
HAL Id: hal-04179190
https://hal.science/hal-04179190v1

Preprint submitted on 9 Aug 2023 (v1), last revised 6 Nov 2024 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Public Domain

Spinal constructions for continuous type-space
branching processes with interactions

Charles Medous

To cite this version:
Charles Medous. Spinal constructions for continuous type-space branching processes with interactions.
2023. �hal-04179190v1�

https://hal.science/hal-04179190v1
https://hal.archives-ouvertes.fr


SPINAL CONSTRUCTIONS FOR CONTINUOUS TYPE-SPACE

BRANCHING PROCESSES WITH INTERACTIONS

CHARLES MEDOUS

Abstract. We consider branching processes describing structured, interacting populations
in continuous time. Dynamics of each individual’s characteristics and branching properties
can be influenced by the entire population. We propose a spinal construction, and estab-
lish a Girsanov-type result. By combining this result with the spinal decomposition, we
derive a modified continuous-time version of the Kesten-Stigum theorem that incorporates
interactions. Additionally, we propose an alternative simulation approach for stochastic
size-dependent populations using appropriate spine constructions.

Introduction

Spine techniques and spinal trees are classical tools in the general context of branching
processes since the work of Kallenberg [35], Chauvin and Rouault [11, 12], and later Kurtz,
Lyons, Pemantle and Peres [44, 43, 37]. Spinal trees are constructed based on an original
branching process by distinguishing a lineage, called the spine. Its only living representative-
the spinal individual- follows a biased reproduction law compared to the other individuals in
the process, ensuring that the spine does not die out. In the specific yet widely studied case
of size-biased trees, the reproductive law (p̂k, k ≥ 0) of the spinal individual is defined by

p̂k =
kpk
m

, for k ≥ 0,

where m is the mean value of the law of reproduction (pk, k ≥ 0) in the branching process.
This size-biased reproductive law of the spinal individual is closely related to the biased
ancestral reproduction [12, 26]. In fact the spine was found to characterize the process of the
trait of a uniformly sampled individual, in a large population approximation see e.g. [45].
The sampling of k ≥ 2 distinct individuals from those living in a population at a time t is
associated with a k-spines construction. For further literature on multiple-particles sampling
we refer the reader to [30, 29, 34, 13] and the references herein.

Many-to-One formulas [31, 26] are prominent among classical spine results. Such formulas
derive from a Girsanov-type result on the change of probability measure associated with the
spine, which can be regarded as a Doob’s transform, as described in references such as [14, 2].
These formulas give expectations of sums over particles in the branching process in terms
of a Feynman-Kac path integral expectation related to the spinal individual. Consequently,
the spinal individual is often referred to as a ”typical individual” within the population.
The connection to Feynman-Kac path integrals implies a shared foundation between these
concepts. For a comprehensive overview on this subject, we refer to [18].

Another interesting property of spinal constructions is the ”spinal decomposition” [11, 44].
It establishes that the spine process is equivalent to the initial branching process, with the
removal of one individual and the addition of an immigration source. The introduction
of new individuals into the population follows the biased reproductive law specific to the
spine. In recent decades, the spinal decomposition has emerged as a highly valuable tool
for investigating branching processes. One of its notable contributions is providing a new
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proof of the L logL criteria, which were originally proved by Kesten and Stigum for Galton-
Watson (GW) processes [36] and by Biggins for continuous-time branching processes [7]
using analytical methods. These results give specific conditions on the reproductive law,
ensuring the non-degeneracy of the martingale involved in the spinal change of measure
at infinity. By combining the spinal decomposition with a previously known result from
measure theory, Lyons, Pemantle, and Peres [44] provided a probabilistic ”conceptual” proof
of Kesten and Stigum’s theorem for single-type GW processes. This method proved to be
easily generalizable to continuous-time structured branching processes [2, 26, 8] as well as
branching Brownian motions [38, 22, 27]. More recently Bertoin and Mallein extended this
proof for general branching Levy processes [6] . For equivalent results on superprocesses we
refer to [40, 41, 42, 21, 50]. Finally, we mention Hardy and Harris [28] who adapted the
spinal decomposition to prove the Lp-convergence of some key martingales, which was later
used to establish strong laws of large numbers [23].

The fundamental assumption in the aforementioned works is the branching property, which
assumes that the behavior of all particles in the process during their life is independent of one
another. However, in various systems of population dynamics such as genetics, epidemiology,
chemistry, and even queueing systems, interactions between individuals do occur and this fun-
damental hypothesis falls apart. Recently, Bansaye [3] established a spine construction and
Many-to-One formulas for interacting branching populations, where the branching rates and
reproductive laws depend on the traits of all individuals in the population. These traits be-
long to a finite set and are fixed during the life of the individuals. Using the spinal decomposi-
tion, Bansaye has found an L logL criterion for a single-type, density-dependent population.
We also mention a recent work on spine processes for density-dependent individual-based
models in a large population approximation [33].

In this article we consider a wide class of continuous-time structured branching processes
with general interactions. These processes are used to model structured populations, where
the behavior of each individual is influenced by the overall population state. Every individual
in the population is characterized by its trait, taking values in a compact subset of Rd. The
lifespan of each individual is exponentially distributed with a time-inhomogeneous rate that
depends on the traits of all individuals. Upon an individual’s death, a random number of
children are generated, each inheriting random traits at birth, that are influenced by the
traits of all individuals in the population. Between these branching events, the evolution of
the traits of all individuals in the population is deterministic and also influenced by the entire
population’s state. Notably, the branching parameters are determined by the traits of all
individuals, thereby the branching property no longer holds in this framework. We introduce
a comprehensive spinal construction for those processes, using a change of measure associated
with a positive weight function ψϕ that depends on the trait of the spinal individual and
of those of every individual. For a fixed function ψϕ both the spinal individual and those
outside the spine are subject to a bias. We derive a Girsanov-type formula associated with
this change of measure, taking the form of a path-integral formulation that involves a non-
linear operator. A classical approach to establishing limiting results, such as the central
limit theorem or large deviations, involves determining the eigenfunctions of such operators
[8, 22, 15]. However, due to the presence of interactions, this operator is contingent on
the entire population, necessitating the eigenfunctions to be dependent on the traits of all
individuals. Thus, the weight function ψϕ must rely on both the trait of the spinal individual
and the traits of all individuals in order to account for this dependency. Under certain non-
explosion assumptions regarding the branching parameters and the set of weight functions,
we obtain a modified Many-to-One formula. Unlike the classical Many-to-One formula- that
describes the behavior of the branching process using only the behavior of the spine- our
formula relies on the whole spinal population.
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Subsequently, we use this result in conjunction with the spinal decomposition to establish
L logL criteria. More precisely, we exhibit both a sufficient condition and a necessary condi-
tion for the non-degeneracy at infinity of the additive martingale associated with the spinal
change of measure. It is important to note that this result is only applicable when ψϕ ≡ 1,
and therefore, we lack knowledge regarding the limit behavior of this derivative at infinity
for more intricate weight functions.

Finally we study a particular case of structured Yule process with mass loss events hap-
pening at size-dependent rates. Yule processes are pure birth processes that are widely
used in population genetics to model and reconstruct phylogenetic trees, see e.g. Aldous’
review [1]. We use the spinal construction with a multiplicative weight function to retrieve
a conditional branching property in the associated spine process, and propose an efficient
algorithmic construction based on this property.

Notation
In the sequel N∗ = {1, 2, · · · } will denote the set of positive integers, R+ := [0,+∞) the

real line, R+ := R+ ∪ {+∞} and R∗
+ := (0,+∞). We will denote respectively by B (A,B)

(resp. C1 (A,B)) the set of measurable (resp. continuously differentiable) B-valued functions
on a set A. For every couple (f, g) of real-valued measurable functions on a set A, we denote
for all x, fg(x) the product f(x)g(x). We denote byMF (A) the set of finite non-negative
measures on a set A.

The set of trait X is a compact subset of Rd equipped with the ℓ1-norm on Rd, that is
denoted |x| for all x ∈ X . We denote · the canonical scalar product on Rd.

We use the Ulam-Harris-Neveu notations [47] to label these individuals. We introduce the
set of labels:

U := {∅} ∪
⋃
k≥0

(N∗)k+1 .

We consider branching processes starting from multiple initial individuals, thus the root
∅ will be treated as a phantom individual and its direct descendants will be the ancestor
generation. For two elements u, v of U\ {∅}, there exist two positive integers n, p such
that u = (u1, . . . , un) and v = (vn, . . . , vp) and we write uv := (u1, . . . , un, v1, . . . , vp) the
concatenation of u and v. We identify both ∅u and u∅ with u. An individual v ∈ U is a
descendant of u if there exists w ∈ U such that v = uw. In this case we denote u ⪯ v and
we denote u ≺ v if w ̸= ∅.

Let us introduce V the subset of MF (U × X ) composed of all finite point measures on
U × X , that is

V :=

{
N∑
i=1

δ(ui,xi), N ∈ N,
(
ui, 1 ≤ i ≤ N

)
∈ UN ,

(
xi, 1 ≤ i ≤ N

)
∈ XN

}
.

We also define the set of marginal population measures, that is

V :=

{
N∑
i=1

δxi , N ∈ N,
(
xi, 1 ≤ i ≤ N

)
∈ XN

}
.

For any measure ν̄ =
∑N

i=1 δ(ui,xi) in V, we will write ν :=
∑N

i=1 δxi its projection on V. By
convention, if the number of points in the measure is N = 0, ν̄ and ν are the trivial zero
measures on U ×X and X . We introduce for every ν̄ ∈ V, every g ∈ B (U × X ,R) and every
f ∈ B (X ,R)

⟨ν̄, g⟩ :=
∫
U×X

g(u, x)ν̄(du,dx), and ⟨ν, f⟩ :=
∫
X
f(x)ν(dx).
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Finally, we denote by D (A,M) the Skorohod space of càdlàg functions from a subset A of
R+ to a setM. For every process (Xt, t ∈ A) ∈ D (A,M) and x ∈M, we will denote

Ex [f (Xt)] := E [f (Xt) |X0 = x] and Px (f (Xt)) := P (f (Xt) |X0 = x) .

1. Definition of the population

In this section we describe informally the population process. Its rigorous definition as a
strong solution of a stochastic differential equation (SDE) is presented in Section 5.1.

The population is described at any time t ∈ R+ by the finite point measure ν̄t ∈ V given
by the sum of the Dirac masses at the pair composed of the label and the trait of every
individual living in the population at this time. We write

G (t) :=

{
u ∈ U :

∫
U×X

1{v=u}ν̄t (dv,dx) > 0

}
the set of labels of living individuals at time t. For every individual labeled by u ∈ G (t)
we denote Xu

t its trait, and with a slight abuse of notation, Xu
s will denote the trait of its

unique ancestor living at time s ∈ [0, t]. The stochastic point process (ν̄t, t ≥ 0) ∈ D
(
R+,V

)
describing the evolution of the population and its associated marginal process are given, for
every t ≥ 0, by

ν̄t =
∑
u∈G(t)

δ(u,Xu
t )

and νt =
∑
u∈G(t)

δXu
t
.

Let us remark that at all time t, ν̄t encodes the trait and lineage of every living individual,
and the projection νt on V keeps the information on the trait of each individual only.

The initial population is given by a measure z̄ =
∑N

i=1 δ(ui,xi). During their lives, the traits
of the individuals in the population evolve according to population-dependent dynamics. In
a population ν̄t at time t, for all u ∈ G (t)

dXu
t

dt
= µ (Xu

t , νt, t) ,

where µ is a measurable X -valued function on X × V× R+.
An individual with trait x in a population νt at time t dies at an instantaneous rate

B (x, νt, t), where B is a continuous function from X × V × R+ to R+. It produces an
offspring of n individuals, where n is randomly chosen with distribution (pk (x, νt, t) , k ∈ N)
of first moment m (x, νt, t). Thus branching events that lead to n children happen at rate
Bn(·) := B(·)pn(·). If n ≥ 1, the traits at birth of these n children are given by the vector
y =

(
y1, · · · , yn

)
randomly chosen according to Kn (x, νt, t, ·), a probability measure on X n.

The labeling choice for these children is arbitrary yet necessary to uniquely define a stochastic
point process in D

(
R+,V

)
. Here, for a parent individual of label u, for all 1 ≤ i ≤ n, the

i-th child is labeled ui and its trait is yi, the i-th coordinate of the vector y.
We denote TExp ∈ R+ the explosion time of the process (ν̄t, t ≥ 0), defined as the limit

of its jumps times (Tk, k ≥ 0). In order to ensure the non-explosion in finite time of such a
process we introduce the following set of hypothese.

Assumption A. We consider the following assumptions:

(1) There exists a positive continuous function µ0 on R+, such that for all (x, ν, t) ∈
X × V× R+

|µ (x, ν, t) | ≤ µ0(t)
(
1 + |x|+

∣∣∣∣⟨ν, Id⟩⟨ν, 1⟩

∣∣∣∣) ,
where Id is the identity function on X .

(2) For all (x, ν, t) ∈ X × V× R+,

B1 (x, ν, t) < +∞.
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(3) There exists a positive continuous function b0 on R+, such that for all (x, ν, t) ∈
X × V× R+ ∑

n̸=1

nBn (x, ν, t) ≤ b0(t) (1 + |x|) .

(4) For all (x, ν, t, n) ∈ X × V× R+ × N∗,

Kn (x, ν, t,An(x)) = 0, where An(x) :=
{
(yi, 1 ≤ i ≤ n) ∈ X n :

n∑
i=1

|yi| > |x|
}
.

The growth rate of the traits of individuals is bounded in the first hypothesis by an
exponential growth rate controlled by the trait of each individual and the mean trait in
the population. The second point ensures that events that do not change the number of
individuals do not accumulate in finite populations. The third hypothesis uniformly controls
the minimum lifetime of an individual. This hypothesis, together with the first one, ensures
that the lifespan of each individual decreases exponentially at most with its trait. Note
that this assumption does not constrain the function B1(·). The last hypothesis restricts
the framework under consideration to fragmentation processes that do not create matter or
energy. This set of hypothese is sufficiently large to cover a large portion of models in physics
and ecology, exponential growth being a classical assumption in many stochastic models in
ecology and evolution, see e.g. [49, 16].

Proposition 1.1. Under Assumption A, the sequence (Tk, k ≥ 0) of jumps times of the
process (ν̄t, t ≥ 0) tends to infinity almost surely.

We can thus conclude, following the proof of Theorem 2.1 in [45], that under this set of
hypothese, the process (ν̄t, t ≥ 0) is uniquely defined on R+. However, the spinal construction
introduced in Section 2 can be established with less restrictive hypothese. In this case,
accumulation of jumps times may happen in finite time and the spinal construction holds
until this explosion time.

2. Results

In this section, we consider the law of a randomly sampled individual in the general
branching population described in Section 1. Our main result gives the appropriate change
of measure linking this distribution at time t to the trajectory of an auxiliary process until
this time. We then explicit this auxiliary process as a spinal construction.

The spinal construction generates a V-valued process along with the label of a distin-
guished individual that can change with time. For convenience, we will denote W and W
the sets such that

W :=
{
(e, ν̄) ∈ U × V : ⟨ν̄,1{e}×X ⟩ ≥ 1

}
, and W :=

{
(x, ν) ∈ X × V : ⟨ν,1{x}⟩ ≥ 1

}
.

Thus, the spine process is a W-valued branching process and its marginal is a W-valued
branching process. We propose here a general spinal construction, where branching rates are
biased with a weight function ψϕ, that is an element of the set D, defined by

D :=
{
Ff ∈ B (W× R+,R+) s.t. (f, F ) ∈ C1 (X × R+,R)× C1

(
X × R× R+,R∗

+

)}
, (2.1)

where for every (x, ν, t) ∈W× R+, Ff (x, ν, t) := F (x, ⟨ν, f(·, t), t).
In the following, for every (u, ν̄) ∈ W we denote xu the trait of the individual of label u

in the population ν̄, and for every n ≥ 0 and every y = (yi, 1 ≤ i ≤ n) ∈ X n we write

ν̄+(u,y) := ν̄ − δ(u,xu) +
n∑
i=1

δ(ui,yi), and ν+(x,y) := ν − δx +
n∑
i=1

δyi . (2.2)
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We introduce the key operator G involved in the spinal construction. It is defined for all
Ff ∈ D and (xe, ν, t) ∈W× R+ by

GFf (xe, ν, t) := GFf (xe, ν, t)

+
∑
n≥0

{
Bn(xe, ν, t)

∫
Xn

[ n∑
i=1

Ff
(
yi, ν+(xe,y), t

)
− Ff (xe, ν+(xe,y), t)

]
Kn (xe, ν, t, dy)

+

∫
X
Bn(x, ν, t)

∫
Xn

[
Ff (xe, ν+(x,y), t)− Ff (xe, ν, t)

]
Kn (x, ν, t, dy) ν(dx)

}
, (2.3)

where the operator G is the generator of the deterministic evolution of the traits between
branching events, given for every Ff ∈ D, and (xe, ν, t) ∈W× R+ by

GFf (xe, ν, t) := D1F (xe, ⟨ν, f(·, t)⟩, t) · µ (xe, ν, t) +D3F (xe, ⟨ν, f(·, t)⟩, t)

+D2F (xe, ⟨ν, f(·, t)⟩, t)
∫
X

[
∂f

∂x
(x, t) · µ (x, ν, t) + ∂f

∂t
(x, t)

]
ν(dx), (2.4)

where DiF (·, ·) denotes the derivative of the function F ∈ C1(X × R × R+,R∗
+) with re-

spect to i-th variable. Rigorously, the previously introduced objects are families of oper-
ators (G(x,ν,t), (x, ν, t) ∈ X × V × R+) and (G(x,ν,t), (x, ν, t) ∈ X × V × R+). This abuse
of notation will be used for the subsequently introduced operators in this work. The op-
erator G is generally not the generator of a conservative Markov process on W. Indeed
G1 = B(xe, ν, t)(m(xe, ν, t)− 1), which is non-zero if there exists a tuple (xe, ν, t) such that
the mean number of children m (xe, ν, t) ̸= 1. We point out that these operators are the
equivalents- for interacting, structured, branching populations- of the Schrödinger operator
G introduced in [15].

To ensure that for all (xe, ν, t) ∈ W × R+ the function GFf (xe, ν, t) is finite we make an
assumption on the functions Ff ∈ D.

Assumption B. Let (pn, n ∈ N) and (Kn, n ∈ N) be the reproduction parameters of the
original branching process and ψϕ ∈ D a weight-function. For all (x, xe, ν, t) ∈ X ×W×R+,

∑
n∈N

pn(ρ)

∫
Xn

(
ψϕ (xe, ν+(x,y), t) +

n∑
i=1

ψϕ
(
yi, ν+(x,y), t

))
Kn (ρ, dy) < +∞.

Remark that for a chosen set of parameters of the original branching process (νs, s ≥ 0),
this assumption restricts the set of suitable weight functions.

We will establish in Proposition 2.4 that the operator G constructs the generator L̂ψϕ

of the spine process associated with a function ψϕ ∈ D ensuring Assumption B, defined
for functions Ff such that (f, F ) ∈ C1(U × X × R+,R) × C1(U × R × R+,R∗

+) and for all

(e, ν̄, t) ∈W× R+ by

L̂ψϕ
Ff (e, ν̄, t) := ĜFf (e, ν̄, t)

+
∑
n≥0

∫
U×X

Bn(x, ν, t)

∫
Xn

{
1{u=e}

n∑
i=1

[
Ff (ei, ν̄+(e,y), t)− Ff (e, ν̄, t)

]ψϕ(yi, ν+(xe,y), t)
ψϕ(xe, ν, t)

+ 1{u̸=e}
[
Ff (e, ν̄+(u,y), t)− Ff (e, ν̄, t)

]ψϕ(xe, ν+(u,y), t)
ψϕ(xe, ν, t)

}
Kn (x, ν, t, dy) ν̄(du,dx),

(2.5)
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where

ĜFf (e, ν̄, t) : = D2F (e, ⟨ν̄, f(·, t)⟩, t)
∫
U×X

[
∂f

∂x
(u, x, t) · µ (x, ν, t) + ∂f

∂t
(u, x, t)

]
ν̄(du,dx)

+D3F (e, ⟨ν̄, f(·, t)⟩, t) .
Remark that branching rates of both spinal and non-spinal individuals are biased by the
function ψϕ. Assumption B ensures that the total branching rate is finite from every state
of the spinal process, however it is not sufficient to avoid explosion of this process in finite
time. Dynamics 2.2 and 2.3 below will provide a more intricate explanation of the spine
process associated with this generator.

Finally, we introduce for all t ≥ 0, the U-valued random variable Ut that picks an individual
alive at time t. Its law is characterized by the function pu (ν̄t) which yields the probability to
choose the individual of label u in the set G (t). We can now state our main result, that is a
Girsanov-type formula for the spinal change of measure. It characterizes the joint probability
distribution of (Ut, (ν̄s, s ≤ t))- that is the randomly sampled individual in the population ν̄t
at time t and the whole trajectory of the population until this time- and links it to the law
of the spine process through a path-integral formula.

Theorem 2.1. Let ψϕ ∈ D verifying Assumption B, t ≥ 0, and z̄ ∈ V. Let ((Et, χ̄t) , t ≥ 0)

be the time-inhomogeneous W-valued branching process defined by the infinitesimal generator

L̂ψϕ
. Let T̂Exp denote its explosion time and ((Yt, χt) , t ≥ 0) its projection on W.

Under Assumption B, for every measurable non-negative function H on U × D ([0, t],V):

Ez̄
[
1{TExp>t,G(t) ̸=∅}H (Ut, (ν̄s, s ≤ t))

]
=

⟨z, ψϕ(·, z)⟩Ez̄
[
1{T̂Exp>t}ξ (Et, (χ̄s, s ≤ t))H (Et, (χ̄s, s ≤ t))

]
,

where:

ξ (Et, (χ̄s, s ≤ t)) :=
pEt (χ̄t)

ψϕ (Yt, χt, t)
exp

(∫ t

0

Gψϕ (Ys, χs, s)
ψϕ (Ys, χs, s)

ds

)
.

We take inspiration from the work of Bansaye [3] for the proof. The idea is to decompose
both processes on their possible trajectories, then establish by induction on the successive
jumps times the equality in law for the trajectories between these times.

The process ((Et, χ̄t) , t ≥ 0) gives at any time t ≥ 0 the label of the spinal individual- that
encodes the whole spine lineage- and the spinal population. Our result thus links, for every
ψϕ, the sampling of an individual and the trajectory of the population to the trajectory of
the spine process. The path integral term that links these two terms is difficult to handle
in general and finding eigenfunctions of G may widely simplify the expression [15, 2, 3].
Finding such functions for single type, density-dependent populations is possible in models
with simple interactions [3][Section 3]. Nevertheless, this becomes a challenging issue in
the majority of scenarios. Subsequent sections of this work will explore applications of this
formula where the path-integral component is tractable.

We first introduce additional notations concerning the dynamics of the spine process given
by the generators introduced in (2.5). Following notations of Section 1, and disregarding
the dependency on the chosen function ψϕ ∈ D ensuring Assumption B in the subsequent
branching parameters, we introduce the dynamics of the traits in the spine process. As
previously discussed, the construction distinguishes dynamics of the spine from the rest of
the individuals. When there is no possible confusion, the label of the spinal individual at
any time will be denoted e for convenience, and xe its trait. We will also use for every
(x, (xe, ν), t) ∈ X ×W× R+ the notations

ρe := (xe, ν, t) and ρ := (x, ν, t). (2.6)
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We first introduce the branching parameters of the individuals outside the spine in a spinal
population.

Dynamics 2.2 (Individuals outside the spine). For all (n, x, (xe, ν) , t) in N∗×X ×W×R+

(i) K̂n (xe, ρ, ·) ∈ MF (X n) is the kernel giving the traits at birth of the n children
generated by a non-spinal individual of trait x at time t in a spinal population (xe, ν).
For all A ⊂ X n,

K̂n (xe, ρ,A) :=
1

Γ̂n (xe, ρ)

∫
A
ψϕ (xe, ν+(x,y), t)Kn (ρ, dy) , (2.7)

where Γ̂n(·) is the normalization function, defined as

Γ̂n (xe, ρ) :=

∫
Xn

ψϕ (xe, ν+(x,y), t)Kn (ρ, dy) ,

and ν+ is defined in (2.2).
(ii) The law (p̂k (xe, ρ) , k ∈ N) of the number of children of an individual of trait x branch-

ing at time t in a spinal population (xe, ν), is defined for all n ∈ N as

p̂n (xe, ρ) :=
1∑

k∈N Γ̂k (xe, ρ) pk (ρ)
Γ̂n (xe, ρ) pn (ρ) .

(iii) Each individual of trait x outside the spine of trait xe in a population ν at time t,

branches to n children at rate B̂n (xe, ρ), defined as

B̂n (xe, ρ) :=
Γ̂n (xe, ρ)

ψϕ (xe, ν, t)
Bn (ρ) .

The total branching rate outside the spine is defined, for all (xe, ν, t) ∈W× R+ by

τ̂ (xe, ν, t) :=

∫
X

∑
n≥0

B̂n (xe, x, ν, t) ν(dx)−
∑
n≥0

B̂n (xe, ρe) .

We now introduce the branching parameters of the spine in a ψϕ-spinal construction.

Dynamics 2.3 (Spinal individual). For all (n, x, (xe, ν) , t) in N∗ ×X ×W× R+

(i) K̂∗
n (ρe, ·) ∈MF

(
XN

)
is the kernel giving the traits at birth of the n children gener-

ated by the spinal individual of trait xe at time t in a population ν. For all A ⊂ X n,

K̂∗
n (ρe,A) :=

1

Γ̂∗
n (ρe)

∫
A

n∑
i=1

ψϕ
(
yi, ν+(xe,y), t

)
Kn (ρe, dy) , (2.8)

where Γ̂∗
n(·) is the normalization function, defined as

Γ̂∗
n (ρe) :=

∫
Xn

n∑
i=1

ψϕ
(
yi, ν+(xe,y), t

)
Kn (ρe, dy) .

(ii) The law (p̂∗k (ρe) , k ∈ N) of the number of children of the spinal individual of trait xe
branching at time t in a population ν, is defined for all k ∈ N as

p̂∗n (ρe) :=
1∑

k∈N Γ̂∗
k (ρe) pk (ρe)

Γ̂∗
n (ρe) pn (ρe) .

(iii) The spinal individual of trait xe in a population ν at time t, branches to n children

at a rate B̂∗
n (ρe), defined as

B̂∗
n (ρe) :=

Γ̂∗
n (ρe)

ψϕ (xe, ν, t)
Bn (ρe) .



A SPINAL CONSTRUCTION FOR GENERAL TYPE-SPACE POPULATIONS WITH INTERACTIONS 9

(iv) When the spinal individual of trait xe branches at time t in a population ν and
is replaced by n children with trait y, the integer-valued random variable J(ρe,y)
choosing the new spinal individual after a spinal branching event is given, for all
1 ≤ j ≤ n by

P (J(ρe,y) = j) =
ψϕ
(
yj , ν+(xe,y), t

)∑n
i=1 ψϕ (y

i, ν+(xe,y), t)
. (2.9)

The total branching rate from every trait ρe is denoted

τ̂tot (ρe) :=
∑
n≥0

B̂∗
n (ρe) + τ̂ (ρe) . (2.10)

Remark that K̂∗
0 = 0, therefore the spinal individual cannot branch without children and

the spinal population never goes extinct. Notice that for ψϕ ≡ 1, individuals outside the
spine follow the same dynamics as the individuals in the population (νt, t ≥ 0). In this case,
the spinal individual of trait xe branches at time t in a population ν with rate m(ρe)B(ρe),
where m(·) is the mean offspring number that is finite under Assumption B. The random
number of children at a branching event thus follows the size-biased law kpk(·)/m(·) and the
new spinal individual is chosen uniformly among the offspring.

Theorem 2.1 is verified until the first explosion time of both processes. We established in
Proposition 1.1 that under Assumption A the branching process does not explode in finite
time. To ensure the non explosion of the spine process, we have to consider an additional
assumption on the weight function ψϕ used for the construction.

Assumption C. There exists a positive continuous function b̂0 on R+, such that for all
(x, ν, t) ∈ X × V× R+∑

n̸=1

n
(
B̂n (x, ν, t) + B̂∗

n (x, ν, t)
)
≤ b̂0(t) (1 + |x|) .

This assumption, involving both the branching parameters and the function ψϕ, is stronger
than Assumption B. The set of weight functions that can be used to construct a spine process
that does not explode in finite time may differ from one model to another. However, one
may rather use more restrictive conditions that are sufficient for every branching process
under Assumption A. For example, in mass-conservative models, taking ψϕ(x, ν) = x ensures
the non-explosion of the spine process regardless the initial branching process that satisfies
Assumption A.

Proposition 2.4. Under Assumption A, for every ψϕ ∈ D ensuring Assumption C, the spine

process ((Et, χ̄t), t ≥ 0) whose law is characterized by the generator L̂ψϕ
does not explode

in finite time. Furthermore the generator L̂ψϕ
of the marginal spine process ((Yt, χt), t ≥ 0)

given by Dynamics 2.2 and 2.3, is defined for all function Ff ∈ D and all (x, ν, t) ∈ X×V×R+

by

L̂ψϕ
F tf (x, ν, t) :=

G [ψϕFf ] (x, ν, t)
ψϕ (x, ν, t)

−
Gψϕ (x, ν, t)
ψϕ (x, ν, t)

Ff (x, ν, t) .

Proof. The proof of non-explosion is shown following the proof of Proposition 1.1. The
expression of the generator of the marginal spine process is purely computational. Both of
them are described in Appendix A. □

It follows that the marginal law of the spine process is characterized by the operator G
and the weight function ψϕ.
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Corollary 2.5. Let ψϕ ∈ D ensuring Assumption C, t ≥ 0 and z̄ ∈ V. Under Assumption

A, for any f measurable non-negative function on U × D
(
[0, t],X × V

)
,

Ez̄

 ∑
u∈G(t)

ψϕ (X
u
t , ν̄t, t) f (u, ((X

u
s , ν̄s) , 0 ≤ s ≤ t))


= ⟨z, ψϕ(·, z, 0)⟩Ez̄

[
exp

(∫ t

0

Gψϕ (Ys, χs, s)
ψϕ (Ys, χs, s)

ds

)
f (Et, ((Ys, χ̄s) , 0 ≤ s ≤ t))

]
.

Proof. We use Assumptions A and C to ensure that TExp and T̂Exp are almost surely infinite.

Let f be measurable non-negative function on U × D
(
[0, t],X × V

)
. We introduce H the

measurable non-negative function defined for all (u, z̄s, s ≤ t) ∈ U × D ([0, t],V) by

H(u, z̄s, s ≤ t) := ψϕ(X
u
t , zt, t)f (u, (X

u
s , z̄s) , s ≤ t) ⟨zt, 1⟩.

The corollary is thus a direct application of Theorem 2.1 to the function H with a uniformly
sampled individual. □

This formula gives a change of probability that involves the function Gψϕ/ψϕ with a path-
integral formula. This study is related to Feynman-Kac path measures and semigroups.
We refer to [18] for an overview on this subject. In the case of a branching process with
interactions, the integral term depends on the trajectory of the whole spinal population.
In general cases with interactions, the branching property is not verified and the so-called
Many-to-One formula- see e.g. Proposition 9.3 in [5]- fall apart,. However, if ψϕ is an
eigenfunction of the operator G, then we have the following Many-to-One formula for any
non-negative measurable function g on D ([0, t],X )

Ez̄

 ∑
u∈G(t)

ψϕ (X
u
t , ν̄t, t) g (X

u
s , s ≤ t)

 = CtEz̄ [g (Ys, s ≤ t)] ,

where Ct is a time-dependent positive constant. This formula, established in [15], reduces
the empirical measure of the trajectories of all the individuals until time t to the law of
the trajectory of a unique individual in the spinal construction, the spinal individual. The
spinal individual in this case can be considered as a typical individual, reflecting the average
behavior of the whole population.

Remark 2.6. If we assume for all (x, ν, t) ∈ X × V × R+, that B(x, ν, t) = B(t) and for
all k ≥ 0, pk(x, ν, t) = pk(t) in the considered branching process, taking ψϕ ≡ 1 gives the
classical Many-to-One formula [4]:

Ez̄

 ∑
u∈G(t)

g (Xu
s , s ≤ t)

 = Ez̄ [⟨νt, 1⟩]Ez̄ [g (Ys, s ≤ t)] .

where the average number of individuals in the population is given at time t by

Ez̄ [⟨νt, 1⟩] = ⟨z, 1⟩ exp
(∫ t

0
B(s)(m(s)− 1)ds

)
.

3. Kesten-Stigum criterion

In this section, we present both a sufficient and a necessary Kesten-Stigum criterium for
density-dependent branching processes with a continuous type space. Before stating the
result, we introduce the limiting martingale that naturally follows from the spinal construc-
tion.



A SPINAL CONSTRUCTION FOR GENERAL TYPE-SPACE POPULATIONS WITH INTERACTIONS 11

Proposition 3.1. Under Assumption A, for every ψϕ ∈ D ensuring Assumption B,

Wt(ψϕ) :=
∑
u∈G(t)

exp

(
−
∫ t

0

Gψϕ (Xu
s , νs, s)

ψϕ (Xu
s , νs, s)

ds

)
ψϕ (X

u
t , νt, t) (3.1)

is a non-negative martingale with respect to the filtration (Ft, t ≥ 0) generated by the original
process. It almost surely converges to a random variable W (ψϕ) ∈ [0,∞).

Note that if the process (νt, t ≥ 0) goes extinct almost surely, then W (ψϕ) = 0 almost
surely. However, even on the survival event, the martingale (Wt(ψϕ), t ≥ 0) may also almost
surely degenerate to 0. The limit depends on the chosen ψϕ function and we will focus here
on the case ψϕ ≡ 1 (see [2] for the case without interactions). In this case the branching
parameters of the original process must be such that m(·) is finite to ensure Assumption B.
We denote

Wt :=Wt(1) =
∑
u∈G(t)

e−
∫ t
0 B(Xu

s ,νs,s)(m(Xu
s ,νs,s)−1)ds and W := lim sup

t→∞
Wt. (3.2)

We noticed in Remark 2.6 that if the branching rates do not depend on the trait nor the pop-
ulation then we have an expression of the mean size of the population. For non-structured
branching processes the mean size E [Nt] of the population, where Nt := ⟨νt, 1⟩, is given by

E [Nt] = N0 exp
(∫ t

0 B(s)(m(s)− 1)ds
)
. One may ask under what conditions this exponen-

tial growth accurately reflects the rate of increase in the population size. In this particular
case, Wt/N0 = Nt/E [Nt], thus finding conditions for the non-degeneracy of this martingale
gives a direct answer to the question. In the general case with interactions, Corollary 2.5
gives

Wt
E [Nt]

N0
=
∑
u∈G(t)

e−
∫ t
0 B(Xu

s ,νs,s)(m(Xu
s ,νs,s)−1)dsEz̄

[
e
∫ t
0 B(Ys,χs,s)(m(Ys,χs,s)−1)ds

]
,

that is close to Nt if the mean behavior of the spinal individual is not far from the averaging
behavior of all the individuals in the branching process.

In the sequel we will suppose that the following hypothesis on the branching rates holds

Assumption D. Assumptions A and C hold true and there exist c, C,B ∈ R∗
+ such that,

for all ρ ∈W× R+

c ≤ B(ρ)(m(ρ)− 1) ≤ C and B(ρ) ≤ B.

This assumption ensures that the process is strongly supercritical- in a sense that the
uniform lower bound of the reproductive law is strictly greater than 1- and that the only
absorbing state for the branching process is the null measure ν ≡ 0. This uniform hypoth-
esis could be partially released under strong positivity assumptions on the generator of the
branching process, see [37] in the discrete case and [32] Chapter 3 for continuous time. It
also restricts the setting to branching processes with bounded branching rates. We can now
express the result.

Theorem 3.2. We assume Assumption D, and introduce for all k ∈ N

pk := sup
ρ∈W×R+

pk(ρ), and p
k
:= inf

ρ∈W×R+

pk(ρ).

If
∑

k≥1 k log(k)pk < +∞ then, for all initial measure z ∈ V

Ez [W] = ⟨z, 1⟩.
If
∑

k≥1 k log(k)pk = +∞, then

W = 0 almost surely.
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The idea of the proof, based on the conceptual proofs established in [44, 26, 3], is to
consider the spinal process as a process with immigration: every individual outside the
spine follows the same dynamics as the original process (νt, t ≥ 0) and the spinal individual
provides new individuals at a biased rate. Note that the spinal construction also changes
the branching rates of individuals outside the spine if ψϕ depends on the population state.

Remark 3.3. If (pk, k ≥ 0) and (p
k
, k ≥ 0) have finite first moment m and m, then we can

introduce L̄ and L the N-valued random variables of law given respectively by (pk/m, k ∈ N)
and (p

k
/m, k ∈ N). The conditions of Theorem 3.2 thus become E

[
L̄ log

(
L̄
)]
< +∞ for the

non-degeneracy and E [L log (L)] = +∞ for the degeneracy. Note that these conditions are
similar to the conditions (16b) and (18b) in [2]. In the case of constant reproductive law, it
is well known that these two conditions become a dichotomy. Athreya [2] showed that this
dichotomy remains valid for multitype Galton-Watson processes with a finite set of traits and
no interactions.

4. A Yule process with competition

In this section, we introduce an alternative application of the spinal construction method
that enables us to obtain a spine process with straightforward dynamics from a branching
process with intricate interactions. As a toy model, we consider a time-inhomogeneous
Yule process with competitive interactions between the individuals, affecting their traits.
The individuals in the population are characterized by their trait x ∈ R∗

+ that can be for
example a mass or a size. An individual with trait x divides at an instantaneous rate r(t)x
where r is a measurable function on R+, into two children of size Λx and (1 − Λ)x, where
Λ is a [0, 1]-valued random variable with probability density function (p.d.f) q. We assume
that:

mdiv := E [Λ] ∈ (0, 1), and Kdiv := E
[

1

Λ(1− Λ)

]
< +∞.

This mass-conservative mechanism of division is classical in cell modeling [25]. Moreover,
each individual experiences the influence of the whole population, leading to a reduction of
their trait. Consequently, at an instantaneous rate d(t)Nt - where Nt is the population size
at time t, and d is a positive measurable function on R+ - each individual loses a fraction
(1−Θ) of its size. Θ is a [0, 1]-valued random variable with p its p.d.f and we assume that

mloss := E [Θ] ∈ (0, 1) and Kloss := E
[
1

Θ

]
< +∞.

These events can be interpreted as an inhibition of reproductive material in cells due to
competitive interactions within the population. Finally, we consider that the trait of each
individual grows exponentially at an instantaneous rate µ(t). The dependency in time of
these parameters can represent an external control or the effect of a deterministic envi-
ronment. This defines a branching process (νt, t ≥ 0), whose law is characterized by the
infinitesimal generators (J t, t ≥ 0). For all t ≥ 0, J t is defined on the set DJ , where
DJ :=

{
Hh ∈ B (R+) , ∃ (h,H) ∈ C1 (R+,R)× C1

(
R+,R∗

+

)
: ∀ν ∈W, Hh (ν) = H (⟨ν, h⟩)

}
by

J tHh(ν) = H ′ (⟨ν, h⟩)
∫
R+

h′(y)µ(t)yν(dy)

+

∫
R+

r(t)y

∫ 1

0

[
Hh

(
ν − δy + δλy + δ(1−λ)y

)
−Hh (ν)

]
q(λ)dλν(dy)

+ d(t)⟨ν, 1⟩
∫
R+

∫ 1

0
[Hh (ν − δy + δθy)−Hh (ν)] p(θ)dθν(dy).
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We remark that Assumption A is verified by the parameters of this branching process,
and thus it does not explode in finite time almost surely. Note that in this population, the
dynamics are correlated such that an increase in population size accelerates the rate of loss,
while loss events slow the rate of division. The operator at the core of the spinal construction
introduced in (2.3), defined for functions Ff in the set D introduced in (2.1), is such that
for all (x, ν, t) ∈W× R+

GFf (x,ν, t) = D1F (x, ⟨ν, f(·, t)⟩, t)µ(t)x+D3F (x, ⟨ν, f(·, t)⟩, t)

+D2F (x, ⟨ν, f(·, t)⟩, t)
∫
R+

[
∂f

∂y
(y, t)µ(t)y +

∂f

∂t
(y, t)

]
ν(dy)

+ r(t)x

∫ 1

0

[
Ff
(
λx, ν − δx + δλx + δ(1−λ)x, t

)
+ Ff

(
(1− λ)x, ν − δx + δλx + δ(1−λ)x, t

)
−Ff

(
x, ν − δx + δλx + δ(1−λ)x, t

)]
q(λ)dλ

+ d(t)⟨ν, 1⟩
∫ 1

0
[Ff (θx, ν − δx + δθx, t)− Ff (x, ν − δx + δθx, t)] p(θ)dθ

+

∫
R+

r(t)y

∫ 1

0

[
Ff
(
x, ν − δy + δλy + δ(1−λ)y, t

)
− Ff (x, ν, t)

]
q(λ)dλν(dy)

+ d(t)⟨ν, 1⟩
∫
R+

∫ 1

0
[Ff (x, ν − δy + δθy, t)− Ff (x, ν, t)] p(θ)dθν(dy).

Notice that polynomial functions can not be eigenvalues of the operators Gt for all t. Finding
analytic expression of eigenfunctions for such non-local operator is complex, and the existence
of such eigenfunctions is not guaranteed in general, see [9, 17]. Here we propose to use
the change of measure associated with the spinal construction in order to decorrelate the
dynamics within the spine process. We believe that this method can be generalized to
different models. We choose ψ ∈ C1(R∗

+ × R × R+,R∗
+) and ϕ ∈ C1(R∗

+ × R+,R) such that
for all (x, y, t) ∈ R∗

+ × R× R+

ψ(x, y, t) := xe−y and ϕ(x, t) := ln (xr(t)Kdiv) . (4.1)

Applied to a spinal state (xe, χ, t) ∈W where χ :=
∑

u∈G(t) δxu , this weight function verifies

ψϕ(xe, χ, t) =
xe∏

u∈G(t)(r(t)Kdivxu)

and ensures Assumption B. We can now determine the parameters of the spinal process using
this function ψϕ. The behavior of the traits between branching events remains unchanged
compared to the Yule process under consideration. The division events occur at rate 1 for

both the spinal and the non-spinal individuals. The random variable Λ̂, which determines
the distribution of mass during division in the spinal construction, has a density function q̂
given by:

q̂(λ) :=
q(λ)

λ(1− λ)Kdiv
. (4.2)

As a result, in this ψϕ-spinal process, division events are no longer dependent on the size of
the individuals.

Individuals outside the spine lose a random fraction 1−Θ̂ of their mass at a rate B̂1(x, ν, t) :=

Klossd(t)⟨ν, 1⟩ where Θ̂ follows a probability density function p̂ given by:

p̂(θ) =
p(θ)

θKloss
. (4.3)

The loss events for the spinal individual follow the same dynamics as those in the Yule
process being considered. It is worth noting that Assumption C holds in this case, leading
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to T̂Exp = ∞ almost surely. Therefore, by using appropriate functions ψ and ϕ in the
spinal construction, we can make division events independent of loss events, resulting in
a conditional branching property. This property can be used to enhance the simulation
complexity of the branching process.

A classical exact method to simulate non-homogeneous Poisson processes is the thinning
algorithm, introduced by Lewis and Shedler [39]. It is used to simulate Poisson processes of
intensity c(t) on a window [0, T ] for a fixed T > 0. The idea is to generate possible jump
times (ti, 1 ≤ i ≤ n) at a rate c̄ := sup[0,T ] c(t) and accept them with probability c(ti)/c̄.

When the intensity c(·) depends not only on time t but also on the entire past of the point
process, one can use Ogata’s modified thinning algorithm [48]. Given the information of
the first k points, (ti, 1 ≤ i ≤ k) the intensity c(·) is deterministic on [tk, Tk+1] with Tk+1

the next time of jump. As a result, generating the next point in such processes can be
considered as generating the first point in an inhomogeneous Poisson process. This idea has
been more recently adapted for branching process, see e.g. [24, 10, 25]. The main limitation
of this method is that c̄ can become excessively large even for small simulation windows T .
This results in the rejection of most of the generated points. Another exact method, based
on inverse transform sampling, consists in generating the arrival times of the process by
sampling a uniform random variable U in [0, 1], see e.g. [19]. The arrival times tk are thus
generated by inversion of the cumulative distribution function of the jumps times, such that

1− exp(
∫ tk
0 c(s)ds) = U . However, an exact inversion is inaccessible in general cases, and in

this model in particular.
Here, we propose a new simulation method, based on the spinal construction, that is much

faster than the Ogata’s algorithm. The idea is to use the fact that the division events are
independent from the mass in the spine process. Thus, we can generate a binary tree with
unit rate, then spawn a Poisson point process indexed on this tree that distributes the loss
events and chooses the spinal individual. Finally the trait of each individual at every time
is computed using the deterministic growth and the encountered loss events. Theses three
steps are illustrated in Figure 1 and a detailed algorithm can be found in Appendix D.

Figure 1. Algorithm description

We then use Theorem 2.1 to compute various statistics of the branching process based on
the statistics obtained from the spine process. For all (x, ν, t) ∈ R∗

+×V×R+, the expression
of the operator G applied to the chosen ψϕ, defined in (4.1), is given by

Gψϕ (x, ν, t)
ψϕ (x, ν, t)

= µ(t) +

[
ṙ(t)

r(t)
− µ(t) + d(t)(S − 1) (Kloss − 1)

]
S − r(t)B,

where for all ν ∈ V, S := ⟨ν, 1⟩ and B :=
∫
R∗
+
xν(dx) denote respectively the size of the

population ν and its total biomass.
Thus, any statistics on the branching process estimated by Monte Carlo methods can

be alternatively estimated using trajectories of the spine process and the formula given by
Theorem 2.1 applied to this spinal construction.
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5. Proofs

5.1. Proof of Section 1. In this section, we derive the result on the existence and unique-
ness of the considered branching process.

Proof of Proposition 1.1. The description of the process (ν̄t, t ≥ 0) introduced in Section 1
leads to a canonical SDE driven by the dynamics of the trait and a multivariate point process.
This SDE is then used to show that the mean number of individuals in the population and
the trait are bounded at any time t ≥ 0. Using Assumption A.2 we conclude that there is
no explosion in finite time of the population.

Following [4, 45], for convenience, we introduce a vector θ := (θi, i ∈ N∗) of uniform
independent random variables on [0, 1] and a family (Fi,n, i ≤ n, n ∈ N∗) of measurable maps
from X×V×R+×[0, 1] to X such that for all (n, x, ν, t) ∈ N∗×X×V×R+, the random vector
(Fi,n (x, ν, t, θi) , i ≤ n) is distributed as Kn (x, ν, t, ·). Note that taking a unique random
variable θ uniform on [0, 1] correlates the trait at birth between every child.

Let E = U × R+ × N × [0, 1]N and Q (ds, du,dr, dk,dθ) be a Poisson point measure on
R+ × E with intensity q such that

q (ds, du,dr, dk, dθ) = ds

(∑
v∈U

δv(du)

)
dr

(∑
n∈N

δn(dk)

)
dθ.

We denote by (Ft, t ≥ 0) the canonical filtration associated with this Poisson point measure
and (Tk, k ≥ 0) the sequence of jumps times, that is the random sequence of times of arrivals
given by the Poisson point measure Q.

Let z̄ ∈ V. For every function g ∈ C1 (U × X ,R) and t ≥ 0, the process (ν̄t, t ≥ 0) starting
from z̄ verifies

⟨ν̄t, g⟩ := ⟨z̄, g⟩+
∫ t

0

∫
U×X

∂g

∂x
(u, x) · µ (x, νs, s) ν̄s(du,dx)ds

+

∫
[0,t]×E

1{u∈G
(
ν̄
s−
)
,r≤Bk(X

u

s−,νs−,s)}

×

[
k∑
i=1

g
(
ui, Fi,k

(
Xu
s−, νs−, s, θi

))
− g(u,Xu

s−)

]
Q (ds, du,dr, dk, dθ) . (5.1)

Note that the dynamical construction of the marginal measure-valued process only does
not ensure uniqueness: the individual for the next branching event is chosen according to
its trait, and thus two individuals with the same trait can be indistinctly chosen to be the
branching one. The labeling of individuals allows us to overcome this problem. However,
any other labeling method could work, see e.g. [24].

The proof of uniqueness and existence of a solution is classical and has been first es-
tablished for measure-valued process by Fournier and Meleard [24]. Here we consider non-
bounded rates and we follow with small adaptations the proof of Lemma 2.5 in [45]. Let
T > 0. We prove the non-accumulation of branching events on [0, T ]. First we use equation
(5.1) applied to the constant function equal to 1, that gives the number of individuals in the
population, denoted (Nt, t ≥ 0). Using Assumption A.3, we have for all t < Tk ∧ T

Ez̄ [Nt] ≤ N0 +

∫ t

0
b0(s)

Ez̄
[ ∑
u∈G(t)

|Xu
s |
]
+ Ez̄ [Ns]

ds.

Next, we take a sequence of functions (gn, n ∈ N) in C1(U×X ,R+) such that limn→∞ gn(u, x) =

|x| and limn→∞
∂gn
∂x (u, x) ·µ(x, ν, s) ≤ |µ(x, ν, s)| for all ν, s. Applying equation (5.1) to these
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functions and using Assumptions A.1 and A.4, we have when n→ +∞,

Ez̄
[ ∑
u∈G(t)

|Xu
t |
]
≤⟨z̄, | · |⟩+

∫ t

0
µ0(s)

Ez̄
[ ∑
u∈G(s)

|Xu
s |
]
+ Ez̄

[∣∣∣ ∑
u∈G(s)

Xu
s

∣∣∣]+ Ez̄ [Ns]

 ds.

According to Grönwall’s lemma, for all t < Tk ∧ T , we have

Ez̄ [Nt] + Ez̄
[ ∑
u∈G(t)

|Xu
t |
]
≤ (N0 + ⟨z̄, | · |⟩) eA(T )t <∞

where A(T ) = sups≤T b0(s) + µ0(s). The number of individuals is thus almost surely finite
at finite time as well as the trait of every individual. Assumption A.2 ensures that in finite
time, there is no accumulation of branching events that does not change the size of the
population. □

5.2. Proof of Section 2. Theorem 2.1 is proved following the steps of the proof of Theorem
1 in [3]. Let ψϕ ∈ D ensuring Assumption B, and ((Et, χ̄t) , t ≥ 0) be the time-inhomogeneous

W-valued branching process of generators
(
L̂tψϕ

, t ≥ 0
)
, defined in (2.5). We will first need

to introduce some notations. We will denote (Uk, k ≥ 0) the sequence of U-valued random
variables giving the label of the branching individuals at the jumps times (Tk, k ≥ 0). Let
(Nk, k ≥ 0) be the sequence of N-valued random variables giving the number of children
at each branching event and we denote for brevity Ak := (Uk, Nk) for all k ≥ 0. At the
k-th branching time Tk, we denote Yk the XNk -valued random variable giving the vector of
offspring traits. Finally we introduce for all k ≥ 0, Vk := (Tk, Ak,Yk). We similarly define

((T̂k, Ûk, N̂k, Ŷk), k ≥ 0), the sequence of jumps times, labels of the branching individual,
number of children and trait of these children at birth in the spinal construction. Remark
that the distribution of number of children and traits depend on whether the branching

individual is the spinal one or not. We will also use for all k ≥ 0, V̂k := (T̂k, Âk, Ŷk) where
Âk := (Ûk, N̂k). At time s ∈ [T̂k−1, T̂k), the label of the spinal individual is denoted Ek
and its trait Yk. For a given initial population z̄ =

∑n
i=1 δ(i,xi) ∈ V, we use by convention

U0 = ∅, N0 = n, Y0 = (xi, 1 ≤ i ≤ n) almost surely. The same convention holds for the
spine process. For all 0 ≤ k, we introduce the associated filtrations

Fk = σ (Vi, 0 ≤ i ≤ k) , and F̂k = σ
(
Ek,

(
V̂i, 0 ≤ i ≤ k

))
.

Remark that these notations, summarized in Figure 2, are well-defined until the explosion
time of the branching and spine processes and that the vectors (Vk, k ≥ 0) where for all
k ≥ 0, Vk := (Tk, Ak,Yk) characterize the trajectories of (ν̄t, t ≥ 0) until the explosion time.

For every initial population z̄ ∈ V and every k ≥ 0, we introduce the set of sequences
of k branching events that lead to non-extinguished trajectories Uk(z̄) ⊂ (U × N)k, starting
from z̄. We also introduce for all a ∈ Uk(z̄) and all 0 ≤ i ≤ k, Gi(a) the set of labels of
individuals living between the i-th and (i+ 1)-th branching events in the population where
all the branching events were given by a. By decomposing the branching process (ν̄t, t ≥ 0)
based on the sequences a ∈ Uk(z) and sampling at time t an individual e ∈ Gk(a), we get
that for every measurable non-negative function H on U × D ([0, t],V)

Ez̄
[
1{TExp>t,G(t)̸=∅}H (Ut, (ν̄s, s ≤ t))

]
=

∑
k≥0

∑
a∈Uk(z̄)

∑
e∈Gk(a)

Ez̄

[
H (e, (ν̄s, s ≤ t)) pe(ν̄t)1{Tk≤t<Tk+1}

k∏
i=0

1{Ai=ai}

]
. (5.2)
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(
Ûk−1, X

Ûk−1
s

)

(Ek−2, Ys)

T̂k−2 < s T̂k−1

•
Ek−2 = Ek−1

(
Ûk−11, Ŷ1

k−1

)
(
Ûk−12, Ŷ2

k−1

)
(
Ûk−1N̂k−1, Ŷ

N̂k−1

k−1

)
(
Ek, Ŷ1

k

)
(
Ek−12, Ŷ2

k

)

T̂k t

Figure 2. Sequential notations for the spine process.

The expectation on the right-hand side of (5.2) is linked by a Girsanov-type result to the
spinal construction, as shown in Lemma 5.1. The difference with our proof and the proof of
Theorem 1 in [3] lies essentially in the demonstration of this lemma.

Lemma 5.1.
For any k > 0, z̄ ∈ V and a = ((ui, ni), 0 ≤ i ≤ k) ∈ Uk(z̄), let F be a measurable non-
negative function on Πki=1 (R+ × U × N×X ni). For any e ∈ Gk (a),

Ez̄

[
F (Vi, 0 ≤ i ≤ k)

k∏
i=0

1{Ai=ai}

]
= ⟨z, ψϕ (·, z, 0)⟩

× Ez̄

[
ξk

(
Ek,

(
V̂i, 0 ≤ i ≤ k

))
F
(
V̂i, 0 ≤ i ≤ k

)
1{Ek=e}

k∏
i=0

1{Âi=ai}

]
,

where

ξk

(
Ek,

(
V̂i, 0 ≤ i ≤ k

))
:=

1

ψϕ

(
Y
T̂k
, χ

T̂k
, T̂k

) exp

(∫ T̂k

0

Gψϕ (Ys, χs, s)
ψϕ (Ys, χs, s)

ds

)
.

We prove this lemma by induction on the number of branching events k. We will first
state a technical lemma to avoid too long computations.

Lemma 5.2. For all k > 0, z̄ ∈ V and a = ((ui, ni), 0 ≤ i ≤ k) ∈ Uk(z̄),

ξk

(
Ek,

(
V̂i, 0 ≤ i ≤ k

))
ξk−1

(
Ek−1,

(
V̂i, 0 ≤ i ≤ k − 1

)) =

ψϕ

(
Y
T̂ −k
, χ

T̂ −k
, T̂k

)
ψϕ

(
Y
T̂k
, χ

T̂k
, T̂k

) exp

(∫ T̂k

T̂k−1

λ (Ys, χs, s) ds

)
a.s.

where, for all s ∈ [T̂k−1, T̂k),

λ (Ys, χs, s) := τ̂tot (Ys, χs, s)−
∫
X
B (x, χs, s)χs(dx). (5.3)

We recall that τ̂tot is the total branching rate of the spine process defined in (2.10). The
proof of this lemma is in Appendix B.
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Proof of Lemma 5.1. Following the proof of Theorem 1 in [3], the result is established by
induction on the number k of branching events. The original branching process and its
associated spine process may stop branching in finite time, in this case the total numbers

of branching events, respectively Ntot and N̂tot, are finite. For all k such that k > Ntot,
the k-th branching event of the original construction arrives at Tk = +∞. In this case we
set Ak = (∅, 0) by convention. The same convention is used for the spinal construction.
Let z̄ :=

∑n
i=1 δ(i,xi) ∈ V be the initial population and let F be a measurable non-negative

function on R+ × U × N×X n. Then, by definition

V0 = V̂0 = (0, (∅, n), (xi, 1 ≤ i ≤ n)), a.s.

Therefore, for all e ∈ G(0)

Ez̄
[
ξ0

(
E0, V̂0

)
F
(
V̂0
)
1{E0=e}1{Â0=(∅,n)}

]
= F (V0)1{A0=(∅,n)}Ez̄

[
1{E0=e}

ψϕ(Y0, z, 0)

]
.

We recall that the individual 1 ≤ i ≤ n of trait xi in the population z̄ is chosen to be the
spinal individual with probability ψϕ(x

i, z, 0)(⟨z, ψϕ(·, z, 0)⟩)−1. Then we have

Ez̄
[
ξ0

(
E0, V̂0

)
F
(
V̂0
)
1{E0=e}1{Â0=(∅,n)}

]
=

1

⟨z, ψϕ (·, z, 0)⟩
Ez̄
[
1{A0=(∅,n)}F (0, A0,Y0)

]
.

Thus the result holds for k = 0. Now let k ≥ 1 and assume that the following induction
hypothesis holds at rank k − 1.

Induction Hypothesis. For every a = (ai, 0 ≤ i ≤ k − 1) ∈ (U × N)k−1 with ai = (ui, ni),

every measurable non-negative function F on
k−1⊗
i=1

(R+ × U × N×X ni) and every e ∈ Gk−1 (a):

Ez̄

[
F (Vi, 0 ≤ i ≤ k − 1)

k−1∏
i=0

1{Ai=ai}

]
= ⟨z, ψϕ (·, z)⟩Ez̄

[
ξk−1

(
Ek−1,

(
V̂i, 0 ≤ i ≤ k − 1

))
× F

(
V̂i, 0 ≤ i ≤ k − 1

)
1{Ek−1=e}

k−1∏
i=0

1{Ai=ai}

]
. (5.4)

Let a = (ai, 0 ≤ i ≤ k) ∈ (U × N)n with ai = (ui, ni) and e ∈ Gk (a). We denote a′ =

(ai, 0 ≤ i ≤ k − 1) and take F ak a measurable non-negative function on
k⊗
i=1

(R+ ×X ni) such

that, for all ((ti, yi) , 0 ≤ i ≤ k) ∈
n⊗
i=1

(R+ ×X ni):

F ak ((ti, yi) , 0 ≤ i ≤ n) := F a
′

k−1 ((ti, yi) , 0 ≤ i ≤ k − 1) I(tk − tk−1)F (yk), (5.5)

where F a
′

k−1, I and F are measurable non-negative and bounded, respectively on
k−1⊗
i=1

(R+ ×X ni),

R+ and X nk . Let e′ ∈ Gk−1 (a
′), such that there exists j ∈ N∗ ∪ {∅} verifying e′j = e. We

introduce the N∗ ∪{∅}-valued random variable Jk choosing the label of the spinal individual
at the k-th branching event, so that Ek = Ek−1Jk almost surely.

Following the proof of Lemma 1 in [3], we express both sides of the equality (5.4) for k ≥ 1
conditionally on the filtrations at the previous step k − 1. We recall that, for all 1 ≤ j ≤ k

Fj = σ (Vi, 0 ≤ i ≤ j) , and F̂j = σ
(
Ej ,

(
V̂i, 0 ≤ i ≤ j

))
.
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Using (5.5) and conditioning on the filtration after the (k − 1)-th branching event, we have

Ez̄

[
F ak ((Ti,Yi) , 0 ≤ i ≤ k)

k∏
i=0

1{Ai=ai}

]
=

Ez̄

[
F a

′
k−1 ((Ti,Yi) , 0 ≤ i ≤ k − 1)C (Vi, 0 ≤ i ≤ k − 1)

k−1∏
i=0

1{Ai=ai}

]
, (5.6)

where:

C (Vi, 0 ≤ i ≤ k − 1) := E
[
I (Tk − Tk−1)F (Yk)1{Ak=ak}

∣∣Fk−1

]
. (5.7)

We apply the induction hypothesis (5.4) in the previous equation (5.6) with H given by

H (Vi, 0 ≤ i ≤ k − 1) := F a
′

k−1 ((Ti,Yi) , 0 ≤ i ≤ k − 1)C (Vi, 0 ≤ i ≤ k − 1) .

Thus

Ez̄

[
F ak ((Ti,Yi) , 0 ≤ i ≤ k)

k∏
i=0

1{Ai=ai}

]
= ⟨z, ψϕ (·, z, 0)⟩Ez̄

[
ξk−1

(
Ek−1,

(
V̂i, 0 ≤ i ≤ k − 1

))
× F a′k−1

((
T̂i, Ŷi

)
, 0 ≤ i ≤ k − 1

)
C
(
V̂i, 0 ≤ i ≤ k − 1

)
1{Ek−1=e′}

k−1∏
i=0

1{Ai=ai}

]
. (5.8)

Similarly, we use (5.5) for the spine process. Conditioning on the filtration after the
(k − 1)-th branching event, we have

Ez̄

[
ξk

(
Ek,

(
V̂i, 0 ≤ i ≤ k

))
F ak

((
T̂i, Ŷi

)
, 0 ≤ i ≤ k

)
1{Ek=e}

k∏
i=0

1{Âi=ai}

]
=

E
[
ξk−1

(
Ek−1,

(
V̂i, 0 ≤ i ≤ k − 1

))
F a

′
k−1

((
T̂i, Ŷi

)
, 0 ≤ i ≤ k − 1

)
× Ĉ

(
e′,
(
V̂i, 0 ≤ i ≤ k − 1

)) k−1∏
i=0

1{Âi=ai}

]
, (5.9)

where, using Lemma 5.2,

Ĉ
(
e′,
(
V̂i, 0 ≤ i ≤ k − 1

))
:= 1{Ek−1=e′}E

ψϕ
(
Y
T̂−
k
, χ

T̂−
k
, T̂k

)
ψϕ

(
Y
T̂k
, χ

T̂k
, T̂k

) exp

(∫ T̂k

T̂k−1

λ (Ys, χs, s) ds

)

× 1{Jk=j}I
(
T̂k − T̂k−1

)
F
(
Ŷk
)
1{Âk=ak}

∣∣∣F̂k−1

]
. (5.10)

If we can establish that

Ĉ
(
e′,
(
V̂i, 0 ≤ i ≤ k − 1

))
= 1{Ek−1=e′}C

((
V̂i, 0 ≤ i ≤ k − 1

))
, (5.11)

then the expectations in the right-hand sides of equations (5.8) and (5.9) are equal and we
get

Ez̄

[
F ak ((Ti,Yi) , 0 ≤ i ≤ k)

k∏
i=0

1{Ai=ai}

]
= ⟨z, ψϕ (·, z, 0)⟩

× Ez̄

[
ξk

(
Ek,

(
V̂i, 0 ≤ i ≤ k

))
F ak

((
T̂i, Ŷi

)
, 0 ≤ i ≤ k

)
1{Ek=e}

k∏
i=0

1{Âi=ai}

]
.
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From this equality and using a monotone class argument for the functions F ak defined in
(5.5), we obtain (5.4) at rank k, that concludes the proof.

In the following we show (5.11), by describing the dynamics of both processes.
Computations for the branching process. Conditioning in chain the expression of C
defined in (5.7), we get

C (Vi, 0 ≤ i ≤ k − 1) = E
[
I(Tk − Tk−1)E

[
1{Ak=ak}E

[
F (Yk)

∣∣Fk−1, Tk, Ak
]∣∣∣Fk−1, Tk

]∣∣∣Fk−1

]
.

Using the conditional distribution of Yn, we have

E
[
F (Yk)

∣∣Fk−1, Tk, Ak
]
=

∫
XNk

F (y)KNk

(
XUk

T−
k

, νT−
k
, Tk,dy

)
.

Then we remark that for ak = (uk, nk),

E
[
1{Ak=ak}

∣∣Fk−1, Tk
]
=

Bnk

(
Xuk
T−
k

, νT−
k
, Tk

)
τ
(
νT−

k
, Tk

) ,

where τ (ν, s) :=
∫
X B(x, ν, s)ν(dx) is the total branching rate. Finally, using that the time

between two jumps follows an inhomogeneous exponential law of instantaneous rate τ(·), we
have

C (Vi, 0 ≤ i ≤ k − 1) =

∫
R+

I(t) exp

(
−
∫ t+Tk−1

Tk−1

τ (νs, s) ds

)
×Bnk

(
Xuk
t+Tk−1

, νt+Tk−1
, t+ Tk−1

)∫
Xnk

F (y)Knk

(
Xuk
t+Tk−1

, νt+Tk−1
, t+ Tk−1,dy

)
dt.

Computations for the spinal construction. We follow the computations for the
branching process, and differentiate between whether the branching individual is the spinal

one or not. Conditioning on the next jump time, Ĉ defined in (5.10), is such that

Ĉ
(
e′,
(
V̂i, 0 ≤ i ≤ k − 1

))
= 1{Ek−1=e′}E

[
exp

(∫ T̂k

T̂k−1

λ (Ys, χs, s) ds

)
I
(
T̂k − T̂k−1

)

× ψϕ

(
Y
T̂−
k
, χ

T̂−
k
, T̂k

)
E

 F
(
Ŷk
)
1{Jk=j}1{Âk=ak}

ψϕ

(
Y
T̂k
, χ

T̂k
, T̂k

)
∣∣∣∣∣∣ F̂k−1, T̂k

∣∣∣∣∣∣ F̂k−1

 . (5.12)

We handle this last equation by complete induction, on the event {j = ∅}∪{j ̸= ∅}, to show
that

ψϕ

(
Y
T̂−
k
, χ

T̂−
k
, T̂k

)
E

 F
(
Ŷk
)
1{Jk=j}1{Âk=ak}

ψϕ

(
Y
T̂k
, χ

T̂k
, T̂k

)
∣∣∣∣∣∣ F̂k−1, T̂k

 =

Bnk

(
Xuk
T−
k

, χ
T̂−
k
, T̂k

)
τ̂tot

(
χ
T̂−
k
, T̂k

) ∫
X N̂k

F (y)K
N̂k

(
XÛk

T̂−
k

, χ
T̂−
k
, T̂k,dy

)
. (5.13)

Branching outside the spine. If j = ∅, then the branching individual is not the spinal one,
and e = e′j = e′ . We follow the same conditioning than for the branching process, and

use the fact that on the event {j = ∅} the trait of the spinal individual is F̂k−1-measurable.
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Using the expression of the ψϕ-biased distribution K̂ of Ŷk, defined in (2.7), we get

E

 F
(
Ŷk
)
1{Jk=∅}1{Âk=ak}

ψϕ

(
Y
T̂k
, χ

T̂k
, T̂k

)
∣∣∣∣∣∣ F̂k−1, T̂k

 =

E

1{Âk=ak} 1{Jk=∅}

∫
X N̂k

F (y)

Γ̂nk

(
Y
T̂−
k
, Xuk

T̂−
k

, χ
T̂−
k
, T̂k

)Knk

(
XÛk

T̂−
k

, χ
T̂−
k
, T̂k,dy

)∣∣∣∣∣∣∣∣ F̂k−1, T̂k

 .

We then recall the distribution of Âk outside the spine, established in Dynamics 2.2 :

E
[
1{Âk=ak}1{Jk=∅}

∣∣F̂k−1, T̂k

]
=

Γ̂nk

(
Y
T̂−
k
, Xuk

T̂−
k

, χ
T̂−
k
, T̂k

)
ψϕ

(
Y
T̂−
k
, χ

T̂−
k
, T̂k

) Bnk

(
Xuk
T−
k

, χ
T̂−
k
, T̂k

)
τ̂tot

(
χ
T̂−
k
, T̂k

) .

This gives (5.13) on the event {j = ∅}.
Spine branching. We follow the same computations when j ̸= ∅, that corresponds to the

case when the branching individual is the spinal one, i.e uk = e′. In this case, the distribution

of Y
T̂k

now depends on the traits Ŷk. Thus conditioning on Ŷk and using the distribution of

the next spinal individual, defined in (2.9), we have

1{j ̸=∅}E

 F
(
Ŷk
)
1{Jk=j}1{Âk=ak}

ψϕ

(
Y
T̂k
, χ

T̂k
, T̂k

)
∣∣∣∣∣∣ F̂k−1, T̂k

 =

E

1{Âk=(e′,nk)} E

 F
(
Ŷk
)

∑N̂k
i=1 ψϕ

(
Ŷ ik, χT̂−

k
− δY

T̂−
k

+
∑N̂k

l=1 δŶl
k
, T̂k

)
∣∣∣∣∣∣∣ F̂k−1, T̂k, Âk


∣∣∣∣∣∣∣ F̂k−1, T̂k

 .
We then use the distribution K̂∗ of Ŷk, defined in (2.8) when the branching individual is the

spinal one, conditioning on Âk, defined in Dynamics 2.3.

1{Âk=(e′,nk)}E

 F
(
Ŷk
)

∑N̂k
i=1 ψϕ

(
Ŷ ik, χT̂−

k
− δY

T̂−
k

+
∑N̂k

l=1 δŶl
k
, T̂k

)
∣∣∣∣∣∣∣ F̂k−1, T̂k, Âk

 =

1{Âk=(e′,nk)}

∫
Xnk

F (y)

Γ̂∗
nk

(
Y
T̂−
k
, χ

T̂−
k
, T̂k

)Knk

(
Y
T̂−
k
, χ

T̂−
k
, T̂k,dy

)
.

Finally we use the distribution of Âk when the branching individual is the spinal one, defined
in Dynamics 2.3.

E
[
1{Âk=(e′,nk)}

∣∣F̂k−1, T̂k

]
=

Γ̂∗
nk

(
Y
T̂−
k
, χ

T̂−
k
, T̂k

)
ψϕ

(
Y
T̂−
k
, χ

T̂−
k
, T̂k

) Bnk

(
YT−

k
, χ

T̂−
k
, T̂k

)
τ̂tot

(
χ
T̂−
k
, T̂k

) .



22 CHARLES MEDOUS

This gives (5.13) on the event {j ̸= ∅}. Now, combining (5.12) and (5.13), we get

Ĉ
(
e′,
(
V̂i, 0 ≤ i ≤ k − 1

))
= 1{Ek−1=e′}E

[
exp

(∫ T̂k

T̂k−1

λ (Ys, χs, s) ds

)
I
(
T̂k − T̂k−1

)

×
Bnk

(
Xuk
T−
k

, χ
T̂−
k
, T̂k

)
τ̂tot

(
χ
T̂−
k
, T̂k

) ∫
Xnk

F (y)Knk

(
Xuk
T̂−
k

, χ
T̂−
k
, T̂k, dy

) ∣∣∣∣∣F̂k−1

]
.

Using that the time between two jump follows an inhomogeneous exponential law of instan-
taneous rate τ̂tot, we have

Ĉ
(
e′,
(
V̂i, 0 ≤ i ≤ k − 1

))
= 1{Ek−1=e′}

∫
R+

I(t) exp

(∫ T̂k

T̂k−1

λ (Ys, χs, s)− τ̂tot (Ys, χs, s) ds

)

×Bnk

(
Xuk
t+T̂k−1

, ν
t+T̂k−1

, t+ T̂k−1

)∫
Xnk

F (y)Knk

(
Xuk
t+T̂k−1

, ν
t+T̂k−1

, t+ T̂k−1,dy
)
dt.

(5.14)

Finally, using in (5.14) the fact that λ, defined in (5.3), is the difference of branching rates
between the branching process and the spine process, we get (5.11) and it concludes the
proof. □

Proof of Theorem 2.1. Let ψϕ ∈ D, t ≥ 0, and z̄ ∈ V. Let ((Et, χ̄t) , t ≥ 0) be the time-

inhomogeneous W-valued branching process of generators (L̂tψϕ
, t ≥ 0) defined in (2.5). Let

T̂Exp denote its explosion time and ((Yt, χt) , t ≥ 0) its projection on W. For every t < TExp,
there exists k ∈ N such that {Tk ≤ t < Tk+1} where Tk+1 = +∞ if there is no more jumps
after Tk. Thus we can write

Ez̄
[
1{TExp>t,G(t)̸=∅}H (Ut, (ν̄s, s ≤ t))

]
=
∑
k≥0

Ez̄
[
1{Tk≤t<Tk+1,G(t)̸=∅}H (Ut, (ν̄s, s ≤ t))

]
.

For every t ≥ 0, k ∈ N, every non-extinguished sequence a = (ai, 1 ≤ i ≤ k) ∈ Uk(z̄) with

ai = (ui, ni) and every e ∈ Gk (a), there exists a measurable non-negative function F t,ek,a on
k⊗
i=1

(R+ × U × N×X ni), such that

Ez̄
[
1{TExp>t,G(t)̸=∅}H (Ut, (ν̄s, s ≤ t))

]
=

∑
k≥0

∑
a∈Uk(z̄)

∑
e∈Gk(a)

Ez̄

[
E
[
1{Tk+1>t}|Fk

]
1{Tk≤t}F

t,e
k,a (Vi, 0 ≤ i ≤ k)

k∏
i=0

1{Ai=ai}

]
.

We apply Lemma 5.1 with the non-negative measurable function F defined for all sequence

(vi, 0 ≤ i ≤ k) ∈
k⊗
i=1

(R+ × U × N×X ni), where for all 0 ≤ i ≤ k, vi := (ti, ai, yi), by

F (vi, 0 ≤ i ≤ k) := P
(
Sk+1 > t− tk

∣∣∣∣ ⋂
0≤i≤k

{Vi = vi}
)
1tk≤tF

t,e
k,a (vi, 0 ≤ i ≤ k) ,

where Sk+1 is the random variable giving the (k + 1)-th inter-arrival time of jumps in the
original process. Note that Sk+1 follows the same probability law as Tk+1−Tk. We thus get,
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for all e ∈ Gk(a)

Ez̄
[
1{G(t)̸=∅}∩{TExp>t}H (Ut, (ν̄s, s ≤ t))

]
= ⟨z, ψϕ (·, z, 0)⟩

∑
k≥0

∑
a∈Uk(z̄)

∑
e∈Gk(a)

Ez̄
[
1{Ek=e}

× ξk
(
Ek,

(
V̂i, 0 ≤ i ≤ k

))
F
(
V̂i, 0 ≤ i ≤ k

) k∏
i=0

1{Âi=ai}

]
. (5.15)

Then, using that λ introduced in (5.3) verifies λ := τ̂tot − τ ,

P
(
Sk+1 > t− T̂k

∣∣∣∣ ⋂
0≤i≤k

{
V̂i = vi

})
1{T̂k≤t} = e

∫ t
T̂k
λ(Ys,χs,s)ds

e
−

∫ t
T̂k
τ̂tot(Ys,χs,s)ds

1{T̂k≤t}

= e
∫ t
T̂k
λ(Ys,χs,s)dsE

[
1{T̂k+1>t}|F̂k

]
1{T̂k≤t}.

We recall that on the event {T̂k+1 > t}, there is no jump in the interval (T̂k, t], thus, applying
Lemma 5.2 on this interval we get

ξk

(
Ek,

(
V̂i, 0 ≤ i ≤ k

))
P
(
Sk > t− T̂k

∣∣∣∣ ⋂
0≤i≤k

{
V̂i = vi

})
1{T̂k≤t} =

1

ψϕ (Yt, χt, t)
exp

(∫ t

0

Gψϕ (Ys, χs, s)
ψϕ (Ys, χs, s)

ds

)
E
[
1{T̂k≤t<T̂k+1}|F̂k

]
. (5.16)

On the event {T̂k ≤ t < T̂k+1}, Ek = E(t) almost surely, then using (5.15) and (5.16) gives

Ez̄
[
1{TExp>t,G(t)̸=∅}H (Ut, (ν̄s, s ≤ t))

]
= ⟨z, ψϕ (·, z)⟩

∑
k≥0

∑
a∈Uk(z̄)

∑
e∈Gk(a)

Ez̄
[
1{E(t)=e}

×
1{T̂k≤t<T̂k+1}

ψϕ (Yt, χt, t)
exp

(∫ t

0

Gψϕ (Ys, χs, s)
ψϕ (Ys, χs, s)

ds

)
F t,ek,a

(
V̂i, 0 ≤ i ≤ k

) k∏
i=0

1{Âi=ai}

]
.

Reconstructing the right-hand side and using the fact that the spine process does not extinct,
we have

Ez̄
[
1{TExp>t,G(t)̸=∅}H (Ut, (ν̄s, s ≤ t))

]
=

⟨z, ψϕ(·, z, 0)⟩Ez̄
[
1{T̂Exp>t}

pEt (χ̄t)

ψϕ (Yt, χt, t)
exp

(∫ t

0

Gψϕ (Ys, χs, s)
ψϕ (Ys, χs, s)

ds

)
H (Et, (χ̄s, s ≤ t))

]
,

that concludes the proof. □

5.3. Proofs of Section 3. In this section we derive the results on the limiting martingale
and a L logL criterion.

Proof of Proposition 3.1. Let ψϕ ∈ D ensuring Assumption B, we first show for all t ≥ 0,
the integrability of the random variable Wt(ψϕ) introduced in (3.1). As Assumption A is

satisfied, we can apply Corollary 2.5 for any t ≥ 0 to the positive function f on D([0, t],X×V),
such that for all u ∈ G(t),

f ((Xu
s , ν̄s), 0 ≤ s ≤ t) := exp

(
−
∫ t

0

Gψϕ (Xu
s , νs, s)

ψϕ (Xu
s , νs, s)

ds

)
.

Theorem 2.1 applied to the function f , ensures that for any initial condition z̄,

Ez̄

 ∑
u∈G(t)

exp

(
−
∫ t

0

Gψϕ (Xu
s , νs, s)

ψϕ (Xu
s , νs, s)

ds

)
ψϕ (X

u
t , νt, t)

 = ⟨z, ψϕ(·, z, 0)⟩. (5.17)
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This last identity guarantees the integrability of Wt(ψϕ).
Now, for all r, t ∈ R∗

+, such that t ≥ r, we decompose the population at time t according
to their ancestors at time r. We then have

Ez̄
[
Wt(ψϕ)

∣∣Fr] = ∑
v∈G(r)

exp

(
−
∫ r

0

Gψϕ (Xu
s , νs, s)

ψϕ (Xu
s , νs, s)

ds

)

× Ez̄

 ∑
u∈G(t), s.t v⪯u

exp

(
−
∫ t

r

Gψϕ (Xu
s , νs, s)

ψϕ (Xu
s , νs, s)

ds

)
ψϕ (X

u
t , νt, t)

∣∣∣∣∣Fr
 .

Now, in order to establish that the conditional expectation is equal to ψϕ (X
v
r , νr) for all

v ∈ G(r), we apply Corollary 2.5 to the positive functions fv on U × D([0, t],V), such that

fv (u, (ν̄s, 0 ≤ s ≤ t)) := 1v⪯u exp

(
−
∫ t

r

Gψϕ (Xu
s , νs, s)

ψϕ (Xu
s , νs, s)

ds

)
and use the Markov property. We get that for all v ∈ G(r)

E

 ∑
u∈G(t),
s.t v⪯u

exp

(
−
∫ t

r

Gψϕ (Xu
s , νs, s)

ψϕ (Xu
s , νs, s)

ds

)
ψϕ (X

u
t , νt, t)

∣∣∣∣∣Fr
 =

⟨νr, ψϕ(·, νr, r)⟩E
[
1{v⪯Et}|v ∈ G(r)

]
.

Finally using the new spinal individual distribution (2.9), we get

E
[
Wt(ψϕ)

∣∣Fr] = ∑
v∈G(r)

exp

(
−
∫ r

0

Gψϕ (Xu
s , νs, s)

ψϕ (Xu
s , νs, s)

ds

)
ψϕ (X

v
r , νr, r) .

That concludes the proof. □

To establish Theorem 3.2, we need the following lemma from measure theory.

Lemma 5.3. Let (Ω,F , µ) be a probability space and let µ̂ be a finite non negative mea-

sure on Ω. Let (Ft, 0 ≤ t) be increasing σ-fields such that σ

(⋃
0≤t
Ft

)
= F , and µ̂t, µt be

the restrictions of µ̂ and µ to Ft. Suppose that there exists a non-negative Ft-martingale
(Wt, 0 ≤ t) such that for all t ≥ 0

dµ̂t
dµt

=Wt.

Then, denoting W := lim supt→+∞Wt, we have the following dichotomy:

(1)
∫
Wdµ =

∫
W0dµ if and only if W < +∞ µ̂-a.s.

(2) W = 0 µ-a.s. if and only if W = +∞ µ̂-a.s.

Proof. We refer to Athreya [2] for the proof of this result in discrete time. The extension
to continuous time changes of measure uses Kolmogorov’s extension theorem, see Durrett
Appendix A [20] for further details. □

We now state the following lemma, that is the dual proposition of Theorem 3.2.

Lemma 5.4. Under Assumption D, let (Ŵt, t ≤ T̂Exp) be the F̂t-adapted process such that,

for all t ≤ T̂Exp
Ŵt :=

∑
u∈Ĝ(t)

e−
∫ t
0 B(Xu

s ,χs,s)(m(Xu
s ,χs,s)−1)ds, (5.18)
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where Ĝ(t) is the set of labels of individuals living in the spinal population at time t.

If
∑

k≥1 k log(k)pk < +∞ then T̂Exp =∞ a.s. and lim supt→+∞ Ŵt < +∞ a.s.

if
∑

k≥1 k log(k)pk = +∞, then lim supt→+∞ Ŵt = +∞ a.s.

The proof of this lemma is technical and is given in Appendix C. It involves the decom-
position of the spine process as an immigration process along a line, as well as stochastic
calculus tools.

Proof of Theorem 3.2. Theorem 2.1 applied with ψϕ ≡ 1 exhibits the martingale Wt as a
Radon-Nikodym derivative. We can thus apply Lemma 5.3 to the spinal change of measure.
The martingale Wt and its limit W, introduced in (3.2), verify the following dichotomy:

(1) Ez̄ [W] = Ez̄ [W0] if and only if lim supt→+∞ Ŵt < +∞ a.s.

(2) W = 0 a.s. if and only if lim supt→+∞ Ŵt = +∞ a.s.

We use (5.17) with ψϕ ≡ 1 to obtain that

Ez̄ [W0] = ⟨ν0, 1⟩,

and a direct application of Lemma 5.4 concludes the proof. □

Appendix A. Proof of Proposition 2.4

The spine process ((Et, χ̄t) , t ≥ 0) defined by Dynamics 2.2 and 2.3 can be rigorously
expressed as the solution of a SDE driven by a multivariate point measure.

We introduce θ̂ :=
(
θ̂i, i ∈ N∗

)
and θ̂

∗
:=
(
θ̂∗i , i ∈ N∗

)
two vectors of independent uniform

random variables on [0, 1]. The random vectors giving the traits of the offspring of size n

are denoted
(
F̂i,n

(
x, xe, χ, t, θ̂i

)
, i ≤ n

)
outside the spine and

(
F̂ ∗
i,n

(
xe, χ, t, θ̂

∗
i

)
, i ≤ n

)
for

the spinal individual of trait xe.

Let Ê = U × R+ × N × [0, 1]N and Ê∗ = R+ × N × [0, 1]N. Let Q̂ (ds, du,dr, dk, dθ)

and Q̂∗ (ds, dr, dk, dθ, dj) be two independent Poisson point measures on R+ × Ê and

R+×Ê∗ with respective intensity ds(
∑

v∈U δv(du))dr(
∑

n∈N δn(dk))dθ̂ outside the spine and

dsdr(
∑

n∈N δn(dk))dθ̂
∗(
∑

n∈N δn(dj)) for the spine. We denote by
(
F̂t, t ≥ 0

)
the canonical

filtration associated with these Poisson point measures. The F̂t-adapted set of labels of the
living individuals in the population outside the spine is denoted G̊(t).

Let (e, z̄) ∈ W. Under Assumptions A and C, the process ((Et, χ̄t) , t ≥ 0) is the unique

F̂t-adapted solution, for every function g ∈ C1 (U × U × X ,R) and t ≥ 0, of the following
equation

⟨χ̄t, g (Et, ·)⟩ : = ⟨z̄, g(e, ·)⟩+
∫ t

0

∫
U×X

∂g

∂x
(Es, u, x) · µ (x, χs, s) χ̄s(du,dx)ds

+

∫
[0,t]×Ê

[
k∑
i=1

g
(
Es−, ui, F̂i,k

(
Xu
s−, Ys−, χs−, s, θ̂i

))
− g

(
Es−, u,Xu

s−
)]

× 1{
u∈G̊

s−
}1{

r≤B̂k(X
u

s−,Ys−,χs−,s)
}Q̂(ds, du,dr, dk,dθ̂)

+

∫
[0,t]×Ê∗

[
k∑
i=1

g
(
Es−j, Es−j, F̂ ∗

i,k

(
Ys−, χs−, s, θ̂∗i

))
− g

(
Es−, Es−, Ys−

)]
× 1{

r≤B̂∗
k(Ys−,χs−,s)

}Q̂∗
(
ds, dr, dk, dθ̂

∗
,dj
)
. (A.1)



26 CHARLES MEDOUS

This assertion is shown following the same computations than for proof of Proposition 1.1
and [45], using the positivity of the ψϕ function. Assumption C leads to the same bound as
Assumption A.3 in the case of a spine process.

Now we establish the expression of the generator of the marginal spine process. We recall
the notations ν+(x,y) := ν +

∑n
i=1 δyi − δx, ρ := (x, ν, t) and ρe := (xe, ν, t) introduced

in (2.6). Taking expectations of (A.1) for the marginal process on W, we derive the non-
homogeneous infinitesimal operator of ((Yt, χt), t ≥ 0), following steps in [24]. It is given by

the operator L̂ψϕ
, defined for every Ff ∈ D, introduced in (2.1), and (xe, ν, t) ∈W×R+, by

L̂ψϕ
Ff (xe, ν, t) : = GFf (xe, ν, t)

+
∑
n≥0

{
B̂∗
n(ρe)

∫
Xn

[∑n
i=1 Ffψϕ

(
yi, ν+(xe,y), t

)∑n
j=1 ψϕ (y

j , ν+(xe,y), t)
− Ff (xe, ν, t)

]
K̂∗
n (ρe,dy)

+

∫
X
B̂n(ρ)

∫
Xn

[
Ff (xe, ν+(x,y), t)− Ff (xe, ν, t)

]
K̂n (ρ, dy) ν(dx)

− B̂n(ρe)
∫
Xn

[
Ff (xe, ν+(xe,y))− Ff (xe, ν)

]
K̂n (ρe,dy)

}
.

The first line gives the dynamical evolution between branching events. The second is related
to spinal branching events and the choice of a new spinal individual among the offspring pop-
ulation. The last two lines describe the branching events outside the spine, for all individuals
but the spinal one. Using that

G [ψϕFf ]

ψϕ
(·) =

Gψϕ
ψϕ

Ff (·) +GFf (·) ,

we get
G [ψϕFf ]
ψϕ

(·)−
Gψϕ
ψϕ

Ff (·) = GFf (·) +
∑
n≥0

B (·)
ψϕ (·)

T̂n (·) ,

where the jump part T̂n is defined for all (xe, ν, t) ∈W× R+ by

T̂n(ρe) := pn(ρe)

∫
Xn

n∑
i=1

ψϕFf (yi, ν+(xe,y), t)− ψϕFf (xe, ν+(xe,y), t)Kn (ρe, dy)

+

∫
X
pn(ρ)

∫
Xn

[ψϕFf (xe, ν+(x,y), t)− ψϕFf (xe, ν, t)]Kn (ρ, dy) ν(dx)

− pn(ρe)
∫
Xn

[
n∑
i=1

ψϕ (yi, ν+(xe,y), t)− ψϕ(xe, ν+(xe,y), t)

]
Ff (xe, ν, t)Kn (ρe, dy)

−
∫
X
pn(ρ)

∫
Xn

[ψϕ (xe, ν+(x,y), t)− ψϕ(xe, ν, t)]Ff (xe, ν, t)Kn (ρ, dy) ν(dx). (A.2)

Rearranging the terms in (A.2) we get

T̂n(ρe) := pn(ρe)

∫
Xn

n∑
i=1

ψϕ (yi, ν+(xe,y)) [Ff (yi, ν+(xe,y))− Ff (xe, ν)]Kn (ρe,dy)

+

∫
X
pn(ρ)

∫
Xn

[Ff (xe, ν+(x,y))− Ff (xe, ν)]ψϕ (xe, ν+(x,y))Kn (ρ, dy) ν(dx)

− pn(ρe)
∫
Xn

[Ff (xe, ν+(xe,y))− Ff (xe, ν)]ψϕ (xe, ν+(xe,y))Kn (ρe,dy) .

We conclude the proof using the branching rates introduced in Dynamics 2.2 and 2.3.
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Appendix B. Proof of Lemma 5.2

The recursive equality for ξn derives from the fundamental theorem of calculus. Let n ≥ 1,

ξn

(
En,

(
V̂i, 0 ≤ i ≤ n

))
ξn−1

(
En−1,

(
V̂i, 0 ≤ i ≤ n− 1

)) =
ψϕ

(
Y
T̂n−1

, χ
T̂n−1

)
ψϕ

(
Y
T̂n
, χ

T̂n

) exp

(∫ T̂n

T̂n−1

Gψϕ (Ys, χs)
ψϕ (Ys, χs)

ds

)
.

We remark that G and G introduced in (2.3) and (2.4), verify for all (xe, ν, t) ∈W× R+

[G −G]ψϕ(xe, ν, t)
ψϕ(xe, ν, t)

= τ̂tot(xe, ν, t)−
∫
X
B(x, ν, t)ν(dx),

where τ̂tot is defined in (2.10). Then, using derivative chain rule we get that

G (ln ◦ψϕ) (xe, ν, t) =
Gψϕ(xe, ν, t)

ψϕ(xe, ν, t)
.

Between successive branching events, the evolution of the process is purely deterministic and
we can apply the fundamental theorem of calculus:∫ T̂n

T̂n−1

G (ln ◦ψϕ) (Ys, χs, s) ds = ln
(
ψϕ

(
Y
T̂n−, χT̂n−, T̂n

))
− ln

(
ψϕ

(
Y
T̂n−1

, χ
T̂n−1

, T̂n−1

))
.

We thus have

exp

(∫ T̂n

T̂n−1

Gψϕ (Ys, χs, s)
ψϕ (Ys, χs, s)

ds

)
=

ψϕ

(
Y
T̂n−, χT̂n−, T̂n

)
ψϕ

(
Y
T̂n−1

, χ
T̂n−1

, T̂n−1

) exp

(∫ T̂n

T̂n−1

λ (Ys, χs, s) ds

)
,

that concludes the proof.

Appendix C. Proof of Lemma 5.4

To establish this lemma, we follow the conceptual decomposition of the spine process, first
introduced by Lyons, Pemantle and Peres [44]. In the following, ψϕ ≡ 1. We consider the
process (˚̄χt, t ≥ 0) describing all the individuals outside the spine and its associated marginal
process χ̊t, defined for all t ≥ 0 by:

˚̄χt := χ̄t − δ(Et,Yt), and χ̊t := χt − δYt .

The random set G̊(t) of labels of individuals outside the spine living at time t is defined by

G̊(t) =

{
u ∈ U\{Et} :

∫
U×X

1{v=u}χ̄t(dv,dx) > 0

}
.

We also introduce for all t ≥ 0,

W̊t :=
∑
u∈G̊(t)

exp

(
−
∫ t

0
Λ (Xu

s , χ̊s + δYs , s) ds

)
,

where for all (x, ν, t) ∈W× R+, Λ(x, ν, t) := B(x, ν, t)(m(x, ν, t)− 1).
We remark that, under Assumption D, for all t ≥ 0

W̊t ≤ Ŵt ≤ W̊t + 1, (C.1)

where Ŵt is the process introduced in (5.18).
We first establish the non-degenerate case, and suppose that

∑
k≥1 k log(k)pk < +∞. We

show that the process (W̊t, t ≥ 0) does not explode and is almost surely bounded at infinity,
following proof of Proposition 5 in [3]. To this end, we express it as a solution of a SDE, where
we distinguish the contribution of the spinal individual from that of the other individuals.
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Let Ê = U ×R+×N× [0, 1]N and Ê∗ = R+×N× [0, 1]N×N. Let Q̂ (ds, du,dr, dk,dθ) and

Q̂∗ (ds, dr, dk,dθ, dj) be two independent Poisson point measures on R+ × Ê and R+ × Ê∗

with respective intensity dsCU (du)drCN(dk)dθ̂ and dsCU (du)drCN(dk)dθ̂
∗
CN(dj), where

CU (du) and CN(dk) denote the counting measures respectively on U and N. We denote by(
F̂∗
t , t ≥ 0

)
the canonical filtration associated with Q̂∗. We introduce θ̂ :=

(
θ̂i, i ∈ N∗

)
and θ̂

∗
:=
(
θ̂∗i , i ∈ N∗

)
two vectors of independent uniform random variables on [0, 1]. The

random vectors giving the traits of the offspring are denoted
(
F̂i,n

(
x, χ, t, θ̂i

)
, i ≤ n

)
outside

the spine and
(
F̂ ∗
i,n

(
x, χ, t, θ̂∗i

)
, i ≤ n

)
for the spinal individual.

We localize the process (W̊t, t ≥ 0) to avoid explosion. Let Tm := inf{t ≥ 0 : Card(G̊(t)) ≥
m} be the first time at which the population outside the spine includes more than m individ-

uals for m ≥ 1. We remark that the branching events impact the process (W̊t, t ≤ Tm) only
through the change in the number of individuals. Furthermore, as ψϕ ≡ 1, every individual

in G̊(t) behaves like the individuals in the original branching process. Then, for all t ≤ Tm

W̊t = W̊0 −
∫ t

0

∑
u∈G̊(s)

Λ (Xu
s , χs, s) e

−
∫ s
0 Λ(Xu

w,χw,w)dwds

+

∫ t

0

∫
Ê
1{u∈G̊(s)}1

{
r≤Bk

(
Xu

s−,χs−,s
)}(k − 1)e−

∫ s
0 Λ(Xu

w,χw,w)dwQ̂
(
ds, du,dr, dk, dθ̂

)
+

∫ t

0

∫
Ê∗

1{
r≤kBk

(
Xu

s−,χs−,s
)}(k − 1)e−

∫ s
0 Λ(Yw,χw,w)dwQ̂∗

(
ds, dr, dk, dθ̂,dj

)
.

The first line describes the dynamics of the function between branching events. The sec-
ond line describes the branching events outside the spine. The last one is associated with
the contribution of the spinal individual that is here a source of immigration, where the
individual chosen to be the new spinal individual is removed from the process. Introducing

Q̃
(
ds, du,dr, dk, dθ̂

)
the compensated measure of Q̂

(
ds, du,dr, dk, dθ̂

)
, we get

W̊t = W̊0 +

∫ t

0

∫
Ê
1{u∈G̊(s)}1

{
r≤Bk

(
Xu

s−,χs−,s
)}(k − 1)e−

∫ s
0 Λ(Xu

w,χw,w)dwQ̃
(
ds, du,dr, dk, dθ̂

)
+

∫ t

0

∫
Ê∗

1{
r≤kBk

(
Xu

s−,χs−,s
)}(k − 1)e−

∫ s
0 Λ(Yw,χw,w)dwQ̂∗

(
ds, dr, dk, dθ̂

)
.

Remark that this last equality only holds for constant ψϕ. Then, conditionally on F̂∗
∞,

(W̊t∧Tm , t ≥ 0) is a submartingale and we have, for all t ≤ Tm

Ez̄
[
W̊t

∣∣F̂∗
t

]
= Ez̄

[
W̊0

]
+

∫ t

0

∫
Ê∗

1{
r≤kBk

(
Xu

s−,χs−,s
)}(k−1)e− ∫ s

0 Λ(Yw,χw,w)dwQ̂∗
(
ds, dr, dk, dθ̂

)
.

(C.2)

Using that Ez̄
[
W̊0

]
= ⟨z, 1⟩ − 1, along with bounds in Assumption D and in (C.2), we get

Ez̄
[
W̊t∧Tm

∣∣F̂∗
∞

]
≤ ⟨z, 1⟩+

∫ t

0

∫
Ê∗

1{r≤kBp̄k}(k − 1)e−csQ̂∗
(
ds, dr, dk, dθ̂

)
,

where B = supρ∈W×R+
B(ρ) < +∞. Then there exist two independent families of ran-

dom variables
(
Si, i ≥ 0

)
and

(
N i, i ≥ 0

)
, where the Si are independent exponential ran-

dom variables of parameter B, and the N i are independent random variables distributed as



A SPINAL CONSTRUCTION FOR GENERAL TYPE-SPACE POPULATIONS WITH INTERACTIONS 29

P
(
N i = k − 1

)
= kp̄k/(

∑
k≥0 kp̄k), such that

Ez̄
[
W̊t∧Tm

∣∣F̂∗
∞

]
≤ ⟨z, 1⟩+

∑
i≥0

N ie
−cT i ,

where T i :=
∑i

k=0 Sk. Note that the assumption
∑

k≥1 k log(k)pk < +∞ ensures that

the law of the random variables N i is well defined. The conclusion follows the steps from
proof of Proposition 5 in [3]: using the Borel Cantelli lemma,

∑
k≥1 k log(k)pk < +∞,

ensures that lim supi→∞ ln(N i)/i = 0 a.s.. Thus the series
(∑

i≥0N ie
−cT i

)
is almost

surely finite. Letting m → ∞ and using the upper bound of Assumption D, we get that

Tm → ∞ almost surely. By Fatou’s lemma, we then have supt≥0 Ez̄
[
W̊t

∣∣F̂∗
∞

]
< ∞. The

quenched submartingale (W̊t∧Tm , t ≥ 0) converges a.s. to a finite random variable. Thus

lim supt→+∞ W̊t < +∞ almost surely and we conclude the proof using (C.1).
We handle now the degenerated case, and suppose that

∑
k≥1 k log(k)pk = +∞. We denote

(T̂ ∗
n , n ≥ 0) the sequence of jumps times of the spinal individual, given by the measure Q̂∗,

and (N̂∗
n, n ≥ 0) the sequence giving the number of children at each branching event of the

spine. For all n ≥ 0, we remark that

W̊
T̂ ∗
n
= W̊

T̂ ∗
n−

+
(
N̂∗
n − 1

)
exp

(
−
∫ T̂ ∗

n

0
Λ (Ys, χs, s) ds

)
.

Using that W̊· is almost surely non-negative, and using the upper bound in Assumption D,
we obtain

W̊
T̂ ∗
n
≥
(
N̂∗
n − 1

)
exp

(
−CT̂ ∗

n

)
. (C.3)

Assumption C with ψϕ ≡ 1 implies that for all ρ ∈ X ×V×R+,
∑

k≥1 kpk(ρ) < +∞. Thus∑
k≥1 kpk < +∞ and we introduce N the random variable of law (kp

k
/(
∑

k≥1 kpk), k ≥ 0).

The criterion
∑

k≥1 k log(k)pk = +∞ thus ensures that for all K > 0

E [log(N)]

K
= +∞.

Thus, we get for all K > 0,∑
n≥1

P

(
log(N̂∗

n)

n
≥ K

∣∣∣F̂∗
T̂ ∗
n

)
≥
∑
n≥1

P
(
log(N)

K
≥ n

)
= +∞.

We can apply the conditional second Borel-Cantelli lemma, see Theorem 4.3.4 in [20]. For
all K > 0,

lim sup
n→∞

N̂∗
ne

−Kn = +∞ a.s. (C.4)

Then using Markov’s inequality we get

P
(
T̂ ∗
n ≥ nK

)
≤

E
[∑n

i=1 T̂
∗
i − T̂ ∗

i−1

]
nK

.

The upper bound in Assumption D ensures that the rate of every inter-arrival time of jumps
is lower than B. Thus we obtain for all K > 0,

P
(
T̂ ∗
n ≥ nK

)
≤ B

K
. (C.5)

Thus, combining (C.4) and (C.5) into (C.3), we get that lim supn→∞ W̊T̂ ∗
n
= +∞ almost

surely. Notice that Assumption D ensures that the jumps times (T̂ ∗
n , n ≥ 0) almost surely

degenerate at infinity, thus lim supt→∞ W̊t = +∞ and relation (C.1) concludes the proof.
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Appendix D. Algorithmic construction

We propose the efficient algorithm that generates trajectories of the spine process con-
structed with the ψϕ function introduced in (4.1). We introduce F−1

div , F
−1
loss and F ∗−1

loss the

generalized inverse of the cumulative distribution functions of the random variables Λ̂, Θ̂ and
Θ, defined in (4.2) and (4.3). Using the deterministic evolution of the traits and knowing
the branching events, it is easy to recover the traits at all time of the individuals.

We first generate a realization of a Poisson point process of intensity 1 on the interval
[t1, t2], starting from n roots following classical algorithms [46]. It returns a list Tdiv =
[t1, T1, T2, · · · ] of increasing times, a list Idiv = [i1, i2, · · · ] containing the numbering of the
individuals that branched at these times, a list Ldiv = [λ1, λ2, · · · ] of fractions of mass at
birth, and the numbering E of the spinal individual. The numbering choice is arbitrary
and we chose to add every new individuals at the end of the hidden list. This computation
is handled by the following function Tree, where i0 is the initial numbering of the spinal
individual.

function (Tdiv, Idiv, E, Ldiv) = Tree(t1, t2, n, i0, F
−1
div )

(Tdiv, N) = ([t1], n)
% Step 1; generating the division times
while Tdiv[end] < t2 do

Generate u ∼ uniform(0, 1)
append Tdiv[end]− ln(u)/N to Tdiv ▷ Branching time
N ← N + 1 ▷ New population size

end while
if Tdiv[end] > t2 then pop Tdiv
% Step 2; generating the fractions at birth and choosing the spinal individual
(Idiv, E) = ([0, · · · , 0], i0) ▷ Idiv of size length(Tdiv)
for i ∈ {1, · · · , length(Tdiv)− 1} do

Generate I ∼ uniform({1, · · · , n+ i− 1}) ▷ Branching individual
Idiv[i]← I
Generate v, q ∼ uniform(0, 1)
append F−1

div (u) to Ldiv ▷ Fraction λ at birth

if E = i and p > F−1
div (u) then E ← n+ i ▷ New spinal individual position

end for
end function

From the list Idiv, it is possible to retrieve the lineage of all individuals using any chosen
labeling method. In our case we used the Ulam-Harris-Neveu notations and we propose the
following algorithm to generate the list U of labels from the list I previously obtained and
the initial size of the population n.

function U = Labels(Idiv, n)
Ndiv = length(Idiv)
U = [1, · · · , n, 0, · · · , 0] ▷ U is of size n+Ndiv

for i ∈ {1, · · · , Ndiv} do
(U [Idiv[i]], U [n+ i]])← (U [Idiv[i]]1, U [Idiv[i]]2) ▷ U [Idiv[i]] ∈ U

end for
U ← QuickSort(U) ▷ sorting algorithm in O((Ndiv + n) log(Ndiv + n))

end function
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The last line of this algorithm lists the labels of individuals in increasing order, grouping
siblings together. The label of the spinal individual is thus U [E]. To compute a trajectory
of the spinal process on the interval [0, T ], we need to establish the time of jumps and their
outcomes. Using the deterministic evolution of the traits and knowing the branching events,
it is easy to recover the traits at all time for the individuals. Furthermore, depending on
the statistics that one want to evaluate on the system, it might not be necessary to compute
the traits of all individuals. For that reason we propose an algorithmic construction of a
trajectory of the spinal process, returning the list of jumps times, events and labels of the
individuals living at time T . This algorithm also distinguishes the spinal individual in the
population by returning the label of the spinal individual in the living ones at time T . To
simplify we will denote PPP[t1,t2](c(·)) the list of times given by a Poisson point process of
intensity c(·) on the interval [t1, t2], computed using Lewis’ thinning algorithm [39].

Algorithm 1 Simulation algorithm of the jumps times until time T

Input: model parameters: d, F−1
div , F

−1
loss, F

∗−1
loss , T , initial condition: z = [x1, · · · , xn].

Output: (Tdiv, Idiv, E, Ldiv, Tloss, T
∗
loss, Iloss, Lloss, L

∗
loss)

% Initializing the spine
Generate u ∼uniform(0, 1)
i0 = 1
while

∑i0
i=1 x

i/(
∑n

i=1 x
i) < u do

i0 ← i0 + 1
end while
% Generating binary spinal tree on division events
(Tdiv, Idiv, E, Ldiv) = Tree(0, T, n, i0, F

−1
div )

% Generating loss events for the spine and individuals outside the spine
(Tloss, T

∗
loss, Iloss) = ([·], [·], [·])

for i ∈ {1, · · · , length(Tdiv)} do
% For the individuals outside the spine
Generate P ∼ PPP[

Tdiv[i−1],Tdiv[i]
](Kloss(n+ i− 1)2d(·)) ▷ Times of loss events

append P to Tloss

Generate Iu ∼
(
uniform ({1, · · · , n+ i− 1})length(Tloss[i])

)
▷ Distributing loss events

append Iu to Iloss
% For the spine
Generate P ∗ ∼ PPP[

Tdiv[i−1],Tdiv[i]
]((n+ i− 1)d(·)) ▷ Times of loss events

append P ∗ to T ∗
loss

end for
Generate Lu ∼

(
uniform(0, 1)length(Tloss)

)
▷ Generating fractions lost

Lloss = F−1
loss(Lu)

Generate L∗
u ∼

(
uniform(0, 1)length(T

∗
loss)
)

▷ Generating fractions lost

L∗
loss = F ∗−1

loss (L
∗
u)

The output tuple (Tdiv, Idiv, E, Ldiv, Tloss, T
∗
loss, Iloss, Lloss, L

∗
loss) is the minimal information

needed to construct the spinal process introduced in Section 4. The list U of labels of the
individuals can be computed with the function Labels(Idiv, n). Notice that a lot of operations
can be parallelized in this algorithm, unlike in the classical Lewis’ algorithm. Moreover,
depending on the statistic that one wants to compute on this process, the algorithm can be
further simplified. For example, if one takes interest in the total biomass of the population,
the indexes of the individuals that branched are not necessary.
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