NataSquad Frank Vega
email: vega.frank@gmail.com

The P versus NP problem consists in knowing the answer of the following question: Is P equal to NP? It was essentially mentioned in 1955 from a letter written by John Nash to the United States National Security Agency. However, a precise statement of the P versus NP problem was introduced independently by Stephen Cook and Leonid Levin. Since that date, all efforts to find a proof for this problem have failed. Another major complexity classes are DSPACE (S(n)) and NSPACE (S(n)) for every space-constructible function S(n). We prove that NP ⊆ NSPACE (log 2 n) just using logarithmic space reductions.

Introduction

P versus NP is considered as one of the most important open problems in computer science.

The P versus NP problem belongs to the Smale's third problem on Steve Smale's list of eighteen unsolved problems. This is one of the Clay Mathematics Institute's Millennium Prize Problems.

Definitions of P and NP

The deterministic and nondeterministic Turing machines have become in two of the most important definitions related to the computational model [START_REF] Harilaos | Computational complexity[END_REF].

In complexity theory, we describe the computational problems as languages where their elements are represented usually as binary strings [START_REF] Harilaos | Computational complexity[END_REF]. A complexity class is a set of languages putted together by some computational properties such as memory, execution time, etc [START_REF] Harilaos | Computational complexity[END_REF].

P is the complexity class of languages that can be decided by deterministic Turing machines in polynomial time [START_REF] Harilaos | Computational complexity[END_REF]. NP is the complexity class of languages that can be decided by nondeterministic Turing machines in polynomial time [START_REF] Harilaos | Computational complexity[END_REF].

The complexity class DSPACE (S(n)) is the set of languages that can be decided by a deterministic Turing machine that uses O(S(n)) space, where S(n) is a space-constructible function that maps the input size n to a non-negative integer [START_REF] Harilaos | Computational complexity[END_REF].

The complexity class NSPACE (S(n)) is the set of languages that can be decided by a nondeterministic Turing machine that uses O(S(n)) space, where S(n) is a space-constructible function that maps the input size n to a non-negative integer [START_REF] Harilaos | Computational complexity[END_REF].

We prove that NP ⊆ NSPACE (log 2 n) just using logarithmic space reductions.

Frank Vega, NataSquad (vega.frank@gmail.com) NP on Logarithmic Space August 23-27, 2023 5 / 24 NP-complete problems are a set of problems to each of which any other NP problem can be reduced in polynomial time and they belong to NP. SAT is a well-known NP-complete problem.

We know that the complexity classes NP and NSPACE (log 2 n) are closed under logarithmic space reductions.

Proposition 1

If there is some NP-complete language L1 which is closed under logarithmic space reductions in NP-complete and belongs to NSPACE (log 2 n), then

NP ⊆ NSPACE (log 2 n).
Frank Vega, NataSquad (vega.frank@gmail.com) NP on Logarithmic Space August 23-27, 2023 6 / 24

A language L1 is in NL if there exists a deterministic logarithmic space Turing machine M with an additional special read-once input tape polynomial p : N → N such that for every

x ∈ {0, 1} * : x ∈ L1 ⇔ ∃u ∈ {0, 1} p(|x|) then M(x, u) = "yes"
where by M(x, u) we denote the computation of M, x is placed on its input tape, the certificate string u is placed on its special read-once tape, and M uses at most O(log |x|) space on its read/write tapes for every input x where | . . . | is the bit-length function.

The Turing machine M is called a logarithmic space verifier. x i • y i ?

REMARKS: We assume that the positive integer zero is represented by the fixed symbol 0 0 . UK ∈ NL [START_REF] Jenner | Knapsack problems for NL[END_REF].

Frank Vega, NataSquad (vega.frank@gmail.com) NP on Logarithmic Space August 23-27, 2023 10 / 24

In number theory, the p-adic order of an integer n is the exponent of the highest power of the prime number p that divides n. It is denoted νp(n). Equivalently, νp(n) is the exponent to which p appears in the prime factorization of n.

Frank Vega, NataSquad (vega.frank@gmail.com) NP on Logarithmic Space August 23-27, 2023 11 / 24

Given an instance (B, N) of SP, then for every prime factor p of N we could create the instance 0 y , 0 y 1 , 0 y 1 , . . . , 0 yn for UK such that B = [B1, B2, . . . , Bn] is a list of n natural numbers and νp(N) = y , νp(B1) = y1, νp(B2) = y2, . . . , νp(Bn) = yn (Do not confuse n with N).

Under the assumption that N has k prime factors, then we can output in logarithmic space each instance for UK such that these instances of UK appears in ascending order according to the ascending natural sort of the respective k prime factors.

That means that the first UK instance in the output corresponds to the smallest prime factor of N and the last UK instance in the output would be defined by the greatest prime factor of N.

Frank Vega, NataSquad (vega.frank@gmail.com) NP on Logarithmic Space August 23-27, 2023

Besides, in this logarithmic reduction we respect the order of the exponents according to the appearances of the n elements of B = [B1, B2, . . . , Bn] from left to right: i.e. every instance is written to the output tape as

0 z , 0 z 1 , 0 z 1 , . . . , 0 zn
where νq(N) = z, νq(B1) = z1, νq(B2) = z2, . . . , νq(Bn) = zn for every prime factor q of N.

Frank Vega, NataSquad (vega.frank@gmail.com) NP on Logarithmic Space August 23-27, 2023

Finally, we generate a certificate that is a sequence of 0-1 valued variables x1, x2, . . . , xn using square logarithmic space such that for the first instance of UK we have

y = n i=1 x i • y i ,
for the second one

z = n i=1 x i • z i ,
and so on... When we read one 0-1 valued variable x i that is equal to 1 in the first instance of UK , then we store the current sum that includes adding the unary length of the element in the position i inside of the list.

Next, we do the same for the remaining k -1 instances of UK for the elements in the same position i. We store each current sum in the contiguous k instances of UK while we simultaneously copy these instances to the output tape from left to right.

After that, we place the input head again in the first instance of UK and check whether the next 0-1 valued variable x i+1 is equal to 1 or not on the special read-once tape (We do not do nothing if the current 0-1 valued variable is equal to 0).

We repeat over and over again this process without moving the output tape to the left during this composition of logarithmic reduction [START_REF] Harilaos | Computational complexity[END_REF]. In fact, we copy to the output tape the consecutive k instances of UK during this composition of logarithmic reduction exactly the same number of times that the 0-1 valued variables in the certificate are equal to 1.

To sum up, we can create this verifier that only uses a square logarithmic space in the work tapes such that the sequence of variables is placed on the special read-once tape due to we can read at once every valued variable x i .

Hence, we only need to iterate from the variables of the sequence from left to right to verify whether is an appropriated certificate according to the described constraints of the problem UK to finally accept the verification of all the k instances otherwise we can reject.

In addition, we can simulate the reading of one symbol from the string sequence of 0-1 valued variables into the read-once tape just nondeterministically generating the same symbol in the work tapes using a square logarithmic space [START_REF] Arora | Computational complexity: a modern approach[END_REF].

We could remove each symbol or a square logarithmic amount of symbols generated in the work tapes, when we try to generate the next symbol contiguous to the right on the string sequence of 0-1 valued variables.

We could generate the certificate from the inner Turing machine in the composition of logarithmic reduction and so, the outer Turing machine would be deterministic during this composition of computations. In this way, the generation will always be in square logarithmic space. This proves that SP is in NSPACE (log 2 n). ■

Frank Vega, NataSquad (vega.frank@gmail.com) NP on Logarithmic Space August 23-27, 2023 20 / 24

Savitch's theorem states that for any space-constructible function S(n) ≥ log n, we obtain that NSPACE (S(n)) ⊆ DSPACE (S(n) 2) and therefore, NSPACE (log 2 n) ⊆ DSPACE (log 4 n) [START_REF] John | Relationships between nondeterministic and deterministic tape complexities[END_REF].

Since DSPACE (S(n)) can be solved by a deterministic Turing machine in O(2 O(S(n))) time for any space-constructible function S(n) ≥ log n, then this would mean that NP ⊆ QP (quasi-polynomial time class).

We "believe" there must exist an evident proof of NSPACE (log 2 n) ⊆ P and thus, we would obtain that P = NP.

August 23-27, 2023

Frank Vega, NataSquad (vega.frank@gmail.com) NP on Logarithmic Space August 23-27, 2023

We can give a certificate-based definition for NL = NSPACE (log n) (Arora and Barak, 2009).

The certificate-based definition of NL assumes that a logarithmic space Turing machine has another separated read-only tape, that is called "read-once", where the head never moves to the left on that special tape (Arora and Barak, 2009).

We can simulate simultaneously k logarithmic space verifiers M j for each j th instance of UK .

We can do this since the sequence certificate would be exactly the same for the k logarithmic space verifiers.

Every logarithmic space verifiers

M j uses O(log | (B, N) |) space where | . . . | is the bit length function. So, we finally consume O(k • log | (B, N) |) space exactly in the whole computation that would be square logarithmic because of k = O(log N) and thus, the whole computation can be made O(log 2 | (B, N) |) space.