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Abstract

Derived symplectic geometry studies symplectic structures on derived
stacks. Derived stacks are the main players in derived geometry, the pur-
pose of which is to deal with singular spaces, while symplectic structures
are an essential ingredient of the geometric formalism of classical mechan-
ics and classical field theory. In addition to providing an overview of a
relatively young field of research, we provide a case study on Casson’s
invariant.

Keywords – Derived geometry. Shifted symplectic structure. Lagrangian morphism.

Lagrangian intersection. Virtual class. Critical chart. Darboux theorem. Casson

invariant. Donaldson–Thomas invariant. Topological field theory.

Key points/objectives

• Motivate the use of derived geometric techniques in symplectic
geometry.

• Introduce shifted symplectic structures, with examples.

• Emphasize the importance of (−1)-symplectic structures for virtual
count.

• Introduce lagrangian morphisms, and notice their relevance for
symplectic geometry (moment maps, Weinstein’s symplectic creed,
. . . ) and virtual count.

• Provide a case study with the Casson invariant.
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1 Introduction

Derived geometry One of the purposes of derived geometry is to deal in a
satisfying way with spaces that are singular, which is the case for many spaces
appearing in algebraic geometry (moduli spaces) and in classical1 physics (spaces
of solutions of equations of motion). The reader can consult Toën (2014) and
Anel (2021) for extensive overviews of the history, results and main ideas of
derived geometry. Foundations of derived algebraic geometry have been laid
out by Toën & Vezzosi (2008) and Lurie (2004). For a treatment of (as well as
references for) derived differential geometry we recommend the work of Steffens
(2023).

Very roughly, modern derived geometry combines two ways of introducing
more flexibility (using homotopy theory, or higher category theory) into the
geometry of spaces:

(a) It generalizes local/test objects (affine schemes, euclidean spaces, Stein
manifolds, . . . ) by adding homological/homotopical data to them (for in-
stance, in algebraic geometry, one can replace rings with simplicial rings,
or connective commutative differential graded algebras). This line of
thoughts can be seen as coming out of an attempt to give an actual geo-
metric content to the intersection formula from Serre (1965), as explained
for instance by Lurie (2004) and Toën (2014).

(b) It allows to glue local objects up to specified identifications. This led to
the concept of a stack, introduced by Giraud (1971), and ultimately to the
higher stacks of Simpson (1996), who was somehow continuing the work
of Grothendieck (1983). We refer to Mestrano & Simpson (2021) for a
gentle introduction to stacks and higher stacks.

These two ways of introducing more flexibility aim to address two different
sources of singularities/pathologies: (a) bad intersections (and, more generally,
fiber products) and (b) bad quotients. Kontsevich (1995) is one of the first
authors who combined both aspects to solve enumerative problems in algebraic
geometry, using pre-derived geometric tools.

As a complement to the excellent introduction to the thesis of Lurie (2004),
where derived (algebraic) geometry is motivated through the lens of Bézout’s
theorem (that is an intersection problem) and deformation theory, we also rec-
ommend the introduction to the paper of Steffens (2023), where the need for
derived geometry is motivated by the study of solution spaces to elliptic PDEs
and their local Kuranishi models.

Symplectic geometry Symplectic geometry is a natural geometric setting
for the hamiltonian formulation of classical mechanics, as one can learn for
instance from Souriau (1970) and Arnol’d (1989); most phase spaces appear to
be symplectic manifolds (or variations of these, like Poisson manifolds).

1Here, classical is understood as opposed to quantum.
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Recall that a symplectic manifold is a smooth manifold X equipped with a 2-
form ω ∈ Ω2(X) that is non-degenerate (meaning that the induced bundle map
TX → T ∗X is an isomorphism) and closed (meaning that ddRω = 0). Observe
that this definition makes sense in the algebro-geometric context only if X is
a smooth algebraic variety. The cotangent bundle T ∗M of a manifold M is an
example of a symplectic manifold, with ωcan = ddRλ, where λ is the tautological
1-form on T ∗M . Symplectic manifolds do not have local invariants: it follows
from a theorem of Darboux (1882) that every symplectic manifold is locally
symplectomorphic to T ∗Rn equipped with ωcan.

Lagrangian submanifolds play a crucial role in symplectic geometry: re-
call that a lagrangian submanifold L ⊂ X in a symplectic manifold (X,ω) is
lagrangian if ω|L = 0 and the induced map TL → T ∗L/X is an isomorphism. Gen-

eralizing Darboux’s theorem, Weinstein (1971) proved that in the neighborhood
of a lagrangian submanifold L every symplectic manifold is symplectomorphic
to a neighborhood of the zero section of T ∗L. Thus lagrangian submanifolds can
naturally be interpreted as generalized configurations of a classical mechanical
system. Lagrangian submanifolds pop up everywhere: graphs of closed 1-forms,
graphs of symplectomorphisms (an example of which is the time one flow of a
hamiltonian vector field), conormal bundles, zero loci of moment maps, . . . This
led Weinstein (1981) to follow the symplectic creed claiming that “everything
is a lagrangian submanifold”, and envision a symplectic category whose objects
are symplectic manifolds and morphisms are lagrangian correspondences (i.e. la-
grangian submanifolds of a product (X1×X2, p

∗
1ω1− p∗2ω2)). At this point, the

need to deal with singular/pathological spaces in symplectic geometry should
be obvious:

• The zero locus µ−1(0) of a moment map µ might be singular.

• The above example is actually a lagrangian correspondence between the
original symplectic manifold X and its symplectic reduction Xred, where
Xred is a quotient of µ−1(0) and thus could be even more singular.

• The composition in the symplectic category involves taking fiber products,
that might not be well-behaved. A traditional way to deal with that is
by applying a small geometric perturbation, but there are issues with this
approach: (a) it cannot always be used in algebraic geometry and (b)
geometric perturbations are not functorial.

A leitmotiv of derived geometry is to replace geometric perturbations with ho-
mological perturbations for computing fiber products. Homological perturba-
tions can be made functorial (in a higher categorical sense), and make sense in
the algebro-geometric context, resolving both issues.

Derived symplectic geometry The ancestors of shifted symplectic struc-
tures on derived stacks are the odd symplectic structures on super-manifolds
and Q-manifolds appearing in the work of Schwarz (1993), Alexandrov et al.
(1997) and in other mathematical physics publications on the geometry of the
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Batalin–Vilkovisky formalism. These excellent works and also the beautiful
treatment by Costello (2013), using L∞-spaces and elliptic moduli problems,
have two drawbacks:

(1) None of the two defining properties of a symplectic structure (closedness
and nondegeneracy) are homotopy invariant.

(2) The geometric objects they consider only capture infinitesimal symmetries.

Both issues are dealt with by the formalism of derived geometry: it indeed
encompasses global symmetries (stacks have been invented for that purpose)
and is homotopy invariant by definition.

Let us be a bit more specific about the homotopy invariance issue: all ways of
doing pre-derived geometry somehow involve spaces having a commutative dif-
ferential graded algebra of functions, and whose tangent at a point is a cochain
complex rather than just a vector space. Therefore, differential forms have an
internal cohomological degree in addition to the usual form degree, and there
are two differentials at play: the internal differential δ and the de Rham dif-
ferential ddR. If we have an equivalence f : X−̃→Y (e.g. a quasi-isomorphism
of differential graded manifolds in the sense of Kapranov (2001), that is a mor-
phism inducing an isomorphism at the level of the cohomology of the differential
graded algebra of functions), then:

• The pull-back of a 2-form ωY on Y that is strictly non-degenerate (meaning
that the induced map TY → T ∗Y is an isomorphism of complexes) might
not be strictly non-degenerate.

• A strictly closed 2-form ωX on X (meaning that ddRωX = δωX = 0) may
not be the pull-back of a strictly closed 2-form ωY on Y .

Pantev et al. (2013) introduce a very flexible notion of symplectic structure on
derived stacks, that addresses all the above issues. As we see below, their non-
degeneracy condition only requires a quasi-isomorphism, and the closedness is
relaxed up to coherent homotopies (where all homotopies are actually part of
the structure).

In what follows, whenever we don’t give a specific reference for something,
the reader shall attribute it to Pantev et al. (2013). Note that we also always
work over a field of characteristic zero.

2 Shifted symplectic structures

The tangent space of a derived Artin stack X is no longer a vector bundle, but
a perfect complex of OX -modules, denoted TX (whose dual is denoted LX).
Here OX denotes the sheaf of functions on X. A 2-form of degree n on X is a
cochain map ω0 : ∧2TX → OX [n]. Note that ω0 is closed under the differential
δ of the complex Ω2(X) = Γ(X,∧2LX) of 2-forms on X; in particular, it induces
a morphism of complexes TX → LX [n]. We say that ω0 is non-degenerate if
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this induced morphism TX → LX [n] is a quasi-isomorphism, meaning that it
becomes an isomorphism at the level of cohomology.

Definition 1 An n-shifted symplectic (or, simply, n-symplectic) structure on
X is a sequence ω := (ω0, ω1, ω2, . . . ), where ωk belongs to the complex Ωk(X)
of k-forms on X, satisfying two conditions:

• The leading term ω0 is a 2-form of degree n such that is non-degenerate
(as explained above, this means that the induced morphism of complexes
TX → LX [n] becomes an isomorphism at the level of cohomology).

• For every k ≥ 0, ddR(ωk) + δ(ωk+1) = 0, meaning that ω0 is closed under
the de Rham differential up to coherent homotopies. In other words, ω is
an n-cocycle in the truncated de Rham complex∏

k≥2

Ωk(X), ddR + δ

 .

First examples Because of the non-degeneracy condition, a scheme equipped
with a 0-symplectic structure must be smooth. Conversely, all symplectic alge-
braic varieties provide examples of 0-symplectic structures.

If G is an affine algebraic group, then any non-degenerate symmetric in-
variant pairing c ∈ S2(g∗)G on the Lie algebra g of G defines a 2-symplectic
structure on the classifying stack BG.

It was proven in Calaque (2019) that the n-shifted cotangent stack T∗[n]X of
an Artin stack X is indeed n-symplectic. In particular, for every affine algebraic
group G, T∗[1](BG) '

[
g∗
/G
]

is 1-symplectic.
Quotient stacks of quasi-symplectic groupoids, as defined by Xu (2004), are

also 1-symplectic, according to Calaque (2021). In particular, for a reductive
group G,

[
G/Gad

]
is 1-symplectic.

The moduli of objects, in the sense of Toën & Vaquié (2007), of a d-Calabi–
Yau category, is (2− d)-symplectic, as witnessed by Toën (2014) and shown by
Brav & Dyckerhoff (2021). This implies in particular that the derived moduli
of coherent sheaves on a Calabi–Yau d-fold is (2− d)-symplectic.

The AKSZ construction Following Alexandrov et al. (1997), Pantev et al.
(2013) developed a systematic way of producing new shifted symplectic struc-
tures on mapping stacks via transgression: if (X,ω) is an n-symplectic derived
stack and Σ is a nice enough derived stack equipped with a fundamental d-class
[Σ] then there is a (n−d)-symplectic structure on the mapping stack Map(Σ, X),
given by

∫
[Σ]
ev∗ω, where ev : Σ×Map(Σ, X)→ X is the evaluation morphism.

An important source of examples is when Σ = MB is the Betti stack asso-
ciated with a closed oriented d-manifold M , and G is a reductive group: then
the derived stack Loc(M,G) := Map(MB , BG) of G-local systems on M is
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(2− d)-symplectic2. Whenever M = S1, Loc(S1, G) '
[
G/Gad

]
and we recover

the 1-symplectic structure on
[
G/Gad

]
, as shown by Safronov (2016).

Virtual count on (−1)-symplectic derived schemes Let X be a derived
scheme equipped with a (−1)-shifted symplectic structure. The non-degeneracy
condition for the symplectic structure imposes that the cotangent complex of
X has amplitude [−1, 0], meaning that X is quasi-smooth. Schürg et al. (2015)
proved that for a quasi-smooth derived scheme X the cotangent complex LX

induces a perfect obstruction theory in the sense of Behrend & Fantechi (1997)
on the underived truncation t0(X), allowing to define a well-behaved virtual
fundamental class.

Pantev et al. (2013) noticed that the non-degeneracy condition actually guar-
antees that the obstruction theory is symmetric in the sense of Behrend &
Fantechi (2008): in this case Behrend (2009) proved that the virtual fundamen-
tal class does not depend on the choice of symmetric obstruction theory, and
when Y = t0(X) is proper the virtual count (the degree of the virtual class)
is obtained as a weighted Euler characteristic associated with a constructible
function canonically defined on Y .

Finally, Brav et al. (2019) prove a Darboux theorem for (−1)-symplectic
derived schemes, saying that they are locally equivalent to derived critical loci
(see below).

The above discussion for derived schemes generalizes without problem to
derived Deligne–Mumford stacks (i.e. derived orbifolds).

3 Lagrangian morphisms

In this section we present a far reaching generalization of the notion of a la-
grangian submanifold that is well-suited for derived geometry (and encompasses
various situations): the one of a lagrangian morphism (or, more accurately, la-
grangian structure on a morphism).

Let f : L → X be a morphism of derived Artin stacks, and let ω be an
n-symplectic structure on X.

Definition 2 A lagrangian structure on f (relatively to ω) is a homotopy η be-
tween ω and 0 (meaning that ω = (ddR+δ)(η)) in the truncated de Rham complex
such that the map TX → LL/X [n− 1] induced by η0 is a quasi-isomorphism.

Note that the leading term η0 of the homotopy is a homotopy between ω0

and 0 in the complex of 2-forms: ω0 = δη0. This means that the sequence
TL → f∗LX [n]→ LL[n] is null-homotopic, leading to a map TX → LL/X [n−1].

The derived symplectic creed “Everything is a lagrangian morphism”.
The inclusion of a lagrangian subvariety into a symplectic variety is an example

2A similar result holds in derived differential geometry if one replaces the reductive group
with a compact Lie group.
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of a lagrangian morphism. Calaque (2015) provides more surprising examples
of lagrangian morphisms:

• An n-symplectic structure on X is the same as a lagrangian structure on
X → ∗, where ∗ is equipped with the trivial (n+ 1)-symplectic structure.

• If G is an affine algebraic group, X is a symplectic G-variety, and µ : X →
g∗ is a moment map, then the induced morphism

[
X/G

]
→
[
g∗
/G
]

between
quotient stacks carries a lagrangian structure.

• If G is reductive and X is a quasi-hamiltonian G-variety with group-valued
moment map µ : X → G, then

[
X/G

]
→
[
G/Gad

]
also carries a lagrangian

structure.

Calaque (2015) proves that lagrangian correspondences (i.e. lagrangian mor-
phisms with codomain a product (X1 ×X2, p

∗
1ω1 − p∗2ω2)) compose well. This

allows to define a (shifted and derived) version of the symplectic category en-
visioned by Weinstein, whose objects are n-symplectic derived stacks and mor-
phisms are lagrangian correspondences.

Virtual count for lagrangian intersections In particular, composing two
lagrangian morphisms L1 → X ← L2, with X being n-shifted symplectic, gives
a lagrangian structure on L1 ×X L2 → ∗, and thus a (n − 1)-symplectic struc-
ture on L1×X L2. For n = 0 we get a (−1)-symplectic structure on the derived
intersection of two lagrangian subvarieties, and the virtual count gives the in-
tersection number of L1 and L2 in X. An even more specific situation is when
X = T ∗M , L1 is the zero section, and L2 is the graph of ddRf for a function
f ∈ O(M): in this case the derived lagrangian intersection is the so-called de-
rived critical locus of f , and the virtual count is given as the Euler characteristic
of the hypercohomology of (a shift by dim(M) of) the twisted de Rham complex
(ΩM , ddR− ddRf∧), that is a perverse sheaf on the reduced ordinary critical lo-
cus. Sabbah & Saito (2014) prove that, up to a shift by dim(M), the twisted
de Rham complex is equivalent to the sheaf of vanishing cycles associated with
f , which plays a crucial role for motivic extensions and categorifications of the
virtual count.

The AKSZ construction as a TFT A relative version of the AKSZ con-
truction is proven by Calaque (2015) and leads, for every d ≥ 0 and every
n-symplectic derived stack X, to an oriented d-dimensional Topological Field
Theory (TFT), given by Map

(
(−)B , X

)
, and taking values in the symplectic

category (with shift n − d + 1). Calaque et al. (2022) prove that this oriented
TFT is fully extended in the sense of Lurie (2009).

4 Case study: Casson invariant

We refer to Akbulut & McCarthy (1990) for a detailed exposition, following
Casson’s original proposal from his talk at MSRI in 1985. Let M be a com-
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pact oriented 3-manifold. We consider the moduli space of irreducible SU(2)-
representations of the fundamental group of M :

Rirr(M) :=
Homirr

(
π1(M), SU(2)

)
SU(2)

.

Irreducible representation are the ones with centralizer Z
(
SU(2)

)
= Z/2Z. For

simplicty, we assume that M is an integral homology sphere (this implies in
particular that the only reducible representation is the trivial one).

Definition of the Casson invariant Let now M = H1

∐
ΣH2 be a Heegaard

splitting of M : H1 and H2 are handlebodies with boundary Σ, a closed oriented
surface. It turns out that Rirr(H1) and Rirr(H2) are lagrangian submanifolds
of Rirr(Σ), that is a symplectic manifold of dimension 6g − 6, where g is the
genus of Σ. Even though Rirr(M) is not a manifold, it is the intersection of
Rirr(H1) and Rirr(H2), leading to define the Casson invariant λ(M) as ((−1)g

times) half the intersection number of Rirr(H1) and Rirr(H2) in Rirr(Σ).

Derived symplectic nature of the Casson invariant Computing the in-
tersection number instead of looking at the naive intersection Rirr(M) suggests
one should consider the derived intersection. Also note that the Casson invari-
ant is defined as half the intersection number, which is due to the hidden stacky
nature of the moduli space: every irreducible representation carries a trivial
Z/2Z symmetry.

The Casson invariant is in fact a virtual count on the connected component of
the derived stack Loc

(
M,SU(2)

)
that does not contain the trivial local system.

Indeed, the underived truncation of Loc
(
M,SU(2)

)
is
[
Rirr(M)/(Z/2Z)

]∐ [
∗/SU(2)

]
.

The (−1)-symplectic structure on Loc
(
M,SU(2)

)
therefore induces a symmet-

ric obstruction theory on
[
Rirr(M)/(Z/2Z)

]
, allowing for a virtual count.

An important result is that λ(M) does not depend on the choice of Hee-
gaard splitting M = H1

∐
ΣH2. This is a direct consequence of the fact that

Loc
(
−, SU(2)

)
defines an oriented 3-dimensional TFT with values in the de-

rived version of Weinstein’s symplectic category, as recalled in the previous sec-
tion. The original definition of Casson for λ(M) becomes a computation, that
uses the fact that the (−1)-symplectic moduli can be obtained as a lagrangian
intersection (thanks to the excision property of the TFT).

Gauge theoretic approach Taubes (1990) gives a gauge theoretic definition
of the Casson invariant, for which we provide a derived symplectic interpreta-
tion. A first observation is that there is a morphism MdR → MB of 3-oriented
derived stacks that leads to an equivalence of (−1)-symplectic derived stacks
between Loc(M,G) := Map(MB , BG) and Flat(M,G) := Map(MdR, BG),
for G = SU(2).

Then one identifies Flat(M,G) with the derived critical locus of the Chern–
Simons functional S that is defined on the (infinite dimensional) moduli stack
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Conn(M,G) of G-connections:

S(A) :=

∫
M

tr

(
ddRA ∧A+

2

3
A ∧A ∧A

)
.

In order to be fully accurate, one shall say that S is not well-defined on this
moduli space, as it is not gauge invariant: there exists a constant c such that
for a gauge g ∈ C∞(M,G), S(Ag) = S(g−1ddRg+ g−1Ag) = S(A) + cZ. Hence,
even though S is not defined on the moduli space, its exterior derivative ddRS
defines a closed 1-form on Conn(G), so that we can still talk about the derived
critical locus of S (that is the derived intersection of the zero section with the
graph of ddRS).

Because of infinite dimensional issues, it is not easy at all to define correctly
a (possibly virtual) count for the derived critical locus of S. This is where
analytic techniques come into the game: Taubes (1990) uses elliptic regularity
and Fredholm theory to reduce locally to finite dimension. In fact, he constructs
local potentials and finds critical charts (sometimes called Chern–Simons charts)
in the sense of Brav et al. (2019), whose Darboux theorem in fact already
provides such critical charts.

It is Tu (2015) who first gave a virtual count formulation of the gauge theo-
retic approach to the Casson invariant, using L∞-spaces and Kuranishi charts.

5 Conclusion

An important topic of current research is the quantization of shifted symplec-
tic structures. The study of their geometric quantization has been initiated
by Safronov (2020), while the one of their deformation quantization has been
initiated by Calaque et al. (2017). The latter required to develop a whole new
theory of shifted Poisson structure, which was independently done by Pridham
(2017).

The virtual count on (−1)-symplectic derived schemes can already be seen
as a quantization process. General quantization principles suggest that a (−1)-
symplectic structures shall be quantized by a cochain complex, whose Euler
characteristic would give back the virtual count. Brav et al. (2015) prove that
if a scheme X0 admits local critical charts with a global choice of appropri-
ate signs for their glueing (such an X0 is called an oriented d-critical locus),
then one can construct a perverse sheaf on X0 that is locally equivalent to the
sheaf of vanishing cycles of the local potential; the Euler characteristic of the
hypercohomology of this sheaf gives back the virtual count on X0.

Examples of such oriented d-critical loci are given as underived truncations
of (−1)-symplectic derived schemes equipped with a square root of the canoni-
cal sheaf (such a square root exists for instance whenever there is a lagrangian
foliation structure on the (−1)-symplectic derived scheme). Pridham (2019) pro-
vides a detailed explanation of the relation between the above and deformation
quantization of (−1)-symplectic structures.
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This circle of ideas can be applied to recover a holomorphic version of
the Casson invariant, originally introduced by Thomas (2000), that “counts”
sheaves on a Calabi–Yau 3-fold, and that is the starting point of the theory of
Donaldson–Thomas invariants.
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Serre, J.-P. (1965). Algèbre locale. Multiplicités, vol. 11 of Lecture Notes in
Mathematics. Springer-Verlag, Berlin-New York. Cours au Collège de France,
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Toën, B., & Vezzosi, G. (2008). Homotopical algebraic geometry. II. Geometric
stacks and applications. Mem. Amer. Math. Soc., 193 (902), x+224.
URL https://doi.org/10.1090/memo/0902

Tu, J. (2015). Casson invariants via virtual counting.
URL https://doi.org/10.48550/arXiv.1512.02322

Weinstein, A. (1971). Symplectic manifolds and their Lagrangian submanifolds.
Advances in Math., 6 , 329–346 (1971).
URL https://doi.org/10.1016/0001-8708(71)90020-X

Weinstein, A. (1981). Symplectic geometry. Bull. Amer. Math. Soc. (N.S.),
5 (1), 1–13.
URL https://doi.org/10.1090/S0273-0979-1981-14911-9

Xu, P. (2004). Momentum maps and Morita equivalence. J. Differential Geom.,
67 (2), 289–333.
URL http://projecteuclid.org/euclid.jdg/1102536203

13


