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PROTEIN-CODING VARIANTS IMPLICATE NOVEL GENES 
RELATED TO LIPID HOMEOSTASIS CONTRIBUTING TO BODY 
FAT DISTRIBUTION

A full list of authors and affiliations appears at the end of the article.

Abstract

Body fat distribution is a risk factor for adverse cardiovascular health consequences. We analyzed 

the association of body fat distribution, assessed by waist-to-hip ratio adjusted for body mass 

index, with 228,985 predicted coding and splice site variants available on exome arrays in up to 

344,369 individuals from five major ancestries (discovery) and 132,177 European-ancestry 

individuals (validation). We identified 15 common (minor allele frequency, MAF ≥ 5%) and 9 low 

frequency or rare (MAF < 5%) coding novel variants. Pathway/gene set enrichment analyses 

identified lipid particle, adiponectin, abnormal white adipose tissue physiology, and bone 

development and morphology as important contributors to fat distribution, while cross-trait 

associations highlight cardiometabolic traits. In functional follow-up analyses, specifically in 

Drosophila RNAi-knockdowns, we observed a significant increase in the total body triglyceride 
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levels for two genes (DNAH10 and PLXND1). We implicate novel genes in fat distribution, 

stressing the importance of interrogating low-frequency and protein-coding variants.

Editorial summary:

A trans-ethnic exome-wide association study for body fat distribution identifies protein-coding 

variants that are significantly associated with waist-to-hip ratio adjusted for body mass index.

Central body fat distribution, as assessed by waist-to-hip ratio (WHR), is a heritable and a 

well-established risk factor for adverse metabolic outcomes1–6. Lower values of WHR are 

associated with lower risk of cardiometabolic diseases like type 2 diabetes (T2D)7,8, or 

differences in bone structure and gluteal muscle mass9. These epidemiological associations 

are consistent with our previously reported genome-wide association study (GWAS) results 

of 49 loci associated with WHR (after adjusting for body mass index, WHRadjBMI)10. 

Notably, genetic predisposition to higher WHRadjBMI is associated with increased risk of 

T2D and coronary heart disease (CHD), which appears to be causal9.

Recently, large-scale studies have identified ~125 common loci for multiple measures of 

central obesity, primarily non-coding variants of relatively modest effect10–16. Large scale 

interrogation of coding and splice site variants, including both common (minor allele 

frequency [MAF]≥5%) and low frequency or rare (LF/RV, MAF<5%), may lead to 

additional insights into the etiology of central obesity. Herein, we identify and characterize 

such variants associated with WHRadjBMI using ExomeChip array genotypes.

RESULTS

Protein-coding and splice site variation associations

We conducted a 2-stage fixed-effects meta-analysis testing additive and recessive models to 

detect protein-coding genetic variants that influence WHRadjBMI (Online Methods, Figure 

1). Stage 1 included up to 228,985 variants (218,195 LF/RV) in up to 344,369 individuals 

from 74 studies of European, South and East Asian, African, and Hispanic/Latino descent 

individuals (Supplementary Data 1–3). Stage 2 assessed 70 suggestive (P < 2 × 10−6) Stage 

1 variants in two cohorts, UK Biobank (UKBB) and deCODE for a total Stage 1+2 sample 

size of 476,546 (88% European). Of the 70 variants considered, two common and five 

LF/RV were not available in Stage 2 (Tables 1–2, Supplementary Data 4–6). Variants are 

considered novel and statistically significant if they were greater than one megabase (Mb) 

from a previously-identified WHRadjBMI SNP10–16 and achieve array-wide significance (P 
< 2 × 10−7, Stage 1+2).

In our primary meta-analysis, including all Stage 1+2 samples, we identified 48 coding 

variants (16 novel) across 43 genes, 47 assuming an additive model, and one under a 

recessive model (Table 1, Supplementary Figures 1–4). Due to possible heterogeneity, we 

also performed European-only meta-analysis. Here, four additional coding variants were 

significant (three novel) assuming an additive model (Table 1, Supplementary Figures 5–8). 

Of these 52 significant variants, eleven were LF/RV and displayed larger effect estimates 

than many previously reported common variants10, including seven novel variants in 
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RAPGEF3, FGFR2, R3HDML, HIST1H1T, PCNXL3, ACVR1C, and DARS2. Variants 

with MAF ≤ 1% had effect sizes approximately three times greater than those of common 

variants (MAF ≥ 5%). Despite large sample size, we cannot rule out the possibility that 

additional LF/RV with smaller effects exist (See estimated 80% power in Figure 2). 

However, in the absence of common variants with similarly large effects, our results point to 

the importance of investigating LF/RV.

Given established sex differences in the genetic underpinnings of WHRadjBMI10,11, we also 

performed sex-stratified analyses. We detected four additional novel variants that exhibit 

significant sex-specific effects (Psexhet < 7.14 × 10−4, Online Methods) in UGGT2 and 

MMP14 for men; and DSTYK and ANGPTL4 for women (Table 2, Supplementary Figures 

9–15); including LF/RV in UGGT2 and ANGPTL4 (MAFmen = 0.6% and MAFwomen = 

1.9%, respectively). Additionally, 14 variants from the sex-combined meta-analyses 

displayed significantly stronger effects in women, including the novel, LF/RV in ACVR1C 
(rs55920843, MAF=1.1%). Overall, 19 of the 56 variants (32%) identified across all meta-

analyses (48 from all ancestry, 4 from European-only and 4 from sex-stratified analyses) 

showed significant sex-specific effects on WHRadjBMI: 16 variants with significantly 

stronger effects in women, and three in men (Figure 1).

In summary, we identified 56 array-wide significant coding variants (P < 2.0 × 10−7); 43 

common (14 novel) and 13 LF/RV (9 novel). For the 55 significant variants from the 

additive model, we examined potential collider bias17,18 (Online Methods, Supplementary 

Table 1, Supplementary Note). Overall, 51 of 55 variants were robust to collider bias17,18. 

Of these, 25 variants were nominally associated with BMI (PBMI < 0.05), yet effect sizes 

changed little after correction for potential biases (15% change in effect estimate on 

average). For four of the 55 SNPs (rs141845046, rs1034405, rs3617, rs9469913), 

attenuation following correction was noted (Pcorrected > 9 × 10−4, 0.05/55), including one 

novel variant, rs1034405 in C3orf18, demonstrating a possible overestimation of these 

effects in the current analysis.

Using Stage 1 results, we then aggregated LF/RV across genes and tested their joint effect 

with SKAT and burden tests19 (Supplementary Table 2, Online Methods). None of the five 

genes that reached array-wide significance (P < 2.5 × 10−6, 0.05/16,222 genes tested: 

RAPGEF3, ACVR1C, ANGPTL4, DNAI1, and NOP2) remained significant after 

conditioning on the most significant single variant.

Conditional analyses

We next implemented conditional analyses to determine (1) the total number of independent 

signals identified, and (2) whether the 33 variants near known GWAS signals (< +/− 1 Mb) 

represent independent novel associations. We used approximate joint conditional analyses to 

test for independence in Stage 1 (Online Methods; Supplementary Table 3)19. Only the 

RSPO3-KIAA0408 locus contains two independent variants 291 Kb apart, rs1892172 in 

RSPO3 (MAF = 46.1%, Pconditional = 4.37 × 10−23 in the combined sexes, and Pconditional = 

2.4 × 10−20 in women) and rs139745911 in KIAA0408 (MAF = 0.9%, Pconditional = 3.68 × 

10−11 in combined sexes, and Pconditional = 1.46 × 10−11 in women; Figure 3a). For the 33 

variants within one Mb of previously identified WHRadjBMI SNPs, sex-combined 
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conditional analyses identified one coding variant representing a novel independent signal in 

a known locus [RREB1; Stage 1 meta-analysis, rs1334576, EAF=44%, Pconditional = 3.06 × 

10−7, (Supplementary Data 7, Figure 3b); UKBB analysis, rs1334576, RREB1, Pconditional = 

1.24 × 10−8, (Supplementary Table 4).

In summary, we identified 56 WHRadjBMI-associated coding variants in 41 independent 

association signals, 24 of which are new or independent of known GWAS-identified tag 

SNPs (either > 1 MB +/− or array-wide significant following conditional analyses) (Figure 

1). Thus, we identified 15 common and 9 LF/RV novel and independent variants following 

conditional analyses.

Gene set and pathway enrichment analysis

To determine if significant coding variants highlight novel or previously identified biological 

pathways, we applied two complementary methods, EC-DEPICT (ExomeChip Data-driven 

Expression Prioritized Integration for Complex Traits)20,21 and PASCAL22 (Online 

Methods). For PASCAL all variants were used, for EC-DEPICT we examined only 361 

variants with suggestive significance (P < 5 × 10−4)10,23 from the all ancestries combined 

sexes analysis (which after clumping and filtering became 101 lead variants in 101 genes). 

We separately analyzed variants that exhibited significant sex-specific effects (Psexhet < 5 × 

10−4).

The sex-combined analyses identified 49 significantly enriched gene sets (FDR < 0.05) that 

grouped into 25 meta-gene sets (Supplementary Note, Supplementary Data 8–9). We noted a 

cluster of meta-gene sets with direct relevance to metabolic aspects of obesity (“enhanced 

lipolysis,” “abnormal glucose homeostasis,” “increased circulating insulin level,” and 

“decreased susceptibility to diet-induced obesity”); we observed two significant adiponectin-

related gene sets within these meta-gene sets. While these pathway groups had previously 

been identified in the GWAS DEPICT analysis (Figure 4), many of the individual gene sets 

within these meta-gene sets were not significant in the previous GWAS analysis, such as 

“insulin resistance,” “abnormal white adipose tissue physiology,” and “abnormal fat cell 

morphology” (Supplementary Data 8, Figure 4, Supplementary Figure 16a), but represent 

similar biological underpinnings implied by the shared meta-gene sets. Despite their overlap 

with the GWAS results, these analyses highlight novel genes that fall outside known GWAS 

loci and with strong contributions to the significantly enriched gene sets related to adipocyte 

and insulin biology (e.g. MLXIPL, ACVR1C, and ITIH5) (Figure 4).

Also, we conducted pathway analyses after excluding variants from previous WHRadjBMI 

analyses10 (Supplemental Note). Seventy-five loci/genes were included in the EC-DEPICT 

analysis, and we identified 26 significantly enriched gene sets (13 meta-gene sets). Here, all 

but one gene set, “lipid particle size”, were related to skeletal biology, likely reflecting an 

effect on the pelvic skeleton (hip circumference), shared signaling pathways between bone 

and fat (such as TGF-beta) and shared developmental origin24 (Supplementary Data 9, 

Supplementary Figure 16b). These previously identified GWAS DEPICT significant findings 

provide a fully independent replication of their biological relevance for WHRadjBMI.
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We used PASCAL (Online Methods) to further distinguish between enrichment based on 

coding-only variant associations (this study) and regulatory-only variant associations (up to 

20 kb upstream of the gene from a previous GIANT study10), finding 116 significantly 

enriched coding pathways (FDR < 0.05; Supplementary Data 10). We also compared the 

coding pathways to those identified in the total previous GWAS effort (using both coding 
and regulatory variants) identifying a total of 158 gene sets. Forty-two gene sets were 

enriched in both analyses, and we found high concordance in the -log10 (p-values) between 

ExomeChip and GWAS gene set enrichment [Pearson’s r (coding vs regulatory only) = 0.38, 

P < 10−300; Pearson’s r (coding vs coding+regulatory) = 0.51, P < 10−300)]. Nonetheless, 

some gene sets were enriched specifically for variants in coding regions (e.g., decreased 

susceptibility to diet-induced obesity, abnormal skeletal morphology) or unique to variants 

in regulatory regions (e.g. transcriptional regulation of white adipocytes) (Supplementary 

Figure 17).

The EC-DEPICT and PASCAL results showed a moderate but strongly significant 

correlation (for EC-DEPICT and the PASCAL max statistic, r = .28, P = 9.8 × 10−253; for 

EC-DEPICT and the PASCAL sum statistic, r = 0.287, P = 5.42 × 10−272). Common gene 

sets strongly implicate a role for skeletal biology, glucose homeostasis/insulin signaling, and 

adipocyte biology (Supplementary Figure 18).

Cross-trait associations

To assess the clinical relevance of our identified variants with cardiometabolic, 

anthropometric, and reproductive traits, we conducted association lookups from existing 

ExomeChip studies of 15 traits (Supplementary Data 11, Supplementary Figure 19).21,25–29 

Variants in STAB1 and PLCB3 displayed the greatest number of significant associations 

with seven different traits (P < 9.8 × 10−4, 0.05/51 variants tested). Also, these two genes 

cluster together with RSPO3, DNAH10, MNS1, COBLL1, CCDC92, and ITIH3. The WHR-

increasing alleles in this cluster exhibit a previously described pattern of increased 

cardiometabolic risk (e.g. increased fasting insulin, two-hour glucose [TwoHGlu], and 

triglycerides; and decreased high-density lipoprotein cholesterol [HDL]), but also decreased 

BMI.30–36 The impact of central obesity may be causal, as a 1 SD increase in genetic risk of 

central adiposity was previously associated with higher total cholesterol, triglycerides, 

fasting insulin and TwoHGlu, and lower HDL.9

We conducted a search in the NHGRI-EBI GWAS Catalog37,38 to determine if our variants 

are in high LD (R2 > 0.7) with variants associated with traits or diseases not covered by our 

cross trait lookups (Supplementary Data 12). We identified several cardiometabolic traits 

(adiponectin, coronary heart disease, etc.), diet/behavioral traits potentially related to obesity 

(carbohydrate, fat intake, etc.), behavioral and neurological traits (schizophrenia, bipolar 

disorder, etc.), and inflammatory or autoimmune diseases (Crohn’s Disease, multiple 

sclerosis, etc.).

Given the established correlation between total body fat percentage and WHR of up to 

0.48339–41, we examined the association of our top exome variants with both total body fat 

percentage (BF%) and truncal fat percentage (TF%) available in a sub-sample of UKBB (N 

= 118,160) (Supplementary Tables 5–6). Seven of the common novel variants were 
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significantly associated (P < 0.001, 0.05/48 variants examined) with both BF% and TF% in 

the sexes-combined analysis (COBLL1, UHRF1BP1, WSCD2, CCDC92, IFI30, MPV17L2, 

IZUMO1) and two with TF% in women only (EFCAB12, GDF5). Only rs7607980 in 

COBLL1 is near a known BF% GWAS locus (rs6738627; R2 = 0.1989, distance = 6,751 bp, 

with our tag SNP)42. Of the nine SNPs associated with at least one of these two traits, all 

variants displayed much greater magnitude of effect on TF% compared to BF% 

(Supplementary Figure 20).

Previous studies have demonstrated the importance of examining common and LF/RV 

within genes with mutations known to cause monogenic diseases.43,44 Thus, we assessed 

enrichment of WHRadjBMI variants within monogenic lipodystrophy and/or insulin 

resistance genes.43,44 (Supplementary Data 13). No significant enrichment was observed, 

possibly due in part to the small number of implicated genes and the relatively small number 

of variants in monogenic disease-causing genes (Supplementary Figure 21).

Genetic architecture of WHRadjBMI coding variants

We used summary statistics from our Stage 1 primary meta-analysis results to estimate the 

phenotypic variance explained by subsets of variants across various significance thresholds 

(P < 2 × 10−7 to 0.2) and conservatively using only independent SNPs (Supplementary Table 

7, Online Methods, and Supplementary Figure 22). For only independent coding variants 

that reached suggestive significance in Stage 1 (P < 2 × 10−6), 33 SNPs explain 0.38% of the 

variation. The 1,786 independent SNPs with a liberal threshold of P<0.02 explain 13 times 

more variation (5.12%), however, these large effect estimates may be subject to winner’s 

curse. When considering all coding variants on the ExomeChip in combined sexes, 46 SNPs 

with a P < 2 × 10−6 and 5,917 SNPs with a P < 0.02 explain 0.51% and 13.75% of the 

variance in WHRadjBMI, respectively. As expected given the design of the ExomeChip, the 

majority of the variance explained is attributable to rare and low frequency coding variants. 

However, for LF/RVs, those that passed significance in Stage 1 explain only 0.10% of the 

variance in WHRadjBMI. We also estimated variance explained for the same SNPs in 

women and men separately and observed a greater variance explained in women compared 

to men (PRsqDiff < 0.002 = 0.05/21, Bonferroni-corrected threshold) at each significance 

threshold considered (differences ranged from 0.24% to 0.91%).

We conducted penetrance analysis using the UKBB (both sexes combined, and men- and 

women-only) to determine if there is a significant accumulation of the minor allele in either 

the centrally obese or non-obese groups (Online Methods). Three rare variants (MAF ≤ 1%) 

with larger effect sizes (effect size > 0.90) were included in the penetrance analysis using 

World Health Organization cut-offs for central obesity. Of these, one SNP (rs55920843-

ACVR1C; Psex-combined = 9.25 × 10−5; Pwomen= 4.85 × 10−5) showed a statistically 

significant difference in the number of carriers and non-carriers of the minor allele in the 

combined and female-only analysis (sex-combined obese carriers = 2.2%; non-obese carriers 

= 2.6%; women obese carriers = 2.1%; non-obese women carriers = 2.6%, Supplementary 

Table 8, Supplementary Figure 23).
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Drosophila Knockdown—Considering the genetic evidence of adipose and insulin 

biology in determining body fat distribution10, and the lipid signature of the variants 

described herein, we examined whole-body triglyceride levels in adult Drosophila, a model 

organism in which the fat body is an organ functionally analogous to mammalian liver and 

adipose tissue as triglycerides are the major source of fat storage45. Of the 51 genes 

harboring our 56 significantly associated variants, we identified 27 Drosophila orthologues 

for functional follow-up analyses. We selected genes with large changes in triglyceride 

levels (> 20% increase or > 40% decrease, as chance alone is unlikely to cause changes of 

this magnitude) from an existing large-scale screen with ≤2 replicates per knockdown strain.
45 Two orthologues, for PLXND1 and DNAH10, met these criteria and were subjected to 

additional knockdown experiments with ≥5 replicates using tissue-specific drivers (fat body 

[cg-Gal4] and neuronal [elav-Gal4] specific RNAi-knockdowns) (Supplementary Table 9). A 

significant (P < 0.025, 0.05/2 orthologues) increase in the total body triglyceride levels was 

observed in DNAH10 orthologue knockdown strains for both the fat body and neuronal 

drivers. Only the neuronal driver knockdown for PLXND1 produced a significant change in 

triglyceride storage. DNAH10 and PLXND1 both lie within previous GWAS identified 

regions. Adjacent genes have been highlighted as likely candidates for the DNAH10 
association region, including CCDC92 and ZNF664 based on expression quantitative trait 

locus (eQTL) evidence. Of note, rs11057353 in DNAH10 showed suggestive significance 

after conditioning on the known GWAS variants in nearby CCDC92 (sex-combined 

Pconditional = 7.56 × 10−7; women-only rs11057353 Pconditional = 5.86 × 10−7, Supplementary 

Table 4) thus providing some evidence of multiple causal variants/genes underlying this 

signal. Further analyses are needed to determine whether the implicated coding variants 

from the current analysis are the putatively functional variants.

eQTL Lookups

We examined the cis-association of variants with expression level of nearby genes in 

subcutaneous and visceral omental adipose, skeletal muscle, and pancreas tissue from the 

Genotype-Tissue Expression (GTEx)46 project, and assessed whether exome and eQTL 

associations implicated the same signal (Online Methods, Supplementary Data 14–15). The 

lead exome variant was associated with expression level of the gene itself for DAGLB, 
MLXIPL, CCDC92, MAPKBP1, LRRC36 and UQCC1. However, for MLXIPL, 
MAPKBP1, and LRRC36, the lead variant is also associated with expression of additional 

nearby genes. At three additional loci, the lead exome variant is only associated with 

expression level of nearby genes (HEMK1 at C3orf18; NT5DC2, SMIM4 and TMEM110 at 

STAB1/ITIH3; and C6orf106 at UHRF1BP1). Thus, although detected with a missense 

variant, these results are also consistent with a regulatory mechanism of effect, and the 

association signal may well be due to linkage disequilibrium (LD) with nearby regulatory 

variants.

Some of the coding genes implicated by eQTL analyses are known to be involved in 

adipocyte differentiation or insulin sensitivity: e.g. for MLXIPL, the encoded carbohydrate 

responsive element binding protein is a transcription factor, regulating glucose-mediated 

induction of de novo lipogenesis in adipose tissue, and expression of its beta-isoform in 

adipose tissue is positively correlated with adipose insulin sensitivity47,48. For CCDC92, the 
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reduced adipocyte lipid accumulation upon knockdown confirmed the involvement of its 

encoded protein in adipose differentiation49.

Biological Curation

To investigate the possible functional role of the identified variants, we conducted thorough 

searches of the literature and publicly available bioinformatics databases (Supplementary 

Data 16–17, Box 1, Online Methods). Many of our novel LF/RV are in genes that are 

intolerant of nonsynonymous mutations (e.g. ACVR1C, DARS2, FGFR2; ExAC Constraint 

Scores >0.5). Other coding variants lie within genes that are involved in glucose homeostasis 

(e.g. ACVR1C, UGGT2, ANGPTL4), angiogenesis (RASIP1), adipogenesis (RAPGEF3), 

and lipid biology (ANGPTL4, DAGLB).

DISCUSSION

Our analysis of coding variants from ExomeChip data in up to 476,546 individuals identified 

a total of 56 array-wide significant WHRadjBMI associated variants in 41 independent 

association signals, including 24 newly identified (23 novel and one independent of known 

GWAS signals). Nine of these variants were LF/RV, indicating an important role for such 

variants in the polygenic architecture of fat distribution. While, due to their rarity, these 

coding variants explain a small proportion of the trait variance at a population level, they 

may be more functionally tractable than non-coding variants and have a critical impact at the 

individual level. For instance, the association between a LF/RV (rs11209026; R381Q; MAF 

< 5% in ExAC) located in the IL23R gene and multiple inflammatory diseases50–53 led to 

development of new therapies targeting IL23 and IL12 in the same pathway.54–56 Thus, we 

are encouraged that our LF/RV displayed large effect sizes; all but one of the nine novel 

LF/RV display larger effects than the 49 SNPs reported in Shungin et al. 201510, and some 

of these effects were up to 7-fold larger than those previously reported for GWAS. This 

finding mirrors results for other cardiometabolic traits57, and suggests variants of possible 

clinical significance with even larger effect and rarer variants will likely be detected with 

greater sample sizes.

We continue to observe sexual dimorphism in the genetic architecture of WHRadjBMI11. 

We identified 19 coding variants with significant sex differences, of which 16 (84%) display 

larger effects in women compared to men. Of the variants outside of GWAS loci, we 

reported three (two LF/RV) that show a significantly stronger effect in women and two (one 

LF/RV) that show a stronger effect in men. Genetic variants continue to explain a higher 

proportion of the phenotypic variation in body fat distribution in women compared to men.
10,11 Of the novel female (DSTYK and ANGPTL4) and male (UGGT2 and MMP14) 

specific signals, only ANGPTL4 implicated fat distribution related biology associated with 

both lipid biology and cardiovascular traits (Box 1). Sexual dimorphism in fat distribution is 

apparent58−60 and at sexually dimorphic loci, hormones with different levels in men and 

women may interact with genomic and epigenomic factors to regulate gene activity, though 

this remains to be tested. Dissecting the underlying molecular mechanisms of the sexual 

dimorphism in body fat distribution, and how it is correlated with – and causing – important 
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comorbidities like cardiometabolic diseases will be crucial for improved understanding of 

disease pathogenesis.

Overall, we observe fewer significant associations, pathways, and cross-trait associations 

between WHRadjBMI and coding variants on the ExomeChip than Turcot et al for BMI25. 

One reason for this may be smaller sample size (NWHRadjBMI = 476,546, NBMI = 718,639), 

and thus, lower statistical power. Power is likely not the only contributing factor, as trait 

architecture, heritability (possibly overestimated in some phenotypes), and phenotype 

precision all likely contribute to our study’s capacity to identify LF/RV with large effects. 

Further, it is possible that the comparative lack of significant findings for WHRadjBMI may 

be a result of higher selective pressure against genetic predisposition to cardiometabolic 

phenotypes, thus rarer risk variants.61 The ExomeChip is limited by the variants present on 

the chip, which was largely dictated by sequencing studies in European-ancestry populations 

and MAF detection criteria of ~0.012%. It is likely that through increased sample size, use 

of chips designed to detect variation across a range of continental ancestries, and high 

quality, deep imputation with large reference samples future studies will detect additional 

variation from the entire allele frequency spectrum that contributes to fat distribution.

The collected genetic and epidemiologic evidence has demonstrated that increased central 

adiposity is correlated with risk of T2D and CVD, and that this association is likely causal 

with potential mediation through blood pressure, triglyceride-rich lipoproteins, glucose, and 

insulin9. This observation yields an immediate follow-up question: Which mechanisms 

regulate depot-specific fat accumulation and are risks for disease driven by increased 

visceral and/or decreased subcutaneous adipose tissue mass. Pathway analysis identified 

several novel pathways and gene sets related to metabolism and adipose regulation, bone 

growth and development and adiponectin, a hormone which has been linked to “healthy” 

expansion of adipose tissue and insulin sensitivity.62 Similarly, expression/eQTL results 

support the relevance of adipogenesis, adipocyte biology, and insulin signaling, supporting 

our previous findings for WHRadjBMI.10 We also provide evidence suggesting known 

biological functions and pathways contributing to body fat distribution (e.g., diet-induced 

obesity, angiogenesis, bone growth/morphology, and lipolysis).

The ultimate aim of genetic investigations of obesity-related traits is to identify dysregulated 

genomic pathways leading to obesity pathogenesis that may result in a myriad of 

downstream illnesses. Thus, our findings may enhance the understanding of central obesity 

and identify new molecular targets to avert its negative health consequences. Significant 

cross-trait associations are consistent with expected direction of effect for several traits, i.e. 

the WHR-increasing allele is associated with higher values of triglycerides, DBP, fasting 

insulin, total cholesterol, LDL and T2D across many significant variants. However, it is 

worth noting that there are some exceptions. For example, rs9469913-A in UHRF1BP1 is 

associated with both increased WHRadjBMI and increased HDL. Also, we identified two 

variants in MLXIPL (rs3812316 and rs35332062), a well-known lipids-associated locus, in 

which the WHRadjBMI-increasing allele also increases all lipid levels, risk for 

hypertriglyceridemia, SBP and DBP. However, our findings show a significant and negative 

association with HbA1C, and nominally significant and negative associations with two-hour 

glucose, fasting glucose, and Type 2 diabetes, and potential negative associations with 
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biomarkers for liver disease (e.g. gamma glutamyl transpeptidase). Other notable exceptions 

include ITIH3 (negatively associated with BMI, HbA1C, LDL and SBP), DAGLB 
(positively associated with HDL), and STAB1 (negatively associated with total cholesterol, 

LDL, and SBP). Therefore, caution in selecting pathways for therapeutic targets is 

warranted; we must look beyond the effects on central adiposity to the potential cascading 

effects of related diseases.

A major finding from this study is the importance of lipid metabolism for body fat 

distribution. In fact, pathway analyses that highlight enhanced lipolysis, cross-trait 

associations with circulating lipid levels, existing biological evidence from the literature, and 

knockdown experiments in Drosophila, point to novel candidate genes (ANGPTL4, 

ACVR1C, DAGLB, MGA, RASIP1, and IZUMO1) and new candidates in known regions 

(DNAH1010 and MLXIPL14) related to lipid biology and their role in fat storage. ACVR1C, 

MLXIPL, and ANGPTL4, all of which are involved in lipid homeostasis, all are excellent 

candidate genes for central adiposity. Carriers of inactivating mutations in ANGPTL4 
(Angiopoietin Like 4), for example, display low triglycerides and low risk of coronary artery 

disease63. ACVR1C encodes the activin receptor-like kinase 7 protein (ALK7), a receptor 

for the transcription factor TGFB-1, well known for its central role in general growth and 

development64–68, and adipocyte development particularly68. ACVR1C exhibits the highest 

expression in adipose tissue, but is also highly expressed in the brain69–71. In mice, 

decreased activity of ACVR1C upregulates PPARγ and C/EBPα pathways and increases 

lipolysis in adipocytes, thus decreasing weight and diabetes.69,72,73 Such activity suggests a 

role for ALK7 in adipose tissue signaling and a possible therapeutic target. MLXIPL, also 

important for lipid metabolism and postnatal cellular growth, encodes a transcription factor 

which activates triglyceride synthesis genes in a glucose-dependent manner.74,75 The lead 

exome variant in MLXIPL is highly conserved, most likely damaging, and associated with 

reduced MLXIPL expression in adipose tissue. Furthermore, in a recent longitudinal, in vitro 
transcriptome analysis of adipogenesis in human adipose-derived stromal cells, gene 

expression of MLXIPL was up-regulated during the maturation of adipocytes, suggesting a 

critical role in the regulation of adipocyte size and accumulation.76 However, given our 

cross-trait associations with variants in MLXIPL and diabetes-related traits, development of 

therapeutic targets must be approached cautiously.

Our 24 novel variants for WHRadjBMI highlight the importance of lipid metabolism in the 

genetic underpinnings of body fat distribution. We continue to demonstrate the critical role 

of adipocyte biology and insulin resistance for central obesity and offer support for 

potentially causal genes underlying previously identified fat distribution loci. Notably, our 

findings offer potential new therapeutic targets for intervention in the risks associated with 

abdominal fat accumulation and represents a major advance in our understanding of the 

underlying biology and genetic architecture of central adiposity.

ONLINE METHODS

Studies

Stage 1 included 74 studies (12 case/control, 59 population-based, and five family) 

comprising 344,369 adults of European (N=288,492), African (N=15,687), South Asian 
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(N=29,315), East Asian (N=6,800), and Hispanic (N=4,075) descent. Stage 1 meta-analyses 

were conducted in each ancestry and in all ancestries together, for both sex-combined and 

sex-specific analyses. Follow-up analyses were performed in 132,177 individuals of 

European ancestry from deCODE and the UK Biobank, Release 1112 (UKBB) 

(Supplementary Data 1–3). Informed consent was obtained by the parent study and protocols 

approved by each study’s institutional review boards.

Phenotypes

For each study, WHR (waist circumference divided by hip circumference) was corrected for 

age, BMI, and genomic principal components (derived from GWAS data, the variants with 

MAF >1% on the ExomeChip, and ancestry informative markers available on the 

ExomeChip), as well as any additional study-specific covariates (e.g. recruiting center), in a 

linear regression model. For studies with unrelated individuals, residuals were calculated 

separately by sex, whereas for family-based studies sex was included as a covariate in 

models with both men and women. Residuals for case/control studies were calculated 

separately. Finally, residuals were inverse normal transformed and used as the outcome in 

association analyses. Phenotype descriptives by study are shown in Supplementary Data 3.

Genotypes and QC

The majority of studies followed a standardized protocol and performed genotype calling 

using the algorithms indicated in Supplementary Data 2, which typically included zCall3. 

For 10 studies from the Cohorts for Heart and Aging Research in Genomic Epidemiology 

(CHARGE) Consortium, raw intensity data for samples from seven genotyping centers were 

combined for joint calling4. Study-specific quality control (QC) of the genotyped variants 

was implemented before association analysis (Supplementary Data 1–2). To assess whether 

any significant associations with rare and low-frequency variants could be due to allele 

calling in smaller studies, we performed a sensitivity meta-analysis of all large studies 

(>5,000 participants) compared to all studies. We found very high concordance for effect 

sizes, suggesting that smaller studies do not bias our results (Supplementary Fig. 24).

Study-level statistical analyses

Each cohort performed single variant analyses for both additive and recessive models in each 

ancestry, for sexes combined and sex-specific groups, with either RAREMETALWORKER 

(see URLs) or RVTESTs (see URLs). to associate inverse normal transformed WHRadjBMI 

with genotype accounting for cryptic relatedness (kinship matrix) in a linear mixed model. 

Both programs perform score-statistic rare-variant association analysis, accommodate 

unrelated and related individuals, and provide single-variant results and variance-covariance 

matrices. The covariance matrix captures linkage disequilibrium (LD) between markers 

within 1 Mb, which is used for gene-level meta-analyses and conditional analyses113,114.

Centralized quality-control

Individual cohorts identified ancestry outliers based on 1000 Genomes Phase 1 reference 

populations. A centralized QC procedure implemented in EasyQC115 was applied to 

individual cohort summary statistics to identify cohort-specific problems: (1) possible errors 
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in phenotype residual transformation; (2) strand issues, and (3) inflation due to population 

stratification, cryptic relatedness and genotype biases.

Meta-analyses

Meta-analyses were carried out in parallel by two analysts at two sites using 

RAREMETAL113. We excluded variants if they had call rate <95%, Hardy-Weinberg 

equilibrium P-value <1×10−7, or large allele frequency deviations from reference 

populations (>0.6 for all ancestries analyses and >0.3 for ancestry-specific population 

analyses). We also excluded markers not present on the Illumina ExomeChip array 1.0, Y-

chromosome and mitochondrial variants, indels, multiallelic markers, and problematic 

variants based on Blat-based sequence alignment. Significance for single-variant analyses 

was defined at an array-wide level (P<2×10−7). For all suggestive significant variants 

(P<2×10−6) from Stage 1, we calculated Psexhet for each SNP, testing for differences 

between women-specific and men-specific beta estimates and standard errors using 

EasyStrata116. Each SNP that reached Psexhet<0.05/# of variants tested (70 variants brought 

forward from Stage 1, Psexhet<7.14×10−4) was considered significant. Additionally, while 

each individual study was asked to perform association analyses stratified by ancestry and 

adjusted for population stratification, all study-specific summary statistics were combined in 

our all ancestry meta-analyses. To investigate potential heterogeneity across ancestries, we 

examined ancestry-specific meta-analysis results for our top 70 variants from Stage 1 and 

found no evidence of significant across-ancestry heterogeneity for any of our top variants (I2 

values noted in Supplementary Data 4–6).

For the gene-based analyses, we applied two sets of criteria to select variants with a 

MAF<5% within each ancestry based on coding variant annotation from five prediction 

algorithms (PolyPhen2, HumDiv and HumVar, LRT, MutationTaster, and SIFT)117. Our 

broad gene-based tests included nonsense, stop-loss, splice site, and missense variants 

annotated as damaging by at least one algorithm mentioned above. Our strict gene-based 

tests included only nonsense, stop-loss, splice site, and missense variants annotated as 

damaging by all five algorithms. These analyses were performed using the sequence kernel 

association test (SKAT) and variable threshold (VT) methods in RAREMETAL113. 

Statistical significance for gene-based tests was set at a Bonferroni-corrected threshold of 

P<2.5×10−6 (0.05/~20,000 genes).

Genomic inflation

We observed marked genomic inflation of the test statistics even after controlling for 

population stratification arising mainly from common markers; λGC in the primary meta-

analysis (combined ancestries and combined sexes) was 1.06 for all variants and 1.37 for 

common coding and splice site markers, respectively (Supplementary Figures 3, 7 and 13, 

Supplementary Table 10). Such inflation is expected for a highly polygenic trait like 

WHRadjBMI, for studies using a non-random set of variants across the genome, and is 

consistent with our very large sample size115,118,119.
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Conditional analyses

The RAREMETAL R-package113 was used to identify independent WHRadjBMI 

association signals across all ancestries and European meta-analysis results. RAREMETAL 

performs conditional analyses using covariance matrices to distinguish true signals from 

shadows of adjacent significant variants in LD. First, we identified lead variants (P<2×10−7) 

based on a 1Mb window centered on the most significant variant. We then conditioned on 

the lead variants in RAREMETAL and kept new lead signals at P<2×10−7 for conditioning 

in a second round of analysis. The process was repeated until no additional signal emerged 

below the pre-specified P-value threshold (P<2×10−7).

To test if the associations detected were independent of previously published WHRadjBMI 

variants 10,14,16, we used RAREMETAL to perform conditional analyses in the Stage 1 

discovery set if the GWAS variant or its proxy (r2≥0.8) was on the ExomeChip. All variants 

identified in our meta-analysis and the previously published variants were available in the 

UKBB dataset112, which was used as a replacement dataset if a good proxy was not on the 

ExomeChip. All conditional analyses in the UKBB were performed using SNPTEST120-122.

The conditional analyses were carried out reciprocally, conditioning on the ExomeChip 

variant and then the previously published variant. An association was considered 

independent if it was significant prior to conditional analysis (P<2×10−7) with both the 

exome chip variant and the previously published variant, and the observed association with 

our variant remained significant upon conditional analysis. Conditional p-values between 

9×10−6 and 0.05 was considered inconclusive, while those < 9×10−6 were considered 

suggestive.

Stage 2 meta-analyses

In Stage 2, we sought to validate 70 Stage 1 variants (P<2×10−6) in two independent studies, 

UKBB (N=119,572) and deCODE (N=12,605), using the same QC and analytical 

methodology. Genotyping, study descriptions and phenotype descriptives are provided in 

Supplementary Data 1–3. Stage 1+ 2 meta-analysis was performed using the inverse-

variance weighted fixed effects method. Significant associations were defined as those 

nominally significant (P<0.05) in Stage 2 when available in Stage 2, and array-wide 

significance for Stage 1+2 at P<2×10−7 (0.05/~250,000 246,328 variants tested). Variants 

are considered novel and statistically significant if they were greater than one megabase 

(Mb) from a previously-identified WHRadjBMI lead SNP10–16 and achieved a significance 

threshold of P<2×10−7.

Pathway enrichment analyses: EC-DEPICT

We adapted DEPICT, a gene set enrichment analysis method for GWAS data, for use with 

the ExomeChip (‘EC-DEPICT’) described further in a companion manuscript21. DEPICT 

uses “reconstituted” gene sets, where different types of gene sets (e.g. canonical pathways, 

protein-protein interaction networks, and mouse phenotypes) were extended through large-

scale microarray data (see Pers et al.20 for details). EC-DEPICT computes p-values based on 

Swedish ExomeChip data (Malmö Diet and Cancer (MDC), All New Diabetics in Scania 

(ANDIS), and Scania Diabetes Registry (SDR) cohorts, N=11,899) and, unlike DEPICT, 
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takes as input only genes directly containing significant (coding) variants rather than all 

genes within a specified LD (Supplementary Note).

Two analyses were performed for WHRadjBMI ExomeChip: one with all variants p<5×10−4 

(49 significant gene sets in 25 meta-gene sets, FDR <0.05) and one with all variants > 1 Mb 

from known GWAS loci10 (26 significant gene sets in 13 meta-gene sets, FDR <0.05). 

Affinity propagation clustering123 was used to group highly correlated gene sets into “meta-

gene sets”; for each meta-gene set, the member gene set with the best p-value was used for 

visualization (Supplementary Note). EC-DEPICT was written in Python (see URLs).

Pathway enrichment analyses: PASCAL

We also applied PASCAL pathway analysis22 to summary statistics from Stage 1 for all 

coding variants. PASCAL derives gene-based scores (SUM and MAX) and tests for over-

representation of high gene scores in predefined biological pathways. We performed both 

MAX and SUM estimations for pathway enrichment. MAX is sensitive to genesets driven by 

a single signal, while SUM is better for multiple variant associations in the same gene. We 

used standard pathway libraries from KEGG, REACTOME and BIOCARTA, and also added 

dichotomized (Z-score>3) reconstituted gene sets from DEPICT20. To accurately estimate 

SNP-by-SNP correlations even for rare variants, we used the UK10K data (TwinsUK124 and 

ALSPAC125, N=3781). To distinguish contributions of regulatory and coding variants, we 

also applied PASCAL to summary statistics of only regulatory variants (20 kb upstream) and 

regulatory+coding variants from the Shungin et al10 study. In this way, we could investigate 

what is gained by analyzing coding variants.

Monogenic obesity enrichment analyses

We compiled two lists consisting of 31 genes with strong evidence that disruption causes 

monogenic forms of insulin resistance or diabetes; and eight genes with evidence that 

disruption causes monogenic forms of lipodystrophy. To test for association enrichment, we 

conducted simulations by matching each gene with others based on gene length and number 

of variants tested to create 1,000 matched gene sets and assessed how often the number of 

variants exceeding set significance thresholds was greater than in our monogenic obesity 

gene set.

Variance explained

We estimated phenotypic variance explained by Stage 1 associations in all ancestries for 

men, women, and combined sexes126. For each associated region, we pruned subsets of 

SNPs within 500 kb of SNPs with the lowest P-value and used varying P-value thresholds 

(ranging from 2×10−7 to 0.02) from the combined sexes results. Additionally, we examined 

all variants and independent variants across a range of MAFs. The variance explained by 

each subset of SNPs in each stratum was estimated by summing the variance explained by 

individual top coding variants. To compare variance explained between men and women, we 

tested for significant differences assuming the weighted sum of χ2-distributed variables tend 

to a Gaussian distribution following Lyapunov’s central limit theorem.126,127
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Cross-trait lookups

To evaluate relationships between WHRadjBMI and related cardiometabolic, 

anthropometric, and reproductive traits, association results for the 51 WHRadjBMI coding 

SNPs were requested from seven consortia, including ExomeChip data from GIANT (BMI, 

height), Global Lipids Genetics Consortium (GLGC) (total cholesterol, triglycerides, HDL-

cholesterol, LDL-cholesterol), International Consortium for Blood Pressure (IBPC)128 

(systolic and diastolic blood pressure), Meta-Analyses of Glucose and Insulin-related traits 

Consortium (MAGIC) (glycemic traits), and DIAbetes Genetics Replication And Meta-

analysis (DIAGRAM) consortium (type 2 diabetes). )21,25–29. For coronary artery disease, 

we accessed 1000 Genomes Project-imputed GWAS data released by 

CARDIoGRAMplusC4D129 and for age at menarche and menopause, we used a 

combination of ExomeChip and 1000 Genomes Project-imputed GWAS data from 

ReproGen. Heatmaps were generated with gplots (R v3.3.2) using Euclidean distance based 

on p-value and direction of effect and complete linkage clustering (see URLs).

GWAS Catalog Lookups

To determine if significant coding variants were associated with any related cardiometabolic 

or anthropometric traits, we also searched the NHGRI-EBI GWAS Catalog for previous 

associations near our lead SNPs (+/− 500 kb). We used PLINK to calculate LD using ARIC 

European participants. All GWAS Catalog SNPs within the specified regions with an r2 > 

0.7 were evaluated37. Consistent direction of effect was based on WHRadjBMI-increasing 

allele, LD, and allele frequency. We do not comment on direction of effect when a GWAS 

Catalog variant was not identical or in high LD (r2 > 0.9) with the WHR variant, and MAF 

>45%.

Body-fat percentage associations

We performed body fat percent and truncal fat percent look-ups of 48 of the 56 

WHRadjBMI identified variants (Tables 1 and 2) available in UKBB. GWAS for body fat 

percent and truncal fat percent in UKBB excluded pregnant or possibly pregnant women, 

individuals with BMI < 15, or those without genetically confirmed European ancestry, 

resulting in a sample size of 120,286. Estimated body fat percent and truncal fat percent 

were obtained using the Tanita BC418MA body composition analyzer (Tanita, Tokyo, 

Japan). Participants were non-fasting and did not follow any specific instructions prior to 

bioimpedance measurements. SNPTEST was used to perform the analyses based on 

residuals adjusted for age, 15 principal components, assessment center and the genotyping 

chip120.

Collider bias

To evaluate SNPs for possible collider bias17, we used results from a recent GIANT BMI 

GWAS25. For each significant SNP from our additive models, WHRadjBMI associations 

URLS
Ensembl ortholog database, http://www.ensembl.org; RAREMETALWORKER, http://genome.sph.umich.edu/wiki/
RAREMETALWORKER; RVTESTs, http://zhanxw.github.io/rvtests/; EC-DEPICT, code available at: https://github.com/
RebeccaFine/obesity-ec-depict; gplots, https://CRAN.R-project.org/package=gplots.
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were corrected for potential bias due to associations between each variant and BMI 

(Supplementary Note). Variants meeting Bonferroni-corrected significance 

(Pcorrected<9.09×10−4, 0.05/55 variants examined) were considered robust against collider 

bias.

Drosophila RNAi knockdown experiments

For each gene with WHRadjBMI-associated coding variants in the final combined meta-

analysis (P < 2×10−7), its corresponding Drosophila orthologues were identified in the 

Ensembl ortholog database (see URLs), when available. Drosophila triglyceride content 

values were mined from a publicly available genome-wide fat screen data set45 to identify 

potential genes for follow-up knockdowns. Estimated values represent fractional changes in 

triglyceride content in adult male flies. Data are from male progeny of crosses between male 

UAS-RNAi flies from the Vienna Drosophila Resource Center (VDRC) and Hsp70-GAL4; 

Tub-GAL8ts virgin females. (Supplementary Note). The screen comprised one to three 

biological replicates. We followed up each gene with a >0.2 increase or >0.4 decrease in 

triglyceride content.

Orthologues for two genes were brought forward for follow-up, DNAH10 and PLXND1. For 

both genes, we generated adipose tissue (cg-Gal4) and neuronal (elav-Gal4) specific RNAi-

knockdown crosses to knockdown transcripts in a tissue specific manner, leveraging 

upstream activation sequence (UAS)-inducible short-hairpin knockdown lines, available 

through the VDRC (Vienna Drosophila Resource Center). Specifically, elav-Gal4, which 

drives expression of the RNAi construct in post mitotic neurons starting at embryonic stages 

all the way to adulthood, was used. Cg drives expression in the fat body and hemocytes 

starting at embryonic stage 12, all the way to adulthood. (Supplementary Note). Resulting 

triglyceride values were normalized to fly weight and larval/population density. We used the 

non-parametric Kruskall-Wallis test to compare wild type with knockdown lines.

Expression quantitative trait loci (eQTLs) analysis

We queried the significant variant (Exome coding SNPs)-gene pairs associated with eGenes 

across five metabolically relevant tissues (skeletal muscle, subcutaneous adipose, visceral 

adipose, liver and pancreas) with at least 70 samples in the GTEx database46. For each 

tissue, variants were selected based on the following thresholds: the minor allele was 

observed in at least 10 samples, and MAF ≥ 1%. eGenes, genes with a significant eQTL, are 

defined on a false discovery rate (FDR)130 threshold of ≤0.05 of beta distribution-adjusted 

empirical p-value from FastQTL. Nominal p-values were generated for each variant-gene 

pair by testing the alternative hypothesis that the slope of a linear regression model between 

genotype and expression deviates from 0. To identify all significant variant-gene pairs 

associated with eGenes, a genome-wide empirical p-value threshold64 (pt) was defined as 

the empirical p-value of the gene closest to the 0.05 FDR threshold. pt was then used to 

calculate a nominal p-value threshold for each gene based on the beta distribution model 

(from FastQTL) of the minimum p-value distribution f(pmin) obtained from the 

permutations for the gene. For each gene, variants with a nominal p-value below the gene-

level threshold were considered significant and included in the final list of variant-gene 

pairs64. For each eGene, we also listed the most significantly associated variants (eSNP). 
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Only these exome SNPs with r2 > 0.8 with eSNPs were considered for biological 

interpretation (Supplementary eQTL GTEx).

We also performed cis-eQTL analysis in 770 METSIM subcutaneous adipose tissue samples 

as described in Civelek, et al.131 A false discovery rate (FDR) was calculated using all p-

values from the cis-eQTL detection in the q-value package in R. Variants associated with 

nearby genes at an FDR less than 1% were considered to be significant (equivalent p-value < 

2.46 × 10−4).

For loci with more than one microarray probeset of the same gene associated with the exome 

variant, we selected the probeset that provided the strongest LD r2 between the exome 

variant and the eSNP. In reciprocal conditional analysis, we conditioned on the lead exome 

variant by including it as a covariate in the cis-eQTL detection and reporting the p-value of 

the eSNP and vice versa. Signals were considered coincident if both the lead exome variant 

and the eSNP were no longer significant after conditioning on the other and the variants 

were in high LD (r2 > 0.80).

For loci that also harbored reported GWAS variants, we performed reciprocal conditional 

analysis between the GWAS lead variant and the lead eSNP. For loci with more than one 

reported GWAS variant, the GWAS variant with the strongest LD r2 with the lead eSNP was 

reported.

Penetrance analysis

Phenotype and genotype data from UKBB were used for penetrance analysis. Three of 16 

rare and low frequency variants (MAF ≤ 1%) detected in the final Stage 1+2 meta-analysis 

were available in UKBB and had relatively larger effect sizes (>0.90). Phenotype data for 

these three variants were stratified by WHR using World Health Organization (WHO) 

guidelines, which consider women and men with WHR greater than 0.85 and 0.90 as obese, 

respectively. Genotype and allele counts were used to calculate the number of carriers of the 

minor allele. The number of obese vs. non-obese carriers for women, men and sexes 

combined was compared using a χ2 test. Significance was determined using a Bonferroni 

correction for the number of tests performed (0.05/9=5.5×10−3).
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Box 1.

Genes of biological interest harboring WHR-associated variants

PLXND1– (3:129284818, rs2625973, known locus) The major allele of a common non-

synonymous variant in Plexin D1 (L1412V, MAF = 26.7%) is associated with increased 

WHRadjBMI (β (SE)= 0.0156 (0.0024), P-value = 9.16 × 10−11). PLXND1 encodes a 

semaphorin class 3 and 4 receptor gene, and therefore, is involved in cell to cell signaling 

and regulation of growth in development for a number of different cell and tissue types, 

including those in the cardiovascular system, skeleton, kidneys, and the central nervous 

system77–81. Mutations in this gene are associated with Moebius syndrome82–85, and 

persistent truncus arteriosus79,86. PLXND1 is involved in angiogenesis as part of the 

SEMA and VEGF signalling pathways87–90. PLXND1 was implicated in the 

development of T2D through its interaction with SEMA3E in mice. SEMA3E and 

PLXND1 are upregulated in adipose tissue in response to diet-induced obesity, creating a 

cascade of adipose inflammation, insulin resistance, and diabetes mellitus81. PLXND1 is 

highly expressed in adipose (both subcutaneous and visceral) (GTeX). PLXND1 is highly 

intolerant of mutations and therefore highly conserved (Supplementary Data 16). Last, 

our lead variant is predicted as damaging or possibly damaging for all algorithms 

examined (SIFT, Polyphen2/HDIV, Polyphen2/HVAR, LRT, MutationTaster).

ACVR1C– (2:158412701, rs55920843, novel locus) The major allele of a low frequency 

non-synonymous variant in activin A receptor type 1C (rs55920843, N150H, MAF = 

1.1%) is associated with increased WHRadjBMI (β (SE)= 0.0652 (0.0105), P-value = 

4.81 × 10−10). ACVR1C, also called Activin receptor-like kinase 7 (ALK7), encodes a 

type I receptor for TGFB (Transforming Growth Factor, Beta-1), and is integral for the 

activation of SMAD transcription factors; therefore, ACVR1C plays an important role in 

cellular growth and differentiation64–68, including adipocytes68. Mouse Acvr1c decreases 

secretion of insulin and is involved in lipid storage69,72,73,69,72,73,91. ACVR1C exhibits 

the highest expression in adipose tissue, but is also highly expressed in the brain 

(GTEx)69–71. Expression is associated with body fat, carbohydrate metabolism and lipids 

in both obese and lean individuals70. ACVR1C is moderately tolerant of mutations 

(ExAC Constraint Scores: synonymous = -0.86, nonsynonymous = 1.25, LoF = 0.04, 

Supplementary Data 16). Last, our lead variant is predicted as damaging for two of five 

algorithms examined (LRT and MutationTaster).

FGFR2– (10:123279643, rs138315382, novel locus) The minor allele of a rare 

synonymous variant in Fibroblast Growth Factor Receptor 2 (rs138315382, 

MAF=0.09%) is associated with increased WHRadjBMI (β (SE) = 0.258 (0.049), P-

value = 1.38 × 10−07). The extracellular portion of the FGFR2 protein binds with 

fibroblast growth factors, influencing mitogenesis and differentiation. Mutations in this 

gene have been associated with many rare monogenic disorders, including skeletal 

deformities, craniosynostosis, eye abnormalities, and LADD syndrome, as well as several 

cancers including breast, lung, and gastric cancer. Methylation of FGFR2 is associated 

with high birth weight percentile92. FGFR2 is tolerant of synonymous mutations, but 

highly intolerant of missense and loss-of-function mutations (ExAC Constraint scores: 
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synonymous = -0.9, missense = 2.74, LoF=1.0, Supplementary Data 16)). Last, this 

variant is not predicted to be damaging based on any of the five algorithms tested.

ANGPTL4– (19:8429323, rs116843064, novel locus) The major allele of a 

nonsynonymous low frequency variant in Angiopoietin Like 4 (rs116843064, E40K, 

EAF=98.1%) is associated with increased WHRadjBMI (β (SE) = 0.064 (0.011) P-value 

= 1.20 × 10−09). ANGPTL4 encodes a glycosylated, secreted protein containing a C-

terminal fibrinogen domain. The encoded protein is induced by peroxisome proliferation 

activators and functions as a serum hormone that regulates glucose homeostasis, 

triglyceride metabolism93,94, and insulin sensitivity95. Angptl4-deficient mice have 

hypotriglyceridemia and increased lipoprotein lipase (LPL) activity, while transgenic 

mice overexpressing Angplt4 in the liver have higher plasma triglyceride levels and 

decreased LPL activity96. The major allele of rs116843064 has been previously 

associated with increased risk of coronary heart disease and increased triglycerides63. 

ANGPTL4 is moderately tolerant of mutations (ExAC constraint scores synonymous = 

1.18, missense = 0.21, LoF = 0.0, Supplementary Data 16). Last, our lead variant is 

predicted damaging for four of five algorithms (SIFT, Polyphen 2/HDIV, Polyphen2/

HVAR, and MutationTaster).

RREB1– (6:7211818, rs1334576, novel association signal) The major allele of a common 

non-synonymous variant in the Ras responsive element binding protein 1 (rs1334576, 

G195R, EAF = 56%) is associated with increased WHRadjBMI (β (SE) = 0.017 (0.002), 

P-value = 3.9 × 10−15). This variant is independent of the previously reported GWAS 

signal in the RREB1 region (rs1294410; 6:673875210). The protein encoded by this gene 

is a zinc finger transcription factor that binds to RAS-responsive elements (RREs) of 

gene promoters. It has been shown that the calcitonin gene promoter contains an RRE 

and

PLXND1– (3:129284818, rs2625973, known locus) The major allele of a common non-

synonymous variant in Plexin D1 (L1412V, MAF = 26.7%) is associated with increased 

WHRadjBMI (β (SE)= 0.0156 (0.0024), P-value = 9.16 × 10−11). PLXND1 encodes a 

semaphorin class 3 and 4 receptor gene, and therefore, is involved in cell to cell signaling 

and regulation of growth in development for a number of different cell and tissue types, 

including those in the cardiovascular system, skeleton, kidneys, and the central nervous 

system77–81. Mutations in this gene are associated with Moebius syndrome82–85, and 

persistent truncus arteriosus79,86. PLXND1 is involved in angiogenesis as part of the 

SEMA and VEGF signalling pathways87–90. PLXND1 was implicated in the 

development of T2D through its interaction with SEMA3E in mice. SEMA3E and 

PLXND1 are upregulated in adipose tissue in response to diet-induced obesity, creating a 

cascade of adipose inflammation, insulin resistance, and diabetes mellitus81. PLXND1 is 

highly expressed in adipose (both subcutaneous and visceral) (GTeX). PLXND1 is highly 

intolerant of mutations and therefore highly conserved (Supplementary Data 16)). Last, 

our lead variant is predicted as damaging or possibly damaging for all algorithms 

examined (SIFT, Polyphen2/HDIV, Polyphen2/HVAR, LRT, MutationTaster).

ACVR1C– (2:158412701, rs55920843, novel locus) The major allele of a low frequency 

non-synonymous variant in activin A receptor type 1C (rs55920843, N150H, MAF = 
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1.1%) is associated with increased WHRadjBMI (β (SE)= 0.0652 (0.0105), P-value = 

4.81 × 10−10). ACVR1C, also called Activin receptor-like kinase 7 (ALK7), encodes a 

type I receptor for TGFB (Transforming Growth Factor, Beta-1), and is integral for the 

activation of SMAD transcription factors; therefore, ACVR1C plays an important role in 

cellular growth and differentiation64–68, including adipocytes68. Mouse Acvr1c decreases 

secretion of insulin and is involved in lipid storage69,72,73,69,72,73,91. ACVR1C exhibits 

the highest expression in adipose tissue, but is also highly expressed in the brain 

(GTEx)69–71. Expression is associated with body fat, carbohydrate metabolism and lipids 

in both obese and lean individuals70. ACVR1C is moderately tolerant of mutations 

(ExAC Constraint Scores: synonymous = -0.86, nonsynonymous = 1.25, LoF = 0.04, 

Supplementary Data 16)). Last, our lead variant is predicted as damaging for two of five 

algorithms examined (LRT and MutationTaster).

FGFR2– (10:123279643, rs138315382, novel locus) The minor allele of a rare 

synonymous variant in Fibroblast Growth Factor Receptor 2 (rs138315382, 

MAF=0.09%) is associated with increased WHRadjBMI (β (SE) = 0.258 (0.049), P-

value = 1.38 × 10−07). The extracellular portion of the FGFR2 protein binds with 

fibroblast growth factors, influencing mitogenesis and differentiation. Mutations in this 

gene have been associated with many rare monogenic disorders, including skeletal 

deformities, craniosynostosis, eye abnormalities, and LADD syndrome, as well as several 

cancers including breast, lung, and gastric cancer. Methylation of FGFR2 is associated 

with high birth weight percentile92. FGFR2 is tolerant of synonymous mutations, but 

highly intolerant of missense and loss-of-function mutations (ExAC Constraint scores: 

synonymous = -0.9, missense = 2.74, LoF=1.0, Supplementary Data 16)). Last, this 

variant is not predicted to be damaging based on any of the five algorithms tested.

ANGPTL4– (19:8429323, rs116843064, novel locus) The major allele of a 

nonsynonymous low frequency variant in Angiopoietin Like 4 (rs116843064, E40K, 

EAF=98.1%) is associated with increased WHRadjBMI (β (SE) = 0.064 (0.011) P-value 

= 1.20 × 10−09). ANGPTL4 encodes a glycosylated, secreted protein containing a C-

terminal fibrinogen domain. The encoded protein is induced by peroxisome proliferation 

activators and functions as a serum hormone that regulates glucose homeostasis, 

triglyceride metabolism93,94, and insulin sensitivity95. Angptl4-deficient mice have 

hypotriglyceridemia and increased lipoprotein lipase (LPL) activity, while transgenic 

mice overexpressing Angplt4 in the liver have higher plasma triglyceride levels and 

decreased LPL activity96. The major allele of rs116843064 has been previously 

associated with increased risk of coronary heart disease and increased triglycerides63. 

ANGPTL4 is moderately tolerant of mutations (ExAC constraint scores synonymous = 

1.18, missense = 0.21, LoF = 0.0, Supplementary Data 16). Last, our lead variant is 

predicted damaging for four of five algorithms (SIFT, Polyphen 2/HDIV, Polyphen2/

HVAR, and MutationTaster).

RREB1– (6:7211818, rs1334576, novel association signal) The major allele of a common 

non-synonymous variant in the Ras responsive element binding protein 1 (rs1334576, 

G195R, EAF = 56%) is associated with increased WHRadjBMI (β (SE) = 0.017 (0.002), 

P-value = 3.9 × 10−15). This variant is independent of the previously reported GWAS 

signal in the RREB1 region (rs1294410; 6:673875210). The protein encoded by this gene 
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is a zinc finger transcription factor that binds to RAS-responsive elements (RREs) of 

gene promoters. It has been shown that the calcitonin gene promoter contains an RRE 

and that the encoded protein binds there and increases expression of calcitonin, which 

may be involved in Ras/Raf-mediated cell differentiation97–99. The ras responsive 

transcription factor RREB1 is a candidate gene for type 2 diabetes associated end-stage 

kidney disease98. This variant is highly intolerant to loss of function (ExAC constraint 

score LoF = 1, Supplementary Data 16)).

DAGLB – (7:6449496, rs2303361, novel locus) The minor allele of a common non-

synonymous variant (rs2303361, Q664R, MAF = 22%) in DAGLB (Diacylglycerol lipase 

beta) is associated with increased WHRadjBMI (β (SE) = 0.0136 (0.0025), P-value = 

6.24 × 10−8). DAGLB encodes a diacylglycerol (DAG) lipase that catalyzes the 

hydrolysis of DAG to 2-arachidonoyl-glycerol, the most abundant endocannabinoid in 

tissues. In the brain, DAGL activity is required for axonal growth during development 

and for retrograde synaptic signaling at mature synapses (2-AG)100. The DAGLB variant, 

rs702485 (7:6449272, r2 = 0.306 and D’=1 with rs2303361) has been previously 

associated with high-density lipoprotein cholesterol (HDL) previously. Pathway analysis 

indicate a role in the triglyceride lipase activity pathway 101. DAGLB is tolerant of 

synonymous mutations, but intolerant of missense and loss of function mutations (ExAC 

Constraint scores: synonymous = -0.76, missense = 1.07, LoF = 0.94, Supplementary 

Data 16)). Last, this variant is not predicted to be damaging by any of the algorithms 

tested.

MLXIPL (7:73012042, rs35332062 and 7:73020337, rs3812316, known locus) The 

major alleles of two common non-synonymous variants (A358V, MAF = 12%; Q241H, 

MAF = 12%) in MLXIPL (MLX interacting protein like) are associated with increased 

WHRadjBMI (β (SE) = 0.02 (0.0033), P-value = 1.78 × 10−9; β (SE) = 0.0213 (0.0034), 

P-value = 1.98 × 10−10). These variants are in strong linkage disequilibrium (r2=1.00, 

D’=1.00, 1000 Genomes CEU). This gene encodes a basic helix-loop-helix leucine zipper 

transcription factor of the Myc/Max/Mad superfamily. This protein forms a heterodimeric 

complex and binds and activates carbohydrate response element (ChoRE) motifs in the 

promoters of triglyceride synthesis genes in a glucose-dependent manner74,75. This gene 

is possibly involved in the growth hormone signaling pathway and lipid metabolism. The 

WHRadjBMI-associated variant rs3812316 in this gene has been associated with the risk 

of non-alcoholic fatty liver disease and coronary artery disease74,102,103. Furthermore, 

Williams-Beuren syndrome (an autosomal dominant disorder characterized by short 

stature, abnormal weight gain, various cardiovascular defects, and mental retardation) is 

caused by a deletion of about 26 genes from the long arm of chromosome 7 including 

MLXIPL. MLXIPL is generally intolerant to variation, and therefore conserved (ExAC 

Constraint scores: synonymous = 0.48, missense = 1.16, LoF = 0.68, Supplementary Data 

16)). Last, both variants reported here are predicted as possible or probably damaging by 

one of the algorithms tested (PolyPhen).

RAPGEF3 (12:48143315, rs145878042, novel locus) The major allele of a low 

frequency non-synonymous variant in Rap Guanine-Nucleotide-Exchange Factor (GEF) 

3 (rs145878042, L300P, MAF = 1.1%) is associated with increased WHRadjBMI (β (SE) 

= 0.085 (0.010), P-value = 7.15 × 10−17). RAPGEF3 codes for an intracellular cAMP 

Justice et al. Page 37

Nat Genet. Author manuscript; available in PMC 2019 August 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



sensor, also known as Epac (the Exchange Protein directly Activated by Cyclic AMP). 

Among its many known functions, RAPGEF3 regulates the ATP sensitivity of the KATP 

channel involved in insulin secretion104, may be important in regulating adipocyte 

differentiation105–107, plays an important role in regulating adiposity and energy 

balance108. RAPGEF3 is tolerant of mutations (ExAC Constraint Scores: synonymous = 

-0.47, nonsynonymous = 0.32, LoF = 0, Supplementary Data 16)). Last, our lead variant 

is predicted as damaging or possibly damaging for all five algorithms examined (SIFT, 

Polyphen2/HDIV, Polyphen2/HVAR, LRT, MutationTaster).

TBX15 (1:119427467, rs61730011, known locus) The major allele of a low frequency 

non-synonymous variant in T-box 15 (rs61730011, M460R, MAF = 4.3%) is associated 

with increased WHRadjBMI (β(SE) = 0.041(0.005)). T-box 15 (TBX15) encodes a 

developmental transcription factor expressed in adipose tissue, but with higher expression 

in visceral adipose tissue than in subcutaneous adipose tissue, and is strongly 

downregulated in overweight and obese individuals109. TBX15 negatively controls depot-

specific adipocyte differentiation and function110 and regulates glycolytic myofiber 

identity and muscle metabolism111. TBX15 is moderately intolerant of mutations and 

therefore conserved (ExAC Constraint Scores: synonymous = 0.42, nonsynonymous = 

0.65, LoF = 0.88, Supplementary Data 16)). Last, our lead variant is predicted as 

damaging or possibly damaging for four of five algorithms (Polyphen2/HDIV, 

Polyphen2/HVAR, LRT, MutationTaster).
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Figure 1. Summary of meta-analysis study design and workflow.
Abbreviations:EUR- European, AFR- African, SAS- South Asian, EAS- East Asian, and 

HIS- Hispanic/Latino ancestry.* Novel variants include those that are >1MB from a 

previously published WHRadjBMIGWAS tag SNP.¥ Independent (INDEP) includes variants 

that are nearby known WHRadjBMI GWAS tag variants, but were determined independent 

after conditional analysis.
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Figure 2. 
Minor allele frequency compared to estimated effect. This scatter plot displays the 

relationship between minor allele frequency (MAF) and the estimated effect (β) for each 

significant coding variant in our meta-analyses. All novel WHRadjBMI variants are 

highlighted in orange, and variants identified only in models that assume recessive 

inheritance are denoted by diamonds and only in sex-specific analyses by triangles. Eighty 

percent power was calculated based on the total sample size in the Stage 1+2 meta-analysis 

and P = 2 × 10−7. Estimated effects are shown in original units (cm/cm) calculated by using 

effect sizes in standard deviation (SD) units times SD of WHR in the ARIC study (sexes 

combined = 0.067, men = 0.052, women = 0.080). WHR; waist-to-hip ratio
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Figure 3. 
Regional association plots for known loci with novel coding signals identified by conditional 

analyses. Point color reflects r2 calculated from the ARIC dataset. In a) there are two 

independent variants in RSPO3 and KIAA0408, based on results from the stage 1 All 

Ancestry women (N = 180,131 for RSPO3 and 139,056 for KIAA0408). In b) we have a 

variant in RREB1 that is independent of the GWAS variant rs1294421, based on results from 

the stage 1 All Ancestry sex-combined individuals (N = 319,090).
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Figure 4. 
Heat maps showing DEPICT gene set enrichment results from the stage 1 All Ancestry sex-

combined individuals (N = 344,369). For any given square, the color indicates how strongly 

the corresponding gene (x-axis) is predicted to belong to the reconstituted gene set (y-axis). 

This value is based on the gene’s z-score for gene set inclusion in DEPICT’s reconstituted 

gene sets, where red indicates a higher and blue a lower z-score. To visually reduce 

redundancy and increase clarity, we chose one representative “meta-gene set” for each group 

of highly correlated gene sets based on affinity propagation clustering (Online Methods, 

Supplementary Note). Heatmap intensity and DEPICT P-values (Supplementary Data 8–9) 

correspond to the most significantly enriched gene set within the meta-gene set. Annotations 

for the genes indicate (1) the minor allele frequency of the significant ExomeChip (EC) 

variant (blue; if multiple variants, the lowest-frequency variant was kept), (2) whether the 

variant’s P-value reached array-wide significance (< 2 × 10−7) or suggestive significance (< 

5 × 10–4) (shades of purple), (3) whether the variant was novel, overlapping “relaxed” 

GWAS signals from Shungin et al.10 (GWAS P < 5 × 10−4), or overlapping “stringent” 

GWAS signals (GWAS P < 5 × 10−8) (pink), and (4) whether the gene was included in the 

gene set enrichment analysis or excluded by filters (shades of brown/orange) (Online 

Methods, Supplementary Note). Annotations for the gene sets indicate if the meta-gene set 

was found significant (shades of green; FDR < 0.01, < 0.05, or not significant) in the 

DEPICT analysis of GWAS results from Shungin et al.10
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