
HAL Id: hal-04178628
https://hal.science/hal-04178628v1

Submitted on 8 Aug 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

GRU-based Neural architecture search for finger-Vein
identification

Shaojiang Deng, Chao Fan, Yantao Li, Huafeng Qin, Mounim El Yacoubi,
Gang Zhou

To cite this version:
Shaojiang Deng, Chao Fan, Yantao Li, Huafeng Qin, Mounim El Yacoubi, et al.. GRU-based Neural
architecture search for finger-Vein identification. International Conference on Computer Communica-
tions and Networks (ICCCN), Jul 2023, Honolulu, Hawaii, United States. �hal-04178628�

https://hal.science/hal-04178628v1
https://hal.archives-ouvertes.fr


GRU-based Neural Architecture Search for
Finger-Vein Identification

Shaojiang Deng
College of Computer Science

Chongqing University
Chongqing, China

sj deng@cqu.edu.cn

Chao Fan
College of Computer Science

Chongqing University
Chongqing, China

202014021017@cqu.edu.cn

Yantao Li*
College of Computer Science

Chongqing University
Chongqing, China

yantaoli@cqu.edu.cn

Huafeng Qin
School of CS and Information Engineering

Chongqing Technology and Business University
Chongqing, China

qinhuafengfeng@163.com

Mounim A. El-Yacoubi
Télécom SudParis

Institut Polytechnique de Paris
Palaiseau, France

mounim.el yacoubi@telecom-sudparis.eu

Gang Zhou
Computer Science Department

William & Mary
Williamsburg, USA
gzhou@cs.wm.edu

Abstract—In recent years, finger-vein biometrics has attracted
extensive attention due to its potential for accurate and effi-
cient identification. Deep neural networks (DNNs) have proven
effective in automatically extracting discriminative features from
large collections of finger-vein images, resulting in improving
the accuracy and efficiency of finger-vein recognition. However,
the DNN-based finger-vein recognition faces challenges. For
example, designing network structures and tuning parameters
rely on human prior knowledge, which can reduce both the
effectiveness and efficiency of the recognition. To address these
challenges, we propose GNAS-FV, a Gated recurrent unit-based
Neural Architecture Search for Finger-Vein recognition, which
automatically searches for the optimal network structure, re-
ducing manual intervention and experience dependency, so as
to improve the network performance and generalization ability.
Specifically, we first provide a publicly available finger-vein
database using commercial sensors to promote the development
of finger-vein recognition. Then, a gated recurrent unit (GRU)-
based neural architecture search approach is designed to auto-
matically generate the network structure for the finger-vein image
database. Next, we design a parameter-sharing supernet policy,
which significantly reduces the search space and computation
costs. Finally, the rigorous experiments are conducted on our
finger-vein database and a public finger-vein database, and the
experimental results demonstrate that the proposed GNAS-FV
outperforms state-of-the-art methods in terms of recognition
accuracy and equal error rate.

Index Terms—Finger-vein identification, Deep learning, Neural
architecture search (NAS), Gated recurrent unit (GRU), Accu-
racy

I. INTRODUCTION

With the development and widespread applications of In-
ternet technology, the information security has received more
and more attention. Traditional identification methods, such
as magnetic cards, keys, passwords, or personal identification
numbers (PINs), have proven to be insufficiently secure be-
cause of their vulnerability to steal, copy and forge, as well
as to various attack methods, such as smudge attacks [1] and

*Yantao Li is the corresponding author.

shoulder-surfing attacks [2]. To address these shortcomings,
biometric identification has been widely studied and has shown
two advantages: 1) Convenience. As an individual’s inherent
modality, biometric traits can be automatically verified in less
than one second; 2) Security. Biometric traits are difficult to
copy and the users are required to participate in the image col-
lection during the identification process. Biometric traits can
be classified into physiological biometric traits and behavioral
biometric traits. The behavioral biometric traits require highly-
configured devices to capture motion patterns. By contrast, the
physiological biometric traits are more easy to be collected
and have been widely used in practical scenarios, such as
door access and mobile payments, for identity or verification.
Biometric identification mechanism has shown a potential
candidate to replace traditional identification methods.

Physiological biometric traits can be divided into two cate-
gories: 1) extrinsic biometric traits, such as face [3], fingerprint
[4] and iris [5], and 2) intrinsic biometric traits, such as palm
vein [6] and finger vein [7]–[9]. Extrinsic biometric traits
have been successfully applied in different scenarios, such
as immigration clearance, financial payments, access control
systems, and consumer electronic products. However, they
are vulnerable to attack and may be copied without users’
permission, which has raised concerns about security and
privacy. In contrast, intrinsic biometric traits hidden in the
human body are not easy to be observed by human eyes, and
thus have two advantages [10], [11]: 1) They provide liveness
verification. Vein patterns are only collected from living indi-
viduals, ensuring effective and efficient verification; 2) They
offer high security and privacy protection. Blood vessels are
hidden beneath the skin from birth, making them difficult to
copy or forge in visible light. Therefore, finger-vein based
recognition is receiving increasing attentions. Similar to facial
recognition and fingerprint systems, most vein recognition
systems follow the same mechanism: the physiological data
is collected from individuals, a feature set is extracted from



the data, and a testing sample is matched with a template set
for recognition. Currently, numerous researchers have explored
image processing and classification approaches to improve
performance of vein recognition.

During the process of finger-vein image acquisition, various
factors, such as lighting [12], temperature [13], light scattering
[14] and user behavior [13], can result in noise and irregular
shadow regions in the captured vein images, ultimately degrad-
ing the accuracy of finger-vein verification. Therefore, how to
achieve accurate and reliable finger-vein identification is still a
challenging task. Currently, researchers have proposed various
algorithms based on machine learning, deep learning and other
technologies to improve the accuracy and robustness of finger-
vein recognition, promoting the development of finger-vein
recognition technology. Recently, neural architecture search
(NAS) [15] can automatically search for an optimal neural
network architecture by using the reinforcement learning tech-
nique, which has been widely applied in various fields, such
as computer vision, natural language processing, and speech
recognition. As the neural network architecture is determined
by automatic search policy instead of prior knowledge, they
can significantly improve the classification performance and
efficiency. To improve the performance of finger-vein recog-
nition, we present GNAS-FV, a Gated recurrent unit-based
Neural Architecture Search for Finger-Vein image identifica-
tion system. GNAS-FV employs the neural architecture search
model to automatically generate the most suitable network
structure for the current finger-vein classification task with a
given dataset. To achieve this, GNAS-FV utilizes a parameter-
sharing supernet structure that generates subnets for searching,
which effectively reduces the search space and computation
costs, resulting in the improvement of the search efficiency.

The main contributions of this work can be summarized as
follows:

• We provide a publicly available finger-vein image
database captured by commercial sensors, rather than
experimental prototypes, to promote the development of
finger-vein recognition. Using vein image captured by
commercial sensors, which are more representative of
daily usage, can facilitate more valuable results for finger-
vein recognition.

• We present GNAS-FV, a gated recurrent unit-based neural
structure search method for finger-vein recognition. The
controller in GNAS-FV uses a gated recurrent unit-based
structure to automatically search for the optimal neural
network structure, which can generate the next candidate
structure based on the current selection.

• We design a parameter-sharing supernet for finger-vein
identification, where GNAS-FV combines the controller’s
structural descriptor output with a weight-sharing super-
net to generate subnets, which significantly reduces the
search space and computation costs. We then calculate
the reward based on the subnet’s performance on the
validation set and update the parameters of the GNAS-FV
controller iteratively, producing the optimal deep neural
network architecture for finger-vein recognition.

• We conduct rigorous experiments on our finger-vein
database and a public finger-vein database to evaluate
the search efficiency of GNAS-FV, and the identification
performance of the deep neural network generated by
GNAS-FV. The experimental results on two finger-vein
databases demonstrate that deep neural network gener-
ated by our GNAS-FV significantly outperforms existing
deep learning based finger-vein recognition approaches in
terms of the recognition accuracy and equal error rate.

The remainder of this paper is organized as follows. In
Section II, we introduce the related work on finger-vein
classification tasks. In Section III, we detail the proposed
GNAS-FV, and the performance of GNAS-FV is evaluated in
Section IV. Finally, Section V concludes this work.

II. RELATED WORK

Finger-vein recognition algorithms refer to verifying or
identifying individual identities through the acquired finger-
vein patterns. Due to the unique and stable vein texture infor-
mation contained in finger-vein images, finger-vein recognition
shows the advantages of high accuracy, security, and robust-
ness, and has been widely used in real-life scenarios, such
as financial payments, border inspections, and access control
systems. To improve the accuracy of finger-vein recognition,
various methods have been proposed to extract strong and
robust features for verification. These methods can be divided
into three categories:

A. Local binary descriptors

Local binary descriptor-based approaches for finger-vein
recognition include local statistical information based ap-
proaches and local invariance based approaches. Represen-
tative local statistical information based methods consist of
Local Binary Pattern (LBP) [16] and Discriminative Binary
Codes (DBC) [17]. The typical local invariance based methods
contain the Scale-Invariant Feature Transform (SIFT) [18],
which has been used to detect robust points for verification.

B. Traditional machine learning methods

Traditional machine learning models, such as k-means
clustering [19], SVM [20], [21], PCA [22], 2D-PCA [23],
and Sparse Representation (SR) [24], have been proposed
to learn vein feature representation. To improve their per-
formance, LRR (Low Rank Representation) [25] is used for
discriminative feature extraction by adding a regularization
term to constrain the low-rank coefficients and enhance the
discriminative power of LRR.

C. Deep learning-based methods

Recently, deep learning-based methods, such as convolu-
tional neural networks (CNN) and Transformer, have shown
robust feature representation capability and have been suc-
cessfully applied for various computer vision tasks. Inspired
by their success, some researchers have introduced the deep
learning to the vein verification tasks. ResNet [26], VGGNet
[27], and GoogLeNet [28] as an typical examples of neural



network structures designed manually have performed well on
many tasks. Specifically, the ResNet uses residual functions
to alleviate the problems of gradient vanishing and expression
degradation [26], VGGNet increases network depth to improve
performance [27], and GoogLeNet employs Inception modules
to enable the network to select convolution filters of different
sizes [28]. In past years, the deep learning based models have
been proposed for vein recognition. For example, FV-CNN
[29] is a specially-designed CNN for finger-vein recognition.
PV-CNN [30] proposes to use MSMD-GAN to generate
augmented data for single-sample palm vein recognition. To
improve the computation efficacy, LightweightDeepCNN [31]
proposes a lightweight vein recognition algorithm that uses a
triplet loss function to train the model. To exract the robust
feature, the Arcvein [32] proposes a loss function called the
cosine center loss to learn both inter-class and intra-class infor-
mation, so as to improve the discriminating ability of CNNs for
finger-vein verification. Recently, FVRASNet [33] proposes a
lightweight CNN model that integrates recognition tasks and
anti-spoofing tasks into a unified CNN model, achieving high
security and strong real-time performance through the use of
multi-task learning methods.

III. METHOD

In this section, we first introduce our GNAS-FV. Then, we
describe how to generate a deep neural network by GNAS-FV.
Next, we detail the subnet generation, controller design, and
supernet design, respectively. Furthermore, we explain three
stages of the GNAS-FV algorithm. Finally, we discuss the
training parameters of GNAS-FV to ensure a comprehensive
understanding of the algorithm.

A. GNAS-FV design

Deep neural networks (DNNs) have the capability to au-
tomatically learn effective features from a large number of
finger-vein images for finger-vein recognition. However, ap-
plying DNNs to finger-vein recognition faces several chal-
lenges, such as how to design appropriate network structures
and how to select and tune hyperparameters. Neural archi-
tecture search (NAS) as an effective method for exploring
and optimizing network structures can automatically generate
optimal DNNs to improve the finger-vein recognition accuracy.
However, due to the characteristics of the finger-vein dataset,
such as a small number of sample per user, multiple users, and
finger-vein features that prioritize texture over common image
classification, a supernet must be specifically designed for each
finger vein dataset. This supernet is activated by the structural
descriptor generated by the controller, and each branch inside
the supernet is activated, generating a subnet. Moreover, this
subnet shares the weights of the supernet, avoiding the need
to train the subnet from scratch every time, which can greatly
reduce the consumption of the time and memory.

The framework of the proposed GNAS-FV is illustrated
in Fig. 1. As depicted in Fig. 1, GNAS-FV employs the
controller to generate structural descriptors, and then uses such
structural descriptors to activate the subnets in the supernet.

controller supernet

subnet

generate structural descriptor A with 
probability p

activate subnet 
according to structural 

descriptor A.

update the controller by 
combining the performance R 

of the subnet with probability p.

Fig. 1. Framework of GNAS-FV.

The accuracy of the subnet on the validation set is used as a
reward signal to optimize the controller’s parameters. During
the training process, GNAS-FV uses the trained controller
to generate structural descriptor to determine the DNN ar-
chitecture for finger-vein recognition. Specifically, during the
training phase of the supernet, the output of the controller is
used as the probability p1, and a set of structural descriptors
A1 are sampled with probability p1. The supernet employs this
structural descriptor A1 to specify one of its subnets as the
active network, and then trains itself based on the finger-vein
data from the training set to update its parameters. During the
training phase of the controller, the output of the controller is
utilized as the probability p2, and a set of structural descriptors
A2 are sampled with probability p2. The supernet uses this
structural descriptor A2 to determine one of its subnets as
the active network. Then, the accuracy of the current active
network on the validation set is used as the reward R, so as
to compute the gradient of p2 and optimize the parameters
of the controller. After training, the controller outputs the
structural descriptor A′ with the highest probability for each
layer. The supernet uses such structural descriptor A′ to extract
a subnet as the generated deep neural network for finger-vein
recognition.

B. Subnet Generation

In our approach, selecting an activated subnet from a
supernet is treated as the process of choosing a path from
the root node to a leaf node on a full N-ary tree. Each node
on the path is associated with a specific structure of one layer.
The GNAS-FV controller generates a structural descriptor that
specifies the process of selecting one of its child nodes as the
active node for each node on the path. The supernet structure
requires each structural descriptor to make three decisions:

1) Decide whether to choose the direct path, which uses
the output of the previous layer as the input for the next
layer instead of using the output of the current layer;

2) When not choosing the direct path, decide on the type
and parameters of the network structure in the current
layer;

3) When not choosing the direct path, decide whether to
use a shortcut path.



t1

input out1

controllerh0

x1

h1

direct1=0

shortcut1=1

param1=2

direct path

conv

separable conv

shortcut pathshortcut path

direct path

conv

separable conv

shortcut path

out

controller

x2

h2

t2

direct2=1

param1=2

shortcut2=x

param2=x

param2=x

super-block2

direct path

conv

separable conv

shortcut pathshortcut path

super-block1

direct path

conv

separable conv

shortcut path

super-block1

Fig. 2. Using GNAS-FV to generate a subnet from the supernet.

The three decisions are crucial for both the performance of
the supernet and the effectiveness of the subnets. First, the
direct path enables the GNAS-FV to autonomously decide
whether to reduce the number of structural decisions and
hence reduce the search space. Second, the choice of network
structure type and parameters can directly impact the subnets’
performance and efficiency, such as selecting depth, width,
convolution kernel size, and other parameters. Finally, using
the shortcut path can improve the information propagation in
the network, alleviating the problem of the information loss
and gradient vanishing, and improving the performance of
deep networks. Therefore, when generating structural descrip-
tors, the GNAS-FV controller needs to consider the interaction
and balance of these decisions.

Fig. 2 illustrates how to generate a DNN using the controller
and the supernet. This DNN contains two hidden layers, each
of which includes two alternative network structures, e.g.
conventional convolutional block and separable convolutional
block.

1) At time t1, the controller takes a seed vector x1 cor-
responding to the structural descriptor of the first layer
and the initial state vector h0 as the inputs, and then
generates the state vector h1. h1 is then mapped to a
probability tuple (a11 , a21 , a31 ) of structural descriptors
by a non-linear fully connected layer. Based on this
probability tuple, the controller generates the structural
descriptor (direct1, param1, shortcut1) for the first
layer by randomly sampling according to the probabili-
ties. Here, direct1 = 0 indicates that the direct path is
not selected, param1 = 2 indicates the selection of the
second type of network structure, and shortcut1 = 1
indicates the use of a shortcut path. Therefore, in this
super-block, the separable convolution block and short-
cut path of this layer are activated as the passageway for
data transmission.

2) At time t2, the controller takes the seed vector x2

and the previous layer’s state vector h1 corresponding
to the first layer’s network structural descriptor as its

inputs. It generates the state vector h2, which is then
mapped to a probability tuple (a12 , a22 , a32 ) by a non-
linear fully connected layer. Using this probability tuple,
the controller generates the second layer’s structural
descriptor (direct2, param2, shortcut2) in the same
way as the first layer. In this case, direct2 = 1 indicates
that the direct path is chosen. As a result, the input of
the first layer is directly used as the output of the second
layer, and the values of param2 and shortcut2 are not
used. Thus, in the supernet, the direct path of the second
layer is activated as the path for data propagation.

Finally, after two iterations, the controller generates two sets
of structural descriptors and selects different structures as data
paths in the supernet, resulting in a DNN to be evaluated. This
controller-supernet-based search method can flexibly generate
various neural network structures, which are automatically
optimized for different tasks and datasets.

C. Controller Design

In NAS, the controller plays a crucial role in generating
candidate network structures and tuning its own parameters
based on feedback reward signals. Typically, a recurrent neural
network (RNN) is used as the controller, and the gated
recurrent unit (GRU) is a common variant of the RNN. The
GRU has two important gates: the update gate and the reset
gate. The update gate controls how much information from the
previous hidden state is retained in the current time step, while
the reset gate determines how much information from the
previous hidden state is used to compute the candidate hidden
state at the current time step. The gate mechanism of GRU
can effectively solve the problems of gradient vanishing and
exploding, thereby enabling the network to effectively process
long sequence data. Furthermore, compared to other RNN-
based structures such as LSTM, GRU has fewer parameters
and faster computation speed, so it has been widely employed
in many practical applications.

The controller of GNAS-FV is a GRU structure that can
generate the next candidate structure based on the current
structure selection. Thus, the model can automatically search
for the optimal neural network structure without human inter-
vention. Specifically, the controller of GNAS-FV consists of
two stacked GRUs and a classifier group, which can transform
the hidden state into a tuple of probability vectors. The tuple
contains three elements: direct, param, and shortcut, which
represent the probability distribution of direct path, network
structure type and parameters, and shortcut path, respectively.
Due to the different dimensions of these three elements, the
classifier group adopts different processing methods for each
element. For direct and shortcut, fully connected layers and
sigmoid activation function are used, while for param, the
fully connected layers and softmax layer are used.

In GNAS-FV, the controller takes a seed vector xt and the
previous hidden state ht−1 as its inputs at time t, and generates
a new hidden state ht. The classifier group then transforms ht

into a probability vector tuple for the network structure of the



Input 
Layer

Classifier

branch1

branch2

branchn

.

.

.

branch1

branch2

branchn

.

.

.

super-block 
layer

super-block 
layer

branch1

branch2

branchn

.

.

.

branch1

branch2

branchn

.

.

.

super-block 
layer

super-block 
layer

……
Input 
Layer

Classifier

branch1

branch2

branchn

.

.

.

branch1

branch2

branchn

.

.

.

super-block 
layer

super-block 
layer

……

Fig. 3. Architecture of the supernet.

tth layer. The process is repeated recursively by passing ht as
input to GNAS-FV for time step t+ 1.

D. Supernet Design

Traditional NAS methods usually use a controller to gener-
ate structural descriptors, followed by creating and training
a new DNN. However, this approach has the drawbacks
of consuming a significant amount of time and hardware
resources for each search. As a result, traditional NAS methods
often struggle to scale to large-scale network search tasks
in practical applications. In contrast, GNAS-FV employs a
supernet-based method to search for optimal subnet. In this
method, the controller generates the structural descriptors to
determine the structure of the subnet, and the supernet acti-
vates the sub-nodes layer by layer based on these descriptors
to form a subnet. In this way, this method enables GNAS-FV
to avoid creating and training a new DNN for each search,
resulting in the reduction of time cost.

As depicted in Fig. 3, the supernet architecture in GNAS-
FV includes three modules. The first module is the input
layer, which uses a 3× 3 convolutional structure and a batch
normalization layer to map the input to a 32-channel high-
dimensional space for subsequent processing. The second
module consists of 10 super-block layers, each comprising
N nodes representing N selectable network structures. At
runtime, GNAS-FV activates only one node as the active node
for the current layer. In this work, N is set to 13, indicating 13
selectable network structures. The selectable structures of the
nodes in the super-block layer are listed in Table I. Finally,
the third module includes a classifier layer, which takes the
feature maps extracted from the super-block layer as the input
and outputs the probability of the input belonging to each
class.

As the first module of the entire network, the input layer
aims to extract rough feature and reduce the dimension of the
input. The super-block layers are the core of the supernet.
Each node in the super-block layer represents a candidate
network structure, and the architecture of the entire network
is determined by selecting these nodes. The classifier layer
takes the features extracted by the super-block layer as the
input and predict its probability belonged to each class,
achieving the final classification task. Overall, GNAS-FV uses

TABLE I
OPTIONAL STRUCTURE OF SUPER-BLOCK LAYER

Structure Kernel size Using shortcut
conv-relu-norm (3,3) ✓
conv-relu-norm (3,3) ×
conv-relu-norm (5,5) ✓
conv-relu-norm (5,5) ×

separable conv-relu-norm (3,3) ✓
separable conv-relu-norm (3,3) ×
separable conv-relu-norm (5,5) ✓
separable conv-relu-norm (5,5) ×

average pool (2,2) ✓
average pool (2,2) ×

max pool (2,2) ✓
max pool (2,2) ×
direct path - ✓

the designed supernet to automatically determine a optimal
network structure for a specific task by the node selection,
which provides the flexibility and adaptability for different
finger-vein recognition task.

E. Three Stages

GNAS-FV consists of two main blocks: the controller and
the supernet, which associate with some trainable parameters,
respectively. The parameters of the controller and the supernet
are denoted as θ and ω, respectively, which are shared among
the sub-networks. The training process of GNAS-FV can be
divided into three stages:

1) Warm-up stage: In this stage, the parameters of the
controller θ are fixed, while the parameters of the
supernet ω are trained. During this stage, the controller
generates a set of random network structural descriptors
based on the parameter θ to specify the subnet in the
supernet. Then, the activated subnet in the supernet are
trained with the data in the training set.

2) Main training stage: The main training stage consists of
two sub-phases, which alternate between the training of
the parameters of the controller θ and the parameters of
the supernet ω:

• Train the parameters of the supernet ω, while keep-
ing the parameters of the controller θ fixed. At
each training step, the controller generates a set
of architecture descriptors, selects and activates a
subnet in the supernet. Then, the parameters of the
supernet ω are updated using the data from the
training set.

• Train the parameter of the controller θ, while keep-
ing the parameters of the supernet ω fixed. At each
training step, the controller generates a set of struc-
tural descriptors to select and activate a subnet in
the supernet. The selected subnet is then evaluated
by taking the accuracy on the validation set as the
reward R. After accumulating M evaluations, the
mean gradient of the last M evaluations is computed
and backpropagated to update the parameters of the
controller θ.



3) Generation stage: This is the last stage of the training,
indicating the parameters of the controller θ have con-
verged. In this stage, the optimal structural descriptor
generated by the controller is used to select a subnet
from the supernet, and a DNN is created based on the
parameters and structure of this subnet. Such network
is trained on both the training and validation sets until
convergence. After training, the resulting model is em-
ployed for finger-vein recognition.

F. GNAS-FV Training

Cross-entropy can be used to compute the loss and optimize
the parameters of the supernet ω to generate weights that are
suitable for the subnet. Specifically, the supernet can acti-
vate the subnet corresponding to its internal structure, which
performs the finger-vein recognition task, given a structural
descriptor and an input finger-vein image. Then, the subnet
calculates the loss and gradient through forward and backward
propagation on the target task, which can be propagated to the
supernet through the chain rule, so to update ω.

The controller generates a sequence representing a candidate
network structure (a1, a2, ..., aN ). This candidate structure is
trained and evaluated on a certain task, obtaining a reward
signal, such as the accuracy on the validation set. Then, this
reward signal is used to update the parameters of the controller,
enabling it to generate better network structures. However,
there is no functional relationship between the reward and
the parameters of the controller θ, so the gradient cannot be
propagated through the chain rule. To solve this problem, the
REINFORCE [34], a policy gradient algorithm, can be used
to maximize the expected reward of the controller generating
network structures. Specifically, the formula for updating the
controller using the REINFORCE algorithm is defined as Eq.
(1):

θ ← θ+α
1

M

M∑
m=1

N∑
n=1

∇θlogP (an|a(n−1):1; θ)(rm − b), (1)

where θ are the parameters of the controller, α is the learning
rate, N is the number of layers in the generated network
structure, and b is the moving average of the reward rm over a
certain period of time. The term P (an|a(n−1):1; θc) represents
the conditional probability of the controller selecting network
structure an at the nth layer given the previous structures
a(n−1):1. M controls the training frequency of the controller,
which indicates that the gradient is accumulated over a period
of M runs and the controller’s parameters are updated by
averaging the accumulated gradients.

IV. PERFORMANCE EVALUATION

To evaluate the performance of GNAS-FV, we conduct
rigorous experiments on our database and a public finger-vein
database, using the PyTorch deep learning framework. The
experiments are performed on a high-performance computer
with an Intel-10900X 3.7 GHz processor with 10 cores and 20
threads, 128GB memory, and NVIDIA 3090 graphics card. In

TABLE II
ACCURACY (%) COMPARISON WITH REPRESENTATIVE CLASSIFIERS ON

TESTING SETS

Model Database A Database B
ResNet 96.21 93.76

VGGNet 91.21 92.57
GoogLeNet 96.21 95.84

FV-CNN 93.42 92.47
PV-CNN 96.25 96.53

LightweightDeepCNN 95.08 97.22
Arcvein 92.58 94.15

FVRASNet 94.13 95.24
GNAS-FV 96.71 97.62

the experiments, GNAS-FV is compared with classical neural
network models, e.g. ResNet, VGGNet, and GoogLeNet, as
well as the state-of-the-art models, e.g. FV-CNN, PV-CNN,
LightweightDeepCNN, Arcvein, and FVRASNet, respectively.

A. Database

We evaluate the performance of GNAS-FV on our finger-
vein database and a public finger-vein database [35]. In our
experiments, we divide them into three subsets: a training set,
a validation set, and a testing set, respectively.

1) Database A: Currently, most existing works are tested
based on finger-vein images collected through device proto-
types rather than commercial sensors, so it is difficult to fully
evaluate the effectiveness of finger-vein recognition methods in
practical applications. However, there is currently no publicly-
available finger-vein database collected by the commercial
sensors, which limits the development of the recognition
methods. To address this issue, we construct a finger-vein
database using commercial sensors, comprising 6,000 images
from 100 subjects (66 males and 34 females). Each participant
provides six fingers, e.g. the index, middle, and ring fingers of
both hands. The database is split into a training set with 2,520
images, a validation set with 1,080 images, and a testing set
with 2,400 images.

2) Database B: The Hong Kong Polytechnic University
finger-vein image database (HKPU dataset) is collected from
156 participants using a non-contact imaging device. The first
105 participants provide 2,520 images (105× 2 fingers ×6
images × 2 sessions), obtained at two different times. Each
participant provides six images for each of their index and
middle fingers at each session, resulting in a total of 24
images (6 images ×2 fingers ×2 sessions) for two sessions.
The remaining 51 participants contribute only 612 images,
collected only in the first session. In our experiments, only the
first 2,520 images captured at two sessions are used to evaluate
the performance of GNAS-FV. The training set consists of
1,058 images, the validation set contains 453 images, and the
testing set includes 1,009 images.

B. Experimental setup

We employ the stochastic gradient descent and the valida-
tion set to optimize the controller, with a learning rate of 0.05,
momentum parameter of 0.9, and weight decay of 2.5×10−4.
For the supernet, we use the Adam optimizer and the training



set to optimize its parameters, with the learning rate of 0.001.
In the training stage, the supernet is trained using 10 batches
of training data for each epoch, and the controller is trained
50 times per epoch. During each training of the controller,
10 structural descriptors are generated and their performance
is evaluated on the validation set to update the parameters of
the controller. GNAS-FV produces a DNN after 200 training
epochs in the training stage. Such DNN, along with other
comparative models, is trained for 1,000 epochs on the training
set with a batch size of 32. The model with best performance
on the validation set is then evaluated on the testing set.

C. Search Efficiency

To train the supernet, we use the training sets of Database
A and Database B, which contain 2,520 and 1,058 images,
respectively. The supernet model is trained for 200 epochs,
with 10 batches of data per epoch, and a batch size of 32
on the training set. Therefore, in the main training stage, the
training set of Database A is used approximately 25 times,
while the training set of Database B is used approximately 61
times.

In order to continually improve the generated subnet struc-
tures, the controller requires to update its parameters. There-
fore, we evaluate the performance of 10 structures generated
by the controller, and use their accuracy on the validation set
as a reward to update the parameters of the controller. This
process is repeated 50 times, resulting in the generation and
evaluation of 105 structures, but the supernet does not require
any additional training. However, each generated structure
needs to build and train a new subnet without the supernet
strategy. Even if we only use one complete training set data
for the initial screening, and ignore the time and resource
consumption for evaluating on the validation set, the entire
process still requires building, training, and evaluating subnet
models 105 times. This means that the training sets of both
Database A and Database B are reused 105 times, which
results in about 3,937 times and 1,653 times more than the
supernet strategy, respectively.

D. GNAS-FV Performance

To evaluate the performance of GNAS-FV, we repeat repre-
sentative classifiers: the classical neural network models such
as ResNet, VGGNet and GoogLeNet, and the state-of-the-art
models including FV-CNN, PV-CNN, LightweightDeepCNN,
Arcvein, and FVRASNet, respectively, for comparison.

We evaluate the performance of the proposed GNAS-FV
on two finger-vein datasets. The accuracy of representative
methods on testing set is shown in Table II. The experimen-
tal results demonstrate that GNAS-FV achieves the highest
accuracy of 96.71% and 97.62% on Databases A and B,
respectively. The corresponding EERs on testing set are illus-
trated in Table III, Fig. 4 and Fig. 5, respectively. The exper-
imental results imply that GNAS-FV shows the lowest EERs,
e.g. 1.67% and 0.89% on Databases A and B, respectively.
These results indicate that GNAS-FV outperforms classical
and advanced neural network models in terms of improving

TABLE III
EER (%) COMPARISON WITH REPRESENTATIVE CLASSIFIERS ON TESTING

SETS

Model Database A Database B
ResNet 2.25 2.48

VGGNet 5.24 3.37
GoogleNet 1.83 1.98
FV-CNN 3.21 4.16
PV-CNN 1.75 1.78

LightweightDeepCNN 2.21 1.28
Arcvein 2.92 2.78

FVRASNet 2.83 1.98
GNAS-FV 1.67 0.89

0.00 0.01 0.02 0.03 0.04 0.05 0.06
FAR

0.02

0.03

0.04

0.05

0.06

FR
R

ResNet
VGGNet
GoogLeNet
FV-CNN
PV-CNN
LightweightDeepCNN
GNAS-FV

Fig. 4. ROC of Representative Classifiers on Testing Set of Database A.

recognition performance, e.g. identification accuracy and equal
error rate (EER).

V. CONCLUSION

We propose GNAS-FV, a novel GRU-based neural architec-
ture search for finger-vein recognition in this paper. GNAS-
FV uses a supernet approach to automatically search for the
optimal network architecture and achieves the state-of-the-art
performance on two finger-vein datasets. In experiments, we
compare our GNAS-FV with several classic and advanced neu-
ral network models, and the experimental results demonstrate
that our approach outperforms existing approaches in terms of
improving the accuracy and EER.

ACKNOWLEDGEMENT

This work was supported in part by the National Natural
Science Foundation of China (Grant Nos. 62072061 and
61976030), the Fellowship of China Postdoctoral Science
Foundation (Grant No. 59676651E), the Funds for Creative
Research Groups of Chongqing Municipal Education Com-
mission (Grant No. CXQT21034), and the Scientific and
Technological Research Program of Chongqing Municipal
Education Commission (Grant Nos. KJQN201900848 and
KJQN201500814).



0.00 0.02 0.04 0.06 0.08
FAR

0.02

0.04

0.06

0.08

FR
R

ResNet
VGGNet
GoogLeNet
FV-CNN
PV-CNN
LightweightDeepCNN
GNAS-FV

Fig. 5. ROC of Representative Classifiers on Testing Set of Database B.

REFERENCES

[1] A. J. Aviv, K. Gibson, E. Mossop, M. Blaze, and J. M. Smith, “Smudge
attacks on smartphone touch screens,” in Proceedings of the 4th USENIX
Conference on Offensive Technologies (WOOT), 2010, pp. 1–7.

[2] S. Wiedenbeck, J. Waters, L. Sobrado, and J.-C. Birget, “Design and
evaluation of a shoulder-surfing resistant graphical password scheme,”
in Proceedings of the Working Conference on Advanced Visual Interfaces
(AVI), 2006, pp. 177–184.

[3] M. A. Turk and A. P. Pentland, “Face recognition using eigenfaces,” in
Proceedings of 1991 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition (CVPR), 1991, pp. 586–591.

[4] A. Jain, L. Hong, and R. Bolle, “On-line fingerprint verification,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 19,
no. 4, pp. 302–314, 1997.

[5] J. Daugman, “How iris recognition works,” IEEE Transactions on
Circuits and Systems for Video Technology, vol. 14, no. 1, pp. 21–30,
2004.

[6] H. Qin, M. A. El-Yacoubi, Y. Li, and C. Liu, “Multi-scale and multi-
direction gan for cnn-based single palm-vein identification,” IEEE Trans-
actions on Information Forensics and Security, vol. 16, pp. 2652–2666,
2021.

[7] H. Qin and M. A. El-Yacoubi, “Deep representation-based feature ex-
traction and recovering for finger-vein verification,” IEEE Transactions
on Information Forensics and Security, vol. 12, no. 8, pp. 1816–1829,
2017.

[8] J. Wang, G. Wang, and M. Zhou, “Bimodal vein data mining via cross-
selected-domain knowledge transfer,” IEEE Transactions on Information
Forensics and Security, vol. 13, no. 3, pp. 733–74, 2017.

[9] I. S. Wang, H.-T. Chan, and C.-H. Hsia, “Finger-vein recognition using a
nasnet with a cutout,” in Proceedings of 2021 International Symposium
on Intelligent Signal Processing and Communication Systems (ISPACS),
2021, pp. 1–2.

[10] T. Tanaka and N. Kubo, “Biometric authentication by hand vein pat-
terns,” in SICE 2004 Annual Conference, vol. 1, 2004, pp. 249–253.

[11] Y. Li, S. Ruan, H. Qin, S. Deng, and M. A. El-Yacoubi, “Transformer
based defense gan against palm-vein adversarial attacks,” IEEE Trans-
actions on Information Forensics and Security, vol. 18, pp. 1509–1523,
2023.

[12] B. Huang, Y. Dai, R. Li, D. Tang, and W. Li, “Finger-vein authentication
based on wide line detector and pattern normalization,” in Proceedings
of 2010 International Conference on Pattern Recognition (ICPR), 2010,
pp. 1269–1272.

[13] A. Kumar and Y. Zhou, “Human identification using finger images,”
IEEE Transactions on Image Processing, vol. 21, no. 4, pp. 2228–2244,
2012.

[14] E. C. Lee and K. R. Park, “Image restoration of skin scattering and
optical blurring for finger vein recognition,” Optics and Lasers in
Engineering, vol. 49, no. 7, pp. 816–828, 2011.

[15] B. Zoph and Q. V. Le, “Neural architecture search with reinforcement
learning,” arXiv preprint arXiv:1611.01578, 2016.

[16] B. Jun and D. Kim, “Robust face detection using local gradient patterns
and evidence accumulation,” Pattern Recognition, vol. 45, no. 9, pp.
3304–3316, 2012.

[17] X. Xi, L. Yang, and Y. Yin, “Learning discriminative binary codes for
finger vein recognition,” Pattern Recognition, vol. 66, pp. 26–33, 2017.

[18] B. Prommegger and A. Uhl, “Rotation invariant finger vein recognition,”
in 2019 IEEE 10th International Conference on Biometrics Theory,
Applications and Systems (BTAS), 2019, pp. 1–9.

[19] K. Su, G. Yang, L. Yang, and Y. Yin, “Finger vein image retrieval via
affinity-preserving k-means hashing,” in 2017 IEEE International Joint
Conference on Biometrics (IJCB), 2017, pp. 375–382.

[20] K. Kapoor, S. Rani, M. Kumar, V. Chopra, and G. S. Brar, “Hybrid local
phase quantization and grey wolf optimization based svm for finger vein
recognition,” Multimedia Tools and Applications, vol. 80, no. 10, pp.
15 233–15 271, 2021.

[21] H. Qin, C. Gong, Y. Li, X. Gao, and M. A. El-Yacoubi, “Label
enhancement-based multiscale transformer for palm-vein recognition,”
IEEE Transactions on Instrumentation and Measurement, vol. 72, pp.
1–17, 2023.

[22] J.-D. Wu and C.-T. Liu, “Finger-vein pattern identification using prin-
cipal component analysis and the neural network technique,” Expert
Systems with Applications, vol. 38, no. 5, pp. 5423–5427, 2011.

[23] G. Yang, X. Xi, and Y. Yin, “Finger vein recognition based on (2d) 2
pca and metric learning,” Journal of Biomedicine and Biotechnology,
vol. 2012, pp. 1–9, 2012.

[24] J. Wright, Y. Ma, J. Mairal, G. Sapiro, T. S. Huang, and S. Yan, “Sparse
representation for computer vision and pattern recognition,” Proceedings
of the IEEE, vol. 98, no. 6, pp. 1031–1044, 2010.

[25] L. Yang, G. Yang, K. Wang, F. Hao, and Y. Yin, “Finger vein recognition
via sparse reconstruction error constrained low-rank representation,”
IEEE Transactions on Information Forensics and Security, vol. 16, pp.
4869–4881, 2021.

[26] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of 2016 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2016, pp. 770–778.

[27] S. Liu and W. Deng, “Very deep convolutional neural network based
image classification using small training sample size,” in Proceedings
of 2015 3rd IAPR Asian Conference on Pattern Recognition (ACPR),
2015, pp. 730–734.

[28] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,” in
Proceedings of 2015 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2015, pp. 1–9.

[29] R. Das, E. Piciucco, E. Maiorana, and P. Campisi, “Convolutional
neural network for finger-vein-based biometric identification,” IEEE
Transactions on Information Forensics and Security, vol. 14, no. 2, pp.
360–373, 2019.

[30] H. Qin, M. A. El-Yacoubi, Y. Li, and C. Liu, “Multi-scale and multi-
direction gan for cnn-based single palm-vein identification,” IEEE Trans-
actions on Information Forensics and Security, vol. 16, pp. 2652–2666,
2021.

[31] J. Shen, N. Liu, C. Xu, H. Sun, Y. Xiao, D. Li, and Y. Zhang, “Finger
vein recognition algorithm based on lightweight deep convolutional neu-
ral network,” IEEE Transactions on Instrumentation and Measurement,
vol. 71, pp. 1–13, 2022.

[32] B. Hou and R. Yan, “Arcvein-arccosine center loss for finger vein
verification,” IEEE Transactions on Instrumentation and Measurement,
vol. 70, pp. 1–11, 2021.

[33] W. Yang, W. Luo, W. Kang, Z. Huang, and Q. Wu, “Fvras-net: An
embedded finger-vein recognition and antispoofing system using a
unified cnn,” IEEE Transactions on Instrumentation and Measurement,
vol. 69, no. 11, pp. 8690–8701, 2020.

[34] R. J. Williams, “Simple statistical gradient-following algorithms for
connectionist reinforcement learning,” Machine learning, vol. 8, no. 3,
pp. 229–256, 1992.

[35] Y. Zhou and A. Kumar, “Human identification using palm-vein images,”
IEEE Transactions on Information Forensics and Security, vol. 6, no. 4,
pp. 1259–1274, 2011.


