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Stabilization for a Class of Bilinear Systems:
A Unified Approach

Morteza Nazari Monfared, Yu Kawano, Member, IEEE , Juan E. Machado, Daniele Astolfi, Member, IEEE ,
Michele Cucuzzella, Member, IEEE

Abstract— This letter studies nonlinear dynamic control
design for a class of bilinear systems to asymptotically sta-
bilize a given equilibrium point while fulfilling constraints
on the control input and state. We design a controller based
on integral actions on the system input and output. As
special cases, the proposed controller contains a dynamic
controller with an integral action of either input or output
only and a static controller. Stability analysis of the closed-
loop system is performed based on a Lyapunov function.
Level sets of the Lyapunov function are utilized to estimate
a set of initial states and inputs such that the correspond-
ing state and input trajectories are within specified compact
sets. Finally, the proposed control technique is applied to
a heat exchanger under constraints on the temperature of
each cell (state) and the mass flow rate (input), and simu-
lations show the effectiveness of the proposed approach.

Index Terms— Control applications, Energy systems,
Lyapunov methods, Output regulation, Stability of nonlin-
ear systems.

I. INTRODUCTION

B ILINEAR systems belong to an important subclass of
control systems which have been widely used to accu-

rately model various real-life systems and phenomena [1],
such as power electronics, chemical reactions, and socio-
economics [2], [3]. However, control design for bilinear sys-
tems is a challenging task, as evidenced by the numerous
publications on the topic [1], [4]–[11]. In this letter, we aim
to study the problem of robustly stabilizing a bilinear system
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while characterizing the trajectories evolution for physical
applications.

Static and dynamic switching state feedback controllers
have been respectively proposed in [8] and [9] to stabilize
classes of bilinear systems. In these works, the control input
acts only multiplicatively. In particular, the controller proposed
in [8] guarantees the satisfaction of input constraints. However,
none of these works addresses the problem of constraining the
state variable. Linear state feedback controllers are designed
in [7] and [1], where the resulting closed-loop system is
shown to admit a locally asymptotically stable equilibrium
point. Subject to a suitable tuning of the controller gains, the
satisfaction of state constraints, but not input constraints, are
guaranteed in [7]. In [1], a method to fulfill the constraints
on both state and input is provided. However, this requires
solving a set of nonlinear inequalities.

The problem of output regulation of bilinear systems is
considered in [6], where the theoretical developments are
applied to the problem of temperature control of a heat
exchanger. While the asymptotic stability of the system is
preserved, restrictions on the control input are met by applying
a saturation mechanism on the input. However, input saturation
is known to potentially induce deleterious effects on systems
stability and performance [12]. For the heat exchanger model,
the saturated controller proposed in [6]—in combination with
some of the model intrinsic properties—also guarantees the
fulfillment of state constraints. To prevent potential undesired
effects stemming from the use of input saturation, the authors
of [4] propose an anti-windup mechanism to solve the output
regulation problem for an electrical system.

In this work, we propose a new unifying dynamic controller
approach that simultaneously considers input and output inte-
gral actions. The input integral action takes inspiration from
the control design approach for Krasovskii passive systems
[13], [14]. In addition to satisfying constraints on the control
input, the input integral action guarantees convergence of
the input to its equilibrium value: for systems in which
input convergence implies state convergence, it is possible
to ensure stabilization only based on the knowledge of the
input equilibrium value [14], [15]. Additionally, the integral
action on the output guarantees robust regulation towards a
desired output set point. By unifying approach, we mean that
the proposed controller strategy can recover two classes of
dynamic controllers, including the one proposed in [6] and
the one proposed in this letter as a special case, which makes
the unconstrained system exponentially stable. Also, a static



stabilizing controller can be recovered without integral actions.
Furthermore, the proposed controller is not switching. The
analysis is based on a Lyapunov function ensuring feasible
operative conditions, i.e., we find initial conditions such that
the states and the control inputs satisfy defined constraints all
the time. Also, the control input satisfies predefined constraints
without employing saturation or an anti-windup mechanism.
Finally, the proposed control technique is applied to the
problem of temperature stabilization of a counter-current heat
exchanger.

Notation. R is the set of real numbers and R>0 is the set of
positive real numbers. An identity matrix with dimension n×n
is denoted by In×n. Given P ∈ Rn×n, P ≻ 0 means that P
is symmetric and positive definite. The Euclidean norm of a
vector x ∈ Rn weighted by a matrix P ∈ Rn×n is denoted
by ∥x∥P :=

√
x⊤Px. Given x ∈ Rn, y ∈ Rm, we compactly

denote (x, y) = (x⊤, y⊤)⊤.

II. PROBLEM FORMULATION

In this letter, we focus on a class of bilinear systems in
which the control signal acts additively and multiplicatively
simultaneously, i.e.,

ẋ = Ax+

m∑
i=1

(Bix+ bi)ui +G, (1)

where x ∈ Rn is the state, u = (u1, . . . , um) ∈ Rm is the
control input and A,Bi ∈ Rn×n, bi, G ∈ Rn.1

In practical applications, it is usually desired that the system
state and input satisfy predefined constraints. Namely, for
some compact sets X ⊂ Rn and U ⊂ Rm of the state and the
input, respectively, we require (x(t), u(t)) ∈ X × U , ∀t ≥ 0.
While satisfying the above constraints, the goal of this work
is to stabilize (1) at an equilibrium point. For stabilization
of bilinear systems, it is standard in the literature to impose
some stability assumption on the open-loop system; see e.g.
[4], [6]–[9], [11] and the references therein. Accordingly, in
this letter, we assume that there exists at least one u∗ ∈ U
such that A +

∑m
i=1 Biu

∗
i is Hurwitz. Also, such u∗ and the

unique corresponding steady state x∗, given by

x∗ = −

(
A+

m∑
i=1

Biu
∗
i

)−1( m∑
i=1

biu
∗
i +G

)
, (2)

satisfy (x∗, u∗) ∈ X ×U . To state this formally, we define the
following set:

D :=
{
(x, u) ∈ X × U |A+

m∑
i=1

Biu
∗
i is Hurwitz

}
. (3)

Assumption 1: There exists u∗ ∈ U such that u∗ and the
unique corresponding x∗ in (2) satisfy (x∗, u∗) ∈ D, with D
in (3).

Note that Assumption 1 is equivalent to supposing that for
any Q = Q⊤ ≻ 0, there exists P = P⊤ ≻ 0 such that the

1For example, for a counter-current heat exchange system (see Section IV),
G is the input thermal power to the system.

following Lyapunov equation holds(
A+

m∑
i=1

Biu
∗
i

)⊤

P + P

(
A+

m∑
i=1

Biu
∗
i

)
= −Q. (4)

Now, we are ready to state the main problem studied in this
letter.

Problem 1: Design a controller for (1) such that the closed-
loop system is asymptotically stable at (x∗, u∗) ∈ D; and find
a feasible region of attraction Ω ⊂ X × U such that any
trajectory starting from Ω stays within the feasible set X ×U .

Note that the open-loop controller u (t) = u∗ is a trivial
solution to Problem 1. However, open-loop controllers are
usually less robust than feedback controllers. Therefore, we
design in the next section a dynamic feedback controller.

III. DYNAMIC CONTROL DESIGN

In this section, we design a dynamic controller to solve
Problem 1 based on integral actions of both input and per-
formance output, where the performance output is defined
later. We show asymptotic stability by constructing a suitable
Lyapunov function which is also used to estimate a region of
attraction.

The proposed controller recovers three simpler controllers
as special cases: 1) a controller with the integral action of the
input only; 2) one with the integral action of the performance
output only; and 3) a controller without integral action, i.e.,
a static state-feedback controller. The first controller is totally
new in the literature of bilinear systems, while the other two
recover the controllers proposed in [6] and [10], respectively.

A. Main Results

Besides solving Problem 1, we consider the additional goal
of regulating a performance output y = Cx, see, e.g. [16].
Namely, for some reference y∗ := Cx∗ ∈ Rq (q ≤ m),
we additionally require limt→∞ y(t) = y∗. Achieving this
tracking objective requires the closed-loop system to be robust
with respect to (small) perturbations in the system parameters
[17]. If there is no parameter uncertainty, the regulation of the
performance output is guaranteed by stabilizing the system.

To guarantee the solvability of the output regulation prob-
lem, we assume that C has the following property.

Assumption 2: For given (x∗, u∗) ∈ D, C ∈ Rq×n is
selected such that

rank
(
M
[
B1x

∗ + b1 · · · Bmx∗ + bm
])

= q, (5a)

M := C

(
A+

m∑
i=1

Biu
∗
i

)−1

. (5b)

Now, under the above assumption, we design a controller
based on a suitable Lyapunov candidate defined as a quadratic
function on the state, input and output errors, depending on
the equilibrium point (see the proof of Theorem 1). Then, a
Lyapunov analysis leads to the following controller:

Ku̇ = −H (u− u∗)− ε1R (x) + ε2S (x, z) (6a)
ż = y − y∗ = C(x− x∗), (6b)



with ε1, ε2 ∈ R>0, K,H ≻ 0 (K,H ∈ Rm×m), and

R (x) :=

 (x− x∗)
⊤
P (B1x+ b1)
...

(x− x∗)
⊤
P (Bmx+ bm)

 (6c)

S (x, z) :=

 (z −M (x− x∗))
⊤
θM (B1x+ b1)

...
(z −M (x− x∗))

⊤
θM (Bmx+ bm)

 , (6d)

where P ≻ 0 is the solution to the Lyapunov equation (4)
for arbitrary given Q ≻ 0, and θ ∈ Rq×q is any arbitrary
matrix such that θ ≻ 0. From (6a) and (6b), K−1H determines
the time constant of the dynamics of the input error u − u∗.
Also, ε1K−1 and ε2K

−1 respectively specify the importance
of information of R(x) and S(x, z), where R(x) is to evaluate
the state error x − x∗, and S(x, z) is for output regulation
through the integral action of the output error y − y∗. By
tuning the controller parameters, one can balance these three
components.

Now, we are ready to state the main result of this letter.
Theorem 1: Let Assumptions 1 and 2 hold. Given

(x∗, u∗) ∈ D, consider (1) in closed-loop with (6). Then, the
following statements hold:

(i) the closed-loop system is globally asymptotically stable
and locally exponentially stable at (x, u, z) = (x∗, u∗, 0),
and thus y (t) → y∗ as t → ∞;

(ii) for any initial condition satisfying ε2∥z(0)−M(x(0)−
x∗)∥2θ/2ε1 ≤ ε, the following set

Ωc := {(x, u) ∈ Rn × Rm :

∥x− x∗∥2P + ∥u− u∗∥2K/ε1 ≤ 2c}, c > 0 (7)

is a feasible region of attraction if Ωc+ε ⊂ X × U .

Proof: The system equation (1) at (x∗, u∗) yields

G = −Ax∗ −
m∑
i=1

(Bix
∗ + bi)u

∗
i .

Substituting this expression of G into (1) leads to

ẋ = A(x− x∗) +

m∑
i=1

Bi(xui − x∗u∗
i ) +

m∑
i=1

bi(ui − u∗
i )

=

(
A+

m∑
i=1

Biu
∗
i

)
(x− x∗) +

m∑
i=1

(Bix+ bi)(ui − u∗
i ).

(8)

Now, we select a Lyapunov candidate as

V (x, u, z) :=
1

2
∥x− x∗∥2P +

1

2ε1
∥u− u∗∥2K

+
ε2
2ε1

∥z −M (x− x∗) ∥2θ. (9)

Its time derivative along the closed-loop trajectory satisfies

V̇ (x, u, z) = (x− x∗)
⊤
P (A+

∑
i Biu

∗
i ) (x− x∗)

+ (x− x∗)
⊤
P
∑

i(Bix+ bi)(ui − u∗
i )

+ ε2
ε1

(z −M (x− x∗))
⊤
θ(ż −Mẋ)− 1

ε1
∥u− u∗∥2H

− (u− u∗)
⊤
R (x) + ε2

ε1
(u− u∗)

⊤
S (x, z) .

Considering (u− u∗)
⊤
R (x) =

∑m
i=1(ui − u∗

i )Ri(x), it
follows from (4) and (6c) that

V̇ (x, u, z) = − 1

2
∥x− x∗∥2Q − 1

ε1
∥u− u∗∥2H

+
ε2
ε1

(z −M (x− x∗))
⊤
θ(ż −Mẋ)

+
ε2
ε1

(u− u∗)
⊤
S (x, z) ,

where the term ż −Mẋ in the second line can be rearranged
as follows (see (5b), (6b), and (8)):

ż −Mẋ = C(x− x∗)−M

(
A+

m∑
i=1

Biu
∗
i

)
(x− x∗)

−M

m∑
i=1

(Bix+ bi)(ui − u∗
i )

= −M

m∑
i=1

(Bix+ bi)(ui − u∗
i ).

This and (6d) lead to

V̇ (x, u, z)

= −1

2
∥x− x∗∥2Q − 1

ε1
∥u− u∗∥2H +

ε2
ε1

(u− u∗)
⊤
S (x, z)

− ε2
ε1

(z −M (x− x∗))
⊤
θM

m∑
i=1

(Bix+ bi)(ui − u∗
i )

= −1

2
∥x− x∗∥2Q − 1

ε1
∥u− u∗∥2H .

We show now asymptotic stability based on LaSalle’s invari-
ance principle. Since V (x, u, z) in (9) is radially unbounded
and positive definite, then its level set

Ω̄c := {(x, u, z) ∈ Rn × Rm × Rq : V (x, z, u) ≤ c}

is not only positively invariant but also compact for any c > 0.
Let us define the following set

Υ :=
{
(x, u, z) ∈ Ω̄c : V̇ (x, u, z) = 0

}
=
{
(x, u, z) ∈ Ω̄c : x = x∗, u = u∗} .

The largest invariant set E contained in Υ satisfies

E ⊂{(x, u, z) ∈ Υ : x = x∗, u = u∗, u̇ = 0}
= {(x, u, z) ∈ Υ : x = x∗, u = u∗,

z⊤θM (Bix
∗ + bi) = 0, i = 1, · · · ,m

}
.

From (5a) and θ ≻ 0, we have E ⊂ {(x∗, u∗, 0)}, and
(x∗, u∗, 0) is an equilibrium point of the closed-loop sys-
tem. Therefore, (x∗, u∗, 0) is globally asymptotically stable.
Furthermore, it is locally exponentially stable because the
linearization of the closed-loop system at the equilibrium point
is exponentially stable. Again, this can be shown with the
Lyapunov function V in (9). Details are omitted for space
reasons.

Now, we prove item (ii). From the structures of Ωc in (7) and
Ω̄c with V (x, u, z) in (9), if (x(0), u(0)) ∈ Ωc and ε2∥z(0)−
M(x(0) − x∗)∥2θ/2ε1 ≤ ε, then (x(0), u(0), z(0)) ∈ Ω̄c+ε.
Since Ω̄c+ε is positively invariant, (x(t), u(t), z(t)) ∈ Ω̄c+ε



for all t ≥ 0. We also have (x(t), u(t)) ∈ Ωc+ε for all t ≥ 0.
Therefore, if c > 0 is selected such that Ωc+ε ⊂ X ×U , then
Ωc is a feasible region of attraction.

For given P and K/ε1, to obtain the largest estimation of
the region of attraction contained in X ×U by Theorem 1, we
only have to find the maximum c > 0 such that Ωc+ε ⊂ X×U .
If such c > 0 exists, this is unique, since X × U is compact.
The shape of Ωc can be changed by selecting different P and
K/ε1, where P is determined by Q from (4).

Next, we briefly mention robustness thanks to the output
integral action, by applying results in [17]. In particular, we
show that under small parameter perturbations, the closed-
loop system preserves the existence of an asymptotically stable
equilibrium at which output regulation y = y∗ is achieved.

Corollary 1: Consider the controller (6) applied to the
perturbed model

ẋ = Ãx+

m∑
i=1

(
B̃ix+ b̃i

)
ui + G̃. (10)

For any compact set X × U × Z ⊂ Rn × Rm × Rq of initial
conditions there exists δ > 0 such that, if

∥Ã−A∥ ≤ δ, ∥Bi − B̃i∥ ≤ δ, ∥bi − b̃i∥ ≤ δ, ∥G− G̃∥ ≤ δ,

for any i = 1, . . . ,m, then the system (10) in closed-loop
with (6) admits an equilibrium (x̃∗, ũ∗, z̃∗) which is locally
exponentially stable and asymptotically stable with a domain
of attraction including the set X × U × Z. Furthermore, on
such an equilibrium one has Cx̃∗ = y∗.

Proof: Consider two Lyapunov level sets Ωi =
{(x, u, z) : V (x, u, z) ≤ ci} with V given by (9) such that
X × U × Z ⊂ Ω1 ⊂ Ω2. They are forward invariant compact
sets contained in the domain of attraction of the equilibrium
(x∗, u∗, z∗). Hence all the assumptions of [17, Lemma 5]
are verified. We conclude that by allowing small parameter
perturbations of the matrices A,Bi, bi, G, the resulting closed-
loop dynamics are close-enough to the nominal ones for all
(x, z, u) ∈ Ω2. The statement of the corollary follows from
the total stability properties claimed in [17, Lemma 5]. Similar
details are also given in [4, Theorem 1].

Note that M in (5b) is defined in terms of the nominal
values of A, Bi, C, and u∗

i . Thus, M is not affected by
perturbations, and we have shown in Corollary 1 that by using
the nominal M , the proposed controller guarantees robustness
against perturbations. Let x∗

per denote the equilibrium point
of the perturbed system, which is obtained by (2) with Ã =
A+∆A, B̃i = Bi+∆Bi, b̃i = bi+∆bi, and G̃ = G+∆G. To
estimate a feasible set (7) for the perturbed system, we need
to describe ∥x − x∗

per∥ as a function of ∆A, ∆Bi, ∆bi, and
∆G, which is left for future work.

B. Special Cases
In this subsection, we examine closely the special cases

of the proposed controller (6). First, we consider the integral
action of the input only (i.e., we remove the term S(x, z) for
the output integral action), which yields

Ku̇ = −H (u− u∗)− ε1R (x) . (11)

With this controller, we can show the exponential stability of
the closed-loop system.

Corollary 2: Given (x∗, u∗) ∈ D, consider (1) in closed-
loop with (11). Then, the following statements hold:

(i) the closed-loop system is globally exponentially stable at
(x∗, u∗);

(ii) Ωc in (7) is a feasible region of attraction if Ωc ⊂ X ×U .

Proof: We select a Lyapunov candidate as

Ṽ (x, u) :=
1

2
∥x− x∗∥2P +

1

2ε1
∥u− u∗∥2K . (12)

From (8), its time derivative along trajectories of the closed-
loop system satisfies

˙̃V (x, u) = (x− x∗)⊤P

(
A+

m∑
i=1

Biu
∗
i

)
(x− x∗)

+ (x− x∗)⊤P

m∑
i=1

(Bix+ bi)(ui − u∗
i )

− 1

ε1
∥u− u∗∥2H − (u− u∗)

⊤
R (x) .

Then, it follows from (4) and (6c) that
˙̃V (x, u) =− 1

2
∥x− x∗∥2Q − 1

ε1
∥u− u∗∥2H . (13)

Since Q ≻ 0 and H ≻ 0, there exists some α > 0 such
that ˙̃V ≤ −αṼ . Thus, the closed-loop system is globally
exponentially stable at (x∗, u∗). Also the second statement
holds, since Ωc is a level set of Ṽ (x, u) that is positively
invariant and a feasible region of attraction.

Next, we consider the output integral action only (i.e. we
select u̇ = 0), which recovers the controller proposed in [6]
(without the saturation for the input), i.e.,

u = u∗ −H−1 (ε1R (x)− ε2S (x, z)) , (14a)
ż = C(x− x∗). (14b)

According to [6], this controller achieves global asymptotic
stabilization of (x∗, 0). This can be confirmed by using the
following Lyapunov candidate:

V (x, z) =
1

2
∥x− x∗∥2P +

ε2
2ε1

∥z −M (x− x∗) ∥2θ.

To satisfy the input constraint, i.e., u(t) ∈ U for all t ≥ 0, a
saturation mechanism is applied in [4], [6] instead of estimat-
ing a feasible set. However, to satisfy the state constraint, an
additional analysis is needed.

As a further special case, removing S(x, z) from (14) leads
to the following static controller:

u = u∗ − ε1H
−1R(x), (15)

which globally asymptotically stabilizes x∗, see e.g. [10]. This
can be shown based on the Lyapunov candidate V̂ (x) = ∥x−
x∗∥2P /2. In order to deal with the input constraint, we need to
analyze the controller equation (15) containing the quadratic
function R(x).

In contrast to these two existing controllers, by the proposed
controller (6) (or its special case (11)), a feasible set Ωc

can be intuitively shaped by selecting K/ε1. This aspect is
further emphasized below by designing a controller for a heat
exchanger.



Fig. 1. Schematic of a counter-current heat exchanger with three cells
in two layers

IV. COUNTER-CURRENT HEAT EXCHANGE SYSTEM

A heat exchanger is a device in which two fluid streams
exchange heat without mixing. Here we consider, in particular,
a counter-current heat exchanger, a diagram of which is shown
in Fig. 1. Each of the exchanger’s compartments is split into
three cells in which temperature is assumed to be uniform.
We denote by Ti and T̄i the temperature of the ith cell at
compartments 1 and 2, respectively. Analogous descriptions
follow for the stream volumetric flow rates q (t) and q̄ (t),
and the stream temperatures Tin and T̄in at the inlet of each
compartment.

Let x = (T1, T2, T3, T̄1, T̄2, T̄3) be the system state and
u (t) = q (t) the control input. If q̄, Tin, and T̄in are assumed
to be positive constants, then the evolution of x is determined
by the following model [6]:

ẋ = Ax+ (Bx+ b)u+G, (16)

A = 1
β

[ −αI3×3 αI3×3

−αI3×3

−q̄−α q̄ 0
0 −q̄−α q̄
0 0 −q̄−α

]

B = 1
β

[ −1 0 0
1 −1 0
0 1 −1

03×3

03×3 03×3

]
,

b = 1
β


Tin

0
0
0
0
0

 ,

G = 1
β

[
0 0 0 0 0 q̄T̄in

]⊤
,

and α = λ/cρ > 0, β = ρv > 0. The constant parameters λ,
cρ, ρ, and v denote the heat transfer coefficient, heat capacity,
mass density of the fluid, and volume of the fluid in the heat
exchanger, respectively.

From a physical viewpoint, it is desirable that the temper-
ature Ti or T̄i of each cell remains in a suitable interval all
the time. Moreover, it is practically sensible that the input
should be constrained by specified lower and upper bounds.
Therefore, considering the analysis reported in [6], we propose
to respectively restrict x and u to the following compact sets:

X =
{
x ∈ R6 : T̄in ≤ xi ≤ Tin, i = 1, · · · , 6

}
, (17a)

U = {u ∈ R : umin ≤ u ≤ umax, } . (17b)

To apply the proposed controller (6), we verify Assumptions
1 and 2. For any u∗ > 0, it is possible to show that A+Bu∗

is Hurwitz, i.e., Assumption 1 holds.
For the output regulation problem, following [6], we choose

x4 as the system output, obtaining the following output matrix
C =

[
0 0 0 1 0 0

]
. In this case, for any given u∗ and

x∗ satisfying (2) except for x∗
1 = x∗

2 = x∗
3 = Tin, it is possible

to show that (5a) holds [6]. Therefore, the controller (6)

TABLE I
VALUES OF SYSTEM’S PARAMETERS

Parameter Value Parameter Value
λ 10 (J/K/s) ρ 997 (kg/m3)
v 0.002 (m3) cρ 4185 (J/kgK)

Tin 360 (K) T̄in 300 (K)
q̄ 0.02 (kg/s) umin/umax 0/0.05 (kg/s)

globally asymptotically stabilizes the equilibrium (x∗, u∗, 0).
Also, a feasible set Ωc ⊂ X × U in (7) can be estimated.
For the considered heat exchanger, P satisfying (4) can be
selected as diagonal because for any u∗ > 0, A + Bu∗ is
Hurwitz and Metzler; see references on positive systems, e.g.,
[18, Proposition 1]. Similarly, the controller (11) only with the
input integral action can be implemented for making (x∗, u∗)
exponentially stable while estimating a feasible set.

Simulation
We report now the results of a number of MATLAB

simulations on the considered heat exchanger model (16) in
closed-loop with the controllers proposed in section III. Table I
contains the heat exchanger parameters used in simulation.

First, we apply the dynamic controller (11) without output
regulation. The matrix P is set as

P = diag ([3.60, 0.82, 0.42, 0.42, 0.42, 1.21]) .

Also, we choose ε1 = ε2 = 1 such that the convergence
speeds of x−x∗ and z become similar. Then, we select K =
1.032×105 to shape the estimated feasible set Ωc such that it
becomes very close to the actual feasible set X×U . Finally, we
determine H such that K−1H = 0.1 based on the discussion
in Section III-A about the relation among the convergence
speeds of u− u∗, x− x∗, and z.

The simulation result is shown in Fig. 2. The initial condi-
tions are

x(0) = [355.56, 351.09, 346.57, 314.76, 309.89, 304.97]⊤

and u (0) = 0.022. The desired state and input equilibrium
pair (x∗, u∗) is switched over time as follows:

x∗ = [356.94, 353.76, 350.45, 315.5, 310.54, 305.38]⊤,

u∗ = 0.03246, when 0 ≤ t < 1000(s),

x∗ = [357.52, 354.90, 352.14, 315.81, 310.83, 305.54]⊤,

u∗ = 0.04024, when 1000 ≤ t < 2000(s),

x∗ = [356.35, 352.60, 348.75, 315.18, 310.26, 305.20]⊤,

u∗ = 0.27, when t ≥ 2000(s),

We note that convergence is achieved in all the cases and that
x ∈ X and u ∈ U all the time. It is worth noting that all pairs
(x∗, u∗) in this section satisfy Assumption 1.

The second scenario concerns the designed output regulator
(6). Here, we investigate the ability of the controller to regulate
the output y = x4 to a desired setpoint in presence of
uncertainty in the system parameters. The controller parameter
θ is chosen as θ = 0.1, and the others are the same as above.
The closed-loop system behavior is shown in Fig. 3, where the



Fig. 2. Evolution of the temperatures of the heat exchanger cells and
the control effort with input regulation process.

Fig. 3. Evolution of the temperatures of the the heat exchanger cells
and the control effort with input and output regulation processes.

initial conditions are the same as in the previous scenario, and
the desired equilibrium is the first of those listed above. Both
x and u converge to their equilibrium values for t < 10000 (s).
At the time 10000 (s) a perturbation is introduced by changing
the value of Tin from 360 to 363 (K). In this case, the output
converges to the desired value y∗ = x∗

4, while the stability
properties of the system are preserved and x(t) ∈ X and
u(t) ∈ U for all t ≥ 0. Compared to other controllers,
the static controller in [10] does not satisfy the feasibility
constraints and also fails to achieve output regulation under
perturbations. Also, since the proposed controller does not
contain a saturation, the control signal does not cause (high
frequency) switching that may be experienced in saturated-
based controllers such as the one in [6].

V. CONCLUSION AND FUTURE WORKS

In this letter, we have studied stabilizing control design for a
class of bilinear systems under state and input constraints. Our

controller is based on integral actions on the input and output
to balance input and output regulations. Closed-loop stability
has been proven based on Lyapunov analysis, which also gives
a sufficient condition to satisfy input and state constraints.
Finally, our approach has been applied to the counter-current
heat exchanger system, and the effectiveness of the proposed
method has been illustrated by numerical simulations. Future
work includes estimating a tighter feasible region of attraction
and also a range of perturbations in which output regulation
is guaranteed.
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