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Accelerating the energy transition towards 
photovoltaic and wind in China

Yijing Wang1, Rong Wang1,2,3,4,5,6,7 ✉, Katsumasa Tanaka8,9, Philippe Ciais8,10, Josep Penuelas11,12, 
Yves Balkanski8, Jordi Sardans11,12, Didier Hauglustaine8, Wang Liu1, Xiaofan Xing1, Jiarong Li1, 
Siqing Xu1, Yuankang Xiong1, Ruipu Yang1, Junji Cao13, Jianmin Chen1,2,3, Lin Wang1,2,3, 
Xu Tang2,3 & Renhe Zhang2,3

China’s goal to achieve carbon (C) neutrality by 2060 requires scaling up photovoltaic 
(PV) and wind power from 1 to 10–15 PWh year−1 (refs. 1–5). Following the historical  
rates of renewable installation1, a recent high-resolution energy-system model6 and 
forecasts based on China’s 14th Five-year Energy Development (CFED)7, however, only 
indicate that the capacity will reach 5–9.5 PWh year−1 by 2060. Here we show that, by 
individually optimizing the deployment of 3,844 new utility-scale PV and wind power 
plants coordinated with ultra-high-voltage (UHV) transmission and energy storage 
and accounting for power-load flexibility and learning dynamics, the capacity of PV 
and wind power can be increased from 9 PWh year−1 (corresponding to the CFED path) 
to 15 PWh year−1, accompanied by a reduction in the average abatement cost from 
US$97 to US$6 per tonne of carbon dioxide (tCO2). To achieve this, annualized 
investment in PV and wind power should ramp up from US$77 billion in 2020 (current 
level) to US$127 billion in the 2020s and further to US$426 billion year−1 in the 2050s. 
The large-scale deployment of PV and wind power increases income for residents in 
the poorest regions as co-benefits. Our results highlight the importance of upgrading 
power systems by building energy storage, expanding transmission capacity and 
adjusting power load at the demand side to reduce the economic cost of deploying  
PV and wind power to achieve carbon neutrality in China.

Ambitions to achieve carbon neutrality are needed in all nations to limit 
global warming to below 2 °C in the Paris Agreement8,9. Accelerating 
the penetration of renewables is a key pillar in climate mitigation10. 
Global decarbonization is not, however, progressing as fast as it should 
to meet the goals of the Paris Agreement11–13. The world is probably 
on track for 2.8 °C of warming at the end of this century on the basis 
of current policies11. To achieve the global transition towards low-C 
economies, the 27th Conference of the Parties to the United Nations 
Framework Convention on Climate Change (COP27) recommended 
annual investments of US$4–6 trillion (all currency values throughout 
the paper are in US dollars) to accelerate the penetration of renewa-
bles14. However, details on how these funds should be allocated among 
renewables remain unclear1,6, requiring advanced spatially explicit 
models to optimize the existing power systems with geospatial details 
and coordinating infrastructure8,15.

The rapid increase in global carbon dioxide (CO2) emissions since 
2000 has been driven mainly by the growing energy demand in develop-
ing countries8. Decarbonization may be more challenging in developing 
than developed countries16, but mitigation in developing countries is 

indispensable for meeting the climate goals8–10. China, with 18% of the 
global population and 28% of the global CO2 emissions, has recently 
strengthened its nationally determined contribution with carbon neu-
trality target by 2060 (ref. 2). Among renewables, PV and wind power 
have wider ranges of application than hydropower6, generate less detri-
mental effects on food and ecosystems than bioenergy17 and probably 
entail lower costs than carbon capture and storage (CCS)18. Achieving 
carbon neutrality requires scaling up PV and wind power from 1 to 
10–15 PWh year−1 during 2020–2060 in China1–5,19. This capacity, how-
ever, would only reach 5 PWh year−1 assuming the annual growth rate of 
100 TWh year−1 from 2010–2020 (ref. 1) or 9 PWh year−1 using forecasts 
by the governmental plans of CFED7 or 9.5 PWh year−1 based on a recent 
high-resolution energy-system model6. There is also a chance that the 
growth of PV and wind power in China slows down owing to decreasing 
governmental subsides20, a lack of transmission infrastructure6 and 
restrictions for protecting agricultural, industrial and urban lands21.

A spatially explicit method is needed for performing an optimiza-
tion of energy systems by coordinating the generation of power with 
transmission and consumption of electricity in a country as vast as 
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China22. Methods accounting for the spatial heterogeneity of PV and 
wind resources and demand for electricity transmission and storage 
have been developed for Europe23 and the USA24, but the flexibility of 
power load25 and intertemporal dynamics of learning26 have rarely 
been addressed in studies for China6,27–29. In contrast to previous  
studies2,6,27–29, we developed a unified optimization framework that 
accounts for the geospatial capacities of installing new PV panels 
and wind turbines, expansion of existing UHV transmission, storing 
energy, flexible power loads and dynamics of learning. Our research 
highlights the need for investments in upgrading power systems 
and infrastructure, as well as the co-benefits of increasing resident  
incomes.

Optimization of PV and wind power systems
We optimized the location, capacity and construction time of new PV 
and wind power plants each decade during 2021–2060 by minimizing 
the levelized cost of electricity (LCOE)6,27 (Extended Data Fig. 1). The 
LCOE is defined as the normalized present value of costs including 
initial investment, operation and maintenance (O&M), land acquisition, 
UHV transmission and energy storage that are divided by the power 
generated over the lifetime (25 years (ref. 30)) of power plants (see 
Methods). We optimized the number of pixels receiving new PV panels 
or wind turbines to minimize the LCOE (Extended Data Fig. 2). We identi-
fied respectively 2,767, 1,066 and 11 power plants of PV, onshore wind 
and offshore wind at the utility scale (>10 MW) by considering resource 
limitations, administrative boundaries, land suitability, restriction 
of land use, ground slope, land cover, latitude, longitude, terrestrial 
and marine ecological conservation, water depth at offshore wind 
stations, shipping routes, solar irradiance, wind power density and air 
temperature (Fig. 1a,b). The predicted location and capacity of power 
plants match the observed PV and wind power plants to some extent31 
(Extended Data Fig. 3).

We identified diurnal variabilities and seasonal patterns of PV 
and wind power generation, which are not in phase with the profile 
of power demand (Fig. 1c). The power generation peaks in spring 
owing to variations in surface air temperature, shade, solar angle and 
inclination of PV panels (Extended Data Fig. 4). Our model considers 
the flexibility of power load whereby end users adjust hourly power 
demand to match the supply except for heating and cooling of houses 
and electric cars25 (that is, 12% in total power demand by 2060) (see 
Methods). The adjusted power demand shifts in the daytime to match 
the peak of PV and wind power generation (Fig. 1c). Expanding the 
capacity of transmission by 6.4 TW and building new energy stor-
age of 1.3 TW in China improves the efficiency of power use (Fig. 1d), 
whereas adopting a lower rate of electrification or considering a higher 
capacity of other types of renewable reduces the efficiency (Extended  
Data Fig. 5).

Similar to a previous study32, we estimated that the rate of learning 
in China during 2000–2020 could be higher than the rate measured 
in other regions during 1975–2020 (Supplementary Table 1). On this 
basis, optimizing the construction time of power plants reduces the 
LCOE of PV and wind power plants from $0.067 to $0.046 per kWh 
(Fig. 1e). This requires an increase in PV and wind investment from 
$127 billion year−1 in the 2020s to $426 billion year−1 in the 2050s. This 
investment profile is similar to CFED1,7 for the 2020s and 2030s but 
is lower in the 2040s and 2050s. Investment in our optimal path over 
the period 2031–2050 ($220 billion year−1) is lower than a previous 
estimate6 ($320 billion year−1) made without simulating the dynamics 
of learning.

We quantified the effects of optimization relative to a baseline sce-
nario, which limits the capacity of PV and wind power plants to 10 GW 
without electricity transmission and energy storage and assumes that 
the growth rate of PV and wind power is constant during 2021–2060 
without optimizing the dynamics of learning26. We designed five 

sensitivity experiments by sequentially increasing the limit of capacity  
for individual plants from 10 to 100 GW (case A), considering the con-
struction of new UHV lines (case B), adding energy storage (case C), 
improving electrification of non-power sectors33 from 0 to 58% (case D) 
and considering flexible power loads (case E). Case E becomes equiva-
lent to our optimal path if the construction time of power plants is opti-
mized through accounting for the dynamics of learning26. Our optimal 
path increases the capacity the most by storing energy (+6.4 PWh year−1 
as a difference between cases B and C), but it reduces the costs the 
most by optimizing the dynamics of learning (−$115 billion year−1 as a 
difference between case E and the optimal path) (Fig. 1f).

Costs of CO2 emissions reduction
We estimated the marginal abatement cost (MAC) at the plant level, 
which varies from −$166 per tCO2 to $106 per tCO2 in 2060 in our opti-
mal path (Fig. 2a). For example, 77% of PV and wind power could be 
competitive against nuclear power with a lower MAC1. The average 
abatement cost (−$4.5 per tCO2) for 9.5 PWh of power generation is 
lower than a previous estimate ($27 per tCO2) under an 80% renew-
able penetration in China6. The MAC increases as the capacity rises 
owing to techno-economic limits and differences in the prices of the 
substituted fossil fuel (Extended Data Fig. 6). Such behaviour of the 
MAC indicates an increase in the costs to install higher capacities of PV 
and wind power34, even by considering the benefits of technological 
improvements26.

The capacity of PV and wind power reaches 15 PWh in 2060 (9 PWh in 
the CFED plan7) with an average abatement cost of $6 per tCO2 ($97 per 
tCO2 in the CFED plan1) (Fig. 2b,c). The CO2 emissions were most abated 
by storing energy (+3.5 Gt CO2) for power plants with MAC < $100 per 
tCO2 and by optimizing the dynamics of learning (+3.5 Gt CO2) for power 
plants with MAC < $0 per tCO2. The costs of PV and wind power would 
increase if we assumed international learning rates (Supplementary 
Table 1), high capital costs35, a short lifetime of power plants (20 years)30 
or a high discounting rate (7%)6, but decrease if we neglected the costs 
of new UHV lines or adopted low capital costs36. For example, the aver-
age abatement cost increased from −$2 to $14 per tCO2 if we increased 
the discounting rate from 3% to 7% to reduce the revenue from power 
generation, but it decreased from $22 to $0 per tCO2 if we increased the 
lifetime of power plants from 15 to 35 years (Supplementary Fig. 1). The 
cost composition shifted from transformers and O&M to modules and 
land acquisition as we moved from the baseline case to the optimal path 
(Fig. 2d). A recent study showed that globalized supply chain reduces 
global solar-module prices32. Our results indicate that the impact of 
technological transformation between countries might be moderate 
for China with a fast decline in module prices (Supplementary Fig. 2).

Trade-offs among land, costs and power
We analysed the trade-offs among land requirements, costs and power 
capacity (Table 1). The capacity of PV and wind power could provide up 
to 59% of the projected total power demand in China for 2060, com-
pared with a contribution of 20% by hydrogen, nuclear and biomass in 
a scenario keeping global warming below 1.5 °C by ref. 2. Expansion of 
PV and wind power from 1 to 15 PWh year−1 requires 585,000 km2 of land 
for placing PV panels and 672,000 km2 of area for installing onshore 
and offshore wind turbines, in which 33%, 35%, 16% and 6% of facilities 
are distributed in deserts, grassland, oceans and cropland, respec-
tively (Extended Data Table 1). Building these PV and wind power plants 
requires initial investment of $201 billion year−1 with O&M costs of 
$47 billion year−1, the sum of which is 7% of the total spending of China’s 
public finances37 in 2020. These costs can partly offset the income by 
saving costs of purchasing fossil fuels ($223 billion year−1) and reducing 
carbon costs ($399 billion year−1) by assuming a representative carbon 
price of $100 per tCO2 from the 1.5 °C scenario by ref. 2.
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We predicted that 183 of 3,844 plants will be built with capacity 
>10 GW. The average abatement cost will decrease from $62 to $6 per 
tCO2 as the limit of capacity for individual plants increases from 0.1 to 
10 GW (Extended Data Fig. 7). The feasibility of building large power 
plants in China could be supported by commissions of the Jiuquan 

onshore wind power plant at 20 GW and the Yanchi PV power plant at 
1 GW, but it entails high requirements on grid integration, electricity 
transmission and initial investment38. Non-economic factors such as 
ecological preservation, engineering feasibility and political impedi-
ment deserve attention.

Lo
ng

itu
d

e

d

Capacity of new PV and wind power plants
installed during 2021–2060 (TW)

P
ow

er
-u

se
 e

f�
ci

en
cy

 (%
)

20

60

100

0 42 86

40

0

80

c

H
ou

rly
 p

ow
er

 lo
ad

 (T
W

h)

8

5

1

0

4

3

2

6

a Wind plantsPV plants

80° E 100° E 120° E 80° E 100° E 120° E 

50° N

30° N

20° N

40° N

Time of
construction

2050s
2040s
2030s
2020s

Latitude Latitude

12 24 12 24 12 24 12 24

Spring Summer Autumn Winter

Optimal path

Case A
Baseline

Case D
Case E

Case C
Case B

e

Power capacity by new PV and wind power
plants installed during 2021–2030 (PWh year–1)

LC
O

E
 (2

01
9$

 p
er

 k
W

h)

0.02

Optimal 
path

No learning0.07

0 42 106 8

0.06

14

Central case

0.04

0.05

0.03

Natural reserves

A
nn

ua
l c

os
ts

(b
ill

io
n 

$)

2030s2020s 2040s 2050s
0

600

200

400 Onshore wind
Offshore wind

Mechanical storage
Chemical storage
UHV transmission

PV

CFED path

12

7

Capacity (GW)
10
40
100

W
P

D
 (W

 m
–2

)

G
H

I (
W

 m
–2

) 300

200

100

800

0

400

Lower
ef�ciency

Lo
ng

itu
d

e

b
50° N

30° N

20° N

40° N

Case A
Case B

Case CBaseline
Power generation by new PV and wind-power plants

Case E 
Case D

Optimal path
PV Onshore wind
Offshore wind

Optimal pathCase D
Power demand 

Investment in PV and wind 
power in 2020 (ref. 41)

Case A 
Baseline

Case C
Case B

CFED path
Optimal path

Case D

Case E
f

Power capacity by new PV and wind power 
plants installed during 2021–2060 (PWh year–1)

A
nn

ua
l c

os
ts

 d
ur

in
g

20
21

–2
06

0 
(b

ill
io

n 
$)

200

400

0 106 1412

300

0
2 84

100

Fig. 1 | Optimization of the location, capacity and construction time  
of utility-scale PV and wind power plants during 2021–2060 in China.  
a,b, Maps of PV (a) and wind (b) power plants built by decade in the optimal 
path. The background shows global horizontal irradiance (GHI) and wind 
power density (WPD). c, Seasonal and diurnal variations in the generation and 
demand of power under an electrification rate of 58% for non-power sectors  
in 2060. The shading represents the PV and wind power generation without 
considering curtailments. In a baseline scenario, the capacity of individual PV 
and wind power plants is limited to 10 GW without electricity transmission and 
energy storage, whereas the growth rate of PV and wind power is constant 
during 2021–2060 without considering the dynamics of learning. We design 
five experiments by sequentially increasing the limit of power capacity from  
10 to 100 GW (case A), building new UHV lines (case B), storing energy (case C), 
improving the electrification of non-power sectors (case D) and considering 

flexibility of power loads (case E). Case E becomes equivalent to our optimal 
path if the construction time of power plants is optimized by accounting for the 
dynamics of learning. d, Power-use efficiency defined as the fraction of the 
generated power consumed by end users. e, Influences of increasing the 
capacity of new PV and wind power plants built in the 2020s on the LCOE of  
all new PV and wind power plants built during 2021–2060. The optimal path 
minimizes the LCOE by optimizing the construction time of individual power 
plants (shaded area) under a discounting rate of 5%. The inset shows the annual 
costs by decade. We consider a ‘CFED path’ by following the rate of installing 
renewables in China’s 14th Five-year Energy Development (CFED)7 with the 
projected costs of PV and wind power1. f, Dependency of the annual average 
costs of deploying PV and wind power during 2021–2060 on the power capacity 
of new PV and wind power plants built during 2021–2060 under different 
scenarios.
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Implication for carbon neutrality
Many scenarios meeting the target of carbon neutrality8 rely on ret-
rofitting existing plants with CCS, which may be limited by economic 
costs1, geological constraints39 and biomass availability17. We analysed 
the impact of deploying PV and wind power on the demand for CCS 
with fossil fuel2 or bioenergy17 to achieve carbon neutrality in 2060 by 
considering terrestrial carbon sinks, electrification of non-power sec-
tors (58%)33 and power supply by other renewables2 (Fig. 3). A transition 
from CFED7 to our optimal path reduces the demand for CCS from 8.9 
to 2.8 PWh year−1 in 2060 (Fig. 3a). The share of PV and wind in power 
supply increases from 12% to 59% during 2021–2060 at an annual rate 
of 1.8%, 1.4%, 1.0% and 0.7% in the 2020s, 2030s, 2040s and 2050s, 
respectively, which requires acceleration relative to an annual rate of 
1% for China in the 2010s40. Although the projected annual growth rates 

for wind (1%) and PV (0.8%) in China during the 2020s are comparable 
with the maximal annual rates of 1% in Spain, 0.9% in Turkey and 0.6% 
in the USA and New Zealand for wind or 1.1% in Japan and 1% in Germany 
for PV13, the expansion of these technologies may present greater chal-
lenges in China because of her larger absolute power demand1.

Upgrading power systems is crucial to accelerating the penetration of 
renewables in China7,27–29. For example, the growth of PV and wind power 
does not depend on investment in electricity transmission in CFED 
plans7 (Fig. 3c). By contrast, our model optimizes the dynamics of learn-
ing (Extended Data Fig. 8) and the strategy of energy storage (Extended 
Data Fig. 9) by accounting for investment in UHV lines (Fig. 3b).  
An example of the findings shows that, with the increase in PV and wind 
investment from $0 to $60 billion year−1 over the period 2021–2060, 
the ratio of cost reduction for PV, wind and CCS to the increase in costs 
for PV and wind power is 2.7:1 in the optimal path towards carbon 
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Fig. 2 | Costs of CO2 emissions abatement in 2060 by deploying PV and  
wind power in China. a, The MAC under a 5% discounting rate in 2060. The 
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path are identical to those defined in Fig. 1. Arrows represent the MACs for 
hydropower, nuclear power, hydrogen energy, carbon capture utilization and 
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when building new PV and wind power plants to meet the power demand in 
2060. We perform sensitivity experiments by applying international learning 
rates (Supplementary Table 1) (I), adopting low36 (II) or high35 (III) capital costs, 
neglecting the costs of building new UHV lines (IV), adopting a high discounting 
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d, Composition of the costs and income when increasing PV and wind power 
generation from 1 to 10 PWh year−1 to replace fossil fuel in 2060.
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neutrality in 2060, which is lower than the ratio of 6.4:1 in CFED plans7. 
This ratio increases to 5.4:1 in our optimal path when investment in 
PV and wind power systems increases from $60 to $250 billion year−1,  
but decreases to 0.4:1 in CFED plans7. Our results highlight the impor-
tance of ramping up PV and wind investment relative to current levels  
($77 billion year−1 in 2020)41 to reduce the economic costs of achieving 
carbon neutrality.

Implication for alleviating poverty
Deploying renewables has been suggested as an effective way to reduce 
poverty42 by generating revenue from wealthier regions. This impact, 
however, has not been assessed by a national cost–benefit analysis 
in China. A higher carbon price generates more revenue for PV and 
wind power by saving more carbon costs (Fig. 4a). Accounting for the 
finances embodied in the transmission of electricity (see Methods), 
we found that the revenue from PV and wind power could be redis-
tributed from the more developed east to the less developed west. 
Distributing the revenue to less-developed regions as the carbon price 
increases from $0 to $100 per tCO2 removes 21 million people from 
the low-income group (<$5,000 year−1) and adds 6 million people to  
the high-income group (>$20,000 year−1) (Fig. 4b,c).

Increasing the carbon price from $0 to $100 per tCO2 reduces income 
equality, with a decrease in the Gini coefficient from 0.453 to 0.441 
(Fig. 4d). Adopting a carbon price of $100 per tCO2 generates a finan-
cial flow of $1,055 billion in the transmission of PV and wind power in 
2060, which is 15-fold higher than China’s annual investment in pov-
erty alleviation during 2014–2020 (ref. 37). The generation of PV and 
wind power is dominated by Northwest China (5.9 PWh year−1) and 
North China (5.2 PWh year−1), whereas the consumption is dominated 
by East China (5.7 PWh year−1) and Central China (4.3 PWh year−1). The 
transmission of electricity leads to the largest finance flow ($223 bil-
lion year−1) from East China to Northwest China (Fig. 4e). By increasing 
the carbon price from $0 to $100 per tCO2, deployment of PV and wind 
power benefits the poorest residents, with an increase in per-capita 
income from $29,000 to $34,400 in North China and from $29,100 to 
$30,600 in Northwest China.

Implication for climate policies
The gap between current decarbonization rates and the levels required 
to achieve carbon neutrality remains substantial8–10. China has been at 
the forefront of PV deployment since 2009 (ref. 27), accompanied by an 
accelerated growth of wind power1. Despite these accomplishments, 

Table 1 | Capacity, land acquisition and annual costs of new PV and wind power plants built during 2021–2060 under a 
discounting rate of 5%

Annual power 
generation by 
PV and wind 
power plants 
(PWh year−1)

Total 
area 
(Mha)

Length of 
new UHV 
lines 
(million 
km)

Capacity 
of energy 
storage 
(TW)

Number 
of new PV 
and wind 
power 
plants

Number of 
new PV and 
wind power 
plants with 
capacity 
>10 GW

Average 
power 
capacity 
(GW)

Average 
capacity 
factor 
(%)

Annual cost 
of electricity 
transmission 
(billion $ 
year−1)

Annual cost 
of energy 
storage 
(billion $ 
year−1)

Annual 
initial 
investment 
cost (billion 
$ year−1)

Annual 
O&M cost 
(billion $ 
year−1)

Average 
abatement 
costs  
($ per 
tCO2)

1–5 29.05 0.46 0 153 48 14.33 20.59 10.49 0 47.68 10.50 −3.70

5–10 47.93 0.46 0.42 619 77 4.60 19.97 8.58 6.43 62.86 16.95 0.61

10–15 43.02 0.21 0.88 3,023 55 1.10 17.00 3.83 12.74 82.97 16.07 15.69

Total 132.05 1.14 1.34 3,844 183 2.26 18.84 23.35 19.87 201.21 46.58 5.73
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Fig. 3 | Different paths to achieve carbon neutrality in China by 2060.  
a, Composition of the generated power by decade. The projected generation  
of power by oil, gas, bioenergy, nuclear power and hydropower are derived 
from the ‘1.5-°C-limiting’ scenario in a multi-model study2. The PV and wind 
power are projected by our optimal path and CFED7. Assuming that coal meets 
the remaining power demand, we estimate the demand for CCS installed with 
fossil fuel or biomass when achieving carbon neutrality in 2060. b, Dependence 
of the annual costs of PV, wind and CCS when achieving carbon neutrality by 
2060 on the costs of transmitting electricity by UHV lines during 2021–2060 in 
the optimal path. c, Dependence of the annual costs of PV, wind and CCS when 

achieving carbon neutrality by 2060 on the costs of PV and wind power during 
2021–2060 in our optimal (dashed lines) path and CFED7 (solid lines). In b, the 
total capacity of PV and wind power plants built during 2021–2060 in the 
optimal path depends on the capacity of electricity transmission, whereas the 
total distance of new UHV lines is indicated by the colour of the circle. The total 
capacity of PV and wind power built by 2060 in CFED7 depends on the annual 
growth rate of PV and wind power during 2021–2060, which is indicated by the 
colour of the circles in c. We predict the costs of CCS based on the MAC of CCS1 
and the demand for CCS when achieving carbon neutrality by 2060 under 
different scenarios.
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it remains challenging to achieve carbon neutrality by 2060. As fossil 
fuels continue to dominate energy-related investments12, renewable 
growth could slow down as subsidies for companies generating PV and 
wind power decline20,21. Unlike previous studies1,2,6,27–29, our research 
reveals greater potential for PV and wind power generation in China, 
alongside the need for larger investment in power-system upgrades.

Our approach enhances the optimization of PV and wind power 
systems2,6,27–29 by applying a spatially explicit method that provides 
insights into climate mitigation in countries beyond China14. First, 
deeper decarbonization requires greater investments in renewables 
because of physical constraints in abating more CO2 emissions (for 
example, larger demand for land and infrastructure), even when 
accounting for technological improvements26,30. Despite the projection 
of decreasing renewable energy costs43, we emphasize the importance 
of policy interventions (for example, building large PV and wind power 
plants, grid integration, energy storage and demand-side power-load 
management) to reduce renewable costs. Second, deploying PV and 
wind power can offer new sources of income in less-developed regions 
with vast areas of desert and marginal lands. It has implication for accel-
erating economic development by deploying renewables in semiarid 
regions such as Africa and the Middle East44. Third, optimizing power 
systems for large developing countries can lower the costs of deploy-
ing renewables in the upcoming decades, making it feasible to achieve 
more ambitious climate targets beyond the 2060 carbon neutrality45. 
Our research highlights the technical and physical constraints on 
deploying renewables to mitigate CO2 emissions, the importance 
of scaling up investments to accelerate energy transition to PV and 
wind power and the optimal route to achieve carbon neutrality in the  
long run.
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Methods

Geospatial data in this study
An overview of our optimization model is shown in Extended Data Fig. 1. 
We optimized the placement and capacity of PV and wind power plants 
in our model driven by geospatial data (Supplementary Method 1), 
including land cover, solar radiation, wind speed, surface air tempera-
ture, ground slope, latitude and longitude of the installed PV panels, 
terrestrial and marine ecological reserves, water depths of offshore 
stations and marine shipping routes (Supplementary Table 2). All land 
pixels were categorized into forest, shrubland, savannah, grassland, 
wetland, cropland, urban and built-up land, mosaics of natural vegeta-
tion, snow and ice, deserts and water bodies46. The suitability of the 
installation of PV panels or wind turbines was defined by land cover 
(Supplementary Table 3). Onshore wind turbines with the capacity of 
2–2.5 MW and offshore wind turbines with the capacity of 5–10 MW 
are considered as the main models used in China at present47, so we 
considered models for onshore (General Electric 2.5 MW) and offshore 
(Vestas 8.0 MW) wind power plants (Supplementary Table 4) at a hub 
height of 100 m above the ground to convert air kinetic energy to elec-
tricity based on the recommended power-generation curve48 (Supple-
mentary Fig. 3). Resources of solar and wind energy were associated 
with seasonal and diurnal variabilities and interannual differences. 
We estimated hourly solar radiation and wind speed at a hub height 
of 100 m above the ground as averages for 2012–2018 to provide a 
representative estimate of solar and wind energy in China (Supplemen-
tary Method 2). All geospatial data were projected to a resolution of 
0.0083° in latitude and 0.033° in longitude for estimating the potential 
of power generation by installing PV panels or wind turbines in each 
pixel (Supplementary Methods 3–5).

The optimization model
We estimated the LCOE of the PV and wind power systems to indicate 
the grid parity of power generation, which is defined as the normalized 
net present value of all costs of investments, O&M, land acquisition, 
transmission and energy storage divided by the power generated dur-
ing the lifetime (25 years (ref. 30)) of the PV and wind power plants35. 
Before solving the optimization problem, we sought the best strategy 
for installing PV panels or wind turbines with different shapes to achieve 
the maximal capacity of power generation in each county (Supplemen-
tary Fig. 4). We took the number of pixels installing PV panels or wind 
turbines and the time to build each PV or wind power plant by decade 
as decision variables. By accounting for the intertemporal dynamics of 
learning26,30, we developed a unique method to optimize the capacity 
of each power plant, the order of building power plants, the time to 
build each power plant and the option of energy storage when building 
a new power plant by solving a cost-minimization problem based on the 
LCOE for generating power by the projected PV and wind power plants:
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in which ϵ is a new power plant (ϵ = 1 to 3,844), x is a power plant built 
before ϵ, nx is the number of pixels installing PV panels or wind turbines 
in plant x, tx is the time to build plant x, sx is the option of energy storage 
(1 for pumped hydro and 2 for chemical batteries) when building plant 
x, T is the average lifetime of a power plant, h is hour, q is a region (1–7 
for Central China, East China, North China, Northeast China, Northwest 
China, South China and Southwest China, respectively), nq is the num-
ber of power plants in region q, rd is the discounting rate (5%)2, τp is a year 
in the operation of plant x, τg is a year during operation of energy storage 
in plant x, Lg is the lifetime of storage (50 years for pumped hydro6 and 
15 years for chemical batteries49), Eϵ is the total power generation, Vϵ is 
the total investment in power plants, Aϵ is the total cost of electricity 
transmission, Gϵ is the total cost of storage, Ry is the ratio of O&M costs 
to investment costs (1% for PV50 and 3% for onshore and offshore wind 
power plants51), Vx is the investment in plant x, ξx is the ratio of cost 
reduction by learning when building plant x, Ex,h is the hourly genera-
tion of power in a county, Θh is the hourly transmission of electricity, 
Λh is the hourly storage of electricity, ηtra is the fraction of electricity 
lost during transmission, ηstore is the fraction of electricity lost during 
storage, Mq,h is the hourly consumption of electricity in region q and Uq,h 
is the hourly transmission of electricity from other regions to region q.

We optimized the increase in power capacity at an interval of 10 years 
during 2021–2060 because it generally takes 10 to 20 years for new 
technologies to be widely applied52. Given the variation of renewable 
energy within a decade, we performed a sensitivity experiment by 
optimizing the model at an interval of 5 years, in which the installed 
PV and wind power capacity and total costs both change moderately 
(Extended Data Fig. 8). Nevertheless, simulating the penetration of 
renewable energy within a decade will be useful to improve the opti-
mization model.

We considered the connection of power plants in a county to one 
of the substations from the UHV transmission lines projected in the 
CFED plan7 (Supplementary Data Set 1) with the costs of building new 
UHV lines (Supplementary Method 6) and developing systems for stor-
ing energy (Supplementary Method 7). We estimated Uq,h using three 
assumptions. First, the electricity generated by all PV and wind power 
plants in a region is used to meet the power demand in this region as 
a priority. Second, the extra electricity is connected to a substation in 
the UHV line and transmitted to a region in which the next substation 
in the line is located. Third, the electricity transmitted to a region is 
distributed to each county based on the distribution of the consump-
tion of electricity in this region. We have considered the impact of 
transmission access on where and when to build new PV and wind power 
plants. When optimizing the construction time of 3,844 PV and wind 
power plants, we have accounted for the costs of building new UHV 
transmission lines when a new power plant is built, which influences 
the LCOE of this plant and the construction time of all new plants. By 
optimizing the construction time of each new power plant, we consid-
ered that a new UHV line required for this new plant will be constructed 
at the same time.

As a caveat of this study, we do not have explicit information for all 
UHV transmission lines, so we assumed that the UHV lines projected by 
the central government are used as a proxy for UHV lines between the 
main regions in the country. This assumption is useful to determine the 
demand for electricity transmission between regions, but it could lead 
to bias in our cost estimation because of the lack of detailed information 
for all UHV lines. For example, the projection of 128 UHV lines with a 
capacity of 12 GW each from Huaidong to Wan’nan in our model indi-
cates that at least a total transmission capacity of 1,536 GW is required 
for transmitting electricity from the region centred in Huaidong to the 
region centred in Wan’nan, but the ultimate UHV lines built between 



these two regions might be different from our prediction. This limi-
tation can be addressed when the detailed information for all UHV 
transmission lines are available. To consider the outflow of electricity 
generated in a county, we sought the substation of UHV lines that is 
closest to this county and then we estimated the cost of electricity 
transmission from this county to the transmission substation and the 
cost of electricity transmission using one of the UHV lines. Although 
this study projected the construction of a large transmission capacity 
to optimize power systems, it is important to account for the physical, 
technical and economic constraints. These include the demand for 
advanced polymer matrix composites that can operate under a voltage 
of >1,000 kV, the construction of UHV lines over challenging terrains, 
the maintenance of these lines and ensuring the security of electricity 
transmission under extreme weather conditions.

We sought the optimal system for storing energy when building a 
new power plant using either mechanical storage (pumped hydro) with 
a lifetime of 50 years and a round-trip efficiency of 70% or chemical 
storage (batteries) with a lifetime of 15 years and a round-trip efficiency 
of 85% (see the parameterization of two systems in Supplementary 
Table 5) to minimize the LCOE (Extended Data Fig. 9).

Last, ξx is calculated as a function of the total capacity of installed PV 
or wind power (Supplementary Method 8) based on the measured rates 
of learning in China (Supplementary Table 1). We examined the sensitiv-
ity to adopting the international rates of learning in our model (Fig. 2c).

Capacity and costs of power generation
For a new PV or wind power plant x, the annual generation of power 
was calculated:
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in which i is a pixel, j is the number of hours in a year and Wi,j is the 
hourly generation of power in a pixel installing PV panels (calculated 
in Supplementary Method 3), onshore wind turbines (calculated in 
Supplementary Method 4) or offshore wind turbines (calculated in Sup-
plementary Method 5). The parameters used to estimate the projected 
PV and wind power generation are listed in Supplementary Table 6.

The investment cost of a new PV or onshore wind power plant x was 
calculated6:
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in which i is a pixel, Pi is the installed capacity of PV panels (calculated 
in Supplementary Method 3) or onshore wind turbines (calculated in 
Supplementary Method 4), Si is the area of pixels installing PV panels 
or wind turbines, Pfix is the capacity of a voltage transformer (300 MW), 
μfix is unit capital costs, μland is unit cost of land acquisition, μline is unit 
cost of line connection and μtran is unit cost of voltage transformation.

We assumed that the installed voltage transformer has a capacity of 
300 MW (ref. 53). When estimating the unit cost of land acquisition, 
we considered that onshore wind turbines take up only 2% of area in 
a pixel and PV panels take up 100% of area in a pixel54. We derived μfix 
as the sum of costs for modules (μmodule), inverters (μinverter), mount-
ing materials (μmounting), secondary equipment (μsec), installation (μins), 
administration (μadm) and grid connection (μgrid) using the data for PV 
panels ($0.64 per watt) published by the China Photovoltaic Industry 
Alliance55 and using the data for onshore wind turbines ($0.68 per watt) 
from a previous study56. We demonstrated the impact of using different 
capital costs by examining the sensitivity to adopting high capital costs 
($0.73 and $0.88 per watt for PV panels and onshore wind turbines, 
respectively)35 or low capital costs ($0.23 and $0.76 per watt for PV 
panels and onshore wind turbines, respectively)36 in the sensitivity  
tests (Fig. 2c).

The investment cost of an offshore wind power plant x was calculated 
on the basis of the distance of offshore wind turbines in this power plant 
to the onshore power station57:
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in which i is a pixel, μbaseline is the unit cost of offshore wind turbines, 
Pi is the installed capacity of offshore wind turbines (calculated in 
Supplementary Method 5), DL,i is the distance of the offshore wind 
turbines to the onshore power station and DP,i is the water depth  
of the installed offshore wind turbines. The coefficients z0 (0.0057),  
z1 (0.7714), z2 (0.0084) and z3 (0.8368) were calibrated using engineer-
ing data57. The parameters used to determine the costs of PV and wind 
power generation are listed in Supplementary Table 7. The parameters 
used to determine the costs of UHV transmission and energy storage 
are listed in Supplementary Table 8.

We adopted a fixed ratio of O&M costs to investment costs for the 
projected PV and wind power plants50,51. We adopted 25 years (ref. 30) 
as the average lifetime of PV or wind power plants. We considered the 
costs of electricity transmission by UHV when increasing the installed 
capacity of a power plant. We sought the geographic centre among all 
pixels suitable for power generation and then increased the number 
of surrounding pixels (nx) installing PV panels or wind turbines. The 
capacity of power generation by each power plant increases as the 
number of pixels installing PV panels or wind turbines increases in the 
order of the distance to the geographic centre. The inclusion of more 
pixels in a power plant, however, increases not only the capacity of this 
PV or wind power plant but also the total costs in the power systems. 
The LCOE for a new power plant first decreased when we increased the 
power capacity by increasing the number of pixels for installation of 
PV panels or wind turbines, because the capital costs were divided by 
the generated power, but then increased owing to the increasing costs 
of purchasing land and the decreasing power-use efficiency (Extended 
Data Fig. 2). We sought the optimal capacity for each power plant for 
achieving the minimum of the LCOE.

MAC
We assumed that the electricity generated by new PV and wind power 
plants was used to replace oil, gas and coal in the order of fuel price to 
produce the highest profits6. Solving the cost-minimization problem 
in equation (1) was constrained by the target of the annual abatement 
of CO2 emissions by substituting fossil fuels when a new PV or wind 
power plant ϵ was built (Fϵ):

∑ ∑F θ E γ S
v S

x q= ⋅ − ( ⋅ ) −
∑ ∑ ( ⋅ )

25
, ∈ (9)� �

q x

n

x x
q x

n
x x

fossil
=1

7

=1

=1
7

=1
q q

in which Eϵ is the total power generation, Sx is the area of pixels install-
ing PV panels or wind turbines, θfossil is the CO2 emission factor of coal 
(0.84 kg CO2 kWh−1), oil (0.72 kg CO2 kWh−1) or gas (0.46 kg CO2 kWh−1)58 
that is substituted by PV and wind power, γx is the flux of the terrestrial 
carbon sink disaggregated from a bottom-up estimate59 and vx is the 
concentration of soil carbon in lands covered by vegetation60 trans-
ferred to PV panels or wind turbines (Supplementary Table 9).

We derived the MAC for a new PV or wind power plant ϵ, MACϵ, based 
on the abated CO2 emissions:
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in which ϱ is the price of coal, oil or gas. We obtained the prices of 
coal ($0.043 ± 0.015 per kWh as the 95% confidence interval)61, oil 
($0.141 ± 0.057 per kWh)62,63 and gas ($0.058 ± 0.016 per kWh)64 in 
China as the averages during 2010–2020, when they are considered 
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to generate electricity with an efficiency of 35%, 38% and 45%, respec-
tively65. The generation of power by fossil fuel in the 2010s in China 
was dominated by coal, with a contribution66 of 96% in 2020, but the 
composition of fossil fuel in the future is as yet unknown for China. 
We assumed that the future fossil-fuel composition in China will be 
constant in our central case, but we performed two sensitivity experi-
ments to consider the impact of changes in fuel composition. First, 
the share of oil for generating power increases from the current level 
in 2020 (0.3%) to 50% in 2060 by substituting coal when the share of 
gas is identical to that in the central case. Second, the share of gas for 
generating power increases from the current level in 2020 (4.1%) to 50% 
in 2060 by substituting coal when the share of oil is identical to that in 
the central case (Extended Data Fig. 6).

Hourly power demand
We predicted the hourly power demand by 2060 based on the flex-
ibility of power loads by sector (Supplementary Table 10). First, we 
scaled up the historical hourly power loads from electrical grids67 in 
2018 by the increase in total power demand under the projected rate 
of electrification33 in 2060 (58%) for six non-power sectors, includ-
ing agriculture, industry, transport, building, service and household 
electric appliances, in 31 provinces. We assumed that the power loads 
are flexible for agriculture, industry, building, service and household 
electric appliances, except for heating and cooling in houses and elec-
tric cars, so we could simulate the profiles of the hourly power demand 
to match the hourly power generation by PV and wind endogenously 
in our optimization model. Second, we predicted the hourly power 
demand by electric cars. We obtained the profile of traffic flow in each 
street every five minutes in 2018 in Shenzhen68, which was assumed to 
represent the variation of traffic flow in the future owing to a lack of 
data for other cities in China. When electricity is used by electric cars, 
one-third of vehicles are charged immediately, one-third are charged 
in one hour and one-third are charged in two hours25.

Third, we predicted the hourly power loads for heating and cool-
ing in houses. We obtained the hourly energy used for space heating 
and cooling in houses by region in China69. Finally, we considered the 
impact of temperature on the power demand for heating and cooling 
in houses and electric cars based on the projected temperature under 
climate warming. The electricity used for heating increases by 0.98% as 
the annual average temperature decreases by 1 °C when the hourly tem-
perature is below 16 °C (ref. 70), whereas the electricity used for cooling 
increases by 0.63% as the annual average temperature increases by 1 °C 
when the hourly temperature is above 28 °C (ref. 25). We predicted 
the hourly power demand for heating and cooling for 31 provinces for 
2021–2060 based on the gridded hourly temperature71 averaged for 
2016–2020 and the projected change in annual average temperature 
during 2021–2060 under the SSP1-2.6 scenario from an Earth System 
Model17. The power demand shifts in the daytime to match the peak of 
hourly PV and wind power generation (Supplementary Fig. 5).

Actual PV and wind power plants
We adopted a pixel resolution of 1 × 3 km2 for installing PV panels or 
wind turbines, which allows us to predict the location and capacity of 
individual PV and wind power plants in our optimization model. We 
cannot validate the locations and capacities of the projected PV or wind 
power plants that had not yet been built, so we used the locations and 
capacities of the commissioned PV and wind power plants in Open-
StreetMap31 that were closest to the projected PV or wind power plants 
to evaluate our prediction (Extended Data Fig. 3). We estimated the 
geographical distance of locations between the projected and actual 
PV and wind power plants. A full validation of our optimization model 
required detailed information on the PV and wind power plants when 
they are to be built in the coming decades, so we only compare the 
projected capacities of power plants normalized by current area with 
the actual capacities of the existing power plants in OpenStreetMap31.

Distribution of income
We estimated the impact of finances embodied in the flow of electricity 
generated by new PV and wind power plants on the redistribution of 
income in 2060. First, we estimated the distribution of income among 
the population at a county level based on the frequency distribution of 
income among the residents of urban and rural populations derived 
from a national survey72 in 2015. We considered that the annual growth 
rate of population is 2% for Gansu, Inner Mongolia, Ningxia, Qinghai, 
Xinjiang and Xizang, which is higher than other provinces (1%) resulting 
from more new jobs and higher income created in these less-developed 
provinces66. Second, we compiled the per-capita disposable income 
for urban and rural populations at the county level66 for 2015–2019. We 
made a linear projection of per-capita disposable income to 2060 based 
on the rate of growth of income by province during 2021–2060. We 
calibrated the growth rate of per-capita income for each income group 
at the county level during 2015–2060 to guarantee that the projected 
per-capita income as an average for each county in 2060 was equal to 
the projection for 2060. Given a carbon price (ς), we assumed that only 
power plants with MACs below this carbon price were constructed. We 
estimated the revenue (Rϵ) from power generation when building a new 
PV or wind power plant (ϵ):

ϱR E ζ F E= ⋅ + ⋅ − LCOE ⋅ (11)� � � � �

in which ϱ is the price of coal, oil or gas in China that is substituted by 
PV or wind power, Fϵ is total abatement of CO2 emissions, Eϵ is total PV 
and wind power generation and LCOEϵ is the LCOE for the projected 
PV and wind power plants after building plant ϵ.

Revenue from PV and wind power generation could be derived from 
the electricity price minus the LCOE, but the electricity price can be 
influenced by many socio-political factors25,50. We focused on analys-
ing the impact of carbon price as a proxy for climate policies on the 
revenue of PV and wind power, so we considered that the electricity 
price depends on the fossil fuel prices and carbon price. The prices of 
fossil fuel may increase in the future owing to the scarcity of fossil fuel73, 
which can increase the revenue of replacing fossil fuel with renewables, 
including PV and wind power. To estimate the prices of fossil fuel in 
2060, we randomly draw the prices from the normal distributions, 
the average and standard deviations of which are estimated from the 
prices that are available from 2010 to 2020 (Extended Data Fig. 6). 
Predicting the impact of energy scarcity on the prices of fossil fuel 
and thus the revenue of PV and wind power is not considered in this  
study.

We represented the income inequality by dividing the population 
into 2,002 groups based on the order of income in each county. We 
excluded pixels in urban areas for the construction of utility-scale PV 
or wind power plants, so we allocated the revenue among the rural 
population in each county. When a carbon tax was levied on fossil fuels, 
we predicted the change in the per-capita income for each group in 
the population by considering the increased costs of power genera-
tion, the revenue from PV and wind power generation and the costs 
of carbon tax saved by reducing the use of fossil fuel (Supplementary 
Method 9). Finally, we estimated the income Gini coefficient in China 
using a formula74 based on the changes in the fractions of income and 
population in each population group for 2,373 counties in 2060 when 
the carbon price increases from $0 to $100 per tCO2.

Uncertainty analyses
We estimated the uncertainties in the MAC and the Gini coefficient by 
running an ensemble of Monte Carlo simulations 40,000 times75. We 
randomly varied the parameters in these simulations, including: (1) the 
variability of PV power generation (±5%) over a suitable pixel (Wijy) owing 
to the impact of aerosol deposition on PV panels76 and the variability 
of wind power generation (±2%) over a suitable pixel (Wijy) owing to the 



impact of climate change on wind resources77, (2) the growth rate of 
power demand by province during 2020–2060 (±1%)7, (3) the param-
eters used in the calculation of initial investment costs based on the 
variability of capital costs (±10%) from previous estimates55,56, (4) the 
historical rates of learning for different cost components measured in 
China (Supplementary Table 1) and (5) the parameters used for calculat-
ing the costs of UHV transmission and energy storage from different 
studies (Supplementary Table 8). Last, we adopted the medians of the 
MAC and the Gini coefficient to represent our best estimates, whereas 
we used the 90% uncertainties and interquartile ranges to represent 
their uncertainties.

Data availability
Data used in this study are publicly available at the Zenodo reposi-
tory: https://zenodo.org/record/7963012#.ZGzUd31Bw2w. Gen-
eral Electric model and Vestas model in the Windturbines database: 
https://en.wind-turbine-models.com/turbines; MCD12Q1 dataset: 
https://lpdaac.usgs.gov/products/mcd12q1v006/; GEOS-5 data-
set: https://opendap.nccs.nasa.gov/dods/GEOS-5/fp/0.25_deg/
assim; Maritime Boundaries Geodatabase: http://www.vliz.be/en/
imis?dasid=5465&doiid=312; Mask of terrestrial ecological reserve: 
http://www.resdc.cn/data.aspx?DATAID=137; marine ecological 
reserve: https://www.protectedplanet.net/country/CHN; Radar 
Topography Mission (SRTM) Global Enhanced Slope (GES) data-
set: https://lpdaac.usgs.gov/products/srtmgl1v003/; MERRA-2 
dataset: https://disc.gsfc.nasa.gov/datasets/M2T1NXADG_5.12.4/
summary?keywords=SO2.

Code availability
Further material is available in the Supplementary Information. The 
model used in this study can be accessed at the Zenodo repository: 
https://zenodo.org/record/7963012#.ZGzUd31Bw2w.
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Extended Data Fig. 1 | Procedures for optimizing the location, capacity  
and construction time of new PV and wind power plants in China. The LCOE 
indicates the grid parity of PV and wind power generation coordinated with 
electricity transmission and energy storage in the power systems. We take the 

number of pixels installing PV panels or wind turbines and the construction 
time of each PV or wind power plant by decade as the decision variables to 
minimize the LCOE of all PV and wind power plants.



Extended Data Fig. 2 | Impact of increasing the power capacity of PV or 
wind power plants on the LCOE. a–h, Relative change in the LCOE as a 
percentage relative to the minimum when increasing the capacity of each PV 
(a,c,e,g) or onshore wind (b,d,f,h) power plant. The power plants are categorized 
into four groups, the optimized capacity of which falls in the range <0.1 GW 
(a,b), 0.1–1 GW (c,d), 1–10 GW (e,f) and 10–100 GW (g,h). i, Relative change in 
the LCOE as a percentage relative to the minimum when increasing the capacity 
of each offshore wind power plant. We estimate the fold change in the capacity 

of each power plant when increasing the number of pixels installing PV panels 
or wind turbines relative to the optimal capacity reaching the minimum of the 
LCOE for each power plant. j–l, Relationship between the minimum of the LCOE 
and the optimal capacity (<100 GW) of the projected PV ( j), onshore wind (k) 
and offshore wind (l) power plants. The power plants are categorized into four 
groups based on the optimal capacity, for which the moving averages for 50 
plants are shown by the grey lines in j and k.
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Extended Data Fig. 3 | Evaluation of the location and capacity of PV and 
wind power plants in our optimization model. a,b, Difference in the 
predicted location of PV (a) and wind (b) power plants in our optimization 
model relative to the location of PV panels and wind turbines installation 
observed by OpenStreetMap31. c,d, Frequency distribution of the difference  

in the location of PV (c) and wind (d) power plants weighted by the number of 
power plants (blue line) or the capacity of power plants (red line). e,f, Comparison 
of the projected capacity of PV (e) and wind (f) power plants in our optimization 
model normalized by the area of power plants with the capacity of PV and wind 
power plants observed by OpenStreetMap31.



Extended Data Fig. 4 | Seasonal variations in the hourly power generation 
by PV plants. a, Hourly power generation by PV plants by considering the impact 
of temperature on energy-conversion efficiency, the impact of shading on 
radiation received by PV panels and the impact of solar angle on the inclination 

of PV panels. b–d, Hourly power generation by PV plants in sensitivity tests 
without considering the impact of temperature on energy-conversion 
efficiency (b), without considering the impact of temperature and shading (c) 
or without considering the impact of temperature, shading and solar angle (d).



Article

Extended Data Fig. 5 | Impact of the rate of electrification and the power 
generation by other renewables in 2060 on the power-use efficiency for PV 
and wind power plants in China. By considering the flexible power load with 
UHV and energy storage, the power-use efficiency for PV and wind power plants 

is estimated when the electrification rate in 2060 increases from 0 to 20%, 
40%, 60%, 80% and 100% (a) and the power generation by other renewables in 
2060 increases from 0 to 2, 4, 6, 8 and 10 PWh year−1 (b).



Extended Data Fig. 6 | Impact of the fossil fuel composition on the MAC for 
PV and wind power plants in 2060. a, Prices of coal, oil and gas for power 
generation in China during 2010–2020. The solid line denotes the average 
price, whereas the shading denotes the 95% confidence interval. b, MAC for PV 
and wind power plants in the central case, in which the consumption of coal, oil 
and gas for 2021–2060 are projected by scaling up the consumption in 2020 
with the projected growth of total power demand. c, As in b but for a sensitivity 

case in which the share of oil in electricity generation increases linearly from 
the current level in 2020 (0.3%) to 50% in 2060 by replacing coal, but the share 
of gas is identical to the central case. d, As in b but for a sensitivity case in which 
the share of gas in electricity generation increases linearly from the current 
level in 2020 (4.1%) to 50% in 2060 by replacing coal, but the share of oil is 
identical to the central case.
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Extended Data Fig. 7 | Impact of changing the limit of the capacity of PV and 
wind power plants on the MAC in 2060. a, Composition of power generation 
by PV and wind plants. The inset shows the number of PV and wind power plants. 

b, The MAC for PV and wind power when the capacity of individual power plants 
is limited to 0.1 GW (green), 1 GW (orange) and 10 GW (red), respectively.



Extended Data Fig. 8 | Impact of changing the interval of optimization on 
the installed capacity and costs of PV and wind power plants built during 
2020–2060. The installed capacity (a) and costs (b) of PV and wind power 

plants built during 2020–2060 are estimated in our model by optimizing the 
construction time of individual power plants at a temporal interval of 5 years 
(bars) or 10 years (stars).
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Extended Data Fig. 9 | Impact of adopting different strategies of energy 
storage on the MAC of PV and wind power in China. MACs of PV and wind 
power in 2060 are estimated in the scenarios without (a) or with (b) considering 
the flexible hourly power load. We compare MACs in the sensitivity tests without 
storing energy (blue line), using mechanical storage (pumped hydro) for all 

power plants (green line), using chemical storage (batteries) for all power plants 
(orange line) or using the optimized strategy of energy storage for each power 
plant in the central case (red line). We show the total capacity of mechanical 
(pumped hydro) and chemical (batteries) storage in the central case.



Extended Data Table 1 | Distribution of pixels installing PV panels or wind turbines
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