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1 Introduction

Putting aside the possibility being observationally misled by a theory of modified Newtonian
dynamics [1–6], the microscopic nature of the cosmic fluid labelled dark matter (DM) is an
open question. One possibility is for all of the DM to be made up of primordial black holes
(PBHs) [7–9]. In this paper, we adopt the standard notation of denoting the PBH-to-DM
density ratio, and assume throughout

fPBH ≡ ρPBH

ρDM
= 1. (1.1)

Observationally, this is allowed for approximately monochromatic PBH distributions with
mass in the range [10],

10−16M⊙ ≲ MPBH ≲ 10−10M⊙. (1.2)
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Here the lower limit comes from the would-be-flux of particles coming from Hawking evap-
oration — which would have altered the CMB [11, 12], produced too much extragalactic
background light [13–15], been detected by Voyager [16] or SPI/INTEGRAL [17–19] — and
the upper limit comes from microlensing observations [20].

In order for PBHs to be produced in the early universe, physics beyond the standard model
(SM) of particles and cosmology is required. One possibility is for a feature in the inflaton
potential to give an enhancement in the amplitude of overdensities at small scales [21, 22].
When the overdensities re-enter the Hubble horizon, these will collapse into PBHs, provided
the density contrast is sufficiently large for the given equation-of-state and shape of the
curvature power spectrum [23–27, 27–33]. As the evidence for inflation is rather compelling

— albeit circumstantial — this possibility has garnered a good deal of attention. In such
scenarios, gravitational waves (GWs) are produced at second order in perturbation theory,
when the enhanced curvature perturbations at small scales re-enter the Hubble horizon. Such
GWs may be detected at future interferometers [34–39].

An alternative is for the overdensities which collapse into PBHs to be produced at a later
stage in the evolution of the universe. This could occur if there was a sufficiently strong first-
order phase transition (PT) between the end of slow roll inflation and big bang nucleosynthesis.
This possibility has also been the topic of a number of papers which have appeared in the
last four decades, albeit more sporadically than those regarding the inflation scenario, and a
number of mechanisms allowing for PBH formation during a PT have been identified [40–57].

Among the PT mechanisms that trigger PBH formation, the formation of large false
vacuum remnants from stochastically late-nucleated patches in supercooled phase transitions
stands as an intriguing possibility [42, 43, 47, 48, 52–57]. This is an unavoidable process if
sufficiently strong PTs take place. The remnants lead to Hubble sized overdensities being
present in the radiation following post-PT reheating, most closely emulating the inflation
mechanism. The concurrent production of smaller PBHs has also recently been considered
in [55], using a Hoop conjecture criterion, but the spectrum remains relatively peaked.1

The reheating following bubble percolation in the PT leads to an initially inhomogenous
state, not modelled in General Relativistic numerical simulations of PBH formation [24–
27, 27–32], but the large number of bubbles present and the fact that an O(1) overdensity
is achieved, leads us to assume that collapse is rather plausible. Therefore, for the scope
of this paper, we operate under the assumption that this mechanism functions as expected,
along the lines of [47, 48, 52–54, 56, 57]. Nevertheless, we warn the reader that the collapse
criterion in this scenario, which will necessarily feature a certain level of anisotropy, turbulent
inhomogeneity, non-sphericity, and initial velocity vectors for the radiation fluid differing
from the inflationary overdensity scenario, is far from certain.

Strong first order PTs also produce a stochastic background of GWs [64, 65]. The
production of the PBHs in the PT will lead to GWs from the bubble collisions, and these
GWs are observable in upcoming interferometers, as we explain next using a simple argument.
In the rest of the subsequent paper we provide a more detailed calculation.

1For PBHs produced from PTs during or at the end of inflation see [58–63].
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2 A simple argument

In the delayed patch mechanism, the mass of the PBH is set by the energy contained inside
a Hubble volume during the PT,

MPBH ∼ M3
Pl

T 2
RH

, (2.1)

where MPl ∼ 1019 GeV is the Planck mass, and TRH is the reheating temperature following
the completion of the PT (we assume rapid reheating). The observationally allowed mass
window for which fPBH = 1 is possible, eq. (1.2), constrains the reheating temperature to
lie between [56]

10 TeV ≲ TRH ≲ 104 TeV. (2.2)

The abundance is controlled by the time the PT takes to complete compared to the Hubble
rate. To achieve an abundance of fPBH = 1, we require the inverse timescale of the transition
to be [56],

β ≡ 1
Γbub

dΓbub
dt

≈ 8H, (2.3)

where Γbub is the bubble nucleation rate per unit volume and H is the Hubble rate during
the PT.

The amplitude of GWs from bubble collisions during the PT scales as ∝ R2 ∼ v2
w/β2,

where R is the bubble radius and vw is the wall velocity. For the PTs of interest here, it
is a good approximation to set vw ≃ 1, and we do so throughout the rest of this paper.
The precise amplitude and spectral shape of the GWs has been addressed in a number of
works [66–77]. In our calculations we shall use the recent determinations, relevant for our
type of PTs, in which the peak amplitude redshifted to today is [73, 75, 77]

ΩGW ∼ 10−6
(

H

β

)2
. (2.4)

Said GW estimates still feature uncertainties for the very strong PTs we will be interested in,
due to the expansion of the universe during the PT itself, see [78, 79]. So in this regard our
results should be considered preliminary, albeit promising, until the GW predictions can be
further refined. The peak frequency of the GW signal is similarly set by the inverse bubble
radius at the collision time, which is then redshifted to today,

fpeak ∼ 1 mHz
(

β

H

)(
TRH

100 TeV

)
. (2.5)

From the above, we see that in such a fPBH = 1 from a PT scenario, we will have a peak
amplitude ΩGW ∼ 10−8, i.e. well above stochastic astrophysical foregrounds, somewhere
in the frequency range 10−3 Hz ≲ fpeak ≲ 1 Hz. The GWs at lower peak frequencies are
detectable by LISA [80]. Those at higher peak frequencies are similarly detectable by the
Einstein Telescope (ET) [81]. A mid-frequency interferometer such as BDECIGO [82] would
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be sensitive to the entire allowed PBH mass range and could in any case help confirm and
characterise the signal.

Similar conclusions hold if we replace a detector with a variant of broadly similar
equivalence, such as ET with Cosmic Explorer [83] or BDECIGO with AEDGE [84]. Note
we consider only the GWs from the bubble wall collisions, the calculation and addition of
GWs sourced from the enhanced curvature perturbations at small scales in the context of
the PT mechanism [85], is left for future work.

The rest of the paper is dedicated to calculating the PBH production and GW signal
within a simple beyond the SM scenario, motivated by neutrino masses and leptogenesis, for
which the PBHs will act as a DM candidate. We will scan over the parameters giving MPBH

in the allowed window. The model we choose is a classically scale invariant, gauged B − L,
extension of the SM. Such close-to-conformal models can provide the necessary supercooled
PTs [86–88]. Even though fine-tuning is required to get the cosmological constant close-to-zero
today, this seems to be the case almost generically when dealing with the vacuum energy
density in a cosmological context. We therefore put questions of fine-tuning aside, which
may anyway similarly be present in other models triggering PBH formation, and simply
explore the scenario of achieving the observed ρDM.

We find it beneficial to conduct an explicit calculation within the aforementioned beyond
the SM physics scenario. The calculation in such a model serves to illuminate several facets
of the subject matter. For instance, many previous studies (e.g. [47, 56]) assume a model
independent approximation for the bubble nucleation rate

Γbub(t) = H4(tn)eβ(t−tn), (2.6)

where tn is the bubble nucleation time, by definition when Γbub = H4, and β acts as the
coefficient of the first order Taylor approximation of the full nucleation rate. One may wonder,
however, whether the second and possibly higher derivatives will effectively play a role in
setting fPBH, because the probability of a Hubble patch collapse is very sensitive to the precise
behaviour of Γbub. Nevertheless, our results below show the approximate form yields accurate
predictions for the required β, at least in close-to-conformal potentials. Thus confirming
the applicability of the GW signal based on the requirements on β for achieving fPBH = 1,
as outlined in our discussion around eqs. (2.1)–(2.5).

Let us now also mention some work which previously headed along this path, but with
different overall scope, e.g. [47, 48, 53, 89, 90].2 Indeed, already in 1984, Witten was discussing
the concomitant aspects of a strong QCD phase transition, GWs, production of PBHs, and
future pulsar timing array measurements [64]. Compared to the aforementioned papers, we
provide a thorough scan over the expected PBH mass range coming from the PT, giving a
more detailed picture of the expected GW signal. We also further develop the late nucleating
patch formalism [47, 56], showing the calculation can be recast from using time as a variable
to a conveniently chosen temperature, here that of the false vacuum plasma.

2As this paper was in the final stages of preparation, an analytic approach to estimating the PT parameters,
GW and PBH production, partly in the context of the B − L model, was presented in [57].
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Our focus here is on fPBH = 1 which results in a scale of new physics beyond collider
reach. The interplay of micro-lensing hints for 0 < fPBH < 1 at larger PBH masses, GW
signals from supercooled PTs, and collider physics has instead recently been studied in [91].

3 The model

3.1 Particles and charges

As our example, we take a classically conformal B − L extension of the SM, in which we add
three right handed neutrinos, Ni with QB−L = −1, to cancel off anomalies [86, 92, 93]. To
break the B − L symmetry, we add a complex scalar, ρ, with QB−L = −2. Ultimately, the
radiative breaking of the B − L symmetry induces a negative mass term for the electroweak
Higgs field via a portal coupling λρh, thus eventually breaking electroweak symmetry. The
kinetic term for the new scalar reads

L ⊃ (Dµρ)∗(Dµρ), (3.1)

where Dµ ≡ ∂µ − 2igB−LZ ′
µ is the covariant derivative with gauge coupling gB−L. This will

generate a mass for the gauge boson once ρ gains a vacuum expectation value (vev) radiatively,
⟨ρ⟩ = vρ/

√
2. At the classical level, the scalar potential reads

V (H, ρ) = λρ|ρ|4 + λρh|ρ|2|H|2 + λh|H|4, (3.2)

where H is the SM Higgs doublet. In addition to the SM Yukawas we also have

L ⊃ yνijlLiH̃Nj +
1
2yNiρNN c +H.c., (3.3)

where lLi are the SM lepton doublets and H̃ ≡ iσ2H∗. The second term in eq. (3.3) will give
Majorana masses to the Ni. These can then decay in a CP violating manner via the first
Yukawa coupling realising leptogenesis, on which we will briefly comment later. The neutrino
oscillation data [94–101] is explained through a type-I seesaw [102–105] (here at relatively low
scales ≲ 108 GeV). In the regime we are interested in, there is a significant hierarchy between
vρ and the electroweak vev vew ≃ 246GeV, which implies a small cross quartic coupling,

λρh ≃ −
(

mh

vρ

)2

, (3.4)

where mh ≃ 125GeV is the SM-like Higgs mass. This hierarchy situates the scenario beyond
the reach of current collider constraints.

3.2 Radiative symmetry breaking at finite temperature

Our treatment of the field theory in this section, leading to the approximation of the effective
potential, Veff , follows [87]. At one loop the beta function of the B − L Higgs quartic is

βλρ ≡ dλρ

d logµ
= 1

(4π)2

(
96g4

B−L − y2
Ni + 2λ2

ρh + 20λ2
ρ + λρ[2y2

Ni − 48g2
B−L]

)
, (3.5)
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where the sum over the yNi is understood (i = 1, 2, 3). Consistency requires βλρ > 0, so
that λρ turns negative when running down from high scales, triggering radiative symmetry
breaking. Making the here justifiable approximation of the symmetry breaking as dominantly
in a single field direction, following the approach of Gildener and Weinberg [106], we write
the one loop zero temperature potential as

V0(ρ) = βλρ

ρ4

4

(
log

[
ρ

vρ

]
− 1

4

)
, (3.6)

where from now we denote vρ as the vev at the zero-temperature minimum and ρ denotes
the classical field value. At the B −L symmetry breaking scale, λρ ≃ 0, because the coupling
is switching signs. We also require a small λρh, as mentioned above. Therefore we can
approximate the beta function as

βλρ ≈ 1
(4π)2

(
96g4

B−L − y2
Ni

)
. (3.7)

The mass of the physical scalar after symmetry breaking is mρ ≃
√

βλvρ. Its field dependent
mass gives only a small contribution to the thermal corrections in the effective potential.
The dominant thermal corrections instead come from the field dependent mass of the B − L

gauge boson,

MZ′ = 2gB−Lρ. (3.8)

and the heavy Majorana neutrinos,

MNi =
yNiρ√

2
. (3.9)

Their thermal contributions are

VT (ρ, T ) = T 4

2π2

(
3JB

[
M2

Z′

T 2

]
+ 2JF

[
M2

Ni

T 2

])
, (3.10)

where the thermal functions are

JB/F (x) = ±
∫ ∞

0
dk k2 log[1∓ e−

√
k2+x], (3.11)

for bosons and fermions respectively. To improve the perturbative analysis, we include the
corrections due to the resummation of daisy diagrams [107],

Vdaisy(ρ, T ) = T

12π

(
M3

Z′ − [M2
Z′ +ΠZ′ ]3/2

)
, (3.12)

where the thermal mass of the longitudinal component of the B − L gauge boson is

ΠZ′ = 4g2
B−LT 2. (3.13)

The full effective potential we consider is therefore

Veff(ρ, T ) = V0(ρ) + VT (ρ, T ) + Vdaisy(ρ, T ), (3.14)

– 6 –
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Figure 1. The evolution with temperature of the effective potential for a benchmark point with gB−L =
1, yNi = 1 and vρ = 100 TeV. The barrier separating the two minima means the evolution from the false
to the true vacuum corresponds to a first order phase transition. The barrier is always present when
the finite temperature corrections are added to the radiatively induced symmetry breaking potential.

after the aforementioned approximations have been made. To be consistent with observations,
showing a small vacuum energy in the present day, a cosmological constant term,

Λvac =
βλρv4

ρ

16 (3.15)

needs to be added to the potential, so that V0(vρ) = 0. The gravitationally important terms,
Λvac, together with the Planck mass, MPl, must be considered external to our classically
scale invariant sector. An example showing the temperature evolution of the potential is
shown in figure 1. Nucleation is possible once the false and true minima become degenerate
at the critical temperature (time), Tc (tc).

3.3 Bubble nucleation and percolation

The bubble nucleation rate per unit volume can be approximated as [108–110]

Γbub = A4e−S , (3.16)

where T is the temperature, A is a mass dimension one pre-factor we elucidate later, and
S is the Euclidean bounce action. At zero temperature the configuration minimizing the
action, S ≡ S4, is O(4) symmetric and

S4 = 2π2
∫ ∞

0
dr r3

(
1
2

[
dρ

dr

]2
+ Veff (ρ)

)
(3.17)

In this work we can limit ourselves PT dominated by single field directions. The action S4
corresponds to quantum tunneling through the potential barrier. The equation of motion is

d2ρ

dr2 + 3
r

dρ

dr
= dVeff

dρ
, (3.18)

with boundary conditions

dρ

dr

∣∣∣
r=0

= 0, and lim
r→∞

ρ(r) = 0. (3.19)
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At finite temperature the field instead becomes periodic in 1/T in the time coordinate. The
configuration minimizing the action is O(3) symmetric. Furthermore, at sufficiently high
temperatures, the minimum action configuration becomes constant in the time direction and

S ≡ S3
T

= 4π

T

∫ ∞

0
dr r2

(
1
2

[
dρ

dr

]2
+ Veff (ρ, T )

)
. (3.20)

This represents bubble formation through classical field excitation over the barrier. The
corresponding equation of motion is then

d2ρ

dr2 + 2
r

dρ

dr
= dVeff

dρ
, (3.21)

with the same boundary conditions as above. The solution with a non-trivial periodic bounce
in the time coordinate, corresponding to quantum tunneling at finite temperature, is more
difficult to evaluate in practical calculations. It is eventually, however, well approximated
at low T by S4 but calculated with Veff including any finite temperature corrections. For
simplicity, we therefore take a rather standard estimate for our nucleation rate

Γbub ≈ Max
[
1

R4
c

(
S4
2π

)2
e−S4 , T 4

(
S3
2πT

)3/2
e−S3/T

]
, (3.22)

where Rc ∼ 1/T is the bubble radius in the low T limit of radiative symmetry breaking, and
we have used standard estimates of the pre-factor (for discussion regarding uncertainties
see [111]). For the PTs we study, we have verified that Γbub is given by the S3 action.

The nucleation temperature in an average Hubble patch, Tn, or the equivalent nucleation
time, tn, is defined as when the nucleation rate equals the Hubble rate,

Γbub = H4. (3.23)

In practice, we compute the nucleation temperature using the Hubble rate in the false vacuum,

H ≡ Hfalse =
√

8π

3M2
Pl

(
g∗π2

30 T 4 + Λvac

)
, (3.24)

where T is the false vacuum temperature, and g∗ are the radiation degrees-of-freedom. In
our scenario, g∗ ≃ 116 prior to the PT, and g∗ ≃ 113 just after the PT. Henceforth, any
instances of the Hubble parameter and the scale factor presented without an index should be
understood as these quantities evaluated in the false vacuum phase. We will be interested
in strong supercooled phase transitions for which the universe becomes vacuum dominated.
This occurs at a temperature

Tinfl =
( 30Λvac

g∗(Tinfl)π2

)1/4
, (3.25)

For the case we will be interested in, namely efficient reheating and negligible changes in
degrees-of-freedom between the two phases, we have TRH ≃ Max[Tinfl, Tp], where TRH is the
reheating temperature following the completion of the phase transition, and Tp is the bubble
percolation temperature, which we now review how to calculate.

– 8 –
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Figure 2. Left: temperatures characterising the phase transition as a function of the gauge
coupling. We display the following temperatures: critical, Tc, nucleation , Tn, percolation, Tp, and the
temperature at which thermal inflation starts, Tinfl. Right: the dimensionless phase transition latent
heat, α, and inverse timescale normalised to the Hubble rate, βH .

In the vacuum dominated regime, the temperature (time) at which the bubbles percolate,
Tp (tp), may be appreciably different from Tn (tn). It is useful to introduce the comoving
radius of a bubble at false vacuum temperature T , nucleated at some higher temperature T ′,

r(t, t′) =
∫ t

t′

dt̃

a(t̃) = r(T, T ′) =
∫ T ′

T

dT̃

T̃H(T̃ )a(T̃ )
, (3.26)

where a is the scale factor, we have assumed vw ≃ 1 shortly after nucleation, and have used
dT = −THdt. The physical radius is then

R(T, T ′) = a(T )r(T, T ′) = a(T )
∫ T ′

T

dT̃

T̃H(T̃ )a(T̃ )
= 1

T

∫ T ′

T

dT̃

H(T̃ )
, (3.27)

where we have assumed a constant g∗ and so used a(T )T = a(T̃ )T̃ . The expected volume
of true-vacuum bubbles per comoving volume (double counting overlapping regions and
including fictitious nucleations in true vacuum) is given by [112–116]

I = 4π

3

∫ t

tc

dt′Γbub(t′)a3(t′)r3(t, t′) = 4π

3

∫ Tc

T
dT ′ Γbub(T ′)

T ′4H(T ′)

(∫ T ′

T

dT̃

H(T̃ )

)3

. (3.28)

To find the probability of a given point in the comoving volume to be in the false vacuum,
we need to exclude fictitious nucleations and avoid double counting overlapped regions, and
the appropriate expression is given by [112–116]

P = e−I . (3.29)

The change in the physical false vacuum volume, Vfalse = a3P (T ), normalized to the Hubble
rate, is captured by the equation [116]

1
HVfalse

dVfalse
dt

= 3 + T
dI

dT
. (3.30)

We define the percolation temperature Tp as the highest temperature for which both I(T ) > 1
and d logVfalse/dt < −H hold (sometimes slightly less stringent conditions are employed,

– 9 –
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e.g. see discussion in [117], the precise choice does not affect our qualitative results below).
Numerically, we find the first condition, I(T ) > 1, occurs later and hence determines the
percolation condition in our parameter space.

To characterise the strength of the phase transition, we find the free energy difference
between the true and false vacuua normalized to the radiation density,

α = 1
ρrad

(
1− T

∂

∂T

)(
Veff(0, T )− Veff(ϕn, T )

)∣∣∣∣
T =T∗

, (3.31)

where T∗ is set to either the nucleation or percolation temperature.3 The inverse timescale
of the phase transition normalized to the Hubble rate reads

βH ≡ β

H

∣∣∣∣
t=t∗

≡ 1
HΓbub

dΓbub
dt

∣∣∣∣
t=t∗

= − T

Γbub

dΓbub
dT

∣∣∣∣
T =T∗

. (3.32)

By numerically calculating the bubble action S for a sufficiently large number of points over
a suitable temperature range, we obtain a good approximation of Γbub(T ), which allows us
to find all the above quantities. Phase transition parameters as a function of gB−L are shown
in figure 2. Clearly in the limit of a small βλρ we have strong supercooling, with βH ≲ 8
and α ≫ 1, which allows for cosmologically significant PBH production, e.g. as found in [56].
We now turn to calculating the PBH abundance.

4 Primordial black hole production

4.1 Background evolution

We first consider an average Hubble patch. The total energy density, ρ, consist of the
vacuum energy density, ρvac, and the radiation, ρrad. The latter is made up of the plasma of
relativistic particles together with the bubble walls moving at vw ≃ 1 [56]. The Friedmann
equations are given by

H2
bkg = 8π

3
ρvac + ρrad

M2
Pl

, (4.1a)

dρrad
dt

= −4Hbkgρrad − dρvac
dt

, (4.1b)

where Hbkg denotes the Hubble rate of the average background patch. We can relate ρvac
to the bubble nucleation rate through

ρvac = Λvace
−I . (4.2)

To solve the Friedmann equations, we find it useful to switch coordinates, from time to
false vacuum temperature. We then have

H2
bkg = 8π

3
ρvac + ρrad

M2
Pl

, (4.3a)

dρrad
dT

= 4Hbkgρrad
HT

− dρvac
dT

, (4.3b)

3When eventually calculating the entropy dilution factor below, evaluating α at T∗ = Tp gives a better
estimate, due to the additional expansion between Tn and Tp. The choice is irrelevant when determining the
GW signal for the PTs of interest as α ≫ 1. On the other hand, when approximating the mean bubble radius
using βH , we numerically find evaluating βH at T∗ = Tn gives a more accurate result, after comparing to the
mean radius extracted from the bubble distribution itself.
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where T is the temperature in the false vacuum, and which we solve to find ρrad(T ). Note
ρvac, through the quantity I which contains the bubble radius, effectively also contains the
scale factor. Hence the equations should be solved self-consistently by evaluating I by taking
into account the scale factor at each time step, which in turn can be found through Hbkg.
In order to solve the equations, however, a simplification is possible. First note that before
percolation, Hbkg is for practical purposes given by its corresponding false vacuum value.
After percolation, the ρvac source term for the radiation is, by definition, approximately
negligible. We therefore first evaluate I numerically using the scale factors and Hubble rate
in the false vacuum, H, and use this to solve the Friedmann equations including Hbkg of the
background patch in the first equation. We then check whether the approximation is a good
one by using the resulting scale factor in an updated determination of I. The resulting shift
in Tp is tiny — we will quantify it below — and so we confirm the approximation is justified.

For our calculations, we will also need the scale factor as a function of the false vacuum
temperature. Ignoring changes in degrees-of-freedom, for the scale factor in a false vacuum
patch we have the standard relation,

a(T )
a(T ′) = T ′

T
. (4.4)

For the scale factor in the background patch that has nucleated, we instead solve

dabkg
dT

= −abkg
T

Hbkg
H

. (4.5)

The equation is solved starting from a sufficiently high temperature where Hbkg = H and
abkg(T ) = a(T ). Note, for bookkeeping purposes, the temperatures which appear here
should be understood as the temperature in the false vacuum patch, not the temperature in
the nucleating background patch, which contains nucleated bubbles and partially reheated
plasma. Using our solution, it is convenient to define

A(T, T ′) ≡ abkg(T )T
abkg(T ′)T ′ , (4.6)

which changes from unity to take into account deviations from the false vacuum relation,
eq. (4.4), for the background scale factor.

In terms of the false vacuum temperatures and false vacuum H, the bubble radius in
the background patch is then more precisely given by

Rbkg(T, T ′) = 1
T

∫ T ′

T

A(T, T̃ )dT̃

H(T̃ )
. (4.7)

It can also be of interest to consider the bubble density as a function of radius [116, 117],
which rewritten as a function of the false vacuum temperature is given by

dnbkg
dRbkg

(T, Rbkg) =
dT ′

dRbkg

T 3Γbub(T ′)P (T ′)
A(T, T ′)3T ′4H(T ′) . (4.8)

where here T ′ ≡ T ′(R) is understood as being the false vacuum temperature at which a
bubble of physical size Rbkg was nucleated, found by numerically inverting eq. (4.7), from
which one also finds the corresponding derivative.
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4.2 Late patch evolution

The above describes the evolution of an average background nucleating patch. We are now
interested in the evolution of a late nucleating patch. We assume no bubble nucleates in
the patch until some temperature Ti < Tn. By modifying the high temperature terminal in
eq. (3.28), we find the vacuum energy in the late patch,

Ilate =
4π

3

∫ Ti

T
dT ′ Γbub(T ′)

T ′4H(T ′)

(∫ T ′

T

dT̃

H(T̃ )

)3

. (4.9)

Again we use the same approximation as before, in assuming H = Hfalse, when calculating
Ilate. The probability of finding a point in the false vacuum in the late patch is then

Plate = e−Ilate . (4.10)

Thus the vacuum energy density in the late patch is simply

ρvaclate = Λvace
−Ilate . (4.11)

We then also solve the Friedmann equations for the late patch

H2
late =

8π

3
ρvaclate + ρradlate

M2
Pl

, (4.12a)

dρradlate
dT

= 4Hlateρradlate
HT

− dρvaclate
dT

. (4.12b)

Eventually we will also need the scale factor in the late patch, found by solving

dalate
dT

= −alate
T

Hlate
H

. (4.13)

Similarly to what we did for the background patch, it is convenient to define

B(T, T ′) ≡ alate(T )T
alate(T ′)T ′ , (4.14)

to parametrize deviations from the false vacuum scale factor/temperature relation. The
bubble size in the late patch is then given by

Rlate(T, T ′) = 1
T

∫ T ′

T

B(T, T̃ )dT̃

H(T̃ )
. (4.15)

The bubble spectrum of the late patch is given by

dnlate
dRlate

(T, Rlate) =
dT ′

dRlate

T 3Γbub(T ′)Plate(T ′)
B(T, T ′)3T ′4H(T ′) Θ(Ti − T ′). (4.16)

where the Θ function takes into account that no bubbles formed at T ′ > Ti in the late patch.
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4.3 Collapse and fractional abundance

For each choice of Ti we can also calculate the contrast density in radiation

δ(T ) ≡ ρradlate − ρrad
ρrad

. (4.17)

This reaches a maximum shortly after late patch percolation, as the energy density in the
background patch has began to become diluted a little earlier, while the late patch energy
density is still constant due to the vacuum. After late patch percolation, δ decreases again as
Hlate > Hbkg leading to a faster redshifting. We define Tδmax as the temperature at which
δ is maximized, δmax ≡ δ(Tδmax). The smaller Ti the larger δmax.

We assume a patch collapses if δmax reaches a threshold value, δc, for critical collapse.
Calculations, some based on full general relativistic simulations, indicate 0.4 ≤ δc ≤ 0.66 in
the context of overdensities from inflation re-entering the Hubble horizon [23–27, 27–33]. The
precise value of δc depends on the shape of the overdensity, but its effects can be captured by
considering the maximum of the so-called compaction function and its curvature, and thus
be related to the power spectrum of curvature perturbations. Note the calculations have
been performed assuming spherical symmetry and typically also isotropic pressure (although
see [118]). We expect departures from these assumptions in the PT scenario, due to the
nature of the Hubble patch just after bubble percolation. Note non-sphericity is expected to
increase δc [119–123]. The value of δc will have an effect on which input parameters return
fPBH = 1, but the strong GW signal will not be sensitive to our precise choice. In this work,
we follow previous PT literature [56], and take δc = 0.45 to aide comparison. The late patch
nucleation temperature, Ti, is thus from now on fixed by requiring the maximal density
contrast, δmax, be equal to the critical collapse threshold, δc.

We assume the collapse occurs at Tδmax with corresponding time tδmax. The probability
of the horizon size patch, which eventually collapses into a PBH, having no bubbles at
Ti is given by [47]

Pno bub = Exp
[
−
∫ ti

tc

dt′Γbub(t′)alate(t′)3Vno bub

]
(4.18a)

= Exp
[
−
∫ Tc

Ti

dT ′Γbub(T ′)
T ′H(T ′) alate(T ′)3Vno bub

]
, (4.18b)

where the temperature and Hubble rate are those of the false vacuum, and the volume factor,

Vno bub = 4π

3

[ 1
alate(tδmax)Hlate(tδmax)

]3
, (4.19)

represents the comoving volume of the Hubble sized patch at the start of the collapse.
However, the calculation of δ for the critical collapse also assumes no larger bubbles — from
background patches surrounding the late nucleating patch — enter into the collapsing volume
before δmax is attained. Thus, it has been advocated [56], that the collapse probability
is better estimated as

Pcoll = Exp
[
−
∫ ti

tc

dt′Γbub(t′)alate(t′)3Vcoll

]
(4.20a)

= Exp
[
−
∫ Tc

Ti

dT ′Γbub(T ′)
T ′H(T ′) alate(T ′)3Vcoll

]
, (4.20b)
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where the volume factor is

Vcoll =
4π

3

[ 1
alate(tδmax)Hlate(tδmax)

+ r(tδmax, t′)
]3

(4.21a)

= 4π

3

[
1

alate(Tδmax)Hlate(Tδmax)
+
∫ T ′

Tδmax

dT̃

T̃H(T̃ )abkg(T̃ )

]3

. (4.21b)

Here, in the evaluation of r(tδmax, t′), eq. (3.26), we use the background value for the scale
factor. The eventual PBH mass is estimated as the energy inside the sound horizon of the
collapsing patch at tδmax (e.g. see [124])

MPBH = 4π(ρradlate + ρvaclate)c3
s

3H3
late

= c3
s

2
M2

Pl
Hlate

, (4.22)

where cs = 1/
√
3 is the sound speed (although included, ρvaclate is negligible at tδmax). The

current study is limited to the above monochromatic estimate, we leave for future work
the full derivation of a detailed mass spectrum taking into account the full critical collapse
phenomenon [125–129]. Some preliminary estimates, showing the monochromatic estimate
is a good one, are given in appendix A.

We now wish to find, fPBH, the PBH-to-DM fraction at late times. To do this we note
that PBH formation occurs a little after bubble percolation, around time tδmax when the false
vacuum temperature is Tδmax, and we denote the corresponding background temperature
as Tbkg form (note Tbkg form ≈ TRH ≈ Tinfl with small differences found numerically and taken
into account in our results). The ratio of densities at this time is

ρPBH(tδmax)
ρrad(tδmax)

≃ c3
sPcoll

Hbkg(tδmax)
Hlate(tδmax)

, (4.23)

where the ratio of Hubble rates is a correction which takes into account that MPBH is set
by the late rather than background patch density. Later, at matter radiation equality,
Teq ≃ 0.8 eV, we have ρrad = ρm = ρDM(ΩDM + ΩB)/ΩDM ≃ 1.2ρDM. Between PBH formation,
at T ≃ Tbkg form, and Teq, one has ∝ 1/a3 dilution so

ρPBH(Teq)
ρPBH(Tbkg form) =

(
abkg(Tbkg form)

abkg(Teq)

)3

. (4.24)

From entropy conservation we have

abkg(Tbkg form)
abkg(Teq)

=
(

g∗s(Teq)
g∗s(Tbkg form)

)1/3
Teq

Tbkg form
, (4.25)

where g∗s are the entropic degrees-of-freedom. The radiation instead redshifts as ∝ 1/a4,
but it also receives reheating contributions, so

ρrad(Teq)
ρrad(Tbkg form) =

g∗(Teq)T 4
eq

g∗(Tbkg form)T 4
bkg form

(4.26)

Combing all the above we have

fPBH = ρPBH

ρDM
≃ c3

s Pcoll
ΩDM +ΩB

ΩDM

g∗s(Teq)
g∗(Teq)

Tbkg form
Teq

Hbkg(tδmax)
Hlate(tδmax)

, (4.27)

where we have used g∗(Tbkg form) = g∗s(Tbkg form), and we remind the reader that g∗s(Teq) =
3.91 and g∗(Teq) = 3.36.
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Figure 3. Characterisation of several important quantities for PBH formation and the phase transition
dynamics for a bechmark scenario with vρ = 103 TeV, yNi = 0.01, and gB−L = 0.2958 that predict
fPBH = 1, with MPBH ≃ 4.5× 10−12 M⊙. We depict the behaviour of the nucleation rate comparing
the full calculation of the nucleation rate with the approximation often used in the literature [47, 56]
(top left), energy densities (top right) and density contrast (middle left, with Ti ≃ 53.6 GeV) as a
function of the false vacuum temperature T . We also show the density contrast as a function of Ti

(middle right). Finally we display the bubble distribution at percolation (bottom left), where RH

is the bubble size as a fraction of the Hubble length. Weighting the distribution by R3 we see the
differences in the large bubbles between the background and late patches (bottom right).
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4.4 Application to example model

Having developed the above machinery, we now calculate the PBH fraction for our example
B − L model, and search for parameter space in which fPBH = 1. In figure 3, we characterise
PBH formation and the strongly first-order phase transition for a benchmark point for which
vρ = 103 TeV, yNi = 0.01, and gB−L = 0.2958. These values were judiciously chosen so as
to return fPBH = 1. The PBH mass is MPBH ≃ 4.5 × 10−12 M⊙. In the top left plot we
show our full determination of Γbub(T ) and compare it with the approximate form, eq. (2.6),
rewritten in terms of temperature

Γbub(T ) ≈ H(Tn)4
(

Tn

T

)βH(Tn)
. (4.28)

Deviations between the full and approximate expression are visibly present at T = Ti ≈ 54 GeV
which returns the required contrast for PBH formation. We will eventually show the resulting
modest differences in the βH required to achieve fPBH = 1 below.

In figure 3 top right we first show the evolution of energy densities with the false vacuum
temperature T . The dashed lines in the plot represent the vacuum, radiation, and total energy
densities of an average Hubble patch, while the solid lines illustrate these same quantities for
a late-nucleating patch. At sufficiently high false vacuum temperatures, the radiation energy
densities for both types of Hubble patches align, and the same is observed with the vacuum
energy densities. As nucleation starts within an average Hubble patch, its radiation energy
density begins to increase relative to that of the late-nucleating patch. Once the percolation
threshold of the true vacuum phase is achieved, there is a drastic drop in the vacuum
energy density, leading the average background patch to become dominated by radiation.
Concurrently, the energy density within this patch begins to dilute due to expansion, whilst
the late-nucleating patch remains vacuum dominated. Once the percolation threshold is
reached within the late-nucleating patch, an excess of radiation energy density relative to the
surrounding background Hubble patches follows, triggering the collapse into a PBH.

In the middle row of figure 3, we show the dependence of δmax on Ti (right) and the
dependence of the density contrast with the false vacuum temperature T (left). We observe
how we start off from a homogeneous state at sufficiently high false vacuum temperatures.
The density contrast drops to its minimum value approximately when bubbles start nucleating
in the background Hubble patches and increases again when nucleation starts in the delayed
patch. Ultimately, it reaches a maximum shortly after late patch percolation, as the energy
density in the background patch has began to become diluted a little earlier, while the late
patch energy density is still constant due to the vacuum.

Finally, in the bottom row we show the bubble distribution of the average background
patch and the late patch with δmax = 0.45 at their respective percolation temperatures. The
late patch features approximately twice the number of bubbles as the background patch. Due
to the first bubbles being delayed, the distribution of bubbles in the late patch features a cut
in the distribution, here at roughly half the Hubble length. In the right plot, we weight the
distribution by R3 to show the volume occupied by the bubble. Therein we see a significant
volume is occupied by rare large bubbles, especially for the background patch, which explains
why the late patch is filled instead by roughly twice as many small bubbles.

– 16 –



J
H
E
P
0
1
(
2
0
2
4
)
1
3
3

Now we turn to figure 4. For a given choice of vρ, we can scan over gB−L to find
where fPBH = 1 (we always set yi = 0.01 as an example). The required gB−L to achieve
fPBH = 1 is shown in figure 4 (top left) together with the corresponding value of the βλρ

function (top right).
In the middle panel of figure 4 we show various temperatures characterizing the PT. The

percolation temperature and also Tδmax remains above QCD confinement, so we do not need
to take into account QCD enhancement of Γbub, present at lower temperatures [130–133].
A smaller βλρ corresponds to a smaller vacuum energy difference between the two phases,
which strengthens the phase transition [134]. Furthermore, smaller values of gB−L imply
a weaker running of couplings which, in turn, delays the transition time and makes the
derivative of the bubble action S smaller [86].

As mentioned above, before solving the Friedmann equations, we first fix H = Hfalse in
our calculation of I(T ). To check this is a good approximation, we then iterate, using our
Hbkg determination to calculate a new I(T ), and use this to find an updated percolation
temperature Tp new. The ratio of the two is displayed in figure 4 middle right, showing only
very small changes in Tp, thus justifying the approximation. In figure 4 bottom we shown the
resulting MPBH and various measures of the bubble radius at collision.

In the bottom row on the left, we show how the PBH mass decreases as we go to larger
vevs, which corresponds to smaller physical Hubble volumes during the PT. In the right
panel, we show the measures of the bubble radius at percolation, normalized to the Hubble
length (mean, approximated mean, and radius corresponding to the mode of the bubble
volume distribution). As the inverse timescale of the transition does not need to vary much
from βH ≈ 8 in order to give fPBH = 1 over the entire allowed window, the typical bubble
sizes when normalized to Hubble are also always similar.

5 Gravitational waves

5.1 The spectra

We next turn to the spectra we employ for the gravitational wave signal defined as

h2ΩGW(f) ≡ h2

ρc

dρGW

d log f
, (5.1)

where ρGW is the energy density in GWs and ρc is the critical density.
As spectra from dedicated studies are often given at production rather than today, we

briefly review how to take into account the redshifting. We note that GWs redshift like
radiation but are not reheated, and Ωrad(TRH) ≡ ρrad/ρc ≃ 1 just after the PT. The above
implies an amplitude today [66, 73]

h2ΩGW = h2Ωrad(T0)
(

g∗s(T0)
g∗s(TRH)

)4/3 g∗(TRH)
g∗(T0)

ΩGW∗ (5.2a)

= g∗s(T0)4/3π2T 4
0

30
8π

3H2
100M2

Pl

ΩGW∗
g∗s(TRH)1/3 (5.2b)

= 7.64× 10−5 g∗s(TRH)−1/3 ΩGW∗, (5.2c)
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Figure 4. Top: the required gauge coupling (left) and associated beta function (right) giving fPBH = 1
as a function of the B − L vev, vρ. Shaded regions are excluded by PBH constraints. Middle: various
temperatures characterizing the PT as a function of vρ. Note the new percolation temperature Tpnew
following our iterative check shows only a per mille correction with respect to Tp (right). Bottom: the
resulting PBH mass (left) and the bubble radii at collision (right), namely the mean radius Rmean,
the approximate radius, Rapprox = π1/3/β(Tn) [115], and the radius at which the bubble energy (and
volume) distribution is maximized, Rmax [117].
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where ΩGW∗ is the GW signal just after the PT, T0 ≃ 0.23 meV is the CMB temperature
today, and H100 ≡ 100 km/s/Mpc. The frequency of the signal is redshifted as

f0 =
(

g∗s(T0)
g∗s(TRH)

)1/3 T0
TRH

f∗. (5.3)

where f∗ is the frequency just after the PT. Concretely, for the reheating temperature, we take

TRH =
(
90M2

PlHbkg(tp)2

g∗(TRH)8π3

)1/4

, (5.4)

which follows directly from the first Friedmann equation. We are interested in supercooled
PTs with highly relativistic bubble walls. We will use three determinations of the spectrum,
showing our conclusions are hardly affected by the precise choice.

• The first estimate comes from (3 + 1) dimensional lattice simulations of thick wall
bubble collisions by Cutting, Escartin, Hindmarsh, and Weir [75]. The spectrum is
found to be

h2Ωthw(f) = 4.38× 10−9
( 100

g∗(TRH)

)1/3 ( 10
βH

)2
Sthw(f), (5.5)

where the spectral shape is given by

Sthw(f) =
2.902 f̃2.16

thw f0.742

2.16f̃2.902
thw + 0.742f2.902 , (5.6)

and the peak frequency is

f̃thw = 32 mHz
(

g∗(TRH)
100

)1/6 (βH

10

) (
TRH

102 TeV

)
. (5.7)

In the above, we have used the central values of the fit provided in [75] for the
thickest walls of their simulations, and taken the bubble diameter to be DbubH ≃
(8π)1/3β−1

H [115] in converting the spectrum in [75] to be in terms of βH . From figure 4 we
see this diameter is in good agreement with the mean diameter extracted from the bubble
distribution when using βH(Tn), which we subsequently use in calculating the GW
spectrum. Note if we were to instead use 2Rmax, the diameter at which the bubble energy
distribution is maximized, as advocated in [117], our GW signals would be stronger.

• The second estimate comes from the hybrid simulations by Vaskonen and Lewicki [77].
Therein, the anisotropic stress induced in a bubble collision is first determined in a (1+1)
dimensional simulation. This is then used as a source at points at which walls collide in a
(3+1) dimensional lattice simulation in the thin walled limit. The advantage here is that
the lower dimensional simulation allows one to study the effect of non-trivial scalar gradi-
ents and associated gauge field production during the bubble collision. The simulations
find differences in the spectra between the non-gauged [76] and gauged cases [77], of U(1)
symmetry breaking. Of course we use the gauged example here, where the spectrum is

h2Ωhyb(f) = 5.93× 10−9
( 100

g∗(TRH)

)1/3 ( 10
βH

)2
Shyb(f), (5.8)
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with the shape,

Shyb(f) =
695[

2.41
(

f

f̃hyb

)−0.557
+
(

f

f̃hyb

)0.574
]4.20 (5.9)

and peak frequency

f̃hyb = 22 mHz
(

g∗
100

)1/6 (βH

10

) (
TRH

102 TeV

)
. (5.10)

• Reassuringly also semi-analytic methods which avoid the need for running lattice
simulations have been developed [72, 73]. We use the results of the bulk flow from
Konstandin [73] with amplitude

h2Ωbulk(f) = 1.06× 10−8
( 100

g∗(TRH)

)1/3 ( 10
βH

)2
Sbulk(f), (5.11)

and spectral shape

Sbulk(f) =
3f̃2.1

bulkf0.9

2.1f̃3
bulk + 0.9f3 , (5.12)

with peak frequency at

f̃bulk = 21 mHz
(

g∗(TRH)
100

)1/6 (βH

10

) (
TRH

102 TeV

)
. (5.13)

Note all the above results are given in the limit α ≫ 1, vw ≃ 1, and the spectral shape
functions have been normalized to return unity at their respective peak frequencies. As the
finite cosmological horizon is not taken into account in the above simulations, we also impose
the correct scaling ΩGW ∝ f3, for super-horizon modes at the time of the PT [135–139].
These correspond to the frequenices at IR tail of the spectrum, below

fPT
horizon = 2.6 mHz

(
g∗(TRH)
100

)1/6 ( TRH

102 TeV

)
, (5.14)

as measured today. In figure 5 we show the resulting GW spectra for two example parameter
points with fPBH = 1. For practical purposes here, we see the GW spectra from the three
estimates are all rather similar. They are all above foregrounds and detectable at some
upcoming interferometer.

One word of caution is in order. The above estimates do not take into account the
Hubble expansion during the transition itself. The issue has been studied in ref. [78],
which extended the analysis to an expanding background, but only for PTs in a radiation
dominated background and using the older envelope approximation. The results indicated a
suppression of an order-of-magnitude in the signal for PTs with βH ≈ 10. Note even with
such a suppression, our GW signals would still be easily detectable, although this effect adds
considerable theory uncertainty. To better gain a handle on the GW signal, the bulk flow
analysis or the simulations will also have to be modified to take into account expansion, in
particular for a vaccum dominated background. Our analysis further motivates such efforts.
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Figure 5. GW spectra for two PTs returning fPBH = 1. For each of the PTs, we show three estimates of
the spectra — given the macroscopic PT parameters — available in the literature. Also shown are power-
law-integrated sensitivity curves (SNR = 10) for current and future interferometers together with astro-
physical foregrounds. Other key parameters associated with these example PTs can be read off figure 4.

5.2 Signal-to-noise ratio

We now wish to estimate the signal-to-noise ratio and also show foregrounds will not mask
our signal. A similar method to what we describe in this section, up to some small updates,
has also been used in [140]. The signal-to-noise ratio is given by [141–145]

SNR =
√

tobs

∫ ( Ω2
GW

Ω2
sens + 2ΩGWΩsens + 2Ω2

GW

)
df, (5.15)

where tobs is the observation time and Ωsens the sensitivity of the interferometer. For these
quantities we take without deviation the choices made in [140] and use this to also calculate
the power-law-integrated sensitivity curves shown in figure 5. Note the second and third
terms in the denominator of the integral in eq. (5.15) means the SNR is saturated for large
GW signals. We do not want to count signals below astrophysical foregrounds as detectable,
so as a simple and naive estimate, we define a foreground limited signal-to-noise ratio in which
we only count GW signals above the astrophysical contamination. Namely, we compute,

SNRFGL =
√

tobs

∫ (Max[0,ΩGW(ν)− ΩFG(ν)]2
Ω2

sens + 2ΩGWΩsens + 2Ω2
GW

)
df. (5.16)

As estimates of the foregrounds we take:

• The component of the GW galactic white dwarf binaries which are not subtractable
after four years of LISA observations, with approximate form given in [146, 147]. The
same quantity has also been estimated in [148], with a higher peak value, but at
lower frequencies. For this latter estimate we use the analytic fit from [149]. To be
conservative we simply include both estimates.

• The upper value of the extra-galactic white-dwarf binary estimate from [150], a broadly
similar estimate is derived in [151].

• The central value binary neutron star and binary black hole signal inferred from the
observations in [152], extrapolated to lower frequencies assuming the f2/3 scaling, as is
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Figure 6. Top: the latent heat α and inverse timescale of the transitions β/H returning fPBH = 1 as
a function of MPBH. Also shown is a comparison to the results of [56], which uses the approximate
Γbub ansatz, so some differences are expected. Middle: the peak amplitude and peak frequency of
the three GW spectrum models as a function of MPBH. Bottom: the signal-to-noise ratio (SNR), and
signal-to-noise ratio above foregrounds (SNRFGL), as a function of MPBH. The signal can be detected
by BDECIGO or a combination of LISA and ET over the entire allowed range of MPBH with fPBH = 1.
The shaded band encompasses the three different determinations of the GW signal. Additional theory
and experimental forecasting uncertainty means the true error band is larger.
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appropriate for an stationary ensemble of binaries with circular orbits losing energy
solely through GW emission [153].

• The continuous super-massive binary black hole signal estimate of [151] will not mask
our signal, but we display it in our plots.

To summarize, in figure 6 we show the latent heat α, βH , peak amplitude ΩGW(fpeak), the
peak frequency fpeak, SNR, and SNRFGL as a function of MPBH (the vev vB−L and coupling
are fixed by MPBH and the requirement fPBH = 1).

In the top row of figure 6 we see, as expected, PBH formation occurs for α ≫ 1 and
βH(Tn) ≲ 8, with slightly slower transitions required for more massive PBHs, in order
to compensate the smaller enhancement in ρPBH/ρrad between PBH formation time and
matter-radiation equality. We also compare to the required βH found for fPBH = 1 in
ref. [56], which used the approximate ansatz eq. (2.6) for the nucleation rate. We obtain
the required abundance with a slightly higher βH , because the bubble nucleation rate is
somewhat suppressed in the full calculation compared to the approximate method. Note
the collapse probability, Pcoll, is very sensitive to βH , thus a small shift in the latter can
compensate for changes in Γbub between the full and approximate expressions.

We thus confirm the approximate method is valid, at least in close-to-conformal potentials
as studied here, which do not have a zero-temperature barrier. (If a zero temperature barrier
exists, then there is the parameter dependent risk of having the field become permanently
trapped in the false vacuum [154, 155]. Then PBH formation would not occur simply because
the background patches themeselves do not percolate. Such models may require a more
careful examination. Nevertheless, bubble sizes and hence GW signals are still necessarily
large in successully percolating models which produce PBHs and feature more dramatic
decreases in Γbub below Tn, see [55] for work along these lines.)

In the middle row, we see the amplitude in ΩGW is large and almost constant over
the range of MPBH, as βH is almost constant. The peak frequency covers three orders of
magnitude, ranging over the sensitivies for LISA, BDECIGO, and ET, as anticipated through
eqs. (2.1) and (2.5).

In the bottom row of figure 6, we observe that the typical supercooled phase transitions
in the classically conformal B −L model explaining all the dark matter in our universe in the
form of PBHs will give rise to extremely strong GWs signals detectable by LISA, BDECIGO,
and ET. These experiments will be able to probe the entire parameter space of the model
producing fPBH = 1. Current limits do not constrain this PBH formation mechanism in
the given range of MPBH [156, 157].

6 Validity of assumptions

6.1 Rapid decay of the condensate excitations

In the above, we have assumed rapid reheating, so that TRH ≃ Tinfl. To check whether this
is a valid assumption in our model, we can compare the decay rate of the scalar ρ with
the Hubble rate at the end of the PT. The first partial width we consider is of ρ decaying
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Figure 7. Left: the decay rates compared to the Hubble rate. Right: the LO and the γ enhanced NLO
retarding pressure on the wall compared to the driving pressure, i.e. the vacuum energy difference.

to the EW Higgs doublet

Γρ→H†H =
λ2

ρhv2
ρ

8πmρ
Re

√√√√1− 4m2
H

m2
ρ

 . (6.1)

Here we take into account the thermal mass of the Higgs, which begins to become present
as the bath is reheated,

m2
H ≈

(
λ2

h

2 + 3g2
2

16 + g2
Y

16 + λhρ

12

)
T 2 ≈ 0.4T 2. (6.2)

The above width is tiny, due to the suppression of λ2
ρh, and possible kinematic factors as

mH(T ) becomes large compared to mρ. But we can also consider the partial width to the Ni,

Γρ→NiNi =
y2

Nimρ

32π

(
1− 2M2

Ni

m2
ρ

)
Re

√√√√1− 4M2
Ni

m2
ρ

 . (6.3)

As MZ′ ≈ 10TRH, the thermal masses of the Ni are negligible following the PT. For standard
assumptions regarding the typical Yukawa coupling size — as inferred in from the type-I
seesaw and the atmospheric mass squared difference of the active neutrinos — we can assume
the Ni decay rapidly compared to the Hubble rate, i.e. the strong washout regime [158]. We
can thus simply compare eq. (6.3) to the Hubble rate to determine whether we can avoid a long
lived ρ or other matter domination following the PT. In figure 7 left we show both the partial
widths compared to the Hubble rate for our parameter choice, showing our assumptions of
rapid decay, giving TRH ≃ Tinfl is justified. Note the Z ′ will also rapidly decay to SM fermions.

6.2 Pressure on the bubble wall

For supercooled transitions, such as those studied here, leading order pressure on the wall
as particles gain their mass [159],

PLO ≈
T 2

p

24
(
3M2

Z′ + m2
ρ + M2

Ni

)
, (6.4)
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is generically insufficient to stop the wall from accelerating. The presence of gauge bosons
which change their mass across the wall, however, leads to a NLO retarding pressure which
increases linearly with γ, the bubble wall Lorentz factor [160]. We therefore check whether
the vacuum energy density is converted into the wall energy, or whether sufficient soft-gauge
bosons are produced at the wall, for the energy to instead be stored in the latter before wall
collision. Such a situation has been modelled in [161]. Whether this would affect the GW
signal appreciably is a separate question, macroscopically both cases seem to be captured by
the bulk flow model (e.g. see [161] and discussion in [162]). Soft gauge boson production leads
to a retarding pressure on the wall PNLO ∝ γT 3

p MZ′ [160, 163]. Here we use the leading-log
determination for this term given in [164],

PNLO ≈
κζ(3)(Qeff

B−L)2αB−LγMZ′T 3
p

π3 log
(

vρ

Tp

)
, (6.5)

where κ ≈ 4, (Qeff
B−L)2 = 40 is an effective charge factor summing over the bath degrees-of-

freedom with 3/4 (1) weighting for fermions (scalars), αB−L ≡ g2
B−L/4π, and we have used

the thermal mass of the Z ′ as an IR cutoff in the logarithm. The maximum Lorentz factor
is obtained at collision for an effectively run-away wall, i.e. approximately zero retarding
pressure, and is given by [164]

γ ≈ 1
3

Rcoll
Rnuc

≈ 1
3

π1/3

βHH

(
Tn

10

)
, (6.6)

where Rnuc ≈ 10/Tn is the bubble radius at nucleation and Rcoll ≈ π1/3/β is the bubble radius
at collision (we have checked both analytic estimates through numerical determination). For
consistency of the above γ estimate we require PNLO < Λvac. We calculate these quantities
and display the results in figure 7 right, showing the wall is in the effective run-away regime
at collision.

6.3 Reliability of the effective potential

We now briefly discuss the reliability of the approximations we have made in deriving Veff .
To answer this question requires the application of more refined techniques such as the
renormalization group improved effective potential [111, 165]. Indeed, in the context of the
particle-DM dilution mechanisms, there are known examples in which going to the RGE
improved Veff changes the qualitative outcome of the mechanism itself [166]. This is due to
changes to the details of the nucleation, percolation, and reheating temperatures, although
the PTs remain very strong. Such an investigation is left for future work.

7 Comments on leptogenesis

In figure 8 we show the dilution factor due to the entropy production following the PT. As the
dilution factor is quite large, ∼ 107 − 109, it seems unlikely that we could use a mechanism
which relies on the dilute false vacuum plasma as a source of the baryon asymmetry. For
example, the mass gain mechanism when the Ni suddenly gain their mass during the PT
and then decay to generate the BAU [167–171]. Similar conclusions most likely also hold for
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Figure 8. The entropy production (dilution) factor following the PT.

the related mechanism in [172]. Electroweak style baryogenesis mechanisms suffer from the
same problem in the current context, together with a completely negligible yield for vw ≃ 1,
due to lack of diffusion back into the symmetric phase [173].

If instead, heavy particles are produced in the reheating process itself, following along
the lines of [174, 175], then these may have a larger abundance compared to the entropy
density, and act as a source of the asymmetry. But note our bubble collisions are expected
to be inelastic, which suppresses heavy particle production [176].

Anyway, for our choice of example Yukawa coupling yi = 0.01, the asymmetry will be
generated by the usual thermal leptogenesis around T ≈ MN after the PT (for our parameter
choices TRH ≃ 10MNi). In either case, resonant leptogenesis is generically required [177–180],
as the heavy neutrinos are much below the Davidson-Ibarra bound [181] (also see [182]).
Note the heavy neutrinos are efficiently produced in the early universe due to their Yukawa
coupling to ρ and their gauge interactions.

8 Conclusion

In this work we have studied the GW signal from PBH formation during a PT. We have
assumed fPBH = 1, which limits the range for the peak frequency of the GWs, and calculated
the required underlying parameters of the model to obtain the PBH abundance. We used
the properties of the PT to find the expected GW signal from bubble collisions over the
allowed parameter space, showing it can be detected by BDECIGO or a combination of
LISA and ET, independently of the precise MPBH, over the entire range allowed for fPBH = 1.
Substituting one of the experiments by a broadly equivalent one will, of course, not affect the
conclusions. An important caveat is that the GW predictions for strong phase transitions
may overestimate the signal because expansion during the transition is not taken into account.
This motivates further refinement of such estimates, along the lines of [78], but extended to
vacuum dominated transitions and beyond the envelope approximation. We note a suppression
in ΩGW by an order of magnitude for βH ≈ 10, would still return SNRs of 102 and above
over the fPBH = 1 parameter space, so prospects remain very promising.
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The classically scale invariant B−L model we considered does not contain an automatically
stable DM candidate, although given a small enough Yukawa coupling, N1 could play the
role of the possibility of a ∼ keV scale sterile neutrino (provided an appropriate mechanism
was also in play in order to set its relic abundance correctly, as it carries gauge charge).
Such sterile neutrino scenarios are by now by now heavily constrained [183]. Additional field
content can of course be included to act as DM [184]. We have instead proposed using the
PBH generation mechanism from the strong PT realised with the close-to-conformal potential
to obtain the observed ΩDM. Leptogenesis in this model should occur sometime after the
PT, through resonant enhancement of the CP violation, as in the usual low-scale thermal
leptogenesis [177–180]. Furthermore, it would also be of interest to re-examine models of
particle DM, in which the relic abundance relies on supercooled PTs [87, 140, 166, 185–187],
to check compatibility with PBH production.

Our calculations in a specific model, taking into account the full temperature dependence
of the bubble nucleation rate, have shown only modestly small changes to the inverse timescale
of the transtion βH required to achieve fPBH = 1, compared to model independent calculation
which used an approximate ansatz for the nucleation rate. As βH sets the typical bubble
size at collision and therefore also controls the properties of the GW signal, our results
regarding the sensitivities of future detectors to such a late patch mechanism are independent
of the underlying particle physics model.

Models of slow roll inflation producing PBHs also result in detectable GWs, in the same
frequency range as the PT, due to the enhanced power spectrum on small scales leading to
significant anisotropic stress [34–39]. The additional power also present on small scales from
the PT, would also induce anisotropic stress and a further GW source. Accordingly, this paper
justifies the further development of computational techniques in order to pin down the expected
PBH spectrum in the late patch mechanism (beyond the monochromatic approximation
primarily used here), the bubble collision signal, together with any additional GWs at second
order in perturbation theory, in light of testing fPBH = 1 in upcoming interferometers. Along
with the GW signal, the PBHs can be searched for using improved lensing studies, through
future MeV telescopes [188, 189], and the 21-cm absorption signal [190, 191].
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A Towards a non-monochromatic mass distribution

In the main text, we used a monochromatic approximation for the PBH mass,

MPBH = 4π(ρradlate + ρvaclate)c3
s

3H3
late

= c3
s

2
M2

Pl
Hlate

. (A.1)
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We also found

fPBH = ΩDM +ΩB
ΩDM

g∗s(Teq)
g∗(Teq)

Tbkg form
Teq

ρPBH(Tbkg form)
ρrad(Tbkg form) , (A.2)

where (ΩDM + ΩB)/ΩDM ≃ 1.2. We then used

ρPBH(Tbkg form)
ρrad(Tbkg form) ≃ Pcoll

MPBH

MHor
≃ c3

sPcoll
Hbkg(tδmax)
Hlate(tδmax)

, (A.3)

where MHor = M2
Pl/(2Hbkg) is the energy inside the Hubble horizon of a background patch.

In the monochromatic approximation Pcoll(Ti), given in eq. (4.20b), is evaluated at Ti chosen
so that δmax = δc.

We now assume instead critical collapse, as is known from numerical codes relevant for
the inflation scenario, in which for δm > δc the PBH mass is found to be [125, 192]

MPBH = KMHor(δm − δc)γc , (A.4)

where 1 ≲ K ≲ 10 is an efficiency factor, and γc ≃ 0.36 is the critical exponent assuming
radiation domination (both found from simulations). In the inflationary scenario, δm is the
overdensity as measured at the maximum of the compactification function, at cosmological
horizon crossing time, e.g. see [27]. We now make assume something similar holds in the
PT mechanism and replace δm → δmax in the above equation. We warn we are making
a big leap making such an assumption for critical collapse in the PT mechanism, and do
so simply out of curiousity regarding the resulting PBH spectrum, mainly as an academic
exercise. Note in using eq. (A.4) we also do not include the small correction taking into
account the different Horizon masses of the collapsing and background patches as we have
done for our monochromatic approximation in eq. (A.1).

From eq. (A.4) we see that patches with δmax = δc fail to form a black hole, but instead
a whole spectrum of PBH masses is generated from patches with larger δmax, coming from
progressively smaller Ti. The probability of keeping large regions bubble free also falls as
Ti is reduced. (Roughly speaking, Pcoll is the probability of keeping a sufficiently large
region bubble free sufficiently long, it therefore includes the probability of staying bubble
free even longer. In other words it acts as a cumulative probability function.) A plot of
Pcoll(Ti) is shown in figure 9.

We now wish to calculate the resulting PBH mass spectra assuming eq. (A.4) holds.
The first spectrum typically considered in the literature is normalized to the PBH density
and is conventionally defined as [192]

Ψ(MPBH) ≡
1

ρPBH

dρPBH

dMPBH
. (A.5)

In our scenario we have

Ψ(MPBH) =
MPBH

N
dPcoll

dMPBH
= MPBH

N
dPcoll
dTi

dTi

dMPBH
= 1

Nγc

(
MPBH

KMHor

)1/γc dPcoll
dTi

dTi

dδmax
, (A.6)

where the normalization factor is given by

N =
∫ ∞

0
dM ′

PBHM ′
PBH

dPcoll
dM ′

PBH
. (A.7)
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Figure 9. Left: the cumulative probability P (Ti) for the example parameter point, vρ = 103 TeV,
yNi = 0.01, and gB−L = 0.2958. Right: for convenience we again show δmax(Ti) for the same parameter
point, where δmax = 0.45 for Ti = 53.6GeV (for a larger range of Ti see figure 3, middle row, right).

Note dPcoll/dMPBH < 0 given our definition of Pcoll in eq. (4.20b), but the factor appears
both in the numerator and the denominator, N , so Ψ is positive. Integrating Ψ(MPBH) over
the entire PBH mass range yields unity. In the above, we have related the spectrum to
the collapse probability calculated in eq. (4.20b), and we have used that MHor and Tbkg form
are approximately independent of MPBH for PBHs originating from overdensities with a
preferred length scale (in the current context of the late patch mechanism this is simply
the Hubble length during the PT). This is further justified by the strongly falling Pcoll with
decreasing Ti, as shown in figure 9.

The second commonly used spectrum is instead normalized to the observed DM density
and is defined as [192]

f(MPBH) ≡
MPBH

ρDM

dρPBH

dMPBH
, (A.8)

so that

fPBH =
∫ ∞

0
dMPBH

f(MPBH)
MPBH

and f(MPBH) = fPBHMPBHΨ(MPBH). (A.9)

In our scenario we find

f(MPBH) = −ΩDM +ΩB
ΩDM

g∗s(Teq)
g∗(Teq)

Tbkg form
Teq

M2
PBH

MHor

dPcoll
dMPBH

(A.10a)

= −ΩDM +ΩB
ΩDM

g∗s(Teq)
g∗(Teq)

Tbkg form
Teq

M2
PBH

MHor

dPcoll
dTi

dTi

dMPBH
(A.10b)

= −ΩDM +ΩB
ΩDM

g∗s(Teq)
g∗(Teq)

Tbkg form
Teq

1
γcK1/γc

(
MPBH

MHor

)1+1/γc dPcoll
dTi

dTi

dδmax
, (A.10c)

where we have again used that MHor and Tbkg form are approximately independent of MPBH

for PBHs originating from overdensities with a preferred length scale. We now include an
overall negative sign because dPcoll/dMPBH < 0. For either of the spectra of interest, we
can evaluate the last two differential factors numerically as functions of MPBH, and thus
find the desired quantity.
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Figure 10. The PBH spectra for the example parameter point, vρ = 103 TeV, yNi = 0.01, and
gB−L = 0.2958, now taking into account that δmax is a function of Ti, and assuming the critical
collapse scaling with K = 1. Upon integration we find ⟨MPBH⟩ ≃ 5.4× 10−12 M⊙ and an integrated
total fPBH ≃ 1.05, compared with MPBH = 4.5× 10−12 M⊙ and fPBH ≃ 1.02 using the monochromatic
approximation. The grey dashed lines show the expected IR scalings, Ψ(MPBH) ∝ M

1/γc
PBH and

fPBH(MPBH) ∝ M
1+1/γc
PBH respectively [192], coming from values of Ti close to which δmax = 0.45. These

IR scalings can be understood from eqs. (A.6) and (A.10c).

We now return to our example parameter point used in figure 3 and calculate the PBH
mass spectra assuming the critical collapse phenomenon holds. The resulting PBH spectra are
shown in figure 10. Clearly the spectra are strongly peaked at MPBH ≈ c3

soundMHor ≃ 0.2MHor,
the value assumed for the monochromatic approximation. Furthermore, the total integrated
PBH density normalized to the observed DM density remains largely unchanged. Thus the
monochromatic approximation is justified. We can also compare the resulting spectra to
existing limits as done in figure 11, but only to gain a rough idea, as the limits are strictly only
valid in the monochromatic approximation. Still it is reassuring that the spectra are strongly
enough peaked that the IR tails do not intersect with the low mass constraints, as long as
⟨MPBH⟩ ≳ O(10−16) M⊙. The UV cut-off is much steeper and so even less of a concern.

Even assuming the critical collapse relation holds for the late patch mechanism, the
above is still not a complete estimate of the full PBH spectrum. This is because: (i) we
have ignored the possibility of PBHs being formed at slightly different times with different
MHor, and (ii) the collapsing volume is not limited to eq. (4.21b), but may take a whole
range of values (for us, horizon and superhorizon at the time of the PT, but one may also
imagine that sub-horizon patches with larger densities can also collapse, as in ref. [55]). Given
the theoretical uncertainties involved in applying the critical collapse to the PT scenario,
however, together with the computational time required for the numerical evaluation, we
have not yet evaluated this full expression. Nevertheless, the peaked nature of the PBH
spectrum is expected to hold also in this more general case, because the probability of
obtaining larger Vcoll will also fall rapidly.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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Figure 11. The PBH spectra for two example parameter points, both with yNi = 0.01 and K = 1,
compared to limits on monochromatic spectra from the CMB [11, 12], extra galactic background
light [13], galactic gamma ray background [15], Voyager e± [16], and Subaru Hyper Suprime-Cam
(HSC) lensing [20]. The GWs from the same two parameter points are shown in figure 5.
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