, Y0 = (xi, 1 ≤ i ≤ n)

almost surely. The same convention holds for the spine process. For all 0 ≤ k, we introduce the
associated filtrations

Fk = σ (Vi, 0 ≤ i ≤ k) , and F̂k = σ
(
Ek,

(
V̂i, 0 ≤ i ≤ k

))
.

Notice that these notations, summarized in Figure 4, are well-defined until the explosion time of
the branching and spine processes and that the vectors (Vk, k ≥ 0) where for all k ≥ 0, Vk :=
(Tk, Ak,Yk) characterize the trajectories of (ν̄t, t ≥ 0) until the explosion time.

(
Ûk−1, X

Ûk−1
s

)

(Ek−2, Ys)

T̂k−2 < s T̂k−1

•
Ek−2 = Ek−1

(
Ûk−11, Ŷ1

k−1

)
(
Ûk−12, Ŷ2

k−1

)
(
Ûk−1N̂k−1, Ŷ

N̂k−1

k−1

)
(
Ek, Ŷ1

k

)
(
Ek−12, Ŷ2

k

)

T̂k t

Figure 4. Sequential notations for the spine process.

For every initial population z̄ ∈ V and every k ≥ 0, we introduce the set of sequences of k
branching events that lead to non-extinguished trajectories Uk(z̄) ⊂ (U × N)k, starting from z̄.
We also introduce for all a ∈ Uk(z̄) and all 0 ≤ i ≤ k, Gi(a) the set of labels of individuals
living between the i-th and (i+1)-th branching events in the population where all the branching
events were given by a. By decomposing the branching process (ν̄t ≥ 0) based on the sequences
a ∈ Uk(z) and sampling at time t an individual e ∈ Gk(a), we get that for every non-negative
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measurable function H on U × D ([0, t],V)

Ez̄
[
1{TExp>t,G(t) ̸=∅}H (Ut, (ν̄s, s ≤ t))

]
=

∑
k≥0

∑
a∈Uk(z̄)

∑
e∈Gk(a)

Ez̄

[
H (e, (ν̄s, s ≤ t)) pe(ν̄t)1{Tk≤t<Tk+1}

k∏
i=0

1{Ai=ai}

]
. (5.2)

The expectation on the right-hand side of (5.2) is linked by a Girsanov-type result to the spinal
construction, as shown in Lemma 5.1. The difference with our proof and the proof of Theorem 1
in [3] lies among other things in the demonstration of this lemma.

Lemma 5.1.
For any k > 0, z̄ ∈ V and a = ((ui, ni), 0 ≤ i ≤ k) ∈ Uk(z̄), let F be a non-negative measurable
function on Πki=1 (R+ × U × N×X ni). For any e ∈ Gk (a),

Ez̄

[
F (Vi, 0 ≤ i ≤ k)

k∏
i=0

1{Ai=ai}

]
= ⟨z, ψ (·, z, 0)⟩

× Ez̄

[
ξk

(
Ek,

(
V̂i, 0 ≤ i ≤ k

))
F
(
V̂i, 0 ≤ i ≤ k

)
1{Ek=e}

k∏
i=0

1{Âi=ai}

]
,

where

ξk

(
Ek,

(
V̂i, 0 ≤ i ≤ k

))
:=

1

ψ
(
Y
T̂k
, χ

T̂k

) exp

(∫ T̂k

0

Gψ (Ys, χs)

ψ (Ys, χs)
ds

)
.

We prove this lemma by induction on the number of branching events k. We will first state a
technical lemma to avoid too long computations.

Lemma 5.2. For all k > 0, z̄ ∈ V and a = ((ui, ni), 0 ≤ i ≤ k) ∈ Uk(z̄),

ξk

(
Ek,

(
V̂i, 0 ≤ i ≤ k

))
ξk−1

(
Ek−1,

(
V̂i, 0 ≤ i ≤ k − 1

)) =

ψ

(
Y
T̂ −k
, χ

T̂ −k

)
ψ
(
Y
T̂k
, χ

T̂k

) exp

(∫ T̂k

T̂k−1

λ (Ys, χs) ds

)
a.s.

where, for all s ∈ [T̂k−1, T̂k),

λ (Ys, χs) := τ̂tot (Ys, χs)− τ (χs) , with τ (χs) :=

∫
X
B (x, χs)χs(dx). (5.3)

We recall that τ̂tot is the total branching rate of the spine process defined in (2.10).

Proof of Lemma 5.2. The recursive equality for ξk derives from the fundamental theorem of cal-
culus. Let k ≥ 1,

ξk

(
Ek,

(
V̂i, 0 ≤ i ≤ k

))
ξk−1

(
Ek−1,

(
V̂i, 0 ≤ i ≤ k − 1

)) =
ψ
(
Y
T̂k−1

, χ
T̂k−1

)
ψ
(
Y
T̂k
, χ

T̂k

) exp

(∫ T̂k

T̂k−1

Gψ (Ys, χs)

ψ (Ys, χs)
ds

)
.

We notice that G introduced in (2.3), verify for all (xe, ν) ∈W
[G −G]ψ(xe, ν)

ψ(xe, ν)
= τ̂tot(xe, ν)−

∫
X
B(x, ν)ν(dx),

where τ̂tot is defined in (2.10). Then, using derivative chain rule we get that

G (ln ◦ψ) (xe, ν) =
Gψ(xe, ν)

ψ(xe, ν)
.
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Between successive branching events, the evolution of the process is purely deterministic and we
can apply the fundamental theorem of calculus:∫ T̂k

T̂k−1

G (ln ◦ψ) (Ys, χs) ds = ln
(
ψ
(
Y
T̂k−, χT̂k−

))
− ln

(
ψ
(
Y
T̂k−1

, χ
T̂k−1

))
.

We thus have

exp

(∫ T̂k

T̂k−1

Gψ (Ys, χs)

ψ (Ys, χs)
ds

)
=

ψ
(
Y
T̂k−, χT̂k−

)
ψ
(
Y
T̂k−1

, χ
T̂k−1

) exp

(∫ T̂k

T̂k−1

λ (Ys, χs) ds

)
,

that concludes the proof. □

This lemma establishes that the exponential path-integral term is the suitable change of mea-
sure to compensate for the deterministic dynamics between jumps.

Proof of Lemma 5.1. Following the proof of Theorem 1 in [3], the result is established by induction
on the number k of branching events. The original branching process and its associated spine
process may stop branching in finite time, in this case the total numbers of branching events,

respectively Ntot and N̂tot, are finite. For all k such that k > Ntot, the k-th branching event
of the original construction arrives at Tk = +∞. In this case we set Ak = (∅, 0) by convention.
The same convention is used for the spinal construction. Let z̄ :=

∑n
i=1 δ(i,xi) ∈ V be the initial

population and let F be a non-negative measurable function on R+ × U × N × X n. Then, by

definition, V0 = V̂0 = (0, (∅, n), (xi, 1 ≤ i ≤ n)) almost surely.
Therefore, for all e ∈ G(0)

Ez̄
[
ξ0

(
E0, V̂0

)
F
(
V̂0
)
1{E0=e}1{Â0=(∅,n)}

]
= F (V0)1{A0=(∅,n)}Ez̄

[
1{E0=e}

ψ(Y0, z)

]
.

We recall that the individual 1 ≤ i ≤ n of trait xi in the population z̄ is chosen to be the spinal
individual with probability ψ(xi, z)(⟨z, ψ(·, z)⟩)−1. Then we have

Ez̄
[
ξ0

(
E0, V̂0

)
F
(
V̂0
)
1{E0=e}1{Â0=(∅,n)}

]
=

1

⟨z, ψ (·, z)⟩
Ez̄
[
1{A0=(∅,n)}F (0, A0,Y0)

]
.

Thus the result holds for k = 0. Now let k ≥ 1 and assume that the following induction hypothesis
holds at rank k − 1.
Induction Hypothesis. For every a = (ai, 0 ≤ i ≤ k − 1) ∈ (U × N)k−1 with ai = (ui, ni), every

non-negative measurable function H on
k−1⊗
i=1

(R+ × U × N×X ni) and every label e ∈ Gk−1 (a):

Ez̄

[
H (Vi, 0 ≤ i ≤ k − 1)

k−1∏
i=0

1{Ai=ai}

]
= ⟨z, ψ (·, z)⟩

× Ez̄

[
ξk−1

(
Ek−1,

(
V̂i, 0 ≤ i ≤ k − 1

))
H
(
V̂i, 0 ≤ i ≤ k − 1

)
1{Ek−1=e}

k−1∏
i=0

1{Ai=ai}

]
. (5.4)

Let a = (ai, 0 ≤ i ≤ k) ∈ (U × N)n with ai = (ui, ni) and e ∈ Gk (a). We denote a′ = (ai, 0 ≤

i ≤ k − 1) and take F ak a non-negative measurable function on
k⊗
i=1

(R+ ×X ni) such that, for all

((ti, yi) , 0 ≤ i ≤ k) ∈
n⊗
i=1

(R+ ×X ni):

F ak ((ti, yi) , 0 ≤ i ≤ n) := F a
′

k−1 ((ti, yi) , 0 ≤ i ≤ k − 1) I(tk − tk−1)F (yk), (5.5)
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where F a
′

k−1, I and F are non-negative measurable functions, respectively on
k−1⊗
i=1

(R+ ×X ni), R+

and X nk . We denote by e′ ∈ Gk−1 (a
′) the deterministic label of the ancestor of e just before the

k-th jump. Thus there exists a unique j ∈ N∗∪{∅} satisfying e′j = e. If j ̸= ∅, it means that e′ is
the branching individual in the k-th jump, otherwise it is any other individual in the population.
We introduce the N∗ ∪ {∅}-valued random variable Jk choosing the label of the spinal individual
at the k-th branching event, so that Ek = Ek−1Jk almost surely.

Following the proof of Lemma 1 in [3], we express both sides of the equality (5.4) for k ≥ 1
conditionally on the filtrations at the previous step k − 1. We recall that, for all 1 ≤ j ≤ k

Fj = σ (Vi, 0 ≤ i ≤ j) , and F̂j = σ
(
Ej ,

(
V̂i, 0 ≤ i ≤ j

))
.

The following proposition is crucial for applying the induction hypothesis and concluding the
proof. We present the proof of this proposition separately, as it forms the core of the change of
measure between both processes.

Proposition 5.3. With the previously introduced notations, we define the deterministic functions

of F̂k−1-measurable random variables

C
(
V̂i, 0 ≤ i ≤ k − 1

)
:= E

[
I
(
Tk − T̂k−1

)
F (Yk)1{Ak=ak}

∣∣F̂k−1

]
(5.6)

and

Ĉ
(
e′,
(
V̂i, 0 ≤ i ≤ k − 1

))
:= 1{Ek−1=e′}E

 ξk

(
Ek,

(
V̂i, 0 ≤ i ≤ k

))
ξk−1

(
Ek−1,

(
V̂i, 0 ≤ i ≤ k − 1

))1{Jk=j}
× I

(
T̂k − T̂k−1

)
F
(
Ŷk
)
1{Âk=ak}

∣∣∣F̂k−1

]
.

We have that, almost surely on the event that the last spine is chosen

Ĉ
(
e′,
(
V̂i, 0 ≤ i ≤ k − 1

))
= 1{Ek−1=e′}C

(
V̂i, 0 ≤ i ≤ k − 1

)
.

Notice that the function C in (5.6) takes the expectation of the random variable Vk, that follows
the dynamics of the original process, conditionally on the previous state of the spinal process.

Proof of Proposition 5.3. We start by using Lemma 5.2 to get that

Ĉ
(
e′,
(
V̂i, 0 ≤ i ≤ k − 1

))
:= 1{Ek−1=e′}E

ψ
(
Y
T̂k−1

, χ
T̂k−1

)
ψ
(
Y
T̂k
, χ

T̂k

) exp

(∫ T̂k

T̂k−1

λ (Ys, χs) ds

)

× 1{Jk=j}I
(
T̂k − T̂k−1

)
F
(
Ŷk
)
1{Âk=ak}

∣∣∣F̂k−1

]
.

Next we condition the right-hand side expression on the next jump time T̂k

Ĉ
(
e′,
(
V̂i, 0 ≤ i ≤ k − 1

))
= 1{Ek−1=e′}E

[
exp

(∫ T̂k

T̂k−1

λ (Ys, χs) ds

)
I
(
T̂k − T̂k−1

)

× ψ
(
Y
T̂−
k
, χ

T̂−
k

)
E

 F
(
Ŷk
)
1{Jk=j}1{Âk=ak}

ψ
(
Y
T̂k
, χ

T̂k

)
∣∣∣∣∣∣ F̂k−1, T̂k

∣∣∣∣∣∣ F̂k−1

 . (5.7)
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We handle this last equation by complete induction, on the event {j = ∅}∪{j ̸= ∅}, to show that

ψ
(
Y
T̂−
k
, χ

T̂−
k

)
E

 F
(
Ŷk
)
1{Jk=j}1{Âk=ak}

ψ
(
Y
T̂k
, χ

T̂k

)
∣∣∣∣∣∣ F̂k−1, T̂k

 =

Bnk

(
Xuk
T̂−
k

, χ
T̂−
k

)
τ̂tot

(
χ
T̂−
k

) ∫
X N̂k

F (y)K
N̂k

(
XÛk

T̂−
k

, χ
T̂−
k
,y

)
Mn(dy). (5.8)

Branching outside the spine. If j = ∅, then the branching individual is not the spinal one,
and e = e′j = e′ . We follow the same conditioning than for the branching process, and use the

fact that on the event {j = ∅} the trait of the spinal individual is F̂k−1-measurable. Using the

expression of the ψ-biased distribution K̂ of Ŷk, defined in (2.5), we get

E

 F
(
Ŷk
)
1{Jk=∅}1{Âk=ak}

ψ
(
Y
T̂k
, χ

T̂k

)
∣∣∣∣∣∣ F̂k−1, T̂k

 = E

1{Âk=ak}1{Jk=∅}

×
∫
X N̂k

F (y)

Γ̂nk

(
Y
T̂−
k
, Xuk

T̂−
k

, χ
T̂−
k

)Knk

(
XÛk

T̂−
k

, χ
T̂−
k
,y

)
Mn(dy)

∣∣∣∣∣∣∣∣ F̂k−1, T̂k

 .
We then recall the distribution of Âk outside the spine, established in Dynamics 2.2 :

E
[
1{Âk=ak}1{Jk=∅}

∣∣F̂k−1, T̂k

]
=

Γ̂nk

(
Y
T̂−
k
, Xuk

T̂−
k

, χ
T̂−
k

)
ψ
(
Y
T̂−
k
, χ

T̂−
k

) Bnk

(
Xuk
T−
k

, χ
T̂−
k

)
τ̂tot

(
χ
T̂−
k

) .

This gives (5.8) on the event {j = ∅}.
Spine branching. We follow the same computations when j ̸= ∅, that corresponds to the case
when the branching individual is the spinal one, i.e uk = e′. In this case, the distribution of Y

T̂k

now depends on the traits Ŷk. Thus conditioning on Ŷk and using the distribution of the next
spinal individual, defined in (2.9), we have

1{j ̸=∅}E

 F
(
Ŷk
)
1{Jk=j}1{Âk=ak}

ψ
(
Y
T̂k
, χ

T̂k

)
∣∣∣∣∣∣ F̂k−1, T̂k

 = E

1{Âk=(e′,nk)}

× E

 F
(
Ŷk
)

∑N̂k
i=1 ψ

(
Ŷ ik, χT̂−

k
− δY

T̂−
k

+
∑N̂k

l=1 δŶl
k

)
∣∣∣∣∣∣∣ F̂k−1, T̂k, Âk


∣∣∣∣∣∣∣ F̂k−1, T̂k

 .
We then use the distribution K̂∗ of Ŷk, defined in (2.6) when the branching individual is the

spinal one, conditioning on Âk, defined in Dynamics 2.3.

1{Âk=(e′,nk)}E

 F
(
Ŷk
)

∑N̂k
i=1 ψ

(
Ŷ ik, χT̂−

k
− δY

T̂−
k

+
∑N̂k

l=1 δŶl
k

)
∣∣∣∣∣∣∣ F̂k−1, T̂k, Âk

 =

1{Âk=(e′,nk)}

∫
Xnk

F (y)

Γ̂∗
nk

(
Y
T̂−
k
, χ

T̂−
k

)Knk

(
Y
T̂−
k
, χ

T̂−
k
,y
)
Mnk

(dy) .
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Finally we use the distribution of Âk when the branching individual is the spinal one, defined in
Dynamics 2.3.

E
[
1{Âk=(e′,nk)}

∣∣F̂k−1, T̂k

]
=

Γ̂∗
nk

(
Y
T̂−
k
, χ

T̂−
k

)
ψ
(
Y
T̂−
k
, χ

T̂−
k

) Bnk

(
YT−

k
, χ

T̂−
k

)
τ̂tot

(
χ
T̂−
k

) .

This gives (5.8) on the event {j ̸= ∅}.
Now, combining (5.7) and (5.8), we get

Ĉ
(
e′,
(
V̂i, 0 ≤ i ≤ k − 1

))
= 1{Ek−1=e′}E

[
exp

(∫ T̂k

T̂k−1

λ (Ys, χs) ds

)
I
(
T̂k − T̂k−1

)

×
Bnk

(
Xuk
T−
k

, χ
T̂−
k

)
τ̂tot

(
χ
T̂−
k

) ∫
Xnk

F (y)Knk

(
Xuk
T̂−
k

, χ
T̂−
k
,y

)
Mnk

(dy)

∣∣∣∣∣F̂k−1

]
.

Using that the time between two jump follows an inhomogeneous exponential law of instantaneous
rate τ̂tot, we have

Ĉ
(
e′,
(
V̂i, 0 ≤ i ≤ k − 1

))
= 1Ek−1=e′

∫ +∞

T̂k−1

exp

(∫ t

T̂k−1

λ (Ys, χs)− τ̂tot (Ys, χs) ds

)

× I(t− T̂k−1)Bnk
(Xuk

t , χt)

∫
Xnk

F (y)Knk
(Xuk

t , χt,y)Mnk
(dy) dt. (5.9)

Finally, using in (5.9) the fact that λ, defined in (5.3), is the difference of branching rates between
the spine process and the original process, we get that

Ĉ
(
e′,
(
V̂i, 0 ≤ i ≤ k − 1

))
= 1Ek−1=e′

∫ +∞

T̂k−1

τ (χt) exp

(
−
∫ t

T̂k−1

τ (χs) ds

)

× I(t− T̂k−1)
Bnk

(Xuk
t , χt)

τ (χt)

∫
Xnk

F (y)Knk
(Xuk

t , χt,y)Mnk
(dy) dt.

Now, conditioning in chain the expression of C defined in (5.6), we get

C
(
V̂i, 0 ≤ i ≤ k − 1

)
= E

[
I(Tk − T̂k−1)E

[
1{Ak=ak}F (Yk)

∣∣∣F̂k−1, Tk

]∣∣∣F̂k−1

]
.

Using the conditional distribution of Yk and Ak, we have

E
[
1{Ak=ak}F (Yk)

∣∣F̂k−1, Tk,
]
=

Bnk

(
Xuk

T −k
, χ

T −k

)
τ

(
χ
T −k

) ∫
Xnk

F (y)Knk

(
XUk

T −k
, χ

T −k
,y

)
Mnk

(dy).

We conclude the proof using that the time between two jumps follows an inhomogeneous expo-
nential law of instantaneous rate τ(·). □

Now, using the result of Proposition 5.3, we can proceed with the inductive proof of Lemma
5.1. Using (5.5) and conditioning the Fk-measurable sequence of random variables (Vi, 0 ≤ i ≤ k)
on the filtration Fk−1, that contains the information on the original process until just after the
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(k − 1)-th branching event, we have

Ez̄

[
F ak ((Ti,Yi) , 0 ≤ i ≤ k)

k∏
i=0

1{Ai=ai}

]
=

Ez̄

[
F a

′
k−1 ((Ti,Yi) , 0 ≤ i ≤ k − 1)C (Vi, 0 ≤ i ≤ k − 1)

k−1∏
i=0

1{Ai=ai}

]
, (5.10)

where we used the deterministic function C of Fk−1-measurable random variables

C (Vi, 0 ≤ i ≤ k − 1) := E
[
I (Tk − Tk−1)F (Yk)1{Ak=ak}

∣∣Fk−1

]
.

We introduce the function H defined by

H (Vi, 0 ≤ i ≤ k − 1) := F a
′

k−1 ((Ti,Yi) , 0 ≤ i ≤ k − 1)C (Vi, 0 ≤ i ≤ k − 1) .

Then we can apply the induction hypothesis (5.4) with this function H in (5.10)

Ez̄

[
F ak ((Ti,Yi) , 0 ≤ i ≤ k)

k∏
i=0

1{Ai=ai}

]
= ⟨z, ψ (·, z)⟩

× Ez̄

[
ξk−1

(
Ek−1,

(
V̂i, 0 ≤ i ≤ k − 1

))
F a

′
k−1

((
T̂i, Ŷi

)
, 0 ≤ i ≤ k − 1

)
× C

(
V̂i, 0 ≤ i ≤ k − 1

)
1{Ek−1=e′}

k−1∏
i=0

1{Ai=ai}

]
.

Then, using Proposition (5.3), and the fact that {Ek = e} = {Ek−1 = e′} ∩ {Jk = j}, we finally
get that

Ez̄

[
F ak ((Ti,Yi) , 0 ≤ i ≤ k)

k∏
i=0

1{Ai=ai}

]
= ⟨z, ψ (·, z)⟩

× Ez̄

[
ξk

(
Ek,

(
V̂i, 0 ≤ i ≤ k

))
F ak

((
T̂i, Ŷi

)
, 0 ≤ i ≤ k

)
1{Ek=e}

k∏
i=0

1{Âi=ai}

]
.

From this equality and using a monotone class argument for the functions F ak defined in (5.5),
we obtain (5.4) at rank k, that concludes the proof. □

Proof of Theorem 2.1. Let ψ ∈ D, t ≥ 0, and z̄ ∈ V. Let ((Et, χ̄t) , t ≥ 0) be the time-inhomogeneous

W-valued branching process of generator L̂ψ defined in (2.4). Let T̂Exp denote its explosion time
and ((Yt, χt) , t ≥ 0) its projection on W. For every t < TExp, there exists k ∈ N such that
{Tk ≤ t < Tk+1} where Tk+1 = +∞ if there is no more jumps after Tk. Thus we can write

Ez̄
[
1{TExp>t,G(t)̸=∅}H (Ut, (ν̄s, s ≤ t))

]
=
∑
k≥0

Ez̄
[
1{Tk≤t<Tk+1,G(t)̸=∅}H (Ut, (ν̄s, s ≤ t))

]
.

For every t ≥ 0, k ∈ N, every non-extinguished sequence a = (ai, 1 ≤ i ≤ k) ∈ Uk(z̄) with

ai = (ui, ni) and every e ∈ Gk (a), there exists a non-negative measurable function F t,ek,a on
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k⊗
i=1

(R+ × U × N×X ni), such that

Ez̄
[
1{TExp>t,G(t) ̸=∅}H (Ut, (ν̄s, s ≤ t))

]
=

∑
k≥0

∑
a∈Uk(z̄)

∑
e∈Gk(a)

Ez̄

[
E
[
1{Tk+1>t}|Fk

]
1{Tk≤t}F

t,e
k,a (Vi, 0 ≤ i ≤ k)

k∏
i=0

1{Ai=ai}

]
.

We apply Lemma 5.1 with the non-negative measurable function F defined for all sequence

(vi, 0 ≤ i ≤ k) ∈
k⊗
i=1

(R+ × U × N×X ni), where for all 0 ≤ i ≤ k, vi := (ti, ai, yi), by

F (vi, 0 ≤ i ≤ k) := P
(
Sk+1 > t− tk

∣∣∣∣ ⋂
0≤i≤k

{Vi = vi}
)
1tk≤tF

t,e
k,a (vi, 0 ≤ i ≤ k) ,

where Sk+1 is the random variable giving the (k+1)-th inter-arrival time of jumps in the original
process. Note that Sk+1 follows the same probability law as Tk+1 − Tk. We thus get, for all
e ∈ Gk(a)

Ez̄
[
1{G(t) ̸=∅}∩{TExp>t}H (Ut, (ν̄s, s ≤ t))

]
= ⟨z, ψ (·, z)⟩

∑
k≥0

∑
a∈Uk(z̄)

∑
e∈Gk(a)

Ez̄
[
1{Ek=e}

× ξk
(
Ek,

(
V̂i, 0 ≤ i ≤ k

))
F
(
V̂i, 0 ≤ i ≤ k

) k∏
i=0

1{Âi=ai}

]
. (5.11)

Then, using that λ introduced in (5.3) verifies λ := τ̂tot − τ ,

P
(
Sk+1 > t− T̂k

∣∣∣∣ ⋂
0≤i≤k

{
V̂i = vi

})
1{T̂k≤t} = e

∫ t
T̂k
λ(Ys,χs)ds

e
−

∫ t
T̂k
τ̂tot(Ys,χs)ds

1{T̂k≤t}

= e
∫ t
T̂k
λ(Ys,χs)dsE

[
1{T̂k+1>t}|F̂k

]
1{T̂k≤t}.

We recall that on the event {T̂k+1 > t}, there is no jump in the interval (T̂k, t], thus, applying
Lemma 5.2 on this interval we get

ξk

(
Ek,

(
V̂i, 0 ≤ i ≤ k

))
P
(
Sk > t− T̂k

∣∣∣∣ ⋂
0≤i≤k

{
V̂i = vi

})
1{T̂k≤t} =

1

ψ (Yt, χt)
exp

(∫ t

0

Gψ (Ys, χs)

ψ (Ys, χs)
ds

)
E
[
1{T̂k≤t<T̂k+1}|F̂k

]
. (5.12)

On the event {T̂k ≤ t < T̂k+1}, Ek = E(t) almost surely, then using (5.11) and (5.12) gives

Ez̄
[
1{TExp>t,G(t)̸=∅}H (Ut, (ν̄s, s ≤ t))

]
= ⟨z, ψ (·, z)⟩

∑
k≥0

∑
a∈Uk(z̄)

∑
e∈Gk(a)

Ez̄
[
1{E(t)=e}

×
1{T̂k≤t<T̂k+1}

ψ (Yt, χt)
exp

(∫ t

0

Gψ (Ys, χs)

ψ (Ys, χs)
ds

)
F t,ek,a

(
V̂i, 0 ≤ i ≤ k

) k∏
i=0

1{Âi=ai}

]
.
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Reconstructing the right-hand side and using the fact that the spine process does not extinct, we
have

Ez̄
[
1{TExp>t,G(t) ̸=∅}H (Ut, (ν̄s, s ≤ t))

]
=

⟨z, ψ(·, z)⟩Ez̄
[
1{T̂Exp>t}

pEt (χ̄t)

ψ (Yt, χt)
exp

(∫ t

0

Gψ (Ys, χs)

ψ (Ys, χs)
ds

)
H (Et, (χ̄s, s ≤ t))

]
,

that concludes the proof. □

5.3. Proofs of Section 3. In this section we derive the results on the limiting martingale and
a L logL criterion.

Proof of Proposition 3.1. Let ψ ∈ D satisfying Assumption 2, we first show for all t ≥ 0, the
integrability of the random variable Wt(ψ) introduced in (3.1). As Assumption 1 is satisfied, we
can apply Corollary 2.5 for any t ≥ 0 to the positive function f on D([0, t],X ×V), such that for
all u ∈ G(t),

f ((Xu
s , ν̄s), 0 ≤ s ≤ t) := exp

(
−
∫ t

0

Gψ (Xu
s , νs)

ψ (Xu
s , νs)

ds

)
.

Corollary 2.5 applied to the function f , ensures that for any initial condition z̄,

Ez̄

 ∑
u∈G(t)

exp

(
−
∫ t

0

Gψ (Xu
s , νs)

ψ (Xu
s , νs)

ds

)
ψ (Xu

t , νt)

 = ⟨z, ψ(·, z)⟩. (5.13)

This last identity guarantees the integrability of Wt(ψ).
Now, for all r, t ∈ R∗

+, such that t ≥ r, we decompose the individuals alive in the population
at time t according to their ancestors at time r. We then have

Ez̄
[
Wt(ψ)

∣∣Fr] = ∑
v∈G(r)

exp

(
−
∫ r

0

Gψ (Xu
s , νs)

ψ (Xu
s , νs)

ds

)

× Ez̄

 ∑
u∈G(t), s.t v⪯u

exp

(
−
∫ t

r

Gψ (Xu
s , νs)

ψ (Xu
s , νs)

ds

)
ψ (Xu

t , νt)

∣∣∣∣∣Fr
 .

Now, in order to establish that the conditional expectation is equal to ψ (Xv
r , νr) for all v ∈ G(r),

we apply Corollary 2.5 to the positive functions fv on U × D([0, t],V), such that

fv (u, (ν̄s, 0 ≤ s ≤ t)) := 1v⪯u exp

(
−
∫ t

r

Gψ (Xu
s , νs)

ψ (Xu
s , νs)

ds

)
and use the Markov property. We get that for all v ∈ G(r)

E

 ∑
u∈G(t),
s.t. v⪯u

exp

(
−
∫ t

r

Gψ (Xu
s , νs)

ψ (Xu
s , νs)

ds

)
ψ (Xu

t , νt)

∣∣∣∣∣Fr
 = ⟨νr, ψ(·, νr)⟩Eνr

[
1{v⪯Et}

]
.

Finally using the new spinal individual distribution (2.9), we get

E
[
Wt(ψ)

∣∣Fr] = ∑
v∈G(r)

exp

(
−
∫ r

0

Gψ (Xu
s , νs)

ψ (Xu
s , νs)

ds

)
ψ (Xv

r , νr) .

That concludes the proof. □

To establish Theorem 3.4, we need the following lemma from measure theory.



A SPINAL CONSTRUCTION FOR GENERAL TYPE-SPACE POPULATIONS WITH INTERACTIONS 29

Lemma 5.4. Let (Ω,F , µ) be a probability space and let µ̂ be a finite non negative measure on

Ω. Let (Ft, 0 ≤ t) be increasing σ-fields such that σ

(⋃
0≤t
Ft

)
= F , and µ̂t, µt be the restrictions

of µ̂ and µ to Ft. Suppose that there exists a non-negative Ft-martingale (Wt, 0 ≤ t) such that
for all t ≥ 0

dµ̂t
dµt

=Wt.

Then, denoting W := lim supt→+∞Wt, we have the following dichotomy:

(1)
∫
Wdµ =

∫
W0dµ if and only if W < +∞ µ̂-a.s.

(2) W = 0 µ-a.s. if and only if W = +∞ µ̂-a.s.

Proof. We refer to [2, 45] for the proof of this result in discrete time. The extension to continuous
time changes of measure uses Kolmogorov’s extension theorem, see Durrett Appendix A [21] for
further details. □

We now state the following lemma, that is the dual proposition of Theorem 3.4.

Lemma 5.5. Let ψ ∈ D satisfying Assumption 7, let (Ŵt(ψ), t ≤ T̂Exp) be the F̂t-adapted process

such that, for all t ≤ T̂Exp,

Ŵt(ψ) :=
∑
u∈Ĝ(t)

ψ (Xu
t , χt) exp

(
−
∫ t

0

Gψ (Xu
s , χs)

ψ (Xu
s , χs)

ds

)
, (5.14)

where Ĝ(t) is the set of labels of individuals living in the spinal population at time t.

Under Assumption 5, (3.2) implies that, T̂Exp = ∞ and lim supt→+∞ Ŵt(ψ) < +∞ almost
surely.

Under Assumption 6, (3.3) implies that lim supt→+∞ Ŵt(ψ) = +∞ almost surely.

This lemma is the innovative part of this proof. It involves the decomposition of the spinal
process as a process with immigration where the spinal individual provides new individuals at
a ψ-biased rate, and the new spine is the new source of immigration. However as the function
ψ is not constant, the spinal construction also changes the dynamics of individuals outside the
spine, that do not behave as those in the original process (νt, t ≥ 0). Assumption 5 is used
to control the behavior of the individuals outside the spine to prove the non degeneracy of the
limiting martingale. For the second part of this theorem, we use Assumption 6 to establish that
the contribution of the offspring without the new spine is enough to ensure the degeneracy.

Proof of Theorem 3.4. Theorem 2.1 applied with any function ψ ∈ D satisfying Assumption 7
exhibits the martingale (Wt(ψ), t ≥ 0) as a Radon-Nikodym derivative. We can thus apply Lemma
5.4 to the spinal change of measure. The martingale Wt(ψ) and its limit W (ψ), introduced in
(3.1), verify the following dichotomy:

(1) Ez̄ [W (ψ)] = Ez̄ [W0(ψ)] if and only if lim supt→+∞ Ŵt(ψ) < +∞ a.s.

(2) W (ψ) = 0 a.s. if and only if lim supt→+∞ Ŵt(ψ) = +∞ a.s.

In this case, we use (5.13) to obtain that

Ez̄ [W0(ψ)] = ⟨z, ψ(·, z)⟩,

and a direct application of Lemma 5.5 concludes the proof. □

Proof of Lemma 5.5. Let ψ ∈ D satisfying Assumption 7, and introduce for all k ∈ N,

p̂
∗
n := sup

(x,ν)∈W
p̂∗n(x, ν), p̂∗

n
:= inf

(x,ν)∈W
p̂∗n(x, ν),
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K̂
∗
n(·) := sup

(x,ν)∈W
K̂∗
n(x, ν, ·), and K̂

∗
n(·) := inf

(x,ν)∈W
K̂∗
n((x, ν, ·),

where (p̂∗n, n ≥ 0) and K̂∗
n are respectively the law of the number of children and the measure

giving the offspring traits for the ψ-spine, defined respectively in (2.7) and (2.6).
We first state two technical lemmas, proven in Appendix B.

Lemma 5.6. For all ψ ∈ D satisfying Assumption 7, the criteria∑
n≥1

p̂
∗
n

∫
Xn

sup
(x,ν)∈W

[
log

(
n∑
i=1

ψ(yi, ν+(x,y))

)]
K̂

∗
n(y)Mn(dy) < +∞

implies that

lim sup
t→+∞

ψ (Yt, χt) exp

(
−
∫ t

0

Gψ (Ys, χs)

ψ (Ys, χs)
ds

)
= 0 a.s.

We recall the notation ν+(x,y) := ν +
∑n

i=1 δyi − δx, introduced in (2.2).

Lemma 5.7. For all ψ ∈ D satisfying Assumptions 6 and 7, the criteria∑
n≥1

p̂∗
n

∫
Xn

inf
(x,ν)∈W

[
log

(
n∑
i=1

ψ(yi, ν+(x,y))

)]
K̂

∗
n(y)Mn(dy) = +∞

implies that for any sequence of integers (jn, n ≥ 2) such that 1 ≤ jn ≤ n,

∑
n≥2

p̂∗
n

∫
Xn

inf
(x,ν)∈W

log
 n∑

i=1
i ̸=jn

ψ(yi, ν+(x,y))


 K̂∗

n(y)Mn(dy) = +∞.

To establish Lemma 5.5, we follow the conceptual decomposition of the spine process, first
introduced by Lyons, Pemantle and Peres [45], that is, viewing the spine as an immigration
source into a process without a spine. We consider the ψ-spinal process (˚̄χt, t ≥ 0) describing all
the individuals outside the spine and its associated marginal process χ̊t, defined for all t ≥ 0 by:

˚̄χt := χ̄t − δ(Et,Yt), and χ̊t := χt − δYt .

We denote by G̊(t) the random set of labels of non-spinal individuals living at time t

G̊(t) =

{
u ∈ U\{Et} :

∫
U×X

1{v=u}χ̄t(dv,dx) > 0

}
.

We also introduce for all t ≥ 0,

W̊t(ψ) :=
∑
u∈G̊(t)

ψ (Xu
t , χt) exp

(
−
∫ t

0
Λ (Xu

s , χs) ds

)
,

where for all x, ν ∈W,

Λ(x, ν) :=
Gψ(x, ν)
ψ(x, ν)

.

• We handle first the degenerated case, and suppose that Assumption 6 holds and that∑
n≥1

p̂∗
n

∫
Xn

inf
(x,ν)∈W

[
log

(
n∑
i=1

ψ(yi, ν+(x,y))

)]
K̂

∗
n(y)Mn(dy) = +∞. (5.15)

We notice that, almost surely for all t ≥ 0, the martingale Ŵt(ψ) introduced in (5.14) verifies

W̊t(ψ) ≤ Ŵt(ψ). (5.16)
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We denote (T̂ ∗
k , k ≥ 0) the sequence of random jumps times of the spine, and (N̂∗

k , k ≥ 0) the
sequence of random variables giving the number of children at each branching event of the spine.

For every k ≥ 0, (Xi
k, 1 ≤ i ≤ N̂∗

k ) is the random vector giving the types of the children of the
spine, among them the trait of the new spine is denoted Y

T̂ ∗
k
. We also introduce the sequence of

filtrations (Fk, k ≥ 1) such that for all k ≥ 0:

Fk := F̂T̂ ∗
k+1−. (5.17)

where F̂t is the canonical filtration of the spinal process up to time t. Thus, Fk corresponds to
the information on the process until the time of the (k + 1)-th jump. We notice that

W̊
T̂ ∗
k
= W̊

T̂ ∗
k−

+

N̂∗
k∑

i=1

ψ
(
X̂i
k, χT̂ ∗

k

)
exp

(
−
∫ T̂ ∗

k

0
Λ
(
Xi
s, χs

)
ds

)

− ψ
(
Y
T̂ ∗
k
, χ

T̂ ∗
k

)
exp

(
−
∫ T̂ ∗

k

0
Λ (Ys, χs) ds

)
.

Using that for all t ≥ 0, W̊t is almost surely non-negative, and using the upper bound of Λ in
Assumption 7, we obtain

W̊
T̂ ∗
k
≥

 N̂∗
k∑

i=1

ψ
(
X̂i
k, χT̂ ∗

k

)
− ψ

(
Y
T̂ ∗
k
, χ

T̂ ∗
k

) exp
(
−CT̂ ∗

k

)

≥

 N̂∗
k∑

i=1

ψ
(
X̂i
k, χT̂ ∗

k

)
− max

1≤j≤n
ψ
(
Xj
k, χT̂ ∗

k

) exp
(
−CT̂ ∗

k

)
. (5.18)

Let us introduce for all K > 0 and all k ≥ 1, the event

BK
k :=

log

 N̂∗
k∑

i=1

ψ
(
X̂i
k, χT̂ ∗

k

)
− max

1≤j≤k
ψ
(
Xj
k, χT̂ ∗

k

) ≥ kK
 ∈ Fn.

We will now establish that ∑
k≥1

P
(
BK
k

∣∣∣Fk−1

)
= +∞.

First notice that∑
k≥1

P
(
BK
k

∣∣∣Fk−1

)
=
∑
k≥1

∑
n≥1

p̂∗n

(
Y
T̂ ∗
k−
, χ

T̂ ∗
k−

)∫
Xn

K̂∗
n

(
Y
T̂ ∗
k−
, χ

T̂ ∗
k−
,y
)

× 1{
log

(∑n
i=1 ψ

(
yi,χ

T̂∗
k

)
−max1≤j≤n ψ

(
yj ,χ

T̂∗
k

))
≥kK

}Mn(dy).

Notice that the indicator function is always zero for n = 1. Taking the infimum over W, we get
that∑

n≥1

P
(
BK
k

∣∣∣Fk−1

)
≥
∑
n≥2

p̂∗
n

∫
Xn

K̂
∗
n(y)

×
∑
k≥1

1{
inf

(x,ν)∈W
(log(

∑n
i=1 ψ(y

i,ν+(x,y))−max1≤j≤n ψ(yj ,ν+(x,y))))≥kK
}Mn(dy).
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Finally, using that
∑

n≥2 p̂
∗
n

∫
Xn K̂

∗
n(y)Mn(dy) ≤ 1 and that, for all A ∈ R,

∑
k≥0

1{A≥kK} ≥ −1 +
A

K
,

we get

∑
k≥1

P
(
BK
k

∣∣∣Fk−1

)
≥ −1 + 1

K

∑
n≥2

p̂∗
n

∫
Xn

K̂
∗
n(y)

× inf
(x,ν)∈W

(
log

(
n∑
i=1

ψ
(
yi, ν+(x,y)

)
− max

1≤j≤n
ψ
(
yj , ν+(x,y)

)))
Mn(dy).

Lemma 5.7 with (5.15) ensures that the lower bound is infinite and therefore∑
k≥1

P
(
BK
k

∣∣∣Fk−1

)
= +∞.

We can thus apply the conditional second Borel-Cantelli lemma, see Theorem 4.3.4 in [21]. For
all K > 0,

lim sup
k→∞

 N̂∗
k∑

i=1

ψ
(
X̂i
k, χT̂ ∗

k

)
− ψ

(
Y
T̂ ∗
k
, χ

T̂ ∗
k

) e−Kk = +∞ a.s.

Furthermore, the bounds on the branching rate in Assumption 7 ensure that T̂ ∗
k grows linearly

almost surely to infinity as k tends to infinity. Thus, using (5.18) we get that lim supt→∞ W̊t(ψ) =
+∞ and relation (5.16) concludes the proof.
• Now we treat the non-degenerated case, and suppose that Assumption 5 holds and that∑

n≥1

p̂
∗
n < +∞, sup

n≥1

∫
Xn

K̂
∗
n(y)Mn(dy) < +∞, (5.19)

and ∑
n≥1

p̂
∗
n

∫
Xn

sup
(x,ν)∈W

[
log

(
n∑
i=1

ψ(yi, ν+(x,y), t)

)]
K̂

∗
n(y)Mn(dy) < +∞. (5.20)

We notice that

W̊t(ψ) = Ŵt(ψ)− ψ (Yt, χt) e
−

∫ t
0 Λ(Ys,χs)ds. (5.21)

In the following we prove that lim sup
t→+∞

W̊t(ψ) < +∞ almost surely, and use Lemma 5.6 to conclude

the proof.

Let Ê = U × R+ × N × XN and Ê∗ = R+ × N × XN. We introduce Q̂ (ds, du,dr, dn, dy) and

Q̂∗ (ds, dr, dn,dy) two independent Poisson point measures on R+×Ê and R+×Ê∗ with respective
intensity ds(

∑
v∈U δv(du))dr

∑
i≥1 δi(dn)Mi(dy) outside the spine and dsdr

∑
i≥1 δi(dn)Mi(dy)

for the spine. We denote by
(
F̂∗
t , t ≥ 0

)
the canonical filtration associated with Q̂∗. Recall that

the set of labels of the living individuals in the population outside the spine is denoted by G̊(t)
and the random index of the new spine, introduced in (2.9), is denoted by J(x, ν,y).

We localize the process (W̊t(ψ), t ≥ 0) to avoid explosion and use Itô’s formula to explicit

W̊t(ψ). Let T̂
m be the m-th branching event of the spinal process for m ≥ 1.
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For all T ≤ T̂m,

W̊T (ψ) = W̊0 −
∫ T

0
Itdt+

∫ T

0

∫
Ê
ÎtQ̂ (dt,du,dr, dn, dy)

+

∫ T

0

∫
Ê∗

{
n∑
i=1

1{
i ̸=J

(
Y
t−,χt−,y

)}ψ (yi, χ+
t (Yt,y)

)
exp

(
−
∫ t

0
Λ (Ys, χs) ds

)

+
∑
v∈G̊

t−

[
ψ
(
Xv
t , χ

+
t (Yt,y)

)
− ψ

(
Xv
t , χt−

)]
exp

(
−
∫ t

0
Λ (Xv

s , χs) ds

)}

× 1{
r≤B̂∗

n

(
Y
t−,χt−

)
K̂∗

n

(
Y
t−,χt−,y

)}Q̂∗ (dt,dr, dn,dy) (5.22)

where

It :=
∑
u∈G̊t

[Gψ −Gψ] (Xu
t , χt) e

−
∫ t
0 Λ(Xu

s ,χs)ds,

and

Ît :=

{[
n∑
i=1

ψ
(
yi, χ+

t (Xu
t ,y)

)
− ψ

(
Xu
t , χ

+
t (Xu

t ,y)
)]

exp

(
−
∫ t

0
Λ (Xu

s , χs) ds

)

+
∑
v∈G̊

t−

[
ψ
(
Xv
t , χ

+
t (Xu

t ,y)
)
− ψ

(
Xv
t , χt−

)]
exp

(
−
∫ t

0
Λ (Xv

s , χs) ds

)}

× 1{u∈G̊t}1
{
r≤B̂n

(
Yt,Xu

t ,χt−
)
K̂n

(
Yt,Xu

t ,χt−,y
)}. (5.23)

It describes the deterministic evolution of types between the time of jump, Ît corresponds to
the jumps outside the spine, and the last integral in (5.22) is the contribution from the spinal
individual.

Using the expression of the operator G and Assumption 5 we have for all t > 0, all u ∈ G̊t

It =
∑
u∈G̊t

exp

(
−
∫ t

0
Λ (Xu

s , χs) ds

)∑
n≥0

Bn (X
u
t , χt)

×
∫
Xn

[
n∑
i=1

ψ
(
yi, χ+

t (Xu
t ,y)

)
− ψ

(
Xu
t , χ

+
t (Xu

t ,y)
)]
Kn (X

u
t , χt,y)Mn(dy).

Notice that Assumption 5 implies that, for all (x, (xe, ν), t) ∈ X ×W,

B̂n(xe, x, ν)K̂n (xe, x, ν,y) = Bn(x, ν)Kn (x, ν,y) .

Thus using Assumption 5 in (5.23) we get∫ T

0

∫
Ê
Ît dtdr

∑
i≥1

δi(dn)Mi(dy) =

∫ T

0
Itdt.

Thus, using Assumption 5 we get, for all T ≤ T̂m

E
[
W̊T (ψ)

∣∣∣ F̂∗
T

]
= E

[
W̊0(ψ)

]
+

∫ T

0

∫
Ê∗

n∑
i=1

1{
i ̸=J

(
Y
t−,χt−,t,y

)}ψ (yi, χ+
t (Yt,y)

)
exp

(
−
∫ t

0
Λ (Ys, χs) ds

)
× 1{

r≤B̂∗
n

(
Y
t−,χt−

)
K̂∗

n

(
Y
t−,χt−,y

)}Q̂∗ (dt,dr, dn, dy) .
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Using the positivity of ψ we get a majorant by adding the new spine in the sum. We then take
the supremum over W in the indicator function and notice that for all n ≥ 0, all (x, ν) ∈W,

B̂∗
n (x, ν) = p̂∗n (x, ν)

∑
k≥0

B̂∗
k(x, ν) ≤ p̂

∗
nτ ,

where we used Assumption 7 for the last inequality. Putting these steps together and using the
lower bound for Gψ/ψ in Assumption 7 we get:

E
[
W̊T (ψ)

∣∣∣ F̂∗
T

]
≤ E

[
W̊0(ψ)

]
+

∫ T

0

∫
Ê∗

1{
r≤τ p̂∗nK̂

∗
n(y)

}

× exp

{
sup

(x,ν)∈W

(
log

(
k∑
i=1

ψ
(
yi, ν+ (x,y)

)))
− ct

}
Q̂∗ (dt,dr, dn, dy) . (5.24)

Finally we use (5.19) to get an upper bound of the term in the indicator

τ p̂
∗
nK̂

∗
n(y) ≤ τ

∑
i≥1

p̂
∗
i

(sup
i≥1

∫
X i

K̂
∗
i (y)Mk(dy)

)(
p̂
∗
n∑

i≥1 p̂
∗
i

) K̂
∗
n(y)∫

Xn K̂
∗
n(w)Mn(dw)

 ,

and introduce the sequences of independent random variables (Sk, k ≥ 1) of exponential law

of parameter τ
(∑

i≥1 p̂
∗
i

)(
supi≥1

∫
X i K̂

∗
i (y)Mi(dy)

)
. We also introduce the independent se-

quence of couples of random variables ((Nk,Y k), k ≥ 1) such that for all k, Nk follows the law

(p̂
∗
· /
∑

i≥1 p̂
∗
i ) and Y k|Nk follows the law K̂

∗
Nk

(y)/
∫
XN K̂

∗
Nk

(w)MNk
(dw). Thus we can write

(5.24) with a compound Poisson process

E
[
W̊T (ψ)

∣∣∣ F̂∗
T

]
≤ E

[
W̊0(ψ)

]
+
∑
k≥1

exp

 sup
(x,ν)∈W

log

 Nk∑
j=1

ψ
(
Y j
k , ν+ (x,Y k)

)− c k∑
j=1

Sj

 .

In order to show that the series is almost surely finite, we introduce the following sequence of
events: for every K > 0 and every k ≥ 0

BK
k :=

 sup
(x,ν)∈W

log

 Nk∑
j=1

ψ
(
Y j
k , ν+ (x,Y k)

) ≥ kK
 .

Using the law of the couple of random variables ((Nk,Y k), k ≥ 1) we get that∑
k≥1

P
(
BK
k

)
=
∑
k≥1

∑
n≥1

p̂
∗
n∑

i≥1 p̂
∗
i

×
∫
Xn

1{
sup

(x,ν)∈W
(log(

∑n
j=1 ψ(y

j ,ν+(x,y))))≥kK
} K̂

∗
n(y)Mn(dy)∫

Xn K̂
∗
n(w)Mn(dw)

.

Using that
∫
Xn K̂

∗
n(w)Mn(dw) ≥ 1,

∑
i≥1 p̂

∗
i ≥ 1 and

∑
k≥1 1A≥kK ≤ 0 ∨ (A/K), we get∑

k≥1

P
(
BK
k

)
≤

0 ∨

 1

K

∑
k≥1

p̂
∗
k

∫
XN

sup
(x,ν)∈W

log

 k∑
j=1

ψ
(
yj , ν+ (x,y)

) K̂
∗
k(y)Mn(dy)

 .
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We now use the Borel Cantelli lemma -see Theorem 2.3.1 in [21]- with (5.20) to ensure that

lim sup
n→∞

sup
(x,ν)∈W

(
log
(∑Nn

j=1 ψ
(
Y j
n , ν+ (x,Y n)

)))
n

= 0 a.s.

Notice that and (5.19) ensures that, asymptotically,
∑k

j=1 Sj grows linearly with k. Thus

∑
k≥1

exp

 sup
(x,ν)∈W

log

 Nk∑
j=1

ψ
(
Y j
k , ν+ (x,Y k)

)− c k∑
j=1

Sj

 <∞ a.s.

The upper bound for the branching rate in Assumption 7 ensures that T̂m → ∞ almost surely

as m tends to infinity, and Fatou’s lemma gives that supt≥0 Ez̄
[
W̊t(ψ)

∣∣F̂∗
∞

]
< ∞. Thus, the

quenched submartingale (W̊
t∧T̂m(ψ), t ≥ 0) converges almost surely to a finite random variable

and

lim sup
t→+∞

W̊t(ψ) < +∞ a.s.

We conclude the proof using (5.21) and Lemma 5.6. □

Appendix A. Proof of Proposition 2.4

The spine process ((Et, χ̄t) , t ≥ 0) defined by Dynamics 2.2 and 2.3 can be rigorously expressed
as the solution of a SDE driven by a multivariate point measure.

We recall that the offspring traits at birth y = (y1, · · · , yn) of an individual of trait x in a

population ν at time t is given by the law Kn(x, ν,y)Mn(dy). Let Ê = R+×U×R+×N×XN and

Ê∗ = R+×R+×N×XN. Let Q̂ (ds, du,dr, dn,dy) and Q̂∗ (ds, dr, dn, dy) be two independent Pois-

son point measures on Ê and Ê∗ with respective intensity ds(
∑

v∈U δv(du))dr
∑

i≥1 δi(dn)Mi(dy)

outside the spine and dsdr
∑

i≥1 δi(dn)Mi(dy) for the spine. We denote by
(
F̂t, t ≥ 0

)
the canon-

ical filtration associated with these Poisson point measures. The F̂t-adapted set of labels of the
living individuals in the population outside the spine is denoted G̊(t). Finally we recall the nota-
tion J(x, ν,y), introduced in (2.9), for the random index of the new spine after the branching of
a spine of trait x in a population ν at time t to an offspring y.

Let (e, z̄) ∈ W. Under Assumptions 1 and 3, the process ((Et, χ̄t) , t ≥ 0) is the unique F̂t-
adapted solution, for every function g ∈ C1 (U × U × X ,R) and t ≥ 0, of the following equation

⟨χ̄t, g (Et, ·)⟩ : = ⟨z̄, g(e, ·)⟩+
∫ t

0

∫
U×X

∂g

∂x
(Es, u, x) · µ (x, χs) χ̄s(du,dx)ds

+

∫
Ê

[
n∑
i=1

g
(
Es−, ui,y

)
− g

(
Es−, u,Xu

s−
)]

× 1{
u∈G̊

s−
}1{

r≤B̂n(Ys−,Xu

s−,χs−)K̂n(Ys−,Xu

s−,χs−,y)
}Q̂ (ds, du,dr, dn,dy)

+

∫
Ê∗

[
n∑
i=1

g
(
Es−J(Ys−, χs−,y), Es−J(Ys−, χs−,y),y

)
− g

(
Es−, Es−, Ys−

)]
× 1{

r≤B̂∗
k(Ys−,χs−)K̂∗

k(Ys−,χs−,y)
}Q̂∗ (ds, dr, dn,dy) . (A.1)

This assertion is shown following the same computations than for proof of Proposition 1.1 and
[46], using the positivity of the ψ function. Assumption 3 leads to the same bound as Assumption
1.3 in the case of a spine process.
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Now we establish the expression of the generator of the marginal spine process. We recall the
notation ν+(x,y) := ν +

∑n
i=1 δyi − δx, introduced in (2.2). Taking expectations of (A.1) for the

marginal process on W, we derive the non-homogeneous infinitesimal operator of ((Yt, χt), t ≥ 0),

following steps in [25]. It is given by the operator L̂ψ, defined for every F ∈ D, introduced in
(2.1), and (xe, ν) ∈W, by

L̂ψF (xe, ν) := GF (xe, ν)

+
∑
n≥0

{
B̂∗
n(xe, ν)

∫
Xn

[∑n
i=1 Fψ

(
yi, ν+(xe,y)

)∑n
j=1 ψ (yj , ν+(xe,y))

− F (xe, ν)

]
K̂∗
n (xe, ν,y)Mn(dy)

+

∫
X
B̂n(x, ν)

∫
Xn

[
F
(
xe, ν

+(x,y)
)
− F (xe, ν)

]
K̂n (x, ν,y)Mn(dy)ν(dx)

− B̂n(xe, ν)
∫
Xn

[
F
(
xe, ν

+(xe,y)
)
− F (xe, ν)

]
K̂n (xe, ν,y)Mn(dy)

}
.

The first line gives the dynamical evolution between branching events. The second is related to
spinal branching events and the choice of a new spinal individual among the offspring population.
The last two lines describe the branching events outside the spine, for all individuals but the
spinal one. Using that G [ψF ] = FGψ + ψGF , we get

G [ψF ]
ψ

(·)− Gψ
ψ
F (·) = GF (·) +

∑
n≥0

B (·)
ψ (·)

T̂n (·) ,

where the jump part T̂n is defined for all (xe, ν) ∈W by

T̂n(ρe) := pn(ρe)

∫
Xn

n∑
i=1

ψF
(
yi, ν

+(xe,y)
)
− ψF (xe, ν+(xe,y))Kn (ρe,y)Mn(dy)

+

∫
X
pn(x, ν)

∫
Xn

[ψF
(
xe, ν

+(x,y)
)
− ψF (ρe)]Kn (x, ν,y)Mn(dy)ν(dx)

− pn(ρe)
∫
Xn

[
n∑
i=1

ψ
(
yi, ν

+(xe,y)
)
− ψ(xe, ν+(xe,y))

]
F (ρe)Kn (ρe,y)Mn(dy)

−
∫
X
pn(x, ν)

∫
Xn

[ψ
(
xe, ν

+(x,y)
)
− ψ(ρe)]F (ρe)Kn (x, ν,y)Mn(dy)ν(dx), (A.2)

where we used the notation ρe := (xe, ν). Rearranging the terms in (A.2) we get

T̂n(ρe) = pn(ρe)

∫
Xn

n∑
i=1

ψ
(
yi, ν

+(xe,y)
) [
F
(
yi, ν

+(xe,y)
)
− F (ρe)

]
Kn (ρe,y)Mn(dy)

+

∫
X
pn(x, ν)

×
∫
Xn

[F
(
xe, ν

+(x,y)
)
− F (ρe)]ψ

(
xe, ν

+(x,y)
)
Kn (x, ν,y)Mn(dy)ν(dx)

− pn(ρe)
∫
Xn

[F
(
xe, ν

+(xe,y)
)
− F (ρe)]ψ

(
xe, ν

+(xe,y)
)
Kn (ρe,y)Mn(dy).

We conclude the proof using the branching rates introduced in Dynamics 2.2 and 2.3.

Appendix B. Proof of Lemmas 5.6 and 5.7

Proof of Lemma 5.6. We recall the notations ((T̂ ∗
k , N̂

∗
k , (X̂

i
k, 1 ≤ i ≤ N̂∗

k )), k ≥ 0) for the sequence
of jumps times, number of children and type corresponding to branching events of the spine. The
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trait of the new spine is denoted Y
T̂ ∗
k
. We also recall the sequence of filtrations (Fk, k ≥ 1),

introduced in (5.17). Using these notations, with the lower bound for Gψ/ψ in Assumption 7 and
the positivity of the function ψ, we have for all k ≥ 0

log
(
ψ
(
Y
T̂ ∗
k
, χ

T̂ ∗
k

))
−
∫ T̂ ∗

k

0
Λ (Ys, χs) ds ≤ log

 N̂∗
k∑

i=1

ψ
(
X̂i
k, χT̂ ∗

k

)− cT̂ ∗
k (B.1)

as YTk ∈
{
Xi
k, 1 ≤ i ≤ Nk

}
. We introduce for all K > 0 and all k ≥ 1, the event

BK
k :=

log

 N̂∗
k∑

i=1

ψ
(
X̂i
k, χT̂ ∗

k

) ≥ kK
 ∈ Fk.

First notice that∑
k≥1

P
(
BK
k

∣∣∣Fk−1

)
=
∑
k≥1

∑
n≥1

p̂∗n

(
Y
T̂ ∗
k −, χT̂ ∗

k −
)

×
∫
Xn

1{
log

(∑n
i=1 ψ

(
yi,χ

T̂∗
k

))
≥kK

}K̂∗
n

(
Y
T̂ ∗
k −, χT̂ ∗

k −,y
)
Mn (dy) .

Taking the supremum over W, we get that∑
k≥1

P
(
BK
k

∣∣∣Fk−1

)
≤

∑
n≥1

p̂
∗
n

∫
Xn

∑
k≥1

1{
sup

(x,ν)∈W
(log(

∑n
i=1 ψ(y

i,ν+(x,y))))≥kK
}K̂∗

n (y)Mn (dy) .

We recall the notation ν+(x,y) := ν +
∑n

i=1 δyi − δx, introduced in (2.2). Finally, using that for
all A ∈ R,

∑
k≥1 1A≥kK ≤ 0 ∨ (A/K) we get∑

k≥1

P
(
BK
k

∣∣∣Fk−1

)
≤

0 ∨

 1

K

∑
n≥1

p̂
∗
n

∫
Xn

sup
(x,ν)∈W

[
log

(
n∑
i=1

ψ(yi, ν+(x,y))

)]
K̂

∗
n (y)Mn (dy)

 .

Thus (5.20) ensures that ∑
k≥1

P
(
BK
k

∣∣∣Fk−1

)
< +∞,

and the second Borel-Cantelli Lemma- see Theorem 4.3.4 in [21]- gives that for all K > 0,
eventually

log
(
ψ
(
Y
T̂ ∗
k
, χ

T̂ ∗
k

))
≤ kK a.s.

Furthermore, the bounds on the jump rate in Assumption 7 ensure that T̂ ∗
k grows linearly almost

surely to infinity as k tends to infinity. Thus, using (B.1) we get that almost surely

lim sup
k→∞

[
log
(
ψ
(
Y
T̂ ∗
k
, χ

T̂ ∗
k

))
−
∫ T̂ ∗

k

0
Λ (Ys, χs) ds

]
= −∞.

The fact that lim
k→∞

T̂ ∗
k = +∞ almost surely concludes the proof. □
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Proof of Lemma 5.7. First, notice that, using a log-sum inequality along with the positivity of
the function ψ we get, for all n ≥ 2, (x, ν) ∈W, y ∈ X n and jn ∈ {1, · · · , n}

log

(
n∑
i=1

ψ(yi, ν+(x,y))

)
= log

(
n∑
i=1

1i ̸=jnψ(y
i, ν+(x,y)) + ψ(yjn , ν+(x,y))

)

≤ log(2) +
ψ(yjn , ν+(x,y))∑n
i=1 ψ(y

i, ν+(x,y))
log
(
ψ(yjn , ν+(x,y))

)
+

∑n
i=1 1i ̸=jnψ(y

i, ν+(x,y))∑
i ψ(y

i, ν+(x,y))
log

(
n∑
i=1

1i ̸=jnψ(y
i, ν+(x,y))

)
.

Thus, taking the infimum in the previous inequality and using (3.3), we have for any arbitrary
state (x0, ν0) ∈W∑

n≥2

p̂∗n(ρ0)

∫
Xn

ψ(yjn , ν+0 (x0,y))∑n
i=1 ψ(y

i, ν+0 (x0,y))
log
(
ψ(yjn , ν+0 (x0,y))

)
K̂∗
n(ρ0,y)Mn(dy)

+
∑
n≥2

p̂∗
n

∫
Xn

inf
(x,ν)∈W

log
∑
i ̸=jn

ψ(yi, ν+(x,y))

 K̂∗
n(y)Mn(dy) = +∞ (B.2)

where we used the notation ρ0 := x0, ν0. We conclude the proof using Assumption 6 to ensure
that the first term in (B.2) is finite. □

Appendix C. Algorithmic construction

We propose an algorithm that generates trajectories of the ψ-spine process introduced in (4.3).
We denote by F−1

div , F
−1
loss and F

∗−1
loss the generalized inverse of the cumulative distribution functions

of the random variables Λ̂, Θ̂ and Θ, defined in (4.4) and (4.5). Using the deterministic evolution
of the traits and knowing the branching events, it is easy to recover the traits at all time of the
individuals.

We first generate a realization of an homogeneous Poisson point process of intensity 1 on
the interval [t1, t2], starting from n roots following classical algorithms [49]. It returns a list
Tdiv = [t1, T1, T2, · · · ] of increasing times, a list Idiv = [i1, i2, · · · ] containing the numbering of
the individuals that branched at these times, a list Ldiv = [λ1, λ2, · · · ] of fractions of mass at
birth, and the numbering E of the spinal individual. We call numbering a labeling method of
the individuals in the population that does not encodes the whole lineage of the individual. The
numbering choice is arbitrary and we chose to add every new individuals at the end of the hidden
list, thus at each division event a parent is chosen uniformly in the population and its child is
added at the end of the list. This computation is handled by the function Tree explained in
Figure 5, where i0 is the initial numbering of the spinal individual.

From the list Idiv, it is possible to retrieve the lineage of all individuals using any chosen labeling
method. In our case we used the Ulam-Harris-Neveu notations and the algorithm generating the
list U of labels from the list I previously obtained and the initial size of the population n is
detailled Figure 6. The last line of this algorithm lists the labels of individuals in increasing
order, grouping siblings together. The label of the spinal individual is thus U [E].

To compute a trajectory of the spinal process on the interval [0, T ], we need to establish the
time of jumps and their outcomes. Using the deterministic evolution of the traits and knowing
the branching events, it is easy to recover the traits at all time for the individuals. Furthermore,
depending on the statistics that one want to evaluate on the system, it might not be necessary
to compute the traits of all individuals. For that reason we propose an algorithmic construction
of a trajectory of the spinal process, returning the list of jumps times, events and labels of the
individuals living at time T . This algorithm, presented in Figure 7 also distinguishes the spinal
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function (Tdiv, Idiv, E, Ldiv) = Tree(t1, t2, n, i0, F
−1
div )

(Tdiv, N) = ([t1], n)
% Step 1; generating the division times
while Tdiv[end] < t2 do

Generate u ∼ uniform(0, 1)
append Tdiv[end]− ln(u)/N to Tdiv ▷ Branching time
N ← N + 1 ▷ New population size

end while
if Tdiv[end] > t2 then pop Tdiv
% Step 2; generating the fractions at birth and choosing the spinal individual
(Idiv, E) = ([0, · · · , 0], i0) ▷ Idiv of size length(Tdiv)
for i ∈ {1, · · · , length(Tdiv)− 1} do

Generate I ∼ uniform({1, · · · , n+ i− 1}) ▷ Branching individual
Idiv[i]← I
Generate v, q ∼ uniform(0, 1)
append F−1

div (u) to Ldiv ▷ Fraction λ at birth

if E = i and p > F−1
div (u) then E ← n+ i ▷ New spinal individual position

end for
end function

Figure 5. Simulation algorithm of the jumps times until time T .

function U = Labels(Idiv, n)
Ndiv = length(Idiv)
U = [1, · · · , n, 0, · · · , 0] ▷ U is of size n+Ndiv

for i ∈ {1, · · · , Ndiv} do
(U [Idiv[i]], U [n+ i]])← (U [Idiv[i]]1, U [Idiv[i]]2) ▷ U [Idiv[i]] ∈ U

end for
U ← QuickSort(U) ▷ sorting algorithm in O((Ndiv + n) log(Ndiv + n))

end function

Figure 6. Labeling function.

individual in the population by returning the label of the spinal individual in the living ones
at time T . To simplify we will denote PPP[t1,t2](c(·)) the list of times given by a Poisson point
process of intensity c(·) on the interval [t1, t2], computed using Lewis’ thinning algorithm [40].

The output tuple (Tdiv, Idiv, E, Ldiv, Tloss, T
∗
loss, Iloss, Lloss, L

∗
loss) is the minimal information needed

to construct the spinal process introduced in Section 4. The list U of labels of the individuals can
be computed with the function Labels(Idiv, n). Notice that a lot of operations can be parallelized
in this algorithm, unlike in the classical Lewis’ algorithm. Moreover, depending on the statistic
that one wants to compute on this process, the algorithm can be further simplified. For example,
if one takes interest in the total biomass of the population, the indexes of the individuals that
branched are not necessary.

Proposition C.1. Let T > 0 and Tdiv =
(
T idiv, 0 ≤ i ≤ Ndiv + 1

)
be a sequence of increasing

branching times with T 0
div := 0 and TNdiv+1

div := T . The size N̂ of the spinal population starting
from N0 individuals is such that∫ T

0
N̂sds = (N0 +Ndiv)T −

Ndiv∑
i=0

T idiv,
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Input: model parameters: d, F−1
div , F

−1
loss, F

∗−1
loss , T , initial condition: z = [x1, · · · , xn].

Output: (Tdiv, Idiv, E, Ldiv, Tloss, T
∗
loss, Iloss, Lloss, L

∗
loss)

% Initializing the spine
Generate u ∼uniform(0, 1)
i0 = 1
while

∑i0
i=1 x

i/(
∑n

i=1 x
i) < u do

i0 ← i0 + 1
end while
% Generating binary spinal tree on division events
(Tdiv, Idiv, E, Ldiv) = Tree(0, T, n, i0, F

−1
div )

% Generating loss events for the spine and individuals outside the spine
(Tloss, T

∗
loss, Iloss) = ([·], [·], [·])

for i ∈ {1, · · · , length(Tdiv)} do
% For the individuals outside the spine
Generate P ∼ PPP[

Tdiv[i−1],Tdiv[i]
](Kloss(n+ i− 1)2d(·)) ▷ Times of loss events

append P to Tloss

Generate Iu ∼
(
uniform ({1, · · · , n+ i− 1})length(Tloss[i])

)
▷ Distributing loss events

append Iu to Iloss
% For the spine
Generate P ∗ ∼ PPP[

Tdiv[i−1],Tdiv[i]
]((n+ i− 1)d(·)) ▷ Times of loss events

append P ∗ to T ∗
loss

end for
Generate Lu ∼

(
uniform(0, 1)length(Tloss)

)
▷ Generating fractions lost

Lloss = F−1
loss(Lu)

Generate L∗
u ∼

(
uniform(0, 1)length(T

∗
loss)
)

▷ Generating fractions lost

L∗
loss = F ∗−1

loss (L
∗
u)

Figure 7. Simulation algorithm of the jumps times until time T

and ∫ T

0
N̂2
s ds = (N0 +Ndiv)

2 T − (2N0 − 1)

Ndiv∑
i=1

T idiv − 2

Ndiv∑
i=1

iT idiv.

Proof. The first integral term is directly computed using that

Ndiv∑
i=0

i(T i+1
div − T

i
div) = NdivT −

Ndiv∑
i=0

T idiv. (C.1)

The second integral term is computed by noticing that∫ T

0
N̂2
s ds = N2

0T + 2N0

Ndiv∑
i=0

i
(
T i+1
div − T

i
div

)
+

Ndiv∑
i=0

i2
(
T i+1
div − T

i
div

)
,

and that
Ndiv∑
i=0

i2(T i+1
div − T

i
div) = N2

divT −
Ndiv∑
i=1

(2i− 1)T idiv. (C.2)

Using (C.1) and (C.2) and rearranging the terms concludes the proof. □

Proposition C.2. For all 0 ≤ i ≤ Ndiv, let
(
T i,jloss, 1 ≤ j ≤ N

i
loss

)
be the sequence of loss events

times in [T idiv, T
i+1
div ). If there is no loss event in this period of time, N i

loss = 0 and we use the
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formalism T
i,N i

loss
loss = T i,1loss = T i−1

div . The fraction of lost masses are denoted by θi,j and the label of
the individual that suffered the loss is denoted (i, j). Then

∫ T

0
Bsds =

Ndiv∑
i=0

[
BT i

div

µ

(
eµ(T

i+1
div −T i

div) − 1
)

−
N i

loss∑
k=1

1− θi,k
µ

X
(i,k)

T i
div

(
eµ(T

i+1
div −T i

div) − eµ
(
T i,k
loss−T

i
div

)) .
Proof. We recall that TNdiv+1

div = T , and then

∫ T

0
Bsds =

Ndiv∑
i=0

∫ T i,1
loss

T i
div

Bsds+

N i
loss∑
j=2

∫ T i,j
loss

T i,j−1
loss

Bsds+

∫ T i+1
div

T
i,Ni

loss
loss

Bsds

 .
Furthermore, for all 0 ≤ i ≤ Ndiv, all 1 ≤ j ≤ N i

loss − 1 and all time t ∈
(
T i,jloss, T

i,j+1
loss

)
, the total

biomass verifies

Bt =

(
BT i

div
−

j∑
k=1

(1− θi,k)X
(i,k)

T i
div

)
exp

(
µ(t− T idiv)

)
.

Thus we integrate on those intervals to get

∫ T

0
Bsds =

Ndiv∑
i=0

[
BT i

div

µ
e−µT

i
div

(
eµT

i,1
loss − e−µT i

div

)

+

N i
loss∑
j=2

(
BT i

div

µ
−

j−1∑
k=1

1− θi,k
µ

X
(i,k)

T i
div

)
e−µT

i
div

(
eµT

i,j
loss − eµT

i,j−1
loss

)

+

BT i
div

µ
−
N i

loss∑
k=1

1− θi,k
µ

X
(i,k)

T i
div

 e−µT
i
div

(
eµT

i+1
div − eµT

i,Ni
loss

loss

) .
Notice that for all 0 ≤ i ≤ Ndiv the sum over j is telescoping for the term in BT i

div
and thus

∫ T

0
Bsds =

Ndiv∑
i=0

[
BT i

div

µ
e−µT

i
div

(
eµT

i+1
div − eµT i

div

)

−
N i

loss∑
j=2

j−1∑
k=1

1− θi,k
µ

X
(i,k)

T i
div

e−µT
i
div

(
eµT

i,j
loss − eµT

i,j−1
loss

)

−
N i

loss∑
k=1

1− θi,k
µ

X
(i,k)

T i
div

e−µT
i
div

(
eµT

i+1
div − e−µT

i,Ni
loss

loss

) .
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Inverting the sums over j and k in the second line and using the fact that the sum over j becomes
telescoping we get∫ T

0
Bsds =

Ndiv∑
i=0

[
BT i

div

µ
e−µT

i
div

(
eµT

i+1
div − eµT i

div

)

−
N i

loss−1∑
k=1

1− θi,k
µ

X
(i,k)

T i
div

e−µT
i
div

(
eµT

i,Ni
loss

loss − eµT
i,k
loss

)

−
N i

loss∑
k=1

1− θi,k
µ

X
(i,k)

T i
div

e−µT
i
div

(
eµT

i+1
div − eµT

i,Ni
loss

loss

) .
We conclude the proof using the distributive property of the sum and rearranging the terms. □

Notice that in order to compute BT i
div

, we need to know the past loss events of each individuals.

Thus two approaches are possible: forward or backward. The backward method avoid the storage
of the traits of each individuals but is computationally heavy as many calculations are performed
multiple times. In fact at every branching event, the past events of the common ancestor are
integrated twice. The forward method, on the other hand, avoid these multiplicities but need to
store at every branching event the traits of every individual. According to our available RAM,
we chose the forward method. This method is also more convenient as the computation of ΠT is
then straightforward.
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Communications in Probability, 23:1 – 12, 2018.

[8] John D. Biggins and Andreas E. Kyprianou. Measure change in multitype branching. Advances in Applied
Probability, 36(2):544–581, 2004.

[9] John D Biggins. Martingale convergence in the branching random walk. Journal of Applied Probability,
14(1):25–37, 1977.

[10] Kenneth J. Brown and Song-Sun Lin. On the existence of positive eigenfunctions for an eigenvalue problem
with indefinite weight function. Journal of Mathematical Analysis and Applications, 75(1):112–120, 1980.
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diffusions. Annales de l’Institut Henri Poincaré, Probabilités et Statistiques, 46(1):279 – 298, 2010.
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