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MagHT: a Magnetic Hough Transform for Fast Indoor Place
Recognition

Iad ABDUL RAOUF1,2, Vincent GAY-BELLILE1, Steve BOURGEOIS1, Cyril JOLY2 and Alexis PALJIC2

Abstract— This article proposes a novel indoor magnetic
field-based place recognition algorithm that is accurate and
fast to compute. For that, we modified the generalized ”Hough
Transform” to process magnetic data (MagHT). It takes as input
a sequence of magnetic measures whose relative positions are
recovered by an odometry system and recognizes the places in
the magnetic map where they were acquired. It also returns
the global transformation from the coordinate frame of the
input magnetic data to the magnetic map reference frame.
Experimental results on several real datasets in large indoor
environments demonstrate that the obtained localization error,
recall, and precision are similar to or are better than state-of-
the-art methods while improving the runtime by several orders
of magnitude. Moreover, unlike magnetic sequence matching-
based solutions such as DTW, our approach is independent of
the path taken during the magnetic map creation.

I. INTRODUCTION

Place recognition is a popular solution for indoor local-
ization due to the absence of GNSS signals. Vision-based
approaches [1] are the most common. However, they fail in
low or repetitive textured environments and when visual cues
change as time goes by [2]. Some work improves the robust-
ness, for instance, by learning different recognition modules
for various illumination conditions [3]. However, it tackles
only one of the problems and increases the computation time.

On the contrary, many works have shown that the ambient
magnetic field spatial variability can be used reliably for
indoor localization over long periods [2], [4]. Indoor, the
magnetic field varies slowly because of the natural variation
of the global earth’s magnetic field over the years [4]. It is
also tolerant of moving objects in the scene. Human crowd
or non-ferromagnetic furniture does not significantly impact
the magnetic field [5]. In contrast, larger objects such as a
car and an elevator cabin modify it for a few meters [6].

Magnetic field-based relocalization algorithms exploit sev-
eral magnetic data collected along a trajectory (called ”input
trajectory” thereafter), a single measure not being sufficiently
discriminating to differentiate between places. Most existing
approaches assume that those magnetic data are acquired
by following the path taken to build the magnetic map
[7]–[10]. Other probabilistic approaches [11], [12] do not
constraint the movement but require heavy computational
resources to achieve good performances (recognition rate,
false positive rate, etc.) or reduced runtime is achieved
through performance sacrifices.
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This paper describes a new magnetic place recognition
algorithm for large indoor environments. Unlike previous
work, it is both fast to compute and makes no assumptions
about the path taken. Consequently, it is suitable for 3D
navigation in any environment, including large open areas. It
only assumes prior reconstruction of the input trajectory in a
gravity frame by an odometry system that includes an inertial
measurement unit (IMU). The proposed approach adapts the
generalized Hough transform [13] to magnetic data. It results
in several contributions, which are the following:

1) A fast-matching method between input magnetic data
and a magnetic map, robust to small spatial variations
in the magnetic field.

2) A voting process that estimates the transformation
candidates between the global reference frame of the
map and the input trajectory frame. The voting and
the matching treat input magnetic data independently
to ensure our method is independent of the mapping
path.

3) A pose estimation method to process all individual
votes efficiently, robust to more than 99 % outliers, that
yields a unique estimation of the frame transformation.

4) Overall, a place recognition algorithm that combines
the previous contributions into a method several orders
of magnitude faster than the state of the art while
having similar or better recall, precision, and errors.

To support our claims, we present experimental results
of the proposed method inside open and closed multi-story
indoor environments and an extensive comparison against a
state-of-the-art method [11].

II. RELATED WORK
Magnetic place recognition algorithms identify where a

collection of magnetic measures have been acquired in a
magnetic map of the environment.

The first family of approaches relies exclusively on a tem-
poral series of magnetic measures provided by a magnetome-
ter. To reduce the problem’s complexity, they assume that
the set of possible trajectories is countable. Consequently,
the magnetic map is reduced to a collection of temporal
series of magnetic measures, and the place recognition to a
pattern matching problem between temporal series. While the
first solutions relied on handmade algorithms such as DTW
[9], [10], their too-high false positive rate requires their use
to be combined with additional inputs, such as WIFI [10]
or motion patterns [10], to confirm the place recognition.
This issue was solved more recently by deep-learning-based
pattern matching [7], [8]. However, all those solutions remain



limited by their map representation. While the hypothesis of
a limited number of trajectories is acceptable for corridor
environments, such a hypothesis is no longer acceptable for
open areas such as an atrium.

To tackle this limitation, the second family of approaches
proposes to replace temporal pattern matching with spatial
pattern matching. For that, an additional odometry system
provides a spatial trajectory in addition to the magnetic
measurements. The pattern matching is then achieved by
exploring a spatial map of the magnetic field through particle
filtering [11] or Hidden Markov Model [12], the measure-
ments being compared to the map prediction for the hypoth-
esized locations. While those approaches are not limited to
predetermined paths, they suffer from a computational time
burden that increases with the size of the map.

To our knowledge, no algorithm can perform magnetic
place recognition in large-scale environments independently
from the mapping path and with a low computational cost.
We designed a novel method described in section III that
satisfies all these conditions.

III. MAGNETIC HOUGH TRANSFORM
A. Overview

Our goal is to find the rigid 3D transformation Twa ∈
SE(3) from the reference frame a associated with a short
input trajectory recovered by an odometry system (e.g.,
visual-inertial SLAM [1]) to a world reference frame w
associated to a magnetic map. A rigid transformation model
supposes that the odometry drift is neglected, a reasonable
assumption for short trajectories of a few meters. Frames
a and w are also assumed to be gravity frames, meaning
their z-axis is upright. This vertical alignment is obtained
from an IMU sensing the gravity vector. It constrains Twa
to have only 4 degrees of freedom (x, y, z, ψ) ∈ R4 with
t = (x, y, z)> the translation and ψ the yaw angle. The
estimation of Twa is computed by linking a finite set of
magnetic vectors mw

j from the map with another finite set
of measured magnetic vectors ma

i along the input trajectory.
For that, we used a generalized Hough transform. It is

a method for converting data from an input space to a
parameter space. Intuitively, instead of detecting the contour
of an object in a 2D image by a visual Hough algorithm
[13], our Magnetic Hough Transform (MagHT) detects any
trajectory shape in a 3D magnetic map. It is composed of
the following steps:
• Voting: For each measures ma

i , all compatible magnetic
vectors mw

j are extracted to form several pairs. Then
each pair leads to voting for one possible estimation
T̃wa of the rigid transformation.

• Clustering: Depending on the size of the map, a few
dozen input measurements can generate thousands of
votes. The clustering step allows to identify a consensus
around similar values.

• Estimation: The final T̂wa estimate is taken equal to
the centroid of the largest T̃wa cluster.

Each step is detailed in the following sections and illus-
trated in Fig 1.

B. Pose Voting
The Hough transform first matches magnetic vectors from

the input trajectory with similar magnetic vectors of the map
to compute a vote T̃wa.

1) Feature matching: Because Twa is unknown, it is
impossible to use the full magnetic vector whose expression
depends on the orientation of its frame. However, both frames
are gravity frames. Consequently, we use the following yaw
invariant features (‖mxy‖,mz) ∈ R+ × R, with ‖mxy‖
the norm of the horizontal component and mz the vertical
component. Then each input’s magnetic feature is associated
with all map’s magnetic features close enough (i.e., within a
radius δ) in the feature space R+ × R. At places where the
field is relatively uniform, δ should be small not to match too
many features and vice versa, so we made it adaptative based
on local input magnetic field variations (details are given in
section IV-B). Computing all possible couple’s distances to
find the ones close enough is too expensive. Thereby map
features are indexed into a k-d tree, well known to enable
fast range search in small dimensions.

2) Voting: Then, for each matched pair (ma
i ,m

w
j ), an es-

timation T̃wa is defined such that both magnetic vectors and
their respective position are ”aligned” while respecting the
gravity constraint. Formally, this is done through magnetic
frames hi and hj introduced in Fig. 1. Both are identified
as the same frame h created from the same physical reality
(independent of a or w in which h is defined). Thus a vote
T̃wa is obtained by:

T̃wa = Twhj
Thia, (1)

where Twhj
and Thia are precomputed.

C. Pose Clustering
The vote set is usually big and very noisy (e.g., thousands

of outlier votes for only a few dozen correct votes). Hence,
votes are processed to find an accumulation somewhere,
characterizing a convergence around a consensus value.
Traditionally, in very low dimensions, the voting space is
discretized into bins, each counting the number of votes
received [13]. Then the result is smoothed, and the maximum
is found. However, the more the dimension of the space in-
creases, the more the bins are numerous (and mostly empty),
making the method unusable in practice. An alternative that
scales better [14] is to loop through votes and search for
accumulation in their respective neighborhood. This idea is,
for instance, the general idea used by DBSCAN clustering
[15], which is well known to be fast and robust to outliers
[16].

Using such an algorithm implies introducing a distance
function on votes (x, y, z, ψ) ∈ R3 × [0, 2π] that defines
what is a neighborhood of radius ε. In particular, we must
consider the different scale and periodic nature of the yaw
ψ. This vote space can be seen as a subset of SE(3) on
which a frequent approach is to separate the contribution of
the rotation from that of the translation and scale the rotation
part by a factor r, often chosen experimentally [17] :

d(T1, T2) =
√

(∆ψ)2 + r‖t2 − t1‖2, (2)
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Fig. 1: Inputs are a discrete magnetic map in a gravity frame w (orange) and a trajectory with magnetic data expressed in
another gravity frame a (red). Each blue and green vector represents a magnetic vector of the map and a magnetic vector of
the input trajectory. Frames hi and hj are gravity frames defined for each magnetic vector mi and mj . Their (Ox) axis are
aligned with mxy . Each measured magnetic vector mi matches multiples mj through the feature space. For each magnetic
match, one vote is generated by the superimposition of their respective h frame. After all input magnetic data have been
handled, clustering search accumulations among all votes. The biggest cluster is selected to estimate the transformation Twa
from its centroid.

with T1 and T2 two gravity transform, t1 and t2 their
translation part and ∆ψ the yaw angle difference in [−π, π).

Besides, fully computing the distance matrix between each
pair of (thousands of) votes to retrieve the ε neighbor-
hoods would be intractable. Therefore efficient range search
through spatial indexation (e.g., by a k-d tree) is needed.
Such indexing is quickly built after the unfavorable periodic
vote space is mapped into its 4-dimensional manifold image
in R5:

f : (x, y, z, ψ) 7→ (x, y, z, r.cos(ψ), r.sin(ψ)) . (3)

For small neighborhoods of size ε� r, the SE(3) distance
(2) defined on the vote manifold can be conveniently approx-
imated by the Euclidean distance on R5.

D. Pose Estimation

After the clustering step, if no cluster is present, it implies
that the Hough transform did not converge, which can mean
that the input trajectory is outside the map. If there is at
least one cluster, the best one is selected. For simplicity, it is
defined as the cluster with the largest number of elements.
Estimation is done by computing its centroid in R5, which
is then projected back into vote space:

(x, y, z) =
1

|I|
∑
i∈I

(xi, yi, zi), (4)

ψ = arctan2

(
1

|I|
∑
i∈I

sin(ψi),
1

|I|
∑
i∈I

cos(ψi)

)
, (5)

with I the index set of the selected votes, and |I| its
cardinality.

IV. EXPERIMENTAL EVALUATIONS
The proposed magnetic Hough transform algorithm is

evaluated regarding pose error, recall, precision, and runtime
in 2D and 3D environments, including large open areas,
staircases, and narrow corridors. A comparison with a state-
of-the-art magnetic place recognition algorithm based on
particle filtering [11] is also presented.

A. Datasets

1) Hardware and sequences: To evaluate the perfor-
mances of the MagHT algorithm in a challenging context,
the test sequences (from which the input trajectories are
extracted) have to not all follow the mapping path, and not all
be acquired just after the mapping acquisition. Furthermore,
different environments, such as open areas, staircases, and
narrow corridors, must be covered. All sequences should
also be associated with inertial data to compute the gravity
constraint. To our knowledge, no public dataset combines
all those characteristics. Hence we produced our own. Our
acquisition platform is a helmet equipped with 4 FLIR
Blackfly S cameras and an SBG-Ellipse-N containing an
IMU and a magnetometer. All sensors are rigidly mounted
and synchronized. Cameras and IMU are calibrated using
Kalibr [18]. The magnetometer is calibrated outdoors by
spherical calibration [19]. However, it could be calibrated
indoors too [20].

The first dataset called corridor covers 1400 m3 of
corridors and staircases in a three-story building. The test
sequence is one kilometer long and was acquired one year
after the mapping sequence. The second dataset called atrium
covers 1200 m2 of a ground floor. It includes a large atrium
mapped with a trajectory deliberately different from the 240-
meter test trajectory (see Fig 2). There, mapping and test
trajectories often cross at large angles (even perpendicularly),
and the goal is to assert that relocalizations rely only upon



Fig. 2: Top view of the atrium dataset showing the map-
ping trajectory (black) and the test trajectory ground truth
(orange). Note that the test trajectory does not follow the
mapping path. Map is displayed using the magnetic field
norm.

the map of the atrium, independently from the path taken to
map it. Several hours separate both acquisitions.

2) Ground truth: Ground truth poses are required for
both building the magnetic map and quantitatively evaluating
the accuracy of magHT. A visual-inertial graph SLAM [1]
obtains them, with loop closure followed by a global bundle
adjustment as a post-process. It also results in visual maps
composed of 3d point clouds that can be used to express
the ground truth poses of the test trajectories in the map
coordinate frames. A visual relocalization algorithm is used
to match 3D points between the two maps, and a 3D transfor-
mation is estimated from those 3D-3D correspondences by
a Ransac algorithm. It typically yields a trajectory of poses
located within a 10 centimeters error margin.

3) Magnetic map: For a fair comparison, we used the
same reduced rank Gaussian process extrapolation model
[21] for MagHT and the concurrent particle filtering algo-

(a) Side view

(b) Top view

Fig. 3: Visualization of corridor dataset showing the 3d
map of the building magnetic field magnitude and the test
trajectory.

rithm [11]. It is a continuous model that allows requests
everywhere around the mapping sequence. However, our
method is neither restricted to Gaussian processes nor contin-
uous models and does not requires probabilistic values. Maps
parameters defined in [21] are fixed experimentally to sen-
sible values describing typical variations: σ2

lin, σ
2
SE, σ

2
noise =

650, 200, 2µT2 and l2SE = 1.69 m2 with 512 basis functions
by domain of size 5× 5× 2 m3.

4) Input trajectories: They are extracted from the test
sequences. Using ground truth odometry (from the section
IV-A.2) would be unrealistic for many applications. Thus
the test sequences are also processed with monocular visual-
inertial SLAM [1] without loop closure or any post-process.
For the ”corridor” dataset, 460 input trajectories of length
12 meters are extracted from a sliding window on the
complete sequence. For the ”atrium” dataset, roughly 120
input trajectories of each length 3, 6, 9, 12, 15, and 18
meters are extracted. All of them are first expressed in
an arbitrary gravity frame before being processed by the
proposed algorithm. In total, MagHT is tested on more than
a thousand input trajectories.

B. MagHT setup

1) Map preprocessing: Offline, the continuous map de-
scribed in section IV-A is discretized on a grid using steps
of size λ = 0.5 m. However, in the 3D case, this grid is
not cubic, as it would harm the clustering results. Indeed,
because of the gravity assumption and because the input path
is often at a constant walking altitude, a grid discretization
in z yields the same discretization in z inside the voting
space. This voting artifact can break one big cluster into
multiple smaller ones for each z layer. To reduce two fold
the discretization step while keeping the number of element
constant, half the column of a cubic grid are shifted upward
by λ

2 , resulting in a body-centered orthorhombic Bravais
lattice of parameter (λ

√
2, λ
√

2, λ).



2) Input trajectories preprocessing: To not generate too
many votes that would merge clusters, and because the
magnetic field variations are low enough, measurements are
smoothed to reduce noise and then downsampled using the
same step length λ as for the map sampling. Unlike a
temporal one, spatial sampling is robust when the carrier
is not moving. The origin of a is translated at the barycenter
of each input trajectory (not necessarily on the trajectory) to
reduce voting errors induced by the lever-arm effect.

3) Parameters: To illustrate MagHT’s ease of use, we
set the same parameter values on all datasets. Following
DBSCAN parameter guidelines [16], minpts = 8, which
is twice the vote DoF. Its range query size ε in the voting
space should be as small as possible to reduce runtime, but it
should be larger than the vertical λ2 discretization. ε = λ gave
good results. The distance function scaling factor r is set
to 5 m such that the final translation error is approximately
equal to the scaled yaw error. Matching in the feature space
is done through the adaptative range:

δ = min(α|ma
i −ma

i−1|, α|ma
i+1−ma

i |, δmax), α ∈ [0, 1] ,

with i the index of the current input measure to match.
Experimentally, δmax = 3.0µT and α = 0.67. Notice that
δ tends toward zero in uniform fields, which should avoid
meaningless associations in outdoor environments.

C. Particle filter setup

We compared MagHT against a bootstrap particle filter
[11] as it is one of the only state-of-the-art methods to
perform magnetic relocalization on trajectories that do not
follow the mapping path. Hence its performances are used
as a baseline. Because no open source code is available,
we made our best effort C++ implementation, following
as closely as possible their algorithm description, which is
tailored for 2D navigation. In detail, the state is defined
as X = (x, y, ψ). At each timestep, the monocular visual-
inertial odometry (VIO) projected in 2D replaces their pedes-
trian dead reckoning model in the dynamic equation. A
stratified resampling is used jointly with an Effective Sample
Size resampling criteria set to a standard value of 0.5. Particle
initialization is performed using the first magnetic vector
to align the yaw angle ψ0. As in [11], their likelihood is
based on the yaw invariant features described in section III-
B. Convergence is decided by setting a one-meter threshold
on the particle x and y standard deviation. It is 2 to 3
times smaller than the equivalent criterion used in [11]. The
more accurate VIO allows it and avoids ambiguity from
multimodal estimation.

D. Metrics

Five criteria are used to evaluate both methods: The
translation error ‖t̂wa−twa‖2, the rotation error |ψ̂wa−ψwa|,
the precision, the recall, and the runtime. The precision is
defined from the number of correct convergences (below one-
meter error) over the total number of convergences, and the
recall is defined from the number of correct convergences
over all possible ones (i.e., the number of trajectories in

(a) Recall (b) Precision

(c) Median error (m) (d) Runtime (s)

Fig. 4: MagHT against particle filtering using 1600 and
6400 particles on variable trajectory lengths. In (d), odometry
runtimes are not included.

the mapped area). The particle filter is indeed a filtering
algorithm, so the best performances are obtained at the last
measurement. Hence, for a fair comparison, the particle filter
metrics are computed using directly the transformation from
the last sensor frame to the world frame instead of Twa.

E. Experiments

Several experiments are conducted to assess several as-
pects of MagHT. All runtimes are achieved on one core of an
11th Gen Intel® Core™ i7-11800H with 16 GB of ram and
no GPU. First, our method is compared against the particle
filtering (PF) approach in paragraph IV-E.1. Particle filtering
is about choosing the suitable trade-off between runtime and
estimation quality. In our experiment, it is run with either
1600 or 6400 particles which will be abbreviated as pf1600
and pf6400. The second experiment described in paragraph
IV-E.2 evaluate MagHT 3D relocalization capabilities and
the magnetic field stability over time. Our proposed method
performances in open and closed areas are compared in
paragraph IV-E.3. The fourth experiment evaluates MagHT
Robustness against false positives in unmapped areas in
paragraph IV-E.4. Finally, we assess the no drift hypothesis
in paragraph IV-E.5.

1) MagHT versus particle filtering: In this section, we
only compare MagHT against a particle filter on the atrium
dataset, using input trajectory of variable lengths 3, 6, 9,
12, 15, and 18 meters. The 3D dataset corridor is not used
because the concurrent particle filter was initially proposed
in 2D only. Besides, increasing the dimension state implies



increasing the number of particles accordingly. One would
expect similar results to the ones presented here but with
worse computation time. Our method performances on cor-
ridor are studied in paragraph IV-E.2. For this experiment
on atrium, all metrics are displayed in Fig. 4. MagHT recall
is superior on trajectories shorter than 9 meters. It stems
from the fact that we had to increase the measurement
noise of the filter to preserve the particle diversity and,
therefore, reduce false positives. Indeed, filtering algorithms
that process measures one by one are more sensitive to out-
liers, especially at the beginning of the trajectory. However,
higher noise values also increase the convergence time, thus
reducing recall on shorter sequences. On the contrary, our
algorithm processes all measures independently from their
acquisition order, which increases its robustness. From this
perspective, it is closer to the smoothing algorithm family.
Particle smoothing also exists [22] but suffers from even
higher runtimes. For trajectories above 12 meters, MagHT
recall is between pf1600 and pf6400. Fig. 4b shows that the
three algorithms have good precision, particularly pf6400,
which has near zero false positives on all trajectory lengths.
On the contrary, pf1600 precision is slightly lower than our
proposed method. Sometimes no particles are near the correct
solution, so it might converge toward a place where the
magnetic field is similar. One can expect this effect to be
magnified for larger environments. As visible in Fig. 4c,
MagHT errors are almost as good as the particle filtering
ones. On 12 meter trajectory, median errors for our method,
pf1600 and pf6400, are respectively 0.21, 0.18, and 0.12
meters. When the thousands of particles converged correctly,
the sampling was dense around the true pose, which ap-
proximate almost perfectly its distribution. On the contrary,
magHT usually has between ten and one hundred votes inside
the most significant cluster. Nevertheless, it stills allows to
average singular votes T̃wa by computing the cluster centroid
T̂wa. The accuracy of T̂wa might be improved by non-
linear refinement post-processing since our method efficiency
leaves enough computational power.

Overall, MagHT performances are similar to the particle
filtering ones, but it is ten thousand times faster (see fig 4d).
The main difference is that input and map data are associated
with the feature space. Consequently, all magnetic field-
related variables can be precomputed (e.g., the feature tree).
Additionally, several online steps of our method are suitable
for optimization through proper indexation trees. Conversely,
the particle filter requires position and orientation hypothesis
(particles) to compare a magnetic measure with the map. The
larger the environment is, the more numerous the particles
should be. Furthermore, each comparison implies a map
call. For 6400 particles on a 12-meter trajectory, it causes
about 80 000 calls (16 times what MagHT needs). None
of them can be precomputed as particles’ positions are
unpredictable beforehand. For all these reasons, MagHT
runtimes outperform particle filtering ones by far.

2) 3D relocalization and map stability: MagHT relo-
calization capability in a 3D environment as well as the
magnetic field stability over time, are studied inside the

(a) translation error on corridor (b) yaw error on corridor

(c) translation error on atrium (d) yaw error on atrium

Fig. 5: Error histograms were computed using corridor and
atrium on 460 and 120 input trajectories of length 12 m,
respectively. A threshold of 12◦ defines false positives based
on yaw errors. When scaled by the distance coefficient r, it
is approximately equal to the one-meter threshold used for
translation errors.

corridor dataset (see Fig 3). MagHT is executed on 460
input trajectories of length twelve meters 1. There is no false
positive, and the recall is 89%. Hence, it allows frequent
and reliable relocalization. The error histograms are shown
in Fig. 5a and 5b. Translation and yaw median errors equal
0.16 m and 1.08 ◦, respectively. These results confirm the
magnetic field stability over time since the test sequence is
acquired one year after the mapping acquisition. In addition
to being accurate, the relocalization is lightweight, taking
only 4.6 ms. The offline 11000 features indexation in the k-
d tree is also instantaneous (1.7 ms), which is promising for
an extension to online magnetic Simultaneous Localization
And Mapping (SLAM).

3) Open area versus narrow corridors: In this section,
we compare MagHT performances on the atrium dataset
with its performances on the corridor dataset. Respectively
120 and 460 inputs trajectories of length 12 meters are
extracted from both test sequences. Error histograms on those
inputs are visible in Fig. 5. Taking the corridor dataset
as a reference, recall increased from 89% to 97%, but the
precision lowered from 100% to 97%. Errors also increased
from 0.16 to 0.21 meters and from 1.08 to 1.6 degrees. It
stems from environment differences. First of all, in corridors,

1The previous experiment, in section IV-E.1, showed that twelve meters
is the shortest length for best performances



the distance to the closest ferromagnetic material is smaller
than an atrium. Therefore, the field variations are higher in
corridor. Consequently, spatially close features might still
be too different to be associated. It leads to a lower vote
density and, therefore, to fewer clusters. Hence the recall is
lower. On the contrary, the less variation the field has, the
less observable the position is, which is not specific to our
proposed solution. It partially explains the worse precision
and errors in the atrium. Moreover, in open environments,
the map is full. It further increases the vote density and,
therefore, the risk of having large wrong clusters. The
adaptive feature matching strategy still gave us good perfor-
mances in both environments. Finally, notice that the high
recall on atrium demonstrates that MagHT is indeed able to
perform relocalization even if the test trajectory crosses the
mapping trajectory at high angles (see Fig. 2). Such angles
would not be possible with sequence-based pattern-matching
relocalization such as DTW.

4) Robustness in unmapped area: This experiment as-
sesses MagHT’s robustness to relocalization attempts when
the true pose is outside the map. Such a situation can
appear when the environment is subject to change or when a
robot may achieve exploration phases out of the previously
mapped area. Hence we used the map of the corridor dataset
restricted to the second floor only, jointly with the input
trajectories restricted to the third level. This way, over 250
input trajectories of 12 meters are in an unmapped area, and
the map size is 400 m3. MagHT yields only three false
positives (1.2%). Each of the three false clusters contains
exactly eight votes, the bare minimum given our DBSCAN
parameters.

5) Robustness to odometry inaccuracy: Our algorithm
does not model odometry errors which are unavoidable in
real systems. Hence MagHT’s sensibility to it should be
characterized. To this end, the visual-inertial odometry on
the atrium dataset is computed using 1, 2, or 4 cameras
without either loop closure or global bundle adjustment post-
processing. After 12 meters, these three odometry systems
yield median relative pose error (RPE) [23] of (0.09 m, 0.3°),
(0.05 m, 0.2°) and (0.04 m, 0.2°). Maght performances are
not affected. The respective relocalization median errors are
(0.21 m, 1.6°), (0.20 m, 1.6°), and (0.21 m, 1.5°) for the
translation and yaw estimates. It confirms our hypothesis that
the drift may be neglected on short input trajectories.

V. CONCLUSION

In this article, we introduced MagHT: a novel efficient,
and accurate 3D relocalization algorithm based on the indoor
magnetic field. To this date, other magnetic relocalization
methods adapted to open areas are computationally expen-
sive. On the contrary, our results demonstrate that MagHT
execution time is several orders of magnitude faster than
the concurrent particle filter while having comparable errors,
recall, and precision. MagHT also performs fast relocal-
ization in large 3D maps, which would require even more
computational power for the filter-based method.

MagHT opens several directions for research. In future
work, we intend to integrate it in a graph SLAM framework,
thus upgrading the current state-of-the-art, primarily based
on DTW. Superior recall in open areas would allow for
more loop closure and therefore reduced errors. Further-
more, MagHT’s low false positive rate outside the mapped
area would benefit most SLAM backends. Having no false
positive at all is desirable and would require improving
our method using additional rejection criteria, such as a
ratio test on cluster sizes. The extension of MagHT to
online magnetic mapping is possible since our experiment
demonstrates that the precomputed feature tree is fast to
build. Such trees are also editable efficiently. For this study,
we collected the magnetic field by wearing our helmet system
on our heads. Additional difficulties due to dynamic magnetic
perturbations induced by a robot might be expected. We will
better characterize its impact. Finally, building a coherent
map from several maps can be challenging in a multi-agent
SLAM context. Therefore, we will also extend MagHT to
perform multi-magnetic map alignment. Generally speaking,
MagHT efficiency makes it a good option for the localization
of various embedded systems, evolving in large environments
encompassed in non-uniform magnetic fields.
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[3] M. Labbé and F. Michaud, “Multi-Session Visual SLAM for
Illumination-Invariant Re-Localization in Indoor Environments,” Fron-
tiers in Robotics and AI, vol. 9, 2022.

[4] G. Ouyang and K. Abed-Meraim, “A Survey of Magnetic-Field-Based
Indoor Localization,” Electronics, vol. 11, no. 6, p. 864, Jan. 2022.

[5] I. Ashraf, Y. B. Zikria, S. Hur, and Y. Park, “A Comprehensive Anal-
ysis of Magnetic Field Based Indoor Positioning With Smartphones:
Opportunities, Challenges and Practical Limitations,” IEEE Access,
vol. 8, pp. 228 548–228 571, 2020.

[6] Y. Shu, C. Bo, G. Shen, C. Zhao, L. Li, and F. Zhao, “Magicol: Indoor
Localization Using Pervasive Magnetic Field and Opportunistic WiFi
Sensing,” IEEE Journal on Selected Areas in Communications, vol. 33,
no. 7, pp. 1443–1457, Jul. 2015.

[7] L. Antsfeld and B. Chidlovskii, “Magnetic Field Sensing for Pedestrian
and Robot Indoor Positioning,” in International Conference on Indoor
Positioning and Indoor Navigation (IPIN), Nov. 2021.

[8] N. Lee, S. Ahn, and D. Han, “AMID: Accurate Magnetic Indoor
Localization Using Deep Learning,” Sensors, vol. 18, no. 5, p. 1598,
May 2018.

[9] S. Wang, H. Wen, R. Clark, and N. Trigoni, “Keyframe based large-
scale indoor localisation using geomagnetic field and motion pattern,”
in 2016 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), Oct. 2016.

[10] B. Yao, W. Li, D. Wei, X. Ji, and W. Zhang, “Robust Magnetic
Field Loop Closure Detection for Low-Cost Robot’s Localization and
Mapping,” in China Satellite Navigation Conference (CSNC 2022),
Singapore, 2022.



[11] A. Solin, S. Sarkka, J. Kannala, and E. Rahtu, “Terrain navigation in
the magnetic landscape: Particle filtering for indoor positioning,” in
European Navigation Conference (ENC), May 2016.

[12] Y. Ma, Z. Dou, Q. Jiang, and Z. Hou, “Basmag: An Optimized HMM-
Based Localization System Using Backward Sequences Matching Al-
gorithm Exploiting Geomagnetic Information,” IEEE Sensors Journal,
vol. 16, no. 20, pp. 7472–7482, Oct. 2016.

[13] D. Ballard, “Generalizing the Hough transform to detect arbitrary
shapes,” Pattern Recognition, vol. 13, no. 2, Jan. 1981.

[14] A. G. Buch, L. Kiforenko, and D. Kraft, “Rotational Subgroup Voting
and Pose Clustering for Robust 3D Object Recognition,” in IEEE
International Conference on Computer Vision (ICCV), Oct. 2017.

[15] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, “A Density-Based
Algorithm for Discovering Clusters in Large Spatial Databases with
Noise,” in Proceedings of the 2nd ACM International Conference on
Knowledge Discovery and Data Mining, 1996.

[16] E. Schubert, J. Sander, M. Ester, H. P. Kriegel, and X. Xu, “DBSCAN
Revisited, Revisited: Why and How You Should (Still) Use DBSCAN,”
ACM Transactions on Database Systems, vol. 42, no. 3, Aug. 2017.

[17] R. Brégier, F. Devernay, L. Leyrit, and J. L. Crowley, “Defining
the Pose of Any 3D Rigid Object and an Associated Distance,”
International Journal of Computer Vision, vol. 126, no. 6, pp. 571–
596, Jun. 2018.

[18] J. Rehder, J. Nikolic, T. Schneider, T. Hinzmann, and R. Siegwart,
“Extending kalibr: Calibrating the extrinsics of multiple IMUs and of
individual axes,” in IEEE International Conference on Robotics and
Automation (ICRA), May 2016.

[19] V. Renaudin, M. H. Afzal, and G. Lachapelle, “Complete Triaxis Mag-
netometer Calibration in the Magnetic Domain,” Journal of Sensors,
vol. 2010, pp. 1–10, 2010.

[20] J. Coulin, R. Guillemard, V. Gay-Bellile, C. Joly, and A. de La Fortelle,
“Online Magnetometer Calibration in Indoor Environments for Mag-
netic field-based SLAM,” in International Conference on Indoor
Positioning and Indoor Navigation (IPIN), 2022.

[21] A. Solin, M. Kok, N. Wahlström, T. B. Schön, and S. Särkkä, “Mod-
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