Widespread infection, diversification and old host associations of Nosema Microsporidia in European freshwater gammarids (Amphipoda)

Karolina Bacela-Spychalska, Remi Wattier, Maria Teixeira, Richard Cordaux, Adrien Quiles, Michal Grabowski, Piotr Wroblewski, Mykola Ovcharenko, Daniel Grabner, Dieter Weber, et al.

- To cite this version:

Karolina Bacela-Spychalska, Remi Wattier, Maria Teixeira, Richard Cordaux, Adrien Quiles, et al.. Widespread infection, diversification and old host associations of Nosema Microsporidia in European freshwater gammarids (Amphipoda). 2023. hal-04178588v1

HAL Id: hal-04178588

https://hal.science/hal-04178588v1

Preprint submitted on 8 Aug 2023 (v1), last revised 4 Sep 2023 (v3)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Widespread infection, diversification and old host associations of Nosema Microsporidia in European freshwater gammarids (Amphipoda)

Karolina Bacela-Spychalska ${ }^{1, * \text { *II }}$, Remi Wattier ${ }^{2 \pi I I}$, Maria Teixeira ${ }^{2}$, Richard Cordaux ${ }^{3, \# a}$, Adrien Quiles ${ }^{1,2}$, Michal Grabowski ${ }^{1}$, Piotr Wroblewski ${ }^{4}$, Mykola Ovcharenko ${ }^{4,5}$, Daniel Grabner ${ }^{6}$, Dieter Weber 7,8, Alexander M Weigand ${ }^{8}$, and Thierry Rigaud ${ }^{2}$
${ }^{1}$ Department of Invertebrate Zoology and Hydrobiology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
${ }^{2}$ Laboratoire Biogéosciences, UMR CNRS 6282, Université de Bourgogne, Dijon, France
${ }^{3}$ Laboratoire Ecologie et Biologie des Interactions, Equipe Ecologie Evolution Symbiose, UMR CNRS 7267, Université de Poitiers, Poitiers Cedex 9, France
${ }^{4}$ Department of Ecology and Evolution of Parasitism, Witold Stefanski Institute of Parasitology, Polish Academy of Science, Warsaw, Poland
${ }^{5}$ Institute of Biology and Earth Sciences, Pomeranian University in Slupsk, Slupsk, Poland
${ }^{6}$ Aquatic Ecology and Centre for Water and Environmental Research, University of DuisburgEssen, Essen, Germany
${ }^{7}$ Senckenberg Deutsches Entomologisches Institut Müncheberg, Germany
${ }^{8}$ Musée National d'Histoire Naturelle Luxembourg, Luxembourg, Luxembourg
\#a Current Address: CNRS, IRD, UMR Évolution Génomes Comportement Écologie, Université Paris-Saclay, Gif-sur-Yvette, France
${ }^{\text {IT}}$ These authors contributed equally to this study
*Corresponding author: karolina.bacela@ biol.uni.lodz.pl

Short title: Diversity of microsporidian Nosema spp. in freshwater gammarids (Amphipoda)

Abstract

The microsporidian genus Nosema is primarily known to infect insects of economic importance stimulating high research interest, while other hosts remain understudied. Nosema granulosis is one of the formally described Nosema species infecting amphipod crustaceans, being known to infect only two host species.

Our first aim was to characterize Nosema spp. infections in different amphipod species from various European localities using the small subunit ribosomal DNA (SSU) marker. Second, we aimed to assess the phylogenetic diversity, host specificity and to explore the evolutionary history that may explain the diversity of gammarid-infecting Nosema lineages by performing a phylogenetic reconstruction based on RNA polymerase II subunit B1 (RPB1) gene sequences. For the host species Gammarus balcanicus, we also analyzed sex ratios of progenies to test for sex ratio distortion in relation with Nosema infection.

We identified Nosema spp. in 316 individuals from nine amphipod species being widespread in Europe. The RPB1-based phylogenetic reconstruction using newly reported sequences and available data from other invertebrates identified 39 haplogroups being associated with amphipods. These haplogroups clustered into five clades (A-E) that did not form a single amphipod-infecting monophyletic group. Closely related sister clades C and D correspond to Nosema granulosis. Clades A, B and E might represent unknown Nosema species infecting amphipods. Host specificity seemed to be variable with some clades being restricted to single hosts, and some that could be found in several host species. We show that Nosema parasite richness in gammarid hosts is much higher than expected, illustrating the advantage of the use of RPB1 marker over SSU. Finally, we found no hint of sex ratio distortion in Nosema clade A infecting G. balcanicus. This study shows that Nosema spp. are abundant, widespread and diverse in European gammarids. Thus, Nosema is as diverse in aquatic as in terrestrial hosts.

Author Summary

The intracellular microsporidian parasites of the genus Nosema are important pathogens as they infect insects of economic importance such as pollinators or domestic silk moths. However, they have been overlooked in other groups of invertebrates such as crustaceans, where only few Nosema spp. were detected, including Nosema granulosis in two gammarid amphipod hosts. Here, using molecular tools, we detected infections by Nosema spp. in nine freshwater amphipod species from various European localities. These infections are common, widespread, and the phylogenetic analysis revealed that some Nosema lineages are specific to certain host species, while the others are not restricted to single hosts. We also confirms that there are several Nosema lineages infecting gammarid crustaceans, not only N. granulosis, that can be new candidate species of Nosema. We conclude that Nosema is as diverse in aquatic as in terrestrial hosts.

Keywords: Host-parasite relationships, co-diversification, phylogeny, RPB1, SSU rDNA, Gammarus

Introduction

Since the mid-19th century, Microsporidia, a large group of obligate intracellular eukaryotic microparasites related to fungi, has aroused interest in both basic and applied studies [1-3]. In this context, the microsporidian genus Nosema (Nosematida) holds in a seminal place. The first formally described microsporidium was Nosema bombycis [4]. Since then, 16 Nosema spp. or closely-related species have been described infecting insects [5]. All are pathogenic to some extent, with some species having a negative economic impact and some have been used for insect pest control $[6,7]$. There are strains of Nosema that are horizontally transmitted (HT) [8], while others are known to also use vertical transmission (VT) in their life cycle [9].

Few Nosema spp. are known to infect freshwater decapod or amphipod crustaceans based on morphological and molecular data [10-18]. Many amphipod species are known to serve as hosts for many other microsporidian parasites, such as Dictyocoela spp. and Cucumispora spp. [summarised in 18], and one Nosema species, N. granulosis, which has been reported from only two amphipod species. This parasite, unlike Nosema of insects, has not been recognized as a pathogen so far, while in other crustaceans the impact on host fitness is unknown. Nosema granulosis was first described in the amphipod Gammarus duebeni [10]. Infected G. duebeni females transmit N. granulosis directly to their offspring through infected eggs [19-21]. Vertical transmission occurs only via female hosts because eggs contain enough cytoplasm in which N. granulosis can live and be transmitted [22]. Under the selective pressure of this transmission asymmetry, traits increasing the proportion of female hosts is selectively advantageous for the parasites. Therefore, the parasite's ability for turning genetic males into functional females (feminization) was selected [10,23-26]. As a consequence of this feminization, female-biased sex ratios can be found in populations of G. duebeni and Gammarus roeselii [20,21,23,27] and only a few males were found to be infected by N. granulosis in G. roeselii (presumably resulting from failed feminisation) [23]. These vertically-transmitted infections cause little pathogenicity to their
hosts [10,23,28,29], even having beneficial effects in G. roeselii [23]. Because of female excess and positive effect on fitness-related traits, host populations infected with the feminizing N. granulosis strains are predicted to have higher growth rate and may help the invasive host G. roeselii in colonizing new territories [30]. Supporting this hypothesis, Quiles et al. [31] found that the feminizing N. granulosis strain of G. roeselii is associated with the only host mitochondrial genotype that invaded Western Europe after the last glaciation [32]. However, as feminizing Dictyocoela microsporidians vary in their feminizing ability [21], it is likewise possible that the feminization capacity of N. granulosis infecting G. duebeni and G. roeselii varies between parasite strains and/or host species. The recent detection of Nosema spp. in populations of different amphipod species with highly variable prevalence fuels this hypothesis [33,34], but more data are necessary to understand N. granulosis diversity in amphipods. Studying microsporidian infections in amphipods is facilitated by the fact that some hosts are subjected to intensive phylogenetic and biogeographical research. For example, a study on New Zealand amphipods suggested that amphipod-Dictyocoela associations could have preceded the split of Pangea some 180 million years ago (MYA) and that these parasites co-differentiated with their hosts [35]. Similarly, the resolution of the evolutionary histories of morphospecies Gammarus balcanicus and G. roeselii [32,36,-38] allowed the study of co-differentiation between these hosts and some of their microsporidian parasites, especially those belonging to the genus Dictyocoela [31,39,40]. However, data on Nosema infections remain too scarce in European gammarids to allow a general analysis of their diversification. Gammarus balcanicus is a potential host of particular interest, having begun its diversification in the early Miocene (c. 17 MYA) in the central Balkans, and for which cryptic lineages are locally endemic due to paleo-habitat fragmentation and a complex phylogeographic history [36,38]. Furthermore, the recent biogeographical study of the panEuropean morphospecies Gammarus pulex [41-43] and Gammarus fossarum [44] show high levels of cryptic lineages diversity, with diversification starting some >10 MYA. The crown age of the genus Gammarus itself has been estimated at 65 MYA [45]. All this offers the opportunity to
extend the analysis of Nosema diversity to a wider set of European gammarid species and to decipher the age of infection in this group of hosts.

Besides the aforementioned advantages, the study of the phylogenetic diversity of microsporidian parasites faces some problems with the resolution of available genetic markers. The small subunit ribosomal DNA marker (SSU) is routinely used to PCR-screen hosts for microsporidian infections. SSU sequencing data proved to be very useful for phylogenetic reconstructions at higher taxonomic levels and for distinguishing major microsporidian clades (e.g. genera) [46], and sometimes also for resolving phylogenetic relationships at lower taxonomic levels [40,47]. However, the use of SSU showed some unresolved phylogenetic relationships [e.g. Dictyocoela duebenum / muelleri [47], and generated ambiguous results for the Nosema genus. On the one hand, it enabled formal redefinition of the two genera Nosema and Vairimorpha within the family Nosematidae [5]. On the other hand, phylogeography of N. granulosis in G. roeselii based on SSU showed a low level of genetic variation despite a pan-European sampling [31]. Therefore, a more variable marker is needed to unravel the phylogeography of N. granulosis and the evolution of Nosema-amphipod associations. The genomes of the few economically relevant insect-infecting Nosema spp. have been sequenced [48-50], as well as, recently, the genome of N. granulosis [51]. Based on these available genome data, the large subunit of the RNA polymerase II (RPB1) gene has been shown to be a suitable marker to unravel microsporidian phylogenetic relationships in cases where SSU was of limited value [5,52-54]. RPB1 is used for all mRNA synthesis in eukaryotes [55], displaying a high level of synonymous variation. Its higher level of genetic variation compared to SSU was already emphasized in a previous study on Microsporidia [52].

The aim of the present study was to deepen our understanding of the evolutionary history of Nosema lineages infecting amphipod crustaceans, focusing mainly on Gammarus species, by using both SSU and RPB1 markers. Specifically, we first aimed at elucidating the extent of molecular variation associated with Nosema infections in amphipods (i.e., could all lineages identified as Nosema based on SSU be considered as Nosema granulosis sensu stricto, or are they divergent
enough to be considered as different species?). Second, we wanted to infer host specificity and explore evolutionary history scenarios that may explain the diversity of gammarid-infecting Nosema. Finally, as new divergent lineages of Nosema were detected over the entire distribution area of a new host, Gammarus balcanicus, the possible existence of sex ratio distortion associated with vertical transmission was tested, using the crude proxy of an infection bias in females (as already used in [20]). Such a test allowed us to explore whether sex ratio distortion is a trait that appeared more than once in the evolution of amphipod Nosema.

Materials and methods

Overview of dataset composition for Nosema infecting amphipods

Our dataset combined information on 316 Nosema-infected amphipod individuals gathered from three sources. The first source was data from the literature for which both SSU and RPB1 sequences were available. The second source was data for which SSU information is available from the literature or GenBank and for which RPB1 information was tentatively gained from the original DNA samples as part of this study. The third source was de novo sequencing data of parasite SSU and RPB1 from individuals detected as infected by Nosema by SSU PCR screenings (Table S1 and S2).

The first source is very limited, comprising of only two pairs of sequences, one associated with infection of G. duebeni [56] and one associated with G. roeselii [51]. The second source included samples of G. fossarum, Niphargus schellenbergi from Luxembourg and Niphargellus arndti from Poland [34,57], G. pulex from Poland (Wroblewski unpublished), G. pulex and G. fossarum from Germany [58], G. duebeni from Ireland [59] and G. roeselii from France [23]. A large number of amphipod individuals from different countries were available for three taxa: Dikerogammarus villosus [60], G. roeselii [31] and G. balcanicus [61] from 34, 94 and 88 sites, located in 8, 19 and 13 countries, with 1436,1904 and 2225 host individuals tested, respectively. The third source was
associated with three host taxa we sampled during three local-scale surveys: G. duebeni (sites KER and ROS in Brittany, France), G. balcanicus (site SK in Slovakia), and G. pulex (5 sites in France, one in Germany and one in Poland). In addition, host individuals from two large-scale surveys we conducted on G. fossarum and G. balcanicus were included (S1 Table). In G. balcanicus (unlike other species), the sex of individuals was noted during dissection (S1 Table). This allowed us to test if females are more often infected than males, which is an indication of sex-biased infection by the parasites and suggestive of VT mode and sex ratio distortion, as previously shown in G. duebeni and G. roeselii [20,23].

Nosema infection status based on SSU ribosomal DNA sequencing

All host individuals without previous information on microsporidian infection were first screened to assess possible infection with N. granulosis based on the SSU marker. SSU was used for both molecular screening for microsporidian infection based on specific PCR primers for Microsporidia and assignment to Nosema based on BlastN searches [62] of sequenced PCR products against the sequences available in GenBank. All molecular lab work conditions were as described in [31].

Amplification and sequencing of Nosema RPB1

All Nosema-infected individuals (based on SSU) were selected for RPB1 amplification (276 individuals). As all published primers tested [52,53,63,64] failed to produce reliable PCR products of our samples, we designed new primers. Five RPB1 sequences were manually aligned, including three N. granulosis sequences (associated with infection of G. duebeni: DQ996233 and EF119339 [52], and G. roeselii: SBJO01000442 [51]), and two sequences from Nosema infecting insects: N. bombycis (DQ996231 [52]) and Nosema empoascae (DQ996232 [52]). Variable regions of interest for phylogenetic reconstruction and conserved regions suitable for primer design were identified
from the alignment. Two sets of degenerated primers were designed using Geneious 10.2.2 [65], targeting two non-overlapping fragments, named F2 and F4, starting at positions 386 and 1161 on the RPB1 gene of the genome SBJO01000442, respectively (S1 Fig). The F2 primers were 5'GKT GTG GRA ATA AAC AGC- 3^{\prime} (forward, F 2 f) and 5^{\prime} - TCT ACT CTC TTM CCC ATA AG3' (reverse, F2r), generating a 520 bp -long amplicon. The F4 primers were 5'-GAA AGA CAC ATG CAG RAT G-3' (forward, F4f) and 5'-TTC CWG ACA TGA TYT CTC C-3' (reverse, F4r), generating a 640 bp -long amplicon.

PCRs were performed in a volume of $30 \mu \mathrm{l}$, containing $2.5 \mathrm{mM} \mathrm{MgCl}_{2}, 0.5$ units of 5 PRIME HotMaster Taq DNA polymerase (Qiagen, Hilden, Germany), $0.2 \mu \mathrm{M}$ dNTPs (MP Biomedicals Europe, Illkirch, France), $0.2 \mu \mathrm{M}$ of forward and reverse primers each (Eurofins Genomics, Ebersberg, Germany) and 2 ng DNA template. Amplification conditions were as follows: an initial denaturing phase at $94^{\circ} \mathrm{C}$ for $2 \mathrm{~min}, 35$ cycles at $94^{\circ} \mathrm{C}$ for 20 s , annealing temperature was $50^{\circ} \mathrm{C}$ for each fragment for 20 s and extension was at $65^{\circ} \mathrm{C}$ for 30 s , with a final extension step at $65^{\circ} \mathrm{C}$ for 5 min. PCR products were purified and sequenced directly with the BigDye technology (Genewiz, Leipzig, Germany) using the forward PCR primers. The chromatograms showed no ambiguity in sequences and all the detected double peaks were of high quality. Nevertheless, seven PCR products were bi-directionally sequenced to test for uncertain nucleotide position associated with double peaks in chromatograms, and 17 products (from populations AL56, BF05, GR11, H05, NIT, PA and PL8 (S1 Table), were sequenced twice with the forward primer to confirm double peaks.

Using Geneious 10.2.2 [65], raw sequences were checked for microsporidian RPB1 specificity via BlastN search [62] against sequences available in GenBank. Each sequence was manually edited, and double peaks were called following the International Union of Pure and Applied Chemistry (IUPAC) degenerate nucleotide code. The RPB1 gene is known to be a nuclear single-copy gene in Vairimorpha necatrix, a close relative of Nosema [63], thus excluding paralogy as an explanation for the observed double peaks. Instead, they could result from double infections with

Nosema individuals harbouring different haplogroups or from single infections by heterozygous individuals. The F2 and F4 sequences were trimmed to the final size ranges of 282 to 455 bp and 280 to 562 bp , respectively, based on the quality level of the sequences. The RPB1 sequences were translated into amino acids to confirm the absence of stop codons (S1A Fig). Sequences were aligned after concatenation using MAFFT7.388 software $[66,67]$ with the E-IONS-I algorithm using the legacy gap penalty option, incorporated in Geneious 10.2.2 [65]. To eliminate introns, translated amino acid versions were also used as a backbone based on the reference the RPB1 sequence AF060234 from Vairimorpha necatrix.

Haplogroup definition and phylogeny reconstruction for microsporidians

As SSU and RPB1 sequence length was heterogeneous among individuals, definition of haplotypes sensu stricto was not possible. Following the approach described in [31], sequences of each marker were assigned to haplogroups as follows: two sequences were clustered in one haplogroup based on 100% pairwise nucleotide identity in their shared part, each haplogroup being defined by diagnostic SNPs [31]. Only few sequences could not be assigned to haplogroups, due to reduced sequence length and lack of diagnostic features (S2 Table). Some RPB1 haplogroups showed three short deletions in the F4 fragment (S1B Fig). Finally, the F2 or F4 fragments were missing for some individuals, because amplification failed, and were coded as missing data ("N"). The longest sequences of each haplogroup, were used for Bayesian phylogeny reconstruction (S2 Table). Haplogroup alignments used for building trees are provided in the Supplementary Data S1. Compared to SSU, nucleotide variation for the RPB1 marker was high, although mostly synonymous. Consequently, all codon positions were used for phylogenetic analyses.

For phylogenetic analyses, sequences of Nosema spp. infecting amphipods were complemented by a set of 11 species of Nosema/Vairimorpha spp. infecting insects, according to the taxonomic revision of [5], for which both SSU and RPB1 markers are available. We further included the two
following Nosema species (both infecting crayfish) in our analysis: Nosema cheracis, infecting the Australian crayfish species Cherax destructor introduced in Europe and Nosema austropotamobii, infecting Austropotamobius pallipes, a western European freshwater crayfish. Ordospora colligata served as the outgroup [68]. All details are given in S2 Table.

Phylogenetic reconstructions were performed separately for SSU and RPB1 using Bayesian inference implemented in MrBayes [69] integrated in Geneious 10.2.2. The best-fitting model of nucleotide substitution was determined with JModelTest-2.1.10. [70]. For both SSU and RPB1 we used the General Time Reversible (GTR) model with gamma-distributed rate heterogeneity (+G) and a proportion of invariable sites $(+\mathrm{I})$. For each marker, four heated chains, each $1,100,000$ iterations long, sampled every 100 iterations, were run. Runs reached satisfactory effective sampling sizes $(\mathrm{ESS}>200)$. Fifty percent majority-rule consensus trees were constructed after removal of 10% 'burn-in' trees. For the RPB1 phylogeny reconstruction, a maximum likelihoodtree was also constructed in MEGA version 11 [71] using the GTR+G+I model and node support was assessed with 1,000 bootstrap replicates.

Molecular species delimitation

To explore the number of molecular operational taxonomic units (MOTUs) that may represent potential species within the Nosema clade, we applied two methods: Assemble Species by Automatic Partitioning (ASAP) [72] and the Poisson tree processes (PTP) model [73]. ASAP was conducted using the ASAP webserver (https://bioinfo.mnhn.fr/abi/public/asap/ accessed on June 2, 2023) based on the distance matrix generated through IQ-TREE analysis [72]. ASAP divides species partitions based on pairwise genetic distances, and that was why the dataset for this analysis included only the sequences covering both fragments of RPB1 (F2 and F4). ASAP also computes a probability of panmixia (p-val), a relative gap width metric (W), and ranks results by the ASAP score: the lower the score, the better the partitioning [72].

PTP modelling was performed using the PTP web server (https://species.h-its.org/; accessed on June 1, 2023) with the Bayesian implementation (bPTP), which adds Bayesian support (pp) values for putative species to branches in the input tree. The PTP method infers speciation events based on a shift in the number of substitutions between internal nodes [73]. Analysis was run with 500000 iterations, the run was examined and showed convergence. The sites reported on Figs 1 and S2 were plotted on a map from Natural Earth resources in QGIS 3.32.0-Lima [74].

Testing sex-biased infection pattern

In G. balcanicus, 334 males and 310 females from 16 populations were tested for estimating the prevalence of Nosema (after removing the two populations in which no females were tested, S1 Table). A General Linearized Model (binomial distribution using a Logit transition function) was executed, analyzing the effect of sex and population as factors, and their interactions, on the infection rate by Nosema. A bias of infection towards females should be associated with sex ratio distortion [20,23].

Results

Based on SSU sequences, 316 individuals from nine amphipod species were found to be infected by Nosema spp. (S1 and S2 Table). Our new census yielded 181 new Nosema sequences: 89 from G. balcanicus, 39 from G. duebeni, 47 from G. fossarum, five from G. pulex (S1 Table). They extend a set of 136 sequences previously determined as Nosema (99 from G. roeselii, 18 from G. pulex, 7 from G. duebeni, 6 from G. fossarum, two from D. villosus, two from Eulimnogammarus verrucosus, one from N. arndti and one from N. schellenbergi) (S1 and S2 Tables).

The phylogenetic reconstruction inferred from the SSU marker was to a large extent in line with previously published phylogenetic reconstructions (e.g. [31]), except that the clade containing the

Nosema spp. found in amphipods also included a crayfish-infecting species (Fig 2). Most haplogroups (18/24) were found specifically infecting a single host species, while six were found in two to four host species.

Amplification success of the F2 and F4 fragments of RPB1 gene was variable, including no success (113 ind., 41%), single fragment amplified (57 ind., 21%) or both fragments amplified (105 ind., 38%). Therefore, we newly obtained RPB1 sequence information for 163 individuals (depending on DNA availability and sequencing success), including 60 from G. roeselii, 45 from G. balcanicus, 38 from G. fossarum, 15 from G. duebeni and 4 from G. pulex. To this set, two RPB 1 sequences of VT, feminizing, N. granulosis infecting G. duebeni from Scotland, Wales and Sweden $[48,53]$ were added which matched the F2 and F4 regions of RPB1 (GenBank accession numbers, DQ996233 and JX213747). The geographic distribution of the parasites for which the RPB1 sequences were obtained is shown in Fig 1.

Alignment of RPB1 sequences from Nosema infecting amphipods revealed 39 haplogroups (Fig 3) showing a higher variability compared to the phylogenetic relationships among haplogroups based on SSU sequences (Fig 3). The amphipod-infecting Nosema spp. were all within a welldefined and supported clade, which was the sister to a clade of insect-infecting Nosema spp. (sensu [5]). Based on the available sequences, the amphipod-Nosema clade also contained three sequences from non-amphipod hosts (Fig 3). All but one sequence of amphipod-infecting Nosema spp. could be assigned to five well-supported clades (named A to E, Fig 3). The single remaining sequence is associated with a branch (termed F) of uncertain phylogenetic position (highlighted in grey in Fig 3).

Parasites from clade A were found only in G. balcanicus (Fig 3), despite extensive sampling. These Nosema strains, particularly F2A2-3F4A2-3 and F2A2F4A2-3, were found in numerous populations, exhibiting high prevalence in some of the populations (see S1 Table), and their geographic distribution covered the entire geographic range of their host (Fig 1). However, they
were not found in other Gammarus species from the close area, and were particularly absent in G. roeselii, the other abundant host species overlapping G. balcanicus distribution (Fig 1). We found no clear pattern for co-diversification between G. balcanicus and these Nosema parasites. We were not able to run a formal co-diversification analysis, because the asymmetry of amplification of F2 and F4 fragments among some hosts (S2 Fig) prevented the construction of a complete matrix of genetic distance among parasite haplogroups of this relatively small clade. We nevertheless observed only little congruence of phylogenies between hosts and parasites (S2 Fig). We tested whether, with our dataset, we could provide clues suggesting the presence of VT/sex ratio distortion in Nosema clade A infecting G. balcanicus. A General Linearized Model analysis showed that the interaction sex*population was non-significant and the corrected Akaike Information Criterion (AICc) of the whole model was quite high (LR $\chi 2=18.03,15 \mathrm{df} ., \mathrm{P}=0.26$, $\mathrm{AICc}=553.19$), so the interaction was removed from the model. The non-significance of this interaction means that globally there was no difference in the infection rate between sexes among the different populations. The model including sex and population was globally significant (LR $\chi 2$ $=124.59,16$ df., $\mathrm{P}<0.0001, \mathrm{AICc}=538.60$). The infection rate significantly differed among populations, ranging from 4.2% (in populations AL57 and AL69) to 64.6% (in population UA03) (S1 Table). In total, males were more infected than females (26.9% vs. 14.8%, respectively, LR χ $2=17.67,1 \mathrm{df} ., \mathrm{P}<0.0001$). In most populations, there was no significant difference between sexes (12 populations), but in four populations, males were significantly more infected than females (populations AL56, H07, H09, H11).

Parasites from clade B were found in G. pulex and G. roeselii hosts. Gammarus roeselii parasites were restricted to south-eastern Europe (Greece and Albania), while the single haplogroup from G. pulex was recorded in France (Fig 1). Clades A and B were more distantly related to clades C, D and E.

Clade C included the parasites infecting G. duebeni, i.e. the host in which Nosema granulosis was first described as a vertically-transmitted, feminizing sex ratio distorter [10]. Interestingly, clade C also included Nosema infecting G. roeselii, in which vertical transmission and feminization has also been demonstrated [23,24]. Overall, clade C haplogroups were widespread all over Europe, and it must be noticed that a single haplogroup (F2C3F4C3) was frequent (52 occurrence) and detected in various populations of G. roeselii from six countries and in one French population of G. fossarum (Fig 2,3, S2 Table). Clade D, which appears to be closely related to clade C, consisted of highly similar haplogroups of Nosema that were solely found in G. fossarum (Fig 3, S3 Table). Clade D was restricted to France and Austria, and these parasites infected nine individuals from four populations. All haplogroups from clades C and D shared two short deletions in the F4 fragment (deletions of 27 and 15 bp) (S1 Fig) and they were not distinguishable using the SSU marker (Fig 2). Haplogroups of clade C included a supplementary 15 bp-long deletion.

Finally, clade E consisted of parasites infecting three host species (G. fossarum, G. pulex and G. duebeni) sampled at French and Swiss sites (Fig 1).

In summary, our sequences grouped within clades $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}$, with C and D being sister groups, and a single sequence identified as lineage F. The ASAP molecular delimitation analysis revealed four putative species within Nosema infecting amphipod crustaceans (excluding lineage F), mostly overlapping with the aforementioned clades, but C and D grouped as one species, here interpreted as Nosema granulosis sensu stricto (Fig 3). On the other hand, bPTP overall suggested from 19 to 29 putative species, with partitioning to 25 species with the highest support (lowest posterior probability 0.50) (S2 Appendix), and 13 species within Nosema found in amphipods (Fig 3).

Discussion

Our results indicate that various microsporidian lineages of the genus Nosema, not only N. granulosis, are abundant, widespread and diverse in European gammarid amphipods. Thus, we
deepen our knowledge of host range for this parasitic genus beyond the already well-known insects and terrestrial hosts (e.g. [75,76,77]). Indeed, our phylogenetic reconstructions unambiguously grouped freshwater amphipod parasites as a sister group to Lepidoptera and Hymenopterainfecting Nosema (sensu [5]). However, we cannot formally conclude that amphipod Nosema are monophyletic. The phylogenetic tree reconstruction based on the RPB1 marker suggests that Nosema spp. found in freshwater crustaceans are not limited to amphipod hosts and include one terrestrial species, Nosema empoascae. Furthermore, Nosema isolates infecting crayfish are nested within those infecting amphipods. This could suggest either that there has been an ancient Nosema infection in Malacostraca (the crustacean group to which amphipods and decapods belong), or a freshwater origin of this Nosema clade, with horizontal transfers between host species. The divergence among crustacean Nosema strains reported here could appear low compared to host divergence (Malacostraca diversified around 300 MYA [78]). Crustaceans colonized freshwater at diverse times independently [79]. If so, the most likely explanation would be horizontal transfer of parasites. However, the molecular phylogenetic reconstructions of the hosts and the parasites could not be compared directly since different genetic markers were used. For example, the NewZealand amphipod hosts and their microsporidian parasites (Dictyocoela) seemed to have initiated their diversification simultaneously several MYA, but their genetic divergence appears to have reached different levels [35]. The presence of the insect-infecting N. empoascae within the Nosema lineage infecting crustaceans is more puzzling and may reflect horizontal transfer between crustaceans and insects. Consistently, horizontal transfer of Wolbachia intracellular microorganisms between insects and crustaceans has previously been suggested [80]. However, owing to the strict terrestrial life cycle of the insect host of N. empoascae (Empoasca fabae, a small leafhopper of the Cicadellidae family [81]) a recent host shift is ecologically difficult to conceive in the present state of knowledge. In addition, this parasite seems to be vertically transmitted in its host [82], which may further reduce the likelihood of horizontal transfer between hosts. However, the existence of additional vector/intermediate hosts such as water insects or
terrestrial insects drowning in water cannot be excluded, as suggested for Nosema cheracis [11], even if no data is available up to now. Besides, microsporidian samples presently available for insect hosts are far from representative of the global diversity of Nosema infecting these hosts. Thus, future studies are necessary to address the problem of the potential transfer of Nosema between aquatic and terrestrial ecosystems.

The improved phylogenetic resolution of the RPB1 marker compared to SSU allowed us to distinguish five Nosema clades infecting amphipods [31,51]. Clade A was found only associated with G. balcanicus, whose biogeographical history is well documented for both host and other microsporidian parasites [36,39,40]. In this case, host specificity may be proposed. Indeed, clade A parasites infected individuals in several locations throughout the entire host range. In addition, they colonized diverse host cryptic lineages (S2 Fig.) but they were not found in other Gammarus spp., conversely to most other Nosema parasites revealed in this study. An infection by Nosema clade A therefore possibly occurred anciently in G. balcanicus and subsequently spread further during host radiation. However, unlike other microsporidian parasites [40], no clear codiversification pattern was found between Nosema clade A and G. balcanicus (S2 Fig). Therefore, ancient infection followed by several horizontal transfers may explain the present distribution of Nosema in G. balcanicus. Parasites belonging to clade D were restricted to a few lineages of the G. fossarum species complex [44]. However, the range of the host G. fossarum is pan-European, and since we did not have access to the whole geographic range for our survey, we cannot firmly conclude that the parasites of clade D are specific to this host. Because of the low diversity within this clade, it is likely that these infections were recently acquired by the host species.

Prior to this study, microsporidians from gammarids showing high score values by BlastNN with Nosema granulosis isolated from G. duebeni based on SSU sequences were generally assigned either to N. granulosis [31,34], to Nosema sp. or to Vairimorpha sp. [83]. Here we found that the vertically-transmitted (VT) and feminizing N. granulosis described from G. duebeni [10,19-21] correspond to clade C, also includes the closely related Nosema from G. roeselii, which likely is a

VT sex ratio distorting parasite [23,24]. These infections are characterized by a high number of infected individuals in each host species, numerous infected populations, and few haplogroups in each species (e.g., in G. roeselii, 77 individuals from 12 populations share the same RPB1 variant). As noted in [31], all these traits are compatible with the dynamics of VT-feminizing microsporidians. Their spread in host populations is enhanced by parasite-induced female-biased sex ratios of host progenies, which provides a selective advantage for infected vs. uninfected females [30]. Theoretical models suggest that female-biased sex ratios result in populations with high numbers of individuals and high demographic dynamics that may outcompete non-infected populations [30]. Thus, the presence of this VT N. granulosis infection might have facilitated the recent spread of the host species, G. roeselii, in western Europe [32,37], by directly enhancing host invasion success through increased rates of population growth, as suggested for another amphipod Crangonyx pseudogracilis and its VT-parasite, Fibrillanosema crangonycis [84,85]. Because all Nosema belonging to clade C are genetically very similar to the originally described N. granulosis (0.02 ± 0.003 average genetic divergence over all RPB1 sequence pairs), we propose that all parasites clustering into clade C should be referred to as N. granulosis. Furthermore, because i) clades C and D are in a close sister group relationship, ii) clade C contains sequences linked to type material used for N. granulosis description [10], iii) the monophyly of clades $\mathrm{C}+\mathrm{D}$ is statistically supported, and iv) clade $\mathrm{C}+\mathrm{D}$ is also supported by the ASAP analysis, we propose that clades C and D should be seen as Nosema granulosis sensu stricto. By contrast, we suggest that parasites grouped into clades A, B and E and lineage F may be candidates to the status of new Nosema species, based on their genetic divergence supported by the species delimitation analysis. Remarkably, this divergence is larger than the range of divergence observed for Nosema taxa from insects. It may be explained by the differences in mutation rate and evolutionary dynamics between Nosema spp. infecting gammarids and insects. In our interpretation of the number of putative Nosema species infecting gammarids, we followed a more conservative approach: we based our outcomes on the ASAP results assuming fewer putative species than the bPTP analysis.

There are many studies demonstrating that ASAP is often in congruence with morphological/biological species delimitation while bPTP method tends to overestimate the species number [e.g. 47,86,87]. However, more studies including ultrastructural analysis are needed to formally describe those clades as putative species. We also cannot exclude that our new lineages can be Nosema spp. already described from different amphipods, including G. pulex, based solely on morphology (light microscopy for older observations) [13-17,88]. However, morphological descriptions of Nosema can be misleading [5], and using an integrative approach is advisable and ultimately could lead to taxonomic revisions [89].

Interestingly, most haplogroups involving Nosema from clades B, D and E are present in a single or few individuals within the same population. Because of the sharp contrast of this infection pattern compared to clade C, it does not seem reasonable to us to propose that parasites of clades B, D, and E are feminizing and VT microsporidia. Contrastingly, infections in G. balcanicus hosts belonging to clade A show an infection pattern similar to those of clade C. For example, sequences in populations from Slovakia, Hungary and Romania show closely-related or similar RPB1 haplogroups infecting numerous individuals (> 70) in a dozen of populations all over the host geographic range. This pattern therefore resembles the VT-feminizing N. granulosis infection patterns in G. roeselii (Fig 2, 3). However, the analysis of infection patterns relative to sexes showed that there were no significant differences in prevalence between sexes in most populations. Yet, parasites that have been shown to be sex ratio distorters - such as N. granulosis in G. duebeni and G. roeselii or Wolbachia pipientis in the isopod Armadillidium vulgare - are always more frequent in females than in males (which makes sense given that the parasites convert infected males into females) [20,23,90]. The high prevalence and above all the homogeneity of Nosema haplogroups across the geographic range of G. balcanicus is therefore puzzling. Based on this survey and previous evidence, VT and feminization in Nosema infecting amphipods therefore currently appear to be limited to N. granulosis belonging to clade C . It is noteworthy that clade C
also contains parasites infecting G. fossarum individuals, which opens the possibility that VTfeminization might be found in a larger spectrum of amphipod species than previously thought.

In conclusion, our study illustrates the interest of using the RPB1 marker for the study of Nosema parasites, allowing elucidating the parasitic richness in their gammarid hosts. We found that Nosema diversity is much higher in amphipods than previously thought, and that the association appears to be ancient in this host group. Furthermore, the new host species found to be infected by N. granulosis sensu stricto opens the possibility that VT-feminization may be present in a larger spectrum of amphipod species. Finally, given that gammarids are keystone species in the functioning of freshwater environments, with their functions being affected by microsporidian infections [91-94-], it is of crucial importance to correctly identify host-parasite relationships by means of reliable markers.

Acknowledgments

We acknowledge the French National Research Agency (ANR) (Grant \# ANR-15-CE32-0006) for paying AQ salary, for contribution in designing the study, molecular analyses, statistical analyses, writing the manuscript; as well as the 'Polonium' exchange program (PPN/BIL/2018/1/00138), for funding travel between France and Poland in terms of analysing the results and writing the manuscript by the authors. The sampling was performed during a series of scientific expeditions in the years 2004-2021 supported by internal funds of the University of Lodz and partially by the Polish Ministry of Science and Higher Education, grant number N N303 579439, as well as the French National Research Agency (ANR) "Recolnat ANR-11-INBS-0004", Bourgogne-FrancheComté Region Recherche d'Excellence BFC "PIA-Recolnat', CNRS-INSU OSU-THETA Franche-Comté Bourgogne (SRO 2022). We would like to thank Tomasz Mamos for sharing DNA extracts from G. balcanicus used in Mamos et al. (2016). We also thank Tomasz Rewicz and Alicja Konopacka for assistance with sampling.

We thank Dr. Joseph Ironside (Aberystwyth University) and two anonymous reviewers for their valuable comments on the previous version of the manuscript, that significantly improved the paper.

References

1. Franzen C. Microsporidia: A review of 150 years of research. Open Parasitol J. 2008;2: 134. doi:10.2174/1874421400802010001
2. Vávra J, Lukeš J. Microsporidia and 'The art of living together.' Adv Parasitol. 2013. pp. 253-319. doi:10.1016/B978-0-12-407706-5.00004-6
3. Mathis A. Microsporidia: emerging advances in understanding the basic biology of these unique organisms. Int J Parasitol. 2000;30: 795-804. doi:10.1016/S0020-7519(00)00064-3
4. Naegeli K. Über die neue Krankheit der Seidenraupe und verwandte Organismen. Botanische Zeitung. 1857;15: 760-761.
5. Tokarev YS, Huang W-F, Solter LF, Malysh JM, Becnel JJ, Vossbrinck CR. A formal redefinition of the genera Nosema and Vairimorpha (Microsporidia: Nosematidae) and reassignment of species based on molecular phylogenetics. J Invertebr Pathol. 2020;169: 107279. doi:10.1016/j.jip.2019.107279
6. Lockwood JA, Bomar CR, Ewen AB. The history of biological control with Nosema locustae: Lessons for locust management. Int J Trop Insect Sci. 1999;19: 333-350. doi:10.1017/S1742758400018968
7. Lewis LC, Bruck DJ, Prasifka JR, Raun ES. Nosema pyrausta: Its biology, history, and potential role in a landscape of transgenic insecticidal crops. Biol Control. 2009;48: 223231. doi:10.1016/j.biocontrol.2008.10.009
8. Higes M, Martín-Hernández R, García-Palencia P, Marín P, Meana A. Horizontal transmission of Nosema ceranae (Microsporidia) from worker honeybees to queens (Apis mellifera). Environ Microbiol Rep. 2009;1: 495-498. doi:10.1111/j.17582229.2009.00052.x
9. Han M-S, Watanabe H. Transovarial transmission of two microsporidia in the silkworm, Bombyx mori, and disease occurrence in the progeny population. J Invertebr Pathol. 1988;51: 41-45. doi:10.1016/0022-2011(88)90086-9
10. Terry RS, Smith JE, Bouchon D, Rigaud T, Duncanson P, Sharpe RG, et al. Ultrastructural characterisation and molecular taxonomic identification of Nosema granulosis n. sp., a transovarially transmitted feminising (TTF) microsporidium. J Eukaryot Microbiol. 1999;46: 492-499. doi:10.1111/j.1550-7408.1999.tb06066.x
11. Moodie EG, Le Jambre LF, Katz ME. Ultrastructural characteristics and small subunit ribosomal DNA sequence of Vairimorpha cheracis sp. nov., (Microspora: Burenellidae), a
parasite of the Australian yabby, Cherax destructor (Decapoda: Parastacidae). J Invertebr Pathol. 2003;84: 198-213. doi:10.1016/j.jip.2003.11.004
12. Pretto T, Montesi F, Ghia D, Berton V, Abbadi M, Gastaldelli M, et al. Ultrastructural and molecular characterization of Vairimorpha austropotamobii sp. nov. (Microsporidia: Burenellidae) and Thelohania contejeani (Microsporidia: Thelohaniidae), two parasites of the white-clawed crayfish, Austropotamobius pallipes complex (Decapoda: Astacidae). J Invertebr Pathol. 2018;151: 59-75. doi:10.1016/j.jip.2017.11.002
13. Van Ryckeghem J. Les Cnidosporidies et autres parasites du Gammarus pulex. Cellule. 1930;39: 400-416.
14. Larsson R. On two microsporidia of the amphipod Rivulogammarus pulex light microscopical and ultrastructural observations on Thelohania muelleri (Pfeiffer, 1895) and Nosema rivulogammari n. sp. (Microspora, Thelohaniidae and Nosematidae). Zoologischer Anzeiger. 1983;211: 299-323.
15. Ovcharenko M, Codreanu-Balcescu D, Grabowski M, Konopacka A, Wita I, Czaplinska U. Gregarines (Apicomplexa) and microsporidians (Microsporidia) of native and invasive gammarids (Amphipoda, Gammaroidea), occurring in Poland. Wiadomości Parazytologiczne. 2009;55: 237-247.
16. Ovcharenko M, Wroblewski PP. An intracellular prokaryotic microorganism associated with microsporidiosis of invasive amphipods Pontogammarus robustoides. Baltic Coastal Zone Journal of Ecology and Protection of the Coastline. 2016; 2016-2020.
17. Lipa JJ. Nosema kozhovi sp. n., a new microsporidian parasite oi Brandtia lata lata (Crustacea, Gammaridae) of Baikal Lake. Acta Protozool. 1967;5: 93-96.
18. Bojko J, Ovcharenko M. Pathogens and other symbionts of the Amphipoda: taxonomic diversity and pathological significance. Dis Aquat Organ. 2019;136: 3-36. doi:10.3354/dao03321
19. Dunn AM, Smith JE. Microsporidian life cycles and diversity: The relationship between virulence and transmission. Microbes Infect. 2001;3: 381-388. doi:10.1016/S1286-4579(01)01394-6
20. Terry RS, Smith JE, Sharpe RG, Rigaud T, Littlewood DTJ, Ironside JE, et al. Widespread vertical transmission and associated host sex-ratio distortion within the eukaryotic phylum Microspora. Proc R Soc Lond B Biol Sci. 2004;271: 1783-1789. doi:10.1098/rspb.2004.2793
21. Ironside JE, Alexander J. Microsporidian parasites feminise hosts without paramyxean coinfection: Support for convergent evolution of parasitic feminisation. Int J Parasitol. 2015;45: 427-433. doi:10.1016/j.ijpara.2015.02.001
22. Dunn A, Terry R, Smith J. Transovarial transmission in the microsporidia. Adv Parasitol. Elsevier; 2001. pp. 57-100. doi:10.1016/S0065-308X(01)48005-5
23. Haine ER, Brondani E, Hume KD, Perrot-Minnot MJ, Gaillard M, Rigaud T. Coexistence of three microsporidia parasites in populations of the freshwater amphipod Gammarus roeseli: Evidence for vertical transmission and positive effect on reproduction. Int J Parasitol. 2004;34: 1137-1146. doi:10.1016/j.ijpara.2004.06.006
24. Haine ER, Motreuil S, Rigaud T. Infection by a vertically-transmitted microsporidian parasite is associated with a female-biased sex ratio and survival advantage in the amphipod Gammarus roeseli. Parasitology. 2007;134: 1363-1367. doi:10.1017/S0031182007002715
25. Jahnke M, Smith JE, Dubuffet A, Dunn AM. Effects of feminizing microsporidia on the masculinizing function of the androgenic gland in Gammarus duebeni. J Invertebr Pathol. 2013;112: 146-151. doi:10.1016/j.jip.2012.11.008
26. Rodgers-Gray TP, Smith JE, Ashcroft AE, Isaac RE, Dunn AM. Mechanisms of parasiteinduced sex reversal in Gammarus duebeni. Int J Parasitol. 2004;34: 747-753. doi:10.1016/j.ijpara.2004.01.005
27. Ironside JE, Dunn AM, Rollinson D, Smith JE. Association with host mitochondrial haplotypes suggests that feminizing microsporidia lack horizontal transmission. J Evol Biol. 2003;16: 1077-1083. doi:10.1046/j.1420-9101.2003.00625.x
28. Kelly A, Dunn AM, Hatcher MJ. Incomplete feminisation by the microsporidian sex ratio distorter, Nosema granulosis, and reduced transmission and feminisation efficiency at low temperatures. Int J Parasitol. 2002;32: 825-831. doi:10.1016/S0020-7519(02)00019-X
29. Terry RS, Dunn AM, Smith JE. Cellular distribution of a feminizing microsporidian parasite: a strategy for transovarial transmission. Parasitology. 1997;115: 157-163. doi:10.1017/S0031182097001236
30. Rood ES, Freedberg S. Intragenomic conflict produces sex ratio dynamics that favor maternal sex ratio distorters. Ecol Evol. 2016;6: 8085-8093. doi:10.1002/ece3.2498
31. Quiles A, Bacela-Spychalska K, Teixeira M, Lambin N, Grabowski M, Rigaud T, et al. Microsporidian infections in the species complex Gammarus roeselii (Amphipoda) over its geographical range: evidence for both host-parasite co-diversification and recent host shifts. Parasit Vectors. 2019;12: 327. doi:10.1186/s13071-019-3571-z
32. Csapó H, Krzywoźniak P, Grabowski M, Wattier R, Bącela-Spychalska K, Mamos T, et al. Successful post-glacial colonization of Europe by single lineage of freshwater amphipod from its Pannonian Plio-Pleistocene diversification hotspot. Sci Rep. 2020;10: 18695. doi:10.1038/s41598-020-75568-7
33. Grabner DS, Schertzinger G, Sures B. Effect of multiple microsporidian infections and temperature stress on the heat shock protein 70 (hsp70) response of the amphipod Gammarus pulex. Parasit Vectors. 2014;7: 170. doi:10.1186/1756-3305-7-170
34. Weigand AM, Kremers J, Grabner DS. Shared microsporidian profiles between an obligate (Niphargus) and facultative subterranean amphipod population (Gammarus) at sympatry provide indications for underground transmission pathways. Limnologica. 2016;58: 7-10. doi:10.1016/j.limno.2016.01.005
35. Park E, Jorge F, Poulin R. Shared geographic histories and dispersal contribute to congruent phylogenies between amphipods and their microsporidian parasites at regional and global scales. Mol Ecol. 2020;29: 3330-3345. doi:10.1111/mec. 15562
36. Mamos T, Wattier R, Burzyński A, Grabowski M. The legacy of a vanished sea: a high level of diversification within a European freshwater amphipod species complex driven by 15 My of Paratethys regression. Mol Ecol. 2016;25: 795-810. doi:10.1111/mec. 13499
37. Grabowski M, Mamos T, Bącela-Spychalska K, Rewicz T, Wattier RA. Neogene paleogeography provides context for understanding the origin and spatial distribution of cryptic diversity in a widespread Balkan freshwater amphipod. PeerJ. 2017;5: e3016. doi:10.7717/peerj. 3016
38. Copilaş- Ciocianu D, Petrusek A. Phylogeography of a freshwater crustacean species complex reflects a long-gone archipelago. J Biogeogr. 2017;44: 421-432. doi:10.1111/jbi. 12853
39. Quiles A, Rigaud T, Wattier RA, Grabowski M, Bacela-Spychalska K. Wide geographic distribution of overlooked parasites: Rare microsporidia in Gammarus balcanicus, a species complex with a high rate of endemism. Int J Parasitol: Parasites Wildl. 2021;14: 121-129. doi:10.1016/j.ijppaw.2021.01.004
40. Quiles A, Wattier RA, Bacela-Spychalska K, Grabowski M, Rigaud T. Dictyocoela microsporidia diversity and co-diversification with their host, a gammarid species complex (Crustacea, Amphipoda) with an old history of divergence and high endemic diversity. BMC Evol Biol. 2020;20: 149. doi:10.1186/s12862-020-01719-z
41. Hou Z, Sket B, Shuqiang L. Eocene habitat shift from saline to freshwater promoted Tethyan amphipod diversification. PNAS. 2011; 108(135): 14533-14538. Doi.org/10.1073/pnas. 1104636108
42. Hupalo K, Mamos T, Wrzesinska W, Grabowski M. First endemic freshwater Gammarus from Crete and its evolutionary history-an integrative taxonomy approach. PeerJ:6: e4457. doi.org/10.7717/peerj. 4457
43. Hupalo K, Karaouzaz I, Mamos T, Grabowski M. Molecular data suggest multiple origins and diversification times of freshwater gammarids on the Aegean archipelago. Sci Rep. 2020: 10: 19813. doi.org/10.1038/s41598-020-75802-2
44. Wattier R, Mamos T, Copilaş-Ciocianu D, Jelić M, Ollivier A, Chaumot A, et al. Continentalscale patterns of hyper-cryptic diversity within the freshwater model taxon Gammarus fossarum (Crustacea, Amphipoda). Sci Rep. 2020;10: 16536. doi:10.1038/s41598-020-73739-0
45. Hou Z, Sket B, Fiser C, Li S. Eocene habitat shift from saline to freshwater promoted Tethyan amphipod diversification. PNAS. 2011;108: 14533-14538. doi:10.1073/pnas. 1104636108
46. Vossbrinck CR, Debrunner-Vossbrinck BA, Weiss LM. Phylogeny of the Microsporidia. Microsporidia: Pathogens of Opportunity: First Edition. Chichester, UK: John Wiley \& Sons, Inc.; 2014. pp. 203-220. doi:10.1002/9781118395264.ch6
47. Bacela-Spychalska K, Wróblewski P, Mamos T, Grabowski M, Rigaud T, Wattier R, et al. Europe-wide reassessment of Dictyocoela (Microsporidia) infecting native and invasive amphipods (Crustacea): Molecular versus ultrastructural traits. Sci Rep. 2018;8: 1-16. doi:10.1038/s41598-018-26879-3
48. Xu J, Pan G, Fang L, Li J, Tian X, Li T, et al. The varying microsporidian genome: Existence of long-terminal repeat retrotransposon in domesticated silkworm parasite Nosema bombycis. Int J Parasitol. 2006;36: 1049-1056. doi:10.1016/j.ijpara.2006.04.010
49. Cornman RS, Chen YP, Schatz MC, Street C, Zhao Y, Desany B, et al. Genomic analyses of the microsporidian Nosema ceranae, an emergent pathogen of honey bees. PLoS Pathog. 2009;5. doi:10.1371/journal.ppat. 1000466
50. Chen Y ping, Pettis JS, Zhao Y, Liu X, Tallon LJ, Sadzewicz LD, et al. Genome sequencing and comparative genomics of honey bee microsporidia, Nosema apis reveal novel insights into host-parasite interactions. BMC Genomics. 2013;14: 451. doi:10.1186/1471-2164-14451
51. Cormier A, Chebbi MA, Giraud I, Wattier R, Teixeira M, Gilbert C, et al. Comparative genomics of strictly vertically transmitted, feminizing Microsporidia endosymbionts of amphipod crustaceans. Genome Biol Evol. 2021;13: evaa245. doi:10.1093/gbe/evaa245
52. Ironside JE. Multiple losses of sex within a single genus of Microsporidia. BMC Evol Biol. 2007;7: 48. doi:10.1186/1471-2148-7-48
53. Cheney SA, Lafranchi-Tristem NJ, Bourges D, Canning EU. Relationships of microsporidian genera, with emphasis on the polysporous genera, revealed by sequences of the largest subunit of RNA polymerase II (RPB1). J Eukaryot Microbiol. 2001;48: 111-7. doi:10.1111/j.1550-7408.2001.tb00422.x
54. Tokarev YS, Timofeev SA, Malysh JM, Tsarev AA, Ignatieva AN, Tomilova OG, et al. Hexokinase as a versatile molecular genetic marker for Microsporidia. Parasitology. 2019. doi:10.1017/S0031182018001737
55. Cramer P, Bushnell DA, Kornberg RD. Structural basis of transcription: RNA polymerase II at 2.8 ångstrom resolution. Science. 2001;292: 1863-1876. doi:10.1126/science. 1059493
56. Ironside JE. Diversity and recombination of dispersed ribosomal DNA and protein coding genes in Microsporidia. PLoS ONE. 2013;8: e55878. doi:10.1371/journal.pone. 0055878
57. Grabner D, Weber D, Weigand AM. Updates to the sporadic knowledge on microsporidian infections in groundwater amphipods (Crustacea, Amphipoda, Niphargidae). Subterr Biol. 2020;33: 71-85. doi:10.3897/subtbiol.33.48633
58. Prati S, Grabner DS, Pfeifer SM, Lorenz AW, Sures B. Generalist parasites persist in degraded environments: a lesson learned from microsporidian diversity in amphipods. Parasitology. 2022;149: 973-982. doi:10.1017/S0031182022000452
59. Krebes L, Blank M, Frankowski J, Bastrop R. Molecular characterisation of the Microsporidia of the amphipod Gammarus duebeni across its natural range revealed hidden diversity, wide-ranging prevalence and potential for co-evolution. Infect Genet Evol. 2010;10: 1027-1038. doi:10.1016/j.meegid.2010.06.011
60. Wattier RA, Haine ER, Beguet J, Martin G, Bollache L, Muskó IB, et al. No genetic bottleneck or associated microparasite loss in invasive populations of a freshwater amphipod. Oikos. 2007;116: 1941-1953. doi:10.1111/j.0030-1299.2007.15921.x
61. Quiles A. Evolutionary histories of symbioses between microsporidia and their amphipod hosts: contribution of studying two hosts over their geographic ranges. PhD Thesis, Bourgogne Franche-Comté. 2019.
62. Madden T. The BLAST Sequence Analysis Tool. The NCBI Handbook. National Center for Biotechnology Information (US); 2003. pp. 1-15. doi:10.1086/597785
63. Hirt RP, Logsdon JM, Healy B, Dorey MW, Doolittle WF, Embley TM. Microsporidia are related to Fungi: Evidence from the largest subunit of RNA polymerase II and other proteins. PNAS. 1999;96: 580-585. doi:10.1073/pnas.96.2.580
64. Stiller JW, Hall BD. The origin of red algae: Implications for plastid evolution. Evolution. 1997;94: 4520-4525. doi:10.1073/pnas.94.9.4520
65. Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, et al. Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics. 2012;28: 1647-1649. doi:10.1093/bioinformatics/bts199
66. Katoh K. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 2002;30: 3059-3066. doi:10.1093/nar/gkf436
67. Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol Biol Evol. 2013;30: 772-780. doi:10.1093/molbev/mst010
68. Refardt D, Canning EU, Mathis A, Cheney SA, Lafranchi-Tristem NJ, Ebert D. Small subunit ribosomal DNA phylogeny of microsporidia that infect Daphnia (Crustacea: Cladocera). Parasitology. 2002;124: 381-389. doi:10.1017/S0031182001001305
69. Huelsenbeck JP, Ronquist F. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics. 2001;17: 754-755. doi:10.1093/bioinformatics/17.8.754
70. Darriba D, Taboada GL, Doallo R, Posada D. JModelTest 2: More models, new heuristics and parallel computing. Nat Methods. 2012;9: 772. doi:10.1038/nmeth. 2109
71. Tamura K, Stecher G, Kumar S. MEGA11: Molecular Evolutionary Genetics Analysis version 11. Molecul Biol Evol. 2021,38: 3022-3027. doi:10.1093/molbev/msab120
72. Puillandre N, Brouillet S, Achaz G. ASAP: assemble species by automatic partitioning. Mol Ecol Res. 2021, 21: 609-620. doi: 10.1111/1755-0998.13281
73. Zhang J, Kapli P, Pavlidis P, Stamatakis A. A General Species Delimitation Method with Applications to Phylogenetic Placements. Bioinformatics, 2013. 29(22): 2869-2876. doi: 10.1093/bioinformatics/btt499
74. QGIS Development Team, 2023. QGIS Geographic Information System. Open Source Geospatial Foundation Project. http://qgis.osgeo.org
75. Park E, Poulin R. Revisiting the phylogeny of microsporidia. Int J Parasitol. 2021;51: 855864. doi:10.1016/j.ijpara.2021.02.005
76. Wadi L, Reinke AW. Evolution of microsporidia: An extremely successful group of eukaryotic intracellular parasites. PLoS Pathog, 2020. 16(2): e1008276. doiorg.inee.bib.cnrs.fr/10.1371/journal.ppat. 1008276
77. Bojko J, Reinke AW, Stentiford GD, Williams B, Rogers MSJ, Bass D. Microsporidia: a new taxonomic, evolutionary, and ecological synthesis. Trends Parasitol. 2022;38: 642-659. doi:10.1016/j.pt.2022.05.007
78. Oakley TH, Wolfe JM, Lindgren AR, Zaharoff AK. Phylotranscriptomics to bring the understudied into the fold: Monophyletic Ostracoda, fossil placement, and pancrustacean phylogeny. Mol Biol Evol. 2013;30: 215-233. doi:10.1093/molbev/mss216
79. Ahyong ST, Huang C. Colonization, adaptation, radiation, and diversity in fresh water. Poore G. C. B. \& Thiel M. The Natural History of the Crustacea: Evolution and Biogeography of the Crustacea. Poore G. C. B. \& Thiel M. Oxford University Press; 2020. pp. 303-330.
80. Cordaux R, Michel-Salzat A, Bouchon D. Wolbachia infection in crustaceans: novel hosts and potential routes for horizontal transmission. J Evol Biol. 2001;14: 237-243. doi:10.1046/j.1420-9101.2001.00279.x
81. Ni X, Backus EA, Maddox JV. A New microsporidium, Nosema empoascae n. sp., from Empoasca fabae (Harris) (Homoptera: Auchenorrhyncha: Cicadellidae). J Invertebr Pathol. 1995;66: 52-59. doi:10.1006/jipa.1995.1060
82. Ni X, Backus EA, Maddox JV. Transmission Mechanisms of Nosema empoascae (Microspora: Nosematidae) in Empoasca fabae (Homoptera: Cicadellidae). J Invertebr Pathol. 1997;69: 269-275. doi:10.1006/jipa.1996.4646
83. Madyarova EV, Adelshin RV, Dimova MD, Axenov-Gribanov DV, Lubyaga YA, Timofeyev MA. Microsporidian parasites found in the hemolymph of four Baikalian endemic amphipods. PLoS ONE. 2015;10: e0130311. doi:10.1371/journal.pone.0130311
84. Galbreath Slothouber JGM, Terry RS, Becnel JJ, Dunn AM. Invasion success of Fibrillanosema crangonycis, n.sp., n.g.: a novel vertically transmitted microsporidian parasite from the invasive amphipod host Crangonyx pseudogracilis. Int J Parasitol. 2004;34: 235-244. doi:10.1016/j.ijpara.2003.10.009
85. Slothouber Galbreath JGM, Smith JE, Becnel JJ, Butlin RK, Dunn AM. Reduction in postinvasion genetic diversity in Crangonyx pseudogracilis (Amphipoda: Crustacea): a genetic bottleneck or the work of hitchhiking vertically transmitted microparasites? Biol Invasions. 2010;12: 191-209. doi:10.1007/s10530-009-9442-3
86. Mamos T, Jazdzewski K, Ciamporova-Zatovicova Z, Ciampor F Jr, Grabowski M. Fuzzy species borders of glacial survivalists in the Carpathian biodiversity hotspot revealed using a multimarker approach. Sci Rep 2021;11: 21629. doi.org/10.1038/s41598-021-00320-8
87. Guo B, Kong L. Comparing the efficiency of single-locus species delimitation methods within Trochoidea (Gastropoda: Vetigastropoda). Genes. 2022;13(12): 2273. doi.org/10.3390/genes13122273
88. Desportes I, Ginsburgervogel T, Zerbib C. Demonstration of 2 Microsporidia in amphipod crustacean, Orchestia-Gammarellus (pallas) - Nosema and Thelohania. J Protozool. 1976;23: A8-A9.
89. Ovcharenko MO, Bacela K, Wilkinson T, Ironside JE, Rigaud T, Wattier RA. Cucumispora dikerogammari n. gen. (Fungi: Microsporidia) infecting the invasive amphipod Dikerogammarus villosus : a potential emerging disease in European rivers. Parasitology. 2010;137: 191-204. doi:10.1017/S0031182009991119
90. Durand S, Lheraud B, Giraud I, Bech N, Grandjean F, Rigaud T, et al. Heterogeneous distribution of sex ratio distorters in natural populations of the isopod Armadillidium vulgare. Biol Lett. 2023;19: 20220457. doi:10.1098/rsbl.2022.0457
91. Gerhardt A. GamTox: A low-cost multimetric ecotoxicity test with Gammarus spp. for In and Ex Situ application. Int J Zool. 2011;2011: 1-7. doi:10.1155/2011/574536
92. Bunke M, Alexander ME, Dick JTA, Hatcher MJ, Paterson R, Dunn AM. Eaten alive: cannibalism is enhanced by parasites. R Soc Open Sci. 2015;2: 140369. doi:10.1098/rsos. 140369
93. Gismondi E, Rigaud T, Beisel J-N, Cossu-Leguille C. Effect of multiple parasitic infections on the tolerance to pollutant contamination. PLoS ONE. 2012;7: e41950. doi:10.1371/journal.pone. 0041950
94. Gismondi E, Rigaud T, Beisel J-N, Cossu-Leguille C. Microsporidia parasites disrupt the responses to cadmium exposure in a gammarid. Environ Pollut. 2012;160: 17-23. doi:10.1016/j.envpol.2011.09.021

Figure captions:

Figure 1. Geographic distribution of Nosema spp. infecting a range of amphipod hosts based on data listed in S1 and S2 Table. Assignment to clades or lineages is based on RPB1 (see Fig 3). The infection of Nosema sp. in Eulimnogammarus verrucosus from the Lake Baikal, Russia is not shown. The sites were plotted on a map from Natural Earth resources in QGIS 3.32.0-Lima [74].

Figure 2. Bayesian phylogenetic reconstruction of Nosema spp. based on small ribosomal subunit (SSU) rDNA, and their association to different host species. Ordospora colligata (AF394529) was used as an outgroup (not shown). Labels include: Genbank accession number (for previously published sequences), microsporidian species name as given in [5] and for the newly produced sequences the haplogroup name is given as in S1 and S2 Table. An X denotes an association and a figure denotes the number of individuals infected, each amphipod species being represented by a given geometric symbol (see also Fig 1). Colour code refers to lineages identified by the RPB1 marker (see Fig 3). PP: Bayesian Posterior Probability.

Figure 3. Bayesian phylogenetic reconstruction of Nosema spp. based on fragments F2 and F4 of the RPB1 gene. For parasite sequences found in amphipods labels include: the GenBank accession number in case of published sequences, the host species name (abbreviated for gammarids, see below), the abbreviated SSU haplogroup name (as in S2 Table and Fig2), the RPB1 haplogroup name, population name and the number of host individuals infected. Other sequences from Genbank are representatives of further Nosema and Vairimorpha species (see S2 Table). PP = Bayesian Posterior Probability, nodes supported by the Maximum Likelihood tree by bootstrap values higher than 0.7 are indicated by red dots. Bars annotated on the right represent results of the molecular species delimitation ASAP and bPTP methods. *- ASAP analysis was performed using only the sequences covering both F2 and F4 RPB1 fragments; ? - haplogroup excluded from the ASAP analysis because of lack of F2 or F4 fragment. Abbreviations for gammarid species names: Gbal - Gammarus balcanicus, Gdue - Gammarus duebeni, Gfos - Gammarus fossarum, Gpul - Gammarus pulex, Groe - Gammarus roeselii.

Supporting information captions:

Abstract

S1 Figure. A. Overview of the amino-acid alignment for the RNA polymerase II largest subunit (RPB1) gene haplogroups identified in amphipods. Grey colour stands for absence of amino acids. B. Overview of the nucleotide alignment for the RPB1 gene haplogroups, for two fragments (F2 and F4). Grey colour stands for either absence of PCR product or shorter sequences for a given fragment.

S2 Figure. A. Details of Clade A of Nosema phylogenetic reconstruction. Names in black are Nosema haplogroups, names in red or blue are names of host clades to which they are associated. Legends are similar to Fig 3 in the paper. Host clade names are given from the Gammarus balcanicus phylogenetic tree simplified from [36] presented in (B). N and S represent the two major G. balcanicus groups that differentiated around 18 MYA. C. Map showing sites where host and parasites are coming from, where the limit between N and S host groups were redrawn after [1]. Lines between A and B trees indicates the position of host individuals infected by Nosema haplogroups on host phylogenetic tree. The sites were plotted on a map from Natural Earth resources in QGIS 3.32.0-Lima [2].

S1 Table. A list of 85 sites where Nosema spp. were recorded in amphipod crustaceans. The names of the SSU haplogroups are as in Fig 2 and for RPB1 clades/lineages as in Fig 1 and 3.

S2 Table. A list of samples used in the study, with host, site and country name, as well as GenBank Accession numbers given. Sequences in blue are samples of Nosema infections outside the amphipod hosts, used for the phylogenetic reconstructions. ${ }^{* *}$ sequences too short to be deposited in GenBank (see S2 Appendix). References: Refence list is provided in the spread-sheet REFERENCES. DS : Direct submission to Genbank, no published article associated.

S3 Table. Estimates of Average Evolutionary Divergence over Sequence Pairs within Groups. The number of base substitutions per site from averaging over all sequence pairs within each group are shown. Analyses were conducted using the Kimura 2-parameter model [1]. This analysis involved 36 nucleotide sequences. Codon positions included were $1 \mathrm{st}+2 \mathrm{nd}+3 \mathrm{rd}+$ noncoding. All ambiguous positions were removed for each sequence pair (pairwise deletion option). There were 1025 positions in the final dataset. Evolutionary analyses were conducted in MEGA11 [2] The presence
of n / c in the results denotes cases in which it was not possible to estimate evolutionary distances. SE - standard error.

S1 Appendix: Alignment of F2 and F4 RPB1 fragments of Nosema spp., Vairimorpha spp. and outgroup used for the Bayesian and Maximum Likelihood phylogeny reconstructions.

S2 Appendix: Small ribosomal subunit (SSU) rDNA sequences too short ($<200 \mathrm{bp}$) to be deposited in GenBank.

S3 Appendix: Results of the ASAP and bPTP species delimitations.

$\begin{aligned} & \text { pp>0.70 } \\ & \text { - pp>0.90 } \\ & \text { bootstrap }>0.70 \end{aligned}$	$\left\{\begin{array}{l}\text { Gbal_Ngra-b03_F2ndF4A1_AL (1) } \\ \text { Gbal_Ngra-b03_F2ndF4A5_AL (1) } \\ \text { Gbal_Ngra-b03_F2ndF4A4_AL (1) } \\ \text { Gbal_Ngra-b03/04_F2A3F4A2-3_RO,HU (3) } \\ \text { Gbal_Ngra-b03_F2A2-3F4A2-3_SK,RO,HU (15) } \\ \text { Gbal_Ngra-b03_F2A2F4A2-3_SK,RO,HU,AU (21) } \\ \text { Gbal_Ngra-b03_F2A6F4nd_AL (2) }\end{array}\right.$	A only Gbal
	Groe_Ngra-r03_F2B2F4B2_GR (2) Groe_Ngra-r03_F2B1F4B2_GR (1) Groe_Ngra-r03_F2B1F4B1_GR (1) Groe_Ngra-r01/3_F2B3F4B3_AL (4) Gpul_Ngra-p01_F2B4F4B3_FR (1)	B

```
        DQ996233_Gdue_Ngra-ref_F2C1F4C1_GB (1)
        Gdue_Ngra-r02_F2C1bF4C1_FR (4)
                Gdue_Ngra-b03/r02_F2C1bC4F4C1-4_FR (3)
                JX213747_Gdue_Ngra-nd_F2ndF4C6_GB (1)
                    Gdue_Ngra-b03/r02_F2C4F4C4_FR (7)
                        Groe,Gfos_Ngra-r01_F2C3F4C3_FR,PL,DE,AT,HU,IT (52)
                Gfos_Ngra-f03/04_F2C6F4C5_FR (10)
                Gfos_Ngra-f03_F2C5F4C5_FR (5)
                Gfos_Ngra-f03_F2C5F4C5_FR (5) incl. feminizing-VT
                                    Gfos_Ngra-f03_F2C6F4D5_FR (1)
                        Gfos_Ngra-b02_F2D1F4D1_AT (1) D
                        Gfos_Ngra-b02_F2D4F4D4_AT (1)
                        Gfos_Ngra-b02_F2D2F4D2_AT (1)
Gfos_Ngra-b02_F2D3F4D3_AT (1)
                                    only Gfos
                        Gfos_Ngra-b02_F2D2F4D2_AT (1)
Gfos_Ngra-b02_F2D3F4D3_AT (1)
                        Gfos_Ngra-f04_F2D7F4D9_FR (1)
                        Gfos_Ngra-f04_F2D5F4D6_FR (1)
                    Gfos_Ngra-f04_F2ndF4D8_FR (1)
                    Gfos_Ngra-f04_F2D6F4D7_FR (1)
                            Gfos_Ngra-f04_F2ndF4D10_FR (1)
                                    Gfos_Ngra-h02_F2E2F4nd_CH (1)
                                    Gpul_Ngra-h03_F2E3F4nd_FR (1)
                                    Gfos_Ngra-h03_F2E1F4E5_FR (2)
                                    Gfos_Ngra-h03_F2E1F4E1_CH (1)
                                    Gfos_Ngra-h03_F2E1F4E4_FR (3)
                                    Gfos_Ngra-h03_F2ndF4E2_FR (1)
                                    Gdue_Ngra-h03_F2ndF4E3_FR (1)
                                    - DQ996235_Nosema cheracis_crayfish
                            DQ996232_Nosema emposcae_insect
        MF344629_Nosema austropotamobi_crayfish
        Gpul_Ngra-b01/p02_F2ndF4F1_FR,PL (2)
                F
            HQ457438_Nosema disstriae_insect
            HQ457435_Nosema fumiferanae_insect
                    AJ278948_Nosema tyriae_insect
                    DQ996231_Nosema bombycis_insect
                    DQ996234_Nosema trichoplusiae_insect
                    AF060234_Vairimorpha necatrix_insect
                    DQ996236_Vairimorpha necatrix_insect
                        XM_002995356_Vairimorpha ceranae_insect
                                    - Vairimorpha spp.


Gfos_Ngra-h02_F2E2F4nd_CH (1)


B


Figure S1.
A. Overview of the amino-acid alignment for the RNA polymerase II largest subunit (RPB1) gene haplogroups identified in amphipods. Grey color stands for absence of amino acides.
B. Overview of the nucleotide alignment for the RPB1 gene haplogroups, for two fragments (F2 and F4). Grey color stands for either absence of PCR product or shorter sequences for a given fragment.


S2 Figure. A. Details of Clade A of Nosema phylogenetic reconstruction. Names in black are Nosema haplogroups, names in red or blue are names of host clades to which they are associated. Legends are similar to Fig 3 in the paper. Host clade names are given from the Gammarus balcanicus phylogenetic tree simplified from [1] presented in (B). N and S represent the two major G. balcanicus groups that differentiated around 18 MYA. C. Map showing sites where host and parasites are coming from, where the limit between N and \(S\) host groups were redrawn after [1]. Lines between \(A\) and \(B\) trees indicates the position of host individuals infected by Nosema haplogroups on host phylogenetic tree. The sites were plotted on a map from Natural Earth resources in QGIS 3.32.0-Lima [2].
[1] Mamos T, Wattier R, Burzyński A, Grabowski M. The legacy of a vanished sea: a high level of diversification within a European freshwater amphipod species complex driven by 15 My of Paratethys regression. Mol Ecol. 2016;25: 795-810. doi:10.1111/mec. 13499
[2] QGIS Development Team, 2023. QGIS Geographic Information System. Open Source Geospatial Foundation Project. http://qgis.osgeo.org

Table S1 : 85 sites were Nosema where recorded in amphipod crustaceans. The names of the SSI References: Refence list is provided in the spread-sheet REFERENCES. DS : Direct submission to GeI
\begin{tabular}{|c|c|c|c|c|c|}
\hline  & \begin{tabular}{l}
2 \\
\multirow{2}{3}{} \\
0
\end{tabular} & \[
\begin{aligned}
& 2 \\
& \vdots \\
& \vdots \\
& 0 \\
& 0 \\
& 0 \\
& \underline{n}
\end{aligned}
\] &  &  & \(\stackrel{0}{0}\)
+1
0.0
0
0
0
0
0
0
0
00
0
0
0 \\
\hline SJL & France & FR & Saone & 47.1000 & 5.2600 \\
\hline SPI & Austria & AT & Danube & 48.3600 & 15.4200 \\
\hline LYS & Russsia & RU & Baïkal & 51.8500 & 104.8600 \\
\hline AL56 & Albania & AL & Drin & 41.5100 & 20.3000 \\
\hline AL57 & Albania & AL & Drin & 41.7380 & 20.3020 \\
\hline AL60 & Albania & AL & Drin & 41.9670 & 20.3850 \\
\hline AL64 & Albania & AL & Drin & 42.3150 & 20.0500 \\
\hline AL69 & Montenegro & ME & Danube & 42.8360 & 19.5690 \\
\hline BG25 & Bulgaria & BG & Struma & 42.2290 & 22.8880 \\
\hline BG54 & Romania & RO & Danube & 45.3460 & 24.2050 \\
\hline H07 & Hungary & HU & Danube & 47.9360 & 18.8320 \\
\hline H09 & Hungary & HU & Danube & 47.8270 & 19.6450 \\
\hline H11 & Hungary & HU & Danube & 47.9830 & 20.4400 \\
\hline H26 & Slovakia & SK & Danube & 48.5210 & 18.7260 \\
\hline HR30 & Croatia & HR & Vretenica & 45.1490 & 14.5600 \\
\hline RO08 & Romania & RO & Danube & 47.7520 & 26.2010 \\
\hline RO12 & Romania & RO & Danube & 46.8380 & 25.8820 \\
\hline RO17 & Romania & RO & Danube & 46.1120 & 25.9200 \\
\hline SK & Slovakia & SK & Danube & 48.5210 & 18.7260 \\
\hline UA03 & Ukraine & UA & Prypiat & 48.0840 & 24.6560 \\
\hline UA31 & Ukraine & UA & Southern Buh & 48.1410 & 30.3260 \\
\hline CUM & UK Scotland & UK & Small river - no name & 55.7600 & -4.9200 \\
\hline KER & France & FR & Small river no name & 47.9800 & -4.3800 \\
\hline KRE1 & R. of Ireland & IE & Eme & 54.1800 & -7.4800 \\
\hline KRE2 & R. of Ireland & IE & Lough Corrib & 53.4500 & -9.3200 \\
\hline ROS & France & FR & Tributary Elorn & 48.3900 & -3.9700 \\
\hline TER & UK Scotland & UK & White Bay & 55.7900 & -4.9100 \\
\hline 38.1-GALA & France & FR & Galaveyson & 45.2739 & 5.1186 \\
\hline 39.1 & France & FR & Guiers-Mort & 45.3617 & 5.7544 \\
\hline 40.3-COMB & France & FR & Agny & 45.5300 & 5.3075 \\
\hline 57.1-MOUG & France & FR & Mouge & 46.4397 & 4.7564 \\
\hline 58.1 & France & FR & Liepvrette & 48.2203 & 7.1441 \\
\hline 58.2 & France & FR & Tributary Liepvrette & 48.2295 & 7.1699 \\
\hline 58.4 & France & FR & Tributary Liepvrette & 48.2270 & 7.1667 \\
\hline 58.5 & France & FR & Tributary Liepvrette & 48.2465 & 7.1741 \\
\hline 59.4 & France & FR & Tributary Liepvrette & 48.2580 & 7.2207 \\
\hline 60.2 & France & FR & Rombach & 48.2759 & 7.2780 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline 60.3 & France & FR & TributaryLiepvrette & 48.2667 & 7.2917 \\
\hline 60.4 & France & FR & Tributary Liepvrette & 48.2647 & 7.2734 \\
\hline 61.2 & France & FR & Rösselbach & 48.2762 & 7.3080 \\
\hline 61.4 & France & FR & TributaryLiepvrette & 48.2727 & 7.3394 \\
\hline ALPM04 & Austria & AT & Small stream near Treffen & 46.6997 & 13.8243 \\
\hline ALPM22 & Switzerland & CH & Thunersee & 46.7039 & 7.6576 \\
\hline CHGF & Switzerland & CH & Alpine Lake & nd & nd \\
\hline GRU1 & Germany & DE & Gründau & 50.2599 & 9.1745 \\
\hline GRU2 & Germany & DE & Gründau & 50.2407 & 9.1441 \\
\hline KIN2 & Germany & DE & Kinzig & 50.3427 & 9.5525 \\
\hline SAL2 & Germany & DE & Salz & 50.3143 & 9.3669 \\
\hline STE1 & Germany & DE & Steinebach & 50.3323 & 9.4665 \\
\hline HUD & Luxembourg & LU & Fledermaustunnel & 50.1500 & 6.0200 \\
\hline 11.8 & France & FR & Le vernidard & 47.3895 & 4.0904 \\
\hline 52P-ARDI & France & FR & Ardière & 46.1867 & 4.5211 \\
\hline 54P & France & FR & Cance & 45.1736 & 4.5011 \\
\hline 59.4 & France & FR & Tributary Liepvrette & 48.2580 & 7.2207 \\
\hline OMDE & Germany & DE & Tributary Rhine & 51.3403 & 6.5149 \\
\hline STE1 & Germany & DE & Steinebach & 50.3323 & 9.4665 \\
\hline WRO & Poland & Pl & Slupia river & 54.4520 & 17.0330 \\
\hline AL35 & Albania & AL & Tributary Shkumbin & 41.0746 & 20.4879 \\
\hline ALP41 & Germany & DE & Amper/Isar & 48.0766 & 11.1339 \\
\hline ALP43 & Germany & DE & Loisach/Isar & 47.6567 & 11.3556 \\
\hline ALP49 & Germany & DE & Chiemsee & 47.8838 & 12.4176 \\
\hline ALP50 & Germany & DE & GötzingerAchen/Salzach & 47.9539 & 12.7487 \\
\hline BF04 & France & FR & Somme & 49.9238 & 2.2294 \\
\hline BF05 & France & FR & Omignon & 49.8918 & 3.1707 \\
\hline COU & France & FR & Yonne & 47.5272 & 3.5408 \\
\hline GR11 & Greece & GR & Aliakmonas & 40.2889 & 21.4511 \\
\hline GR25 & Greece & GR & Sofaditikos & 39.1762 & 22.0460 \\
\hline GRU & Poland & PL & Osa & 53.5370 & 18.7968 \\
\hline GRU2 & Germany & DE & Gründau & 50.2407 & 9.1441 \\
\hline GSSL & Slovenia & SI & Tributary Drava & 46.5442 & 15.6144 \\
\hline H05 & Hungary & HU & Tributary Danube & 47.2947 & 18.0536 \\
\hline H16 & Hungary & HU & Sajo / Tisza & 47.9664 & 21.0499 \\
\hline HUS10 & Hungary & HU & Tributary Danube & 46.2877 & 18.2737 \\
\hline KIN1 & Germany & DE & Kinzig & 50.3427 & 9.5806 \\
\hline NIT & Italie & IT & Sile & 45.6557 & 12.2195 \\
\hline OU & France & FR & Ouche & 47.1483 & 5.2775 \\
\hline PA & Austria & AT & Pielach & 48.0290 & 15.4331 \\
\hline PL1 & Poland & PL & Tywa & 53.2259 & 14.4973 \\
\hline PL8 & Poland & PL & Oławain Siechnice & 51.0421 & 17.1589 \\
\hline PRO & Poland & PL & Kaczawa & 51.2790 & 16.3642 \\
\hline SLB & Slovakia & SK & Hron & 47.9182 & 18.6459 \\
\hline STG & France & FR & Loire & 47.6997 & 2.5422 \\
\hline STE1 & Germany & DE & Steinebach & 50.3323 & 9.4665 \\
\hline NifARN & Poland & PL & aff Pelczina & 50.8170 & 16.3304 \\
\hline HUD & Luxembourg & LU & Fledermaustunnel & 50.1500 & 6.0200 \\
\hline & & & & & \\
\hline
\end{tabular}

M - males
F-females
nd - no data
xxx - not counted
In Blue - sequences too short to be firmly assigned to a given haplogroup ('?' denotes possible hapl
\(J\) haplogroups are as in Figure 2.
nbank, no published article associated.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline  &  &  &  &  &  &  & \[
\begin{aligned}
& \text { N } \\
& 0 \\
& \dot{i} \\
& \dot{D} \\
& 000
\end{aligned}
\] &  &  &  &  & \(\xrightarrow{\text { T }}\) \\
\hline Dikerogammarus villosus & xxx & & & & & & & & & & & \\
\hline D. villosus & xxx & & & & & & & & & & & \\
\hline Eulimnogammarus verrucosus & xxx & & & & & & & & & & & \\
\hline Gammarus balcanicus & 12M / 24F & 5 & 2 & 19.4 & & & & & & & & \\
\hline G. balcanicus & 24M/24F & 2 & 0 & 4.17 & & & & & & & & \\
\hline G. balcanicus & 12M / 12F & 8 & 2 & 41.7 & & & & & & & & \\
\hline G. balcanicus & 12M / 12F & 7 & 7 & 58.3 & & & & & & & & \\
\hline G. balcanicus & 24M/24F & 1 & 1 & 4.17 & & & & & & & & \\
\hline G. balcanicus & 12M / 12F & 0 & 3 & 12.5 & & & & & & & & \\
\hline G. balcanicus & 12M / 12F & 2 & 1 & 12.5 & & & & & & & & \\
\hline G. balcanicus & 12M / 12F & 8 & 3 & 45.8 & & & & & & & & \\
\hline G. balcanicus & 12M/12F & 6 & 1 & 29.2 & & & & & & & & \\
\hline G. balcanicus & 6M / OF & 2 & 0 & 33.3 & & & & & & & & \\
\hline G. balcanicus & 12M / 12F & 7 & 1 & 33.3 & & & & & & & & \\
\hline G. balcanicus & 12M/12F & 2 & 2 & 16.7 & & & & & & & & \\
\hline G. balcanicus & 23M/23F & 2 & 2 & 8.7 & & & & & & & & \\
\hline G. balcanicus & 24M/24F & 5 & 1 & 12.5 & & & & & & & & \\
\hline G. balcanicus & 24M / 24F & 3 & 2 & 10.4 & & & & & & & & \\
\hline G. balcanicus & 52M/47F & 11 & 4 & 15.2 & & & & & & & & \\
\hline G. balcanicus & 24M / 24F & 17 & 14 & 64.6 & & & & & & & & \\
\hline G. balcanicus & 25M / OF & 2 & 0 & 8 & & & & & & & & \\
\hline Gammarus duebeni & xxx & & & & & & & & & & & \\
\hline G. duebeni & xxx & & & & & & & & & & 1 & \\
\hline G. duebeni & xxx & & & & & & & & & & & \\
\hline G. duebeni & xxx & & & & & & & & & & & \\
\hline G. duebeni & xxx & & & & & & & & & & & \\
\hline G. duebeni & xxx & & & & & & & & & & & \\
\hline Gammarus fossarum & xxx & & & & & & & & & & 1 & \\
\hline G. fossarum & xxx & & & & & & & & & & & 1 \\
\hline G. fossarum & xxx & & & & & & & & & & & \\
\hline G. fossarum & xxx & & & & & & & & & & & \\
\hline G. fossarum & xxx & & & & & & & & & & & \\
\hline G. fossarum & xxx & & & & & & & & & & & \\
\hline G. fossarum & xxx & & & & & & & & & & 1 & \\
\hline G. fossarum & xxx & & & & & & & & & & 1 & \\
\hline G. fossarum & xxx & & & & & & & & & & 3 & \\
\hline G. fossarum & xxx & & & & & & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline G. fossarum & xxx & & & & & & & & & & 1 & \\
\hline G. fossarum & xxx & & & & & & & & & & 2 & \\
\hline G. fossarum & xxx & & & & & & & & & & & \\
\hline G. fossarum & xxx & & & & & & & & & & 1 & \\
\hline G. fossarum & xxx & & & & & & & & 1 & & & \\
\hline G. fossarum & xxx & & & & & & & & & 1 & & \\
\hline G. fossarum & xxx & & & & & & & & & & 1 & \\
\hline G. fossarum & xxx & & & & & & & & & & & \\
\hline G. fossarum & xxx & & & & & & & & & & & \\
\hline G. fossarum & xxx & & & & & & & & & & & \\
\hline G. fossarum & xxx & & & & & & & & & & & \\
\hline G. fossarum & xxx & & & & & & & & & & & \\
\hline G. fossarum & xxx & & & & & & & & & & & \\
\hline Gammarus pulex & xxx & & & & & 1 & & & & & & \\
\hline G. pulex & xxx & & & & & & & & & & & \\
\hline G. pulex & xxx & & & & & & 1 & & & & 1 & \\
\hline G. pulex & xxx & & & & & & & & & & 2 & \\
\hline G. pulex & xxx & & & & & & & & & & & \\
\hline G. pulex & xxx & & & & & & & & & & & \\
\hline G. pulex & xxx & & & & & & & 1 & & & & \\
\hline Gammarus roeselii & 60 & & & & & & & & & & & \\
\hline G. roeselii & 12 & & & & & & & & & & & \\
\hline G. roeselii & 12 & & & & & & & & & & & \\
\hline G. roeselii & 12 & & & & & & & & & & & \\
\hline G. roeselii & 12 & & & & & & & & & & & \\
\hline G. roeselii & 12 & & & & & & & & & & & \\
\hline G. roeselii & 12 & & & & & & & & & & & \\
\hline G. roeselii & 12 & & & & & & & & & & & \\
\hline G. roeselii & 60 & & & & & & & & & & & \\
\hline G. roeselii & 60 & & & & & & & & & & & \\
\hline G. roeselii & 12 & & & & & & & & & & & \\
\hline G. roeselii & xxx & & & & & & & & & & & \\
\hline G. roeselii & 14 & & & & & & & & & & & \\
\hline G. roeselii & 12 & & & & & & & & & & & \\
\hline G. roeselii & 4 & & & & & & & & & & & \\
\hline G. roeselii & 12 & & & & & & & & & & & \\
\hline G. roeselii & xxx & & & & & & & & & & & \\
\hline G. roeselii & 12 & & & & & & & & & & & \\
\hline G. roeselii & 86 & & & & & & & & & & & \\
\hline G. roeselii & 12 & & & & & & & & & & & \\
\hline G. roeselii & 12 & & & & & & & & & & & \\
\hline G. roeselii & 12 & & & & & & & & & & & \\
\hline G. roeselii & 12 & & & & & & & & & & & \\
\hline G. roeselii & 12 & & & & & & & & & & & \\
\hline G. roeselii & 12 & & & & & & & & & & & \\
\hline G. roeselii & xxx & & & & & & & & & & & \\
\hline Niphargellus arndti & xxx & & & & & & & & & & & \\
\hline Niphargus schellenbergi & xxx & & & & & & & & & & & \\
\hline & & & & & & 1 & 1 & 1 & 1 & 1 & 15 & 1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { T } \\
& \text { O } \\
& i \\
& \frac{1}{20} \\
& Z 00
\end{aligned}
\] &  &  &  &  &  &  &  & \[
\begin{aligned}
& \text { N } \\
& \text { O } \\
& \text { i } \\
& \text { No } \\
& \text { Z }
\end{aligned}
\] & \[
\begin{aligned}
& \text { n } \\
& \text { io } \\
& \frac{0}{0} \\
& \frac{0}{60}
\end{aligned}
\] &  &  &  &  &  &  &  &  \\
\hline & & 1 & & & & & & & & & & & & & & & \\
\hline & & 1 & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & 1 & 1 & & \\
\hline & & & & & & & & & 7 & & & & & & & & \\
\hline & & & & & & & & & 1 & & & & & & & & \\
\hline & & & & & & & & & 6 & 1 & & & & & & & \\
\hline & & & & & & & & & 11 & 1 & & & & & & & \\
\hline & & & & & & & 1 & 1 & & & & & & & & & \\
\hline & & & & & & & & & 3 & & & & & & & & \\
\hline & & & & & & & & & 2 & & & & & & & & \\
\hline & & & & & & & & & 7 & 2 & & & & & & & \\
\hline & & & & & & & & & 6 & & & & & & & & \\
\hline & & & & & & & & & 1 & & & & & & & & \\
\hline & & & & & & & & & 7 & 1 & & & & & & & \\
\hline & & & & & & & & & 2 & & & & & & & & \\
\hline & & & & & & & & & 1 & & & & & & & & \\
\hline & & & & & & & 1 & & 1 & 2 & & & & & & & \\
\hline & & & & & & & & & 2 & 2 & & & & & & & \\
\hline & & & & & & & & & 16 & & & & & & & & \\
\hline & & & & & & & & & 2 & & & & & & & & \\
\hline & & & & & & & & & 1 & & & & & & & & \\
\hline & & 4 & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & 1 & & & & & & \\
\hline & & & 1 & & & & & & & & & & & & & & \\
\hline & & & \(19+18\) ? & & & 1 & & & 18? & & & & & & & & 18 \\
\hline & & & & & 1 & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & \\
\hline 1 & & & & & & & & & & & & & & & & & \\
\hline 3? & 3 ? & & & & & & & & & & & & & & & & 3 \\
\hline 5? & 8+5? & & & & & & & & & & & & & & & & 5 \\
\hline 2? & 1+2? & & & & & & & & & & & & & & & & 2 \\
\hline & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & \\
\hline 1? & 1? & & & & & & & & & & & & & & & & 1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & & & & & & & & & & & & & & & & \\
\hline 1+1? & 1+1? & & & & & & & & & & & & & & & & 1 \\
\hline 3+1? & 1? & & & & & & & & & & & & & & & & 1 \\
\hline & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & 4 & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & \\
\hline & & 1 & & & & & & & & & & & & & & & \\
\hline & & 1 & & & & & & & & & & & & & & & \\
\hline & & 1 & & & & & & & & & & & & & & & \\
\hline & & 1 & & & & & & & & & & & & & & & \\
\hline & & 1 & & & & & & & & & & & & & & & \\
\hline & & & & 1 & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & \\
\hline 1 & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & \\
\hline & & & & &  & & & & & & & & & & & & \\
\hline & & & & & & & & & & & 1 & & & & & & \\
\hline & & 1 & & & & & & & & & & & & & & & \\
\hline & & & & 3 & & & 10 & & & & & 1 & 1 & & & & \\
\hline & & 6 & & 4 & & & & & & & & & & & & & \\
\hline & & 1 & & & & & & & & & & & & & & & \\
\hline & & 2 & & & & & & & & & & & & & & & \\
\hline & & 3 & & & & & & & & & & & & & & & \\
\hline & & 1 & & & & & & & & & & & & & & & \\
\hline & & 2 & & & & & & & & & & & & & & & \\
\hline & & 8 & & & & & & & & & & & & & & & \\
\hline & & 1 & & & & & & & & & & & & & & & \\
\hline & & & 9 & & & & & & & & & & & & & & \\
\hline & & & & 6 & & & & & & & & & & & & & \\
\hline & & 1 & & & & & & & & & & & & & & & \\
\hline & & 1 & & & & & & & & & & & & & & & \\
\hline & & & & 1 & & & & & & & & & & & & & \\
\hline & & 2 & & & & & & & & & & & & & & & \\
\hline & & 1 & & & & & & & & & & & & & & & \\
\hline & & 1 & & & & & & & & & & & & & & & \\
\hline & & 1 & & & & & & & & & & & & & & & \\
\hline & & 1 & & & & & & & & & & & & & & & \\
\hline & & 19 & & & & & & & & & & & & & & & \\
\hline & & 6 & & & & & & & & & & & & & & & \\
\hline & & & 1 & & & & & & & & & & & & & & \\
\hline & & 10 & & & & & & & & & & & & & & & \\
\hline & & 5 & & & & & & & & & & & & & & & \\
\hline & & 3 & & & & & & & & & & & & & & & \\
\hline & & 3 & & & & & & & & & & & & & & & \\
\hline & & 1 & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & 1 & \\
\hline & & & & 1 & & & & & & & & & & & & & \\
\hline 6+13? & \(10+13\) ? & 91 & \(30+18\) ? & 16 & 1 & 1 & 12 & 5 & \(76+18\) ? & 9 & 2 & 1 & 1 & 1 & 1 & 1 & 31 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline  & RPB1 CLADES/LINEAGE: & A & B & C & D & E & F \\
\hline Wattier et al 2007 & nd & & & & & & \\
\hline Wattier et al 2007 & nd & & & & & & \\
\hline Madyarova et al 2015 & nd & & & & & & \\
\hline This Study & A & 3 & & & & & \\
\hline This Study & nd & & & & & & \\
\hline This Study & nd & & & & & & \\
\hline This Study & A & 2 & & & & & \\
\hline This Study & nd & & & & & & \\
\hline This Study & nd & & & & & & \\
\hline This Study & A & 1 & & & & & \\
\hline This Study & A & 6 & & & & & \\
\hline This Study & A & 5 & & & & & \\
\hline This Study & nd & & & & & & \\
\hline This Study & A & 7 & & & & & \\
\hline This Study & nd & & & & & & \\
\hline This Study & A & 1 & & & & & \\
\hline This Study & A & 1 & & & & & \\
\hline This Study & A & 1 & & & & & \\
\hline This Study & A & 15 & & & & & \\
\hline This Study & A & 2 & & & & & \\
\hline This Study & A & 1 & & & & & \\
\hline Ironside 2013 & C & & & 1 & & & \\
\hline This study & E & & & & & 1 & \\
\hline Krebes et al 2010 & nd & & & & & & \\
\hline Krebes et al 2010 & nd & & & & & & \\
\hline This study & C & & & 14 & & & \\
\hline Terry et al 1999 & C & & & 1 & & & \\
\hline This study & E & & & & & 1 & \\
\hline This study & nd & & & & & & \\
\hline This study & C & & & 1 & & & \\
\hline This study & nd & & & & & & \\
\hline This study & C,D & & & 12 & 1 & & \\
\hline This study & C & & & 2 & & & \\
\hline This study & nd & & & & & & \\
\hline This study & E & & & & & 1 & \\
\hline This study & E & & & & & 2 & \\
\hline This study & C & & & 1 & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline This study & E & & & & & 1 & \\
\hline This study & C, D, E & & & 2 & 1 & 2 & \\
\hline This study & D & & & & 3 & & \\
\hline This study & E & & & & & 1 & \\
\hline This study & D & & & & 4 & & \\
\hline This study & E & & & & & 1 & \\
\hline This study & E & & & & & 1 & \\
\hline Prati et al 2022 & nd & & & & & & \\
\hline Prati et al 2022 & nd & & & & & & \\
\hline Prati et al 2022 & nd & & & & & & \\
\hline Prati et al 2022 & nd & & & & & & \\
\hline Prati et al 2022 & nd & & & & & & \\
\hline Weigand et al 2016 & nd & & & & & & \\
\hline This study & B & & 1 & & & & \\
\hline This study & D & & & & 1 & & \\
\hline This study & E,F & & & & & 1 & 1 \\
\hline This study & E & & & & & 1 & \\
\hline Prati et al 2022 & nd & & & & & & \\
\hline Prati et al 2022 & nd & & & & & & \\
\hline Wroblewski, DS. & F & & & & & & 1 \\
\hline Quiles et al 2019 & B & & 4 & & & & \\
\hline Quiles et al 2019 & C & & & 1 & & & \\
\hline Quiles et al 2019 & nd & & & & & & \\
\hline Quiles et al 2019 & C & & & 3 & & & \\
\hline Quiles et al 2019 & C & & & 1 & & & \\
\hline Quiles et al 2019 & C & & & 2 & & & \\
\hline Quiles et al 2019 & C & & & 8 & & & \\
\hline Haine et al 2004 & nd & & & & & & \\
\hline Quiles et al 2019 & C & & & 1 & & & \\
\hline Quiles et al 2019 & B & & 5 & & & & \\
\hline Quiles et al 2019 & nd & & & & & & \\
\hline Prati et al 2022 & nd & & & & & & \\
\hline Quiles et al 2019 & nd & & & & & & \\
\hline Quiles et al 2019 & C & & & 2 & & & \\
\hline Quiles et al 2019 & nd & & & & & & \\
\hline Quiles et al 2019 & nd & & & & & & \\
\hline Prati et al 2022 & nd & & & & & & \\
\hline Quiles et al 2019 & C & & & 1 & & & \\
\hline Quiles et al 2019 & C & & & 13 & & & \\
\hline Quiles et al 2019 & C & & & 5 & & & \\
\hline Quiles et al 2019 & nd & & & & & & \\
\hline Quiles et al 2019 & C & & & 10 & & & \\
\hline Quiles et al 2019 & C & & & 1 & & & \\
\hline Quiles et al 2019 & C & & & 3 & & & \\
\hline Quiles et al 2019 & C & & & 1 & & & \\
\hline Prati et al 2022 & nd & & & & & & \\
\hline Grabner et al 2020 & nd & & & & & & \\
\hline Weigand et al 2016 & nd & & & & & & \\
\hline & nd & 45 & 10 & 86 & 10 & 13 & 2 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline  &  &  &  &  &  & \[
\begin{aligned}
& \stackrel{y}{0} \\
& \text { 番 } \\
& \stackrel{\rightharpoonup}{3} \\
& \stackrel{3}{3}
\end{aligned}
\] &  &  &  &  & \[
\begin{aligned}
& \text { 흄 } \\
& \text { (⿳亠二口阝土 }
\end{aligned}
\] &  &  &  &  &  &  &  &  &  &  \\
\hline Nosema granulosis & Ngra & 11.8 .17 & 11.8 & \({ }_{\text {fr }}\) & 302 & Yes & Ngra－p01－REF & yes & OR165833 & No & Amphipoda & Gammarus pulex & Gpul & This Study & Yes & \(\underset{\substack{\text { F284FAnd } \\ \text { F2F16454 }}}{ }\) & \({ }_{\text {l }}^{11.8 .17}\) & \({ }_{\text {B }}\) & \({ }_{\text {OR142027 }}\) & & This study \\
\hline Nosema granulosis & Ngra & 38.1 .15 & 38．1－GALA & fr & 660 & yes & Ngra Нз & & OR165834 & no & Amphipoda & Gammarusfossarum & Gos & This Study & yes & F2E1F4E4 & 38.1 .15 & E & OR142113 & OR16670 & This study \\
\hline Nosema granulosis & Ngra & 39.1 .18 & 39.1 & \({ }_{\text {fr }}\) & 301 & yes & Ngra－H4－REF & yes & OR165835 & no & Amphipoda & Gammarus fossarum & Gos & This Study & no & & & & & & \\
\hline Nosema granulosis & Ngra & 40．3－COMB－1 & 40．3－Сомв & FR & 566 & yes & Ngra－fo4 & & OR165836 & No & Amphipoda & Gammarus fossarum & Gos & This Study & yes & F2ndF4010 & comb－1 & c & & OR166763 & This study \\
\hline Nosema granulosis & Ngra & 52P－ARDI－7 & 52P－ARDI & fr & 674 & yes & Ngra－fo4 & & OR165837 & no & Amphipoda & Gammarus fossarum & Gos & This Study & yes & F2ndF4010 & comb－1 & D & & OR166764 & This study \\
\hline Nosema granulosis & Ngra & \(54 P 15\) & 54 P & \({ }_{\text {fr }}\) & \({ }^{223}\) & yes & лега－Нз & & OR165838 & no & Amphipoda & Gammarus pulex & Gpul & This Study & yes & F2e3F4nd & \(54 P 15\) & E & OR142121 & & This study \\
\hline Nosema granulosis & Ngra & 5496 & 54 P & fr & 712 & yes & Ngra－p02－REF & yes & OR165839 & no & Amphipoda & Gammarus pulex & Gpul & This Study & yes & F2ndf4F1 & 54P6 & F & & OR166774 & This study \\
\hline Nosema granulosis & Ngra & 57．1－MOUG－10 & 57．1－MOUG & fr & 169 & yes & Nera－ 0330 O4 & & ＊＊ & No & Amphipoda & Gammarus fossarum & Gfos & This Study & No & & & & & & \\
\hline Nosema granulosis & Ngra & 57．1－MOUG－5 & 57．1－Moug & fr & 200 & yes & Nera－f03or04 & & OR165840 & no & Amphipoda & Gammarus fossarum & Gfos & This Study & No & & & & & & \\
\hline Nosema granulosis & Ngra & 57．1－MOUG－8 & 57．1－MOUG & FR & 161 & yes & Ngra－f03004 & & ＊＊ & No & Amphipoda & Gammarus fossarum & Gfos & This Study & No & & & & & & \\
\hline Nosema granulosis & Ngra & 58.1 .1 & 58.1 & \({ }_{\text {fr }}\) & 709 & yes & Ngra－f03 & & OR165841 & No & Amphipoda & Gammarus fossarum & Gfos & This Study & yes & F2C5F4Cs & 6．4．29 & c & OR142091 & OR166741 & This study \\
\hline Nosema granulosis & Ngra & 58.1 .10 & 58.1 & FR & 705 & yes & Nera－fo3 & & OR165845 & No & Amphipoda & Gammarus fossarum & Gfos & This Study & Yes & F2C6F4Cs & 60．2．26 & c & OR142096 & OR166744 & This study \\
\hline Nosema granulosis & Ngra & 58.1 .11 & 58.1 & fr & 490 & yes & Ngra－f03or04 & & OR165846 & no & Amphipoda & Gammarus fossarum & Gfos & This Study & yes & F2C6F4C5 & 60．2．26 & c & OR142098 & OR16674 & This study \\
\hline Nosema granulosis & Ngra & 58．1．14 & 58.1 & fr & 717 & yes & Ngra－f03 & & OR165847 & no & Amphipoda & Gammarus fossarum & Gfos & This Study & yes & F2C6F4Cs & 60．2．26 & c & OR142099 & OR16674 & This study \\
\hline Nosema granulosis & Ngra & 58.1 .17 & 58.1 & fr & 713 & yes & Nera－fo3 & & OR165848 & No & Amphipoda & Gammarus fossarum & Gfos & This study & yes & F2C6F405 & 58.1 .17 & D & OR142104 & OR166758 & This study \\
\hline Nosema granulosis & Ngra & 58.1 .18 & 58.1 & fr & 707 & yes & Ngra－f03 & & OR165849 & no & Amphipoda & Gammarus fossarum & Gfos & This Study & yes & F2C6F4Cs & 60．2．26 & c & OR142100 & OR166747 & This study \\
\hline Nosema granulosis & Ngra & 58.1 .19 & 58.1 & fr & 480 & yes & Ngra－f03004 & & OR165850 & no & Amphipoda & Gammarus fossarum & Gfos & This study & yes & F2C6F4C5 & 60．2．26 & c & OR142095 & OR166740 & This study \\
\hline Nosema granulosis & Ngra & 58．1．2 & 58.1 & fr & 702 & yes & Ngra－f03 & & OR165842 & no & Amphipoda & Gammarus fossarum & Gfos & This Study & yes & F2C5F4C5 & 60．4．29 & c & OR142092 & OR166742 & This study \\
\hline Nosema granulosis & Ngra & 58．1．20 & 58.1 & fr & 709 & yes & Ngra－f03 & & OR165851 & no & Amphipoda & Gammarus fossarum & cafos & This Study & yes & F2ndfacs & ？ & c & & OR166750 & This study \\
\hline Nosema granulosis & Ngra & 58．1．21 & 58.1 & fr & 317 & yes & Ngra－f03or04 & & OR165852 & no & Amphipoda & Gammarus fossarum & caffos & This Study & yes & F2C5F4nd & 60．4．29 & c & OR142090 & & This study \\
\hline Nosema granulosis & Ngra & 58.122 & 58.1 & fr & 302 & yes & Nera－f03004 & & OR165853 & No & Amphipoda & Gammarus fossarum & caffos & This Study & yes & F2C6F4nd & 60．2．26 & c & OR142094 & & This study \\
\hline Nosema granulosis & Ngra & 58.1 .3 & 58.1 & \({ }_{\text {fr }}\) & 701 & yes & Ngra－f03 & & OR165843 & no & Amphipoda & Gammarus fossarum & Gfos & This Study & yes & F2C6F4C5 & 60．2．26 & c & OR142101 & OR166748 & This study \\
\hline Nosema granulosis & Ngra & 58．1．4 & 58.1 & \({ }_{\text {fr }}\) & 322 & yes & Ngra－f030004 & & OR165844 & No & Amphipoda & Gammarus fossarum & Gfos & This Study & yes & F2C6F4C5 & 60．2．26 & c & OR142102 & OR16674 & This study \\
\hline Nosema granulosis & Ngra & 58．2．19 & 58.2 & fr & 276 & yes & Nera－f03004 & & OR165855 & no & Amphipoda & Gammarus fossarum & Gfos & This Study & no & & & & & & \\
\hline Nosema granulosis & Ngra & 58．2．2 & 58.2 & fr & 290 & yes & Ngra－f030004 & & OR165854 & no & Amphipoda & Gammarus fossarum & Gfos & This Study & yes & F2ndfacs & ？ & c & & OR166751 & This study \\
\hline Nosema granulosis & Ngra & 58．2．23 & 58.2 & \(\stackrel{\text { FR }}{ }\) & 717 & Yes & Ngra－ 003 & & OR165856 & No & Amphipoda & Gammarus fossarum & \({ }_{6}\) Gfos & This Study & Yes & F266F4c5 & 60．2．26 & c & OR142103 & OR166752 & This study \\
\hline Nosema granulosis & Ngra & 58．4．1 & 58.4 & FR & 322 & yes & Ngra H3 & & OR165857 & No & Amphipoda & Gammarus fossarum & Gfos & This Study & No & & & & & & \\
\hline Nosema granulosis & Ngra & 58.5 .14 & 58.5 & fr & 720 & yes & Ngra H3 & & OR165858 & no & Amphipoda & Gammarus fossarum & Gfos & This Study & yes & F2ndf4e5 & 61.4 .18 & & & OR166772 & This study \\
\hline Nosema granulosis & Ngra & 59．4．1 & 59.4 & \({ }_{\text {fr }}\) & 678 & yes & Ngra Нз & & OR165859 & no & Amphipoda & Gammarus fossarum & Gfos & This Study & yes & F2ndf4E4 & 38．1．15 & E & & OR166768 & This study \\
\hline Nosema granulosis & Ngra & 59．4．20 & 59.4 & fr & 319 & yes & Nега－Нз & & OR165863 & no & Amphipoda & Gammarus pulex & Gpul & This Study & no & & & & & & \\
\hline Nosema granulosis & Ngra & 59．4．3 & 59.4 & fr & 680 & yes & Ngra \(\mathrm{H}^{\text {a }}\) & & OR165860 & No & Amphipoda & Gammarus fossarum & Gfos & This Study & yes & F2E1F4nd & ？ & E & OR142114 & － & This study \\
\hline Nosema granulosis & Ngra & 59.4 .5 & 59.4 & fr & 323 & yes & Ngra \(\mathrm{H}^{\text {3 }}\) & & OR165861 & no & Amphipoda & Gammarus fossarum & Gfos & This Study & no & & & & & & \\
\hline Nosema granulosis & Ngra & 59．4．6 & 59.4 & fr & 321 & yes & Nега－Нз & & OR165862 & no & Amphipoda & Gammarus pulex & Gpul & This Study & yes & F2E1F4nd & ？ & E & OR142115 & & This study \\
\hline Nosema granulosis & Ngra & 60.2 .26 & 60.2 & fr & 323 & yes & Ngra－f03ar04 & & OR165864 & No & Amphipoda & Gammarus fossarum & caffos & This Study & yes & F2C6F4C5 & 60．2．26 & c & OR142105 & OR166753 & This study \\
\hline Nosema granulosis & Ngra & 60．3．22 & 60.3 & fr & 701 & yes & Ngra \(\mathrm{H}^{\text {a }}\) & & OR165865 & no & Amphipoda & Gammarus fossarum & Gfos & This Study & yes & F2E1F4E4 & 38．1．15 & E & OR142116 & OR166769 & This study \\
\hline Nosema granulosis & Ngra & 60.4 .10 & 60.4 & fr & 575 & yes & Ngra Нз & & OR165867 & no & Amphipoda & Gammarus fossarum & Gfos & This study & yes & F2ndf4E2 & 60．4．10 & E & & OR166766 & This study \\
\hline Nosema granulosis & Ngra & 60.4 .16 & 60.4 & fr & 323 & yes & Ngra \(\mathrm{H}^{\text {a }}\) & & OR165868 & no & Amphipoda & Gammarus fossarum & Gfos & This study & yes & F2E1F4nd & ？ & E & OR142119 & & This study \\
\hline Nosema granulosis & Ngra & 60．4．29 & 60.4 & fr & 721 & yes & Ngra－f03－REF & yes & OR165869 & no & Amphipoda & Gammarus fossarum & Gfos & This Study & yes & F2C5F4Cs & 60．4．29 & c & OR142093 & OR16674 & This study \\
\hline Nosema granulosis & Ngra & 60.4 .33 & 60.4 & fr & 477 & yes & Nera－f030004 & & OR165870 & no & Amphipoda & Gammarus fossarum & Gfos & This study & yes & F2C5F4nd & 60．4．29 & c & OR142097 & & This study \\
\hline Nosema granulosis & Ngra & 60．4．9 & 60.4 & \({ }_{\text {fr }}\) & 708 & yes & Ngra－f04－REF & yes & OR165866 & no & Amphipoda & Gammarus fossarum & Gfos & This study & yes & F207F409 & 60．4．9 & D & OR142112 & OR166762 & This study \\
\hline Nosema granulosis & Ngra & 61.2 .10 & 61.2 & fr & 584 & yes & Ngra－fo4 & & OR165871 & no & Amphipoda & Gammarus fossarum & caffos & This Study & yes & F2ndF408 & 61．2．10 & D & & OR166761 & This study \\
\hline Nosema granulosis & \({ }^{\mathrm{Ngra}}\) & \({ }^{612.214}\) & 61.2 & \({ }_{\text {FR }}^{\text {FR }}\) & 572 & Yes
ves
Ves & Nera－fo4 & & OR165872 & No & Amphipoda & Gammarus fossarum & \({ }^{\text {Gfos }}\) & This Study & yes & \({ }_{\text {F }}^{\text {F226F407 }}\) & \({ }^{612.1 .14}\) & D & OR142111 & OR166760 & This sudy \\
\hline Nosema granulosis & Ngra & \({ }^{61.2 .216}\) & 61.2 & FR & 584 & Yes & Ngrafo4 & & \({ }^{\text {OR165873 }}\) & No & Amphipoda & Gammarus fossarum & cagfos & This Study & YES & F205F406 & 61.2 .16 & D & OR122110 & OR166759 & This study \\
\hline Nosema granulosis & Ngra & 61．2．19 & 61.2 & \({ }_{\text {fr }}\) & 343 & yes & Ngra－f030004 & & OR165874 & No & Amphipoda & Gammarus fossarum & Gfos & This Study & No & & & & & & \\
\hline Nosema granulosis & Ngra & 61.4 .18 & 61.4 & fr & 540 & yes & Ngra \(\mathrm{H}^{\text {a }}\) & & OR165875 & No & Amphipoda & Gammarus fossarum & Gfos & This Study & yes & F2E174E5 & 61.4 .18 & ， & OR142117 & OR166771 & This study \\
\hline Nosema granulosis & Ngra & Al35－02 & \({ }^{\text {Al35 }}\) & \({ }_{\text {AL }}\) & 716 & Yes & Nera 03 & & MK719246 & No & Amphipoda & Gammarus reeselii & Groe & Quiles etal．， 2019 & Yes & F283F4nd & Al35－04 & в & OR142025 & & This study \\
\hline Nosema granulosis & Ngra & Al35－03 & Al35 & Al & 687 & yes & Nera 01 & & MK719245 & No & Amphipoda & Gammarus roeselii & Groe & Quiles etal．， 2019 & No & & & & & & \\
\hline Nosema granulosis & Ngra & Al35－04 & \({ }^{\text {Al35 }}\) & \({ }_{\text {AL }}\) & 350 & Yes & Nera 03 & & MK719242 & No & Amphipoda & Gammarus roeselii & Groe & Quiles et al．， 2019 & Yes & F283F483 & Al35－04 & ， & OR142023 & OR166881 & This study \\
\hline Nosema granulosis & Ngra & Al35－06 & Al35 & Al & 317 & yes & Nera 01 & & MK719238 & No & Amphipoda & Gammarus reeselii & Groe & Quiles etal．， 2019 & yes & F283F4nd & Al35－04 & в & OR142026 & & This study \\
\hline Nosema granulosis & \({ }^{\mathrm{Ngra}}\) & \({ }^{\text {A } 135.08}\) & \({ }_{\text {A } 135}\) & \({ }_{\text {Al }}\) & 317 & Yes & Nera rO & & Mk719239 & No & Amphipoda & Gammarus roeselii & Groe & & No & & & & & & \\
\hline Nosema granulosis
Nosema granulosis & \({ }_{\substack{\mathrm{Ngra} \\ \mathrm{Ngra}}}\) & \({ }_{\text {Al3 }}{ }_{\text {Al35－11 }}\) & Al35
Al35 & \({ }_{\text {Al }}^{\text {Al }}\) & 350
317 & Yes
yes &  & & MK719243
MK719240 & No
No & Amphipoda
Amphipoda & Gammarus roeselii
Gammarus reselii & Groe
Groe & Quiles et al．， 2019
Quiles etal．， 2019 & \[
\begin{aligned}
& \text { YEs } \\
& \text { NO }
\end{aligned}
\] & F2B3F483 & Al35－04 & в & OR142024 & OR166882 & This study \\
\hline Nosema granulosis & Ngra & Al35－12 & Al35 & AL & 317 & yes & Nera 01 & & Mk719241 & no & Amphipoda & Gammarus roeselii & Groe & Quiles etal．， 2019 & No & & & & & & \\
\hline Nosema granulosis & Ngra & A \(135-12\)－FR & Al35 & Al & 306 & yes & Nera 01 & & мк719237 & no & Amphipoda & Gammarus roeselii & Groe & Quiles etal．， 2019 & no & & & & & & \\
\hline Nosema granulosis & Ngra & \({ }^{\text {A } 1335-17-F R}\) & Al35 & Al & 350 & yes & Ngra 103 & & MK719244 & No & Amphipoda & Gammarus roeselii & Groe & Quiles etal．， 2019 & No & & & & & & \\
\hline Nosema granulosis & Ngra & \({ }^{\text {ALL56－02M }}\) & \({ }^{\text {AL56 }}\) & \({ }_{\text {AL }}\) & \({ }^{331}\) & Yes & Nera b03 & & OR165876 & No & Amphipoda & Gammarus balcanicus & Gbal & This study & No & & & & & & \\
\hline Nosema granulosis & Ngra & AL56－03M & AL56 & AL & 708 & yes & Nera 03 & & OR165877 & No & Amphipoda & Gammorus balcanicus & Gbal & This Study & yes & F2ndF4A1 & AL56．03 & A & & OR166551 & This Study \\
\hline Nosema granulosis & \({ }^{\text {Nera }}\) & \({ }^{\text {ALL56－04M }}\) & \({ }^{\text {AL56 }}\) & \({ }_{\text {AL }}\) & 726 & Yes
Yes
Ves & Nera b03 & & OR165878 & No & Amphipoda & Gammarus balcanicus & Gbal & This Study & Yes & F2AGF4nd & AL56－04 & & OR142017 & & This study \\
\hline Nosema granulosis
Nosema granulosis & \(\underset{\substack{\text { Ngra } \\ \text { Nera }}}{ }\) & \(\underset{\substack{\text { ALL56－06M } \\ \text { AL6．07M }}}{ }\) & \({ }^{\text {AL56 }}\) & \({ }_{\text {Al }}^{\text {AL }}\) & 332
708 & \({ }_{\text {Y }}^{\text {Yes }}\) Yes & Nera
Ne
Nera
bo & & OR165879
OR165880 & No
No & \({ }_{\text {Amphipoda }}^{\text {Amphioda }}\) & Gammarus balcanicus
Gammarus balcanicus & \(\underset{\substack{\text { Gbal } \\ \text { Gbal }}}{ }\) & This Study
This Study & \({ }_{\text {y }}^{\substack{\text { No } \\ \text { Yes }}}\) & F2ndfaA5 & AL56－07 & A & & OR166676 & This study \\
\hline Nosema granulosis & Ngra & AL56－07M & \({ }^{\text {AL56 }}\) & \({ }^{\text {AL }}\) & 708 & Yes & Ngra b03 & & OR165880 & No & Amphipoda & Gammarus balcanicus & Gbal & This Study & & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Nosema granulosis Nosema granulosis}} \\
\hline & \\
\hline & Nosema granulosis \\
\hline \multicolumn{2}{|l|}{Nosema granulosis} \\
\hline & Nosema granulosis \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Nosema granulosis}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Nosema granulosis Nosema granulosis}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Nosema granulosis
Nosema granuosis}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Nosema granulosis
Nosema granuosis}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{Nosema granulo} \\
\hline \multicolumn{2}{|l|}{\multirow[b]{2}{*}{Nosema granno}} \\
\hline & \\
\hline & Nosema granulosis \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Nosema granulosis}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Nosema granulosis}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Nosema granulosis Nosema granulosis}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Nosema granulosis
Nosema granuosis}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Nosema granulosis
Nosema granulosis}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Nosema granulosis
Nosema granuosis}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Nosema granulosis
Nosema granulosis}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Nosema granulosis
Nosema granulosis}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Nosema granulosis
Nosema granulosis}} \\
\hline & \\
\hline & Nosema granulosis \\
\hline \multicolumn{2}{|l|}{Nosema granulosis} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Nosema granulosis
Nosema granulosis}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{Nosema granulosis} \\
\hline & Nosema granulosis \\
\hline \multicolumn{2}{|l|}{Nosema granulosis} \\
\hline & Nosema granulosis \\
\hline \multicolumn{2}{|l|}{Nosema granulosis} \\
\hline \multicolumn{2}{|l|}{Nosema granulosis} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Nosema granulosis
Nosema granulosis}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Nosemag granulosis
Nosema granulosis}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{Nosema granulosis} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Nosema granulosis}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{Nosema granulosis
Nosema granulosis} \\
\hline \multicolumn{2}{|l|}{Nosema granulosis} \\
\hline \multicolumn{2}{|l|}{Nosema granulosis} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Nosema granulosis}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{Nosema granulosis
Nosema granulosis} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Nosema granulosis}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Nosema granulosis
Nosema granulosis}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{Nosema granulosis} \\
\hline \multicolumn{2}{|l|}{Nosema granulosis} \\
\hline \multicolumn{2}{|l|}{Nosema granulosis} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Nosema granulosis}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{Nosema granulosis} \\
\hline \multicolumn{2}{|l|}{Nosema granulosis} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Nosema granulosis
Nosema granulosis}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{Nosema granulosis} \\
\hline \multicolumn{2}{|l|}{Nosema granulosis} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Nosema granulosis
Nosema granuosis}} \\
\hline & \\
\hline
\end{tabular}







yes
\(\underset{\substack{\text { YES } \\ \text { YeS }}}{ }\)
yes
\[
\begin{aligned}
& \text { YES } \\
& \text { YES }
\end{aligned}
\]

为



\(\begin{array}{lllll}\text { AL64-01 } & \text { A } & & \\ \text { AL56-04 } & \text { AR166675 } & & \\ \text { OR142017 }\end{array}\)

Quiles et al., 2019
Quiles et al., 2019
\begin{tabular}{|c|c|c|c|c|c|}
\hline F2C3F4nd & н05-02 & c & OR142037 & & This Study \\
\hline F2C3F4C3 & н05-02 & c & OR142034 & OR166691 & This Study \\
\hline F2C3F4C3 & н05-02 & c & OR142035 & OR166692 & This Study \\
\hline F2C3F4nd & н05-02 & c & OR142036 & OR16693 & This Study \\
\hline F2C3F4C3 & H05-02 & c & OR142038 & & This study \\
\hline F201F401 & Alpmo4-1 & D & OR142106 & OR166754 & This Study \\
\hline F222F4D2 & ALPM04-2 & D & OR142107 & OR166755 & This study \\
\hline F203F4D3 & ALPM04-3 & D & OR142108 & OR166756 & This Study \\
\hline F204F404 & Alpm04-4 & D & OR142109 & OR166757 & This Study \\
\hline F2E2FAnd & ALMP22-3 & E & OR142120 & - & This Study \\
\hline F2C3F4C3 & H05-02 & c & OR142039 & OR16669 & This Study \\
\hline F2C3F4C3 & H05-02 & c & OR142040 & OR166995 & This Study \\
\hline F2C3F4C3 & H05-02 & c & OR142041 & OR16699 & This Study \\
\hline F2C3F4C3 & н05-02 & c & OR142042 & OR166697 & This Study \\
\hline F2C3F4C3 & н05-02 & c & OR142043 & OR166698 & This study \\
\hline F2C3F4C3 & H05-02 & c & OR142044 & OR166699 & This Study \\
\hline F2С3F4C3 & н05-02 & c & OR142045 & OR166700 & This study \\
\hline F2C3F4C3 & H05-02 & c & OR142046 & OR166701 & This Study \\
\hline F2C3F4C3 & н05-02 & c & OR142047 & OR166702 & This Study \\
\hline F2C3F4C3 & н05-02 & c & OR142048 & OR166703 & This Study \\
\hline F2A2-3F4A2-3 & H07-04 & A & OR141998 & OR166655 & This Study \\
\hline F2E1F4E1 & CHGF & E & OR142118 & OR166765 & This Study \\
\hline F2ndF4C6 & J×213747 & c & - & - & Ironside 2013 \\
\hline F2ndF4C2 & 6R11-06 & c & - & OR166704 & This Study \\
\hline F2B1F4B1 & 6R25-02 & в & OR142019 & OR166677 & This Study \\
\hline F2B2F4B2 & GR25-08 & в & OR142021 & OR166680 & This Study \\
\hline F282F4B2 & 6R25-08 & в & OR142022 & OR166679 & This Study \\
\hline
\end{tabular}
\(\underset{\substack{\text { F282FFAB2 } \\ \text { F2BF4B2 }}}{ }\)
GR25-18
\(\begin{array}{ll}\text { OR142022 } & \text { OR166679 } \\ \text { OR142020 }\end{array}\)

This study
This sudy
This study
Shis Study
his study
his stady
his study
Thistudy
This study
This sutuy
This study
his Study
This Study
This study
This Study
This study
his Study
lis study
his study
This Study
This study
study
onside 2013

This Study
his study

This study

\section*{This study
This study}
\begin{tabular}{|c|}
\hline Nosema granulosi \\
\hline Nosema granulosi \\
\hline Nosema granulosis \\
\hline Nosema granulosis \\
\hline Nosema gran \\
\hline Nosema granulosis \\
\hline Nosema granulosis \\
\hline Nosema granulosis \\
\hline Nosema granulosi \\
\hline Nosema granulosis \\
\hline Nosema sp. VR28 \\
\hline Nosema sp. VR31 \\
\hline Nosema fumiferanae \\
\hline Nosema sp. (L105) \\
\hline Nosema sp. (L116) \\
\hline Nosema sp. (1118) \\
\hline Nosema sp. (1128) \\
\hline Nosema sp. (1138) \\
\hline Nosema sp. (1142) \\
\hline Nosema sp. (1143) \\
\hline Nosema sp. (1146) \\
\hline Nosema sp. (184) \\
\hline Nosema sp. (187) \\
\hline Nosema sp. (196) \\
\hline Nosema sp. (197) \\
\hline Nosema sp. (198) \\
\hline Nosema sp. \\
\hline Nosema granulos \\
\hline Nosema granulosis \\
\hline sema granulos \\
\hline Nosema granulosis \\
\hline dsema granulos \\
\hline Nosema granul \\
\hline \\
\hline
\end{tabular}










\begin{tabular}{|c|}
\hline \({ }_{\text {F2C3F4C3 }}\) \\
\hline F2A2FFnnd \\
\hline F2A2F4A2-3 \\
\hline F2A2-3F4A2-3 \\
\hline F2A2-3F4And \\
\hline F2A2F4nd \\
\hline F2A2F4nd \\
\hline F2A2Fnd \\
\hline F2A2F4nd \\
\hline F2A3FAA2-3 \\
\hline F2ndF4A2-3 \\
\hline F2A2F4nd \\
\hline
\end{tabular}
\begin{tabular}{|c|}
\hline \multirow[t]{7}{*}{Ho5-02
Hos-02
SK41
SK41
Hot--4
H07-04
SK41} \\
\hline \\
\hline \\
\hline \\
\hline \\
\hline \\
\hline \\
\hline
\end{tabular}
\(\begin{array}{cc}\text { OR142050 } & \text { OR166706 } \\ \text { OR12451 } & \text { OR166707 } \\ \text { OR141978 } & \text { OR16 } \\ \text { OR11479 } & \text { OR166662 } \\ \text { OR12003 } & \text { OR166663 } \\ \text { OR122002 } \\ \text { OR141980 } & -\end{array}\)
This Study
This Study
This Study
This study
This study This study
This sudy
This stuyy
This study
This study

This study
This study This study
Thistudy
This study
F2A2FAnd
\begin{tabular}{|c|c|c|c|c|}
\hline F2A2FFAnd & Sk41 & A & OR141985 & - \\
\hline F2A2FAnd & Sk41 & A & OR141986 & \\
\hline F2A2FFAnd & SK41 & A & OR141987 & \\
\hline F2A2-3F4And & H07-04 & A & OR142001 & \\
\hline F2A2F4A2-3 & SK41 & A & OR141988 & OR166665 \\
\hline F2A2-3F4And & но7-04 & A & OR142000 & \\
\hline F2A2F4A2-3 & Sk41 & A & OR141989 & OR166667 \\
\hline F2ndF4E3 & KER21 & E & - & OR166767 \\
\hline
\end{tabular}
HQ457435 HQ457435 Kyei-Poku unpub
\begin{tabular}{|c|c|c|c|c|c|}
\hline F2ndF4F1 & \(54 \mathrm{P6}\) & F & & OR166773 & This study \\
\hline F2C3F4C3 & но5-02 & c & OR142049 & OR166705 & This Study \\
\hline F2C3F4C3 & H05-02 & c & OR142059 & OR166708 & This Study \\
\hline F2C3F4C3 & но5-02 & c & OR142060 & OR166709 & This Study \\
\hline F2C3F4C3 & но5-02 & c & OR142061 & OR166710 & This Study \\
\hline F2C3F4nd & но5-02 & c & OR142058 & & This Study \\
\hline F2ndf4C3 & но5-02 & c & & OR166711 & This Study \\
\hline F2C3F4C3 & H05-02 & c & OR142062 & OR166712 & This Study \\
\hline F2C3F4C3 & H05-02 & c & OR142063 & OR166713 & This Study \\
\hline F2C3F4C3 & но5-02 & c & OR142053 & OR166714 & This Study \\
\hline F2C3F4nd & но5-02 & c & OR142052 & - & This Study \\
\hline F2C3F4C3 & H05-02 & c & OR142054 & OR166715 & This Study \\
\hline F2C3F4C3 & H05-02 & c & OR122055 & OR166716 & This Study \\
\hline F2C3F4C3 & но5-02 & c & OR142056 & OR166717 & This Study \\
\hline F2C3F4C3 & H05-02 & c & OR142057 & OR166718 & This Study \\
\hline
\end{tabular}







YES
Yes







\begin{tabular}{|c|c|c|c|c|}
\hline F2C3F4C3 & H05-02 & c & OR142064 & OR166719 \\
\hline F2C3F4C3 & H05-02 & c & OR142065 & OR166720 \\
\hline F2C3F4nd & H05-02 & c & OR142066 & \\
\hline F2C3F4C3 & н05-02 & c & OR142067 & OR166721 \\
\hline F2C3F4C3 & н05-02 & c & OR142068 & OR166722 \\
\hline F2C3F4C3 & н05-02 & c & OR142069 & OR166723 \\
\hline ғ2С3F4C3 & н05-02 & c & OR142070 & OR166724 \\
\hline F2С3F4C3 & H05-02 & c & OR142071 & OR166725 \\
\hline F2С3F4C3 & H05-02 & c & OR142072 & OR166726 \\
\hline F2C3F4C3 & H05-02 & c & OR142073 & OR166727 \\
\hline F2C3F4C3 & н05-02 & c & OR142074 & OR166728 \\
\hline F2C3F4C3 & H05-02 & c & OR142075 & OR166729 \\
\hline F2C3F4C3 & H05-02 & c & OR142076 & OR166730 \\
\hline F2С3F4C3 & H05-02 & c & OR142077 & OR166731 \\
\hline F2C3F4C3 & H05-02 & c & OR142078 & OR166732 \\
\hline F2C3F4C3 & н05-02 & c & OR142079 & 166 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline F2C4F4C4 & Ros2 & c & OR142088 & OR166736 & This Stud \\
\hline F2C4F4C4 & ROS2 & c & OR142084 & OR166737 & stud \\
\hline F2C4F4C4 & ROS2 & c & OR142085 & OR166738 & This Stud \\
\hline
\end{tabular}
F2C1bC4F4C1-4 ROS5O C OR142032 OR166687
F2ndeAC1
Ro588OR166685
```

F
ROS88

```
\(\qquad\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Nosema granulosis & Ngra & sk100 & sk & sk & 662 & yes & Ngra b03 & & OR166005 & No & Amphipoda & Gammarus balcanicus & Gbal & This study & yes & F2A2-3F4A2-3 & но7-04 & A & OR142010 & OR166553 & This study \\
\hline Nosema granulosis & Ngra & Sk15 & sk & sk & 690 & yes & Ngra b03 & & OR165994 & No & Amphipoda & Gammarus balcanicus & Gbal & This study & yes & F2A2-3F4A2-3 & н07-04 & A & OR142007 & OR166554 & This study \\
\hline Nosema granulosis & Ngra & SK2 & sk & sk & 690 & YES & Ngra b03 & & OR165991 & No & Amphipoda & Gammarus balcanicus & Gbal & This study & yes & F2A2-3F4A2-3 & н07-04 & A & OR142011 & OR166670 & This Sudy \\
\hline Nosema g granulosis & Ngra & sk20 & sk & sk & 662 & yes & Ngra b03 & & OR165995 & No & Amphipoda & Gammarus balcanicus & Gbal & This study & yes & F2A2-3F4A2-3 & но7-04 & A & OR142012 & OR166671 & This Study \\
\hline Nosema granulosis & Ngra & sk27 & sk & sk & 693 & yes & Ngra bo3 & & OR165996 & no & Amphipoda & Gammarus balcanicus & Gbal & This study & yes & F2A2-3F4A2-3 & но7-04 & A & OR142013 & OR166672 & This Study \\
\hline Nosema granulosis & Nera & Sk41 & sk & sk & 720 & yes & Ngra 03 & & OR165997 & No & Amphipoda & Gammarus balcanicus & Gbal & This study & yes & F2A2F4A2-3 & Sk41 & A & OR141991 & OR166674 & This Study \\
\hline Nosema granulosis & Ngra & sk49 & sk & sk & 320 & yes & Ngra b03 & & OR165998 & no & Amphipoda & Gammarus balcanicus & Gbal & This study & yes & F2A2F4A2-3 & sk41 & A & OR141992 & OR166673 & This Study \\
\hline Nosema g granulosis & Ngra & sks & sk & sk & 690 & yes & Ngra bo3 & & OR165992 & No & Amphipoda & Gammarus balcanicus & Gbal & This study & yes & F2A2-3F4A2-3 & н07-04 & A & OR142005 & OR166656 & This Study \\
\hline Nosema granulosis & Ngra & sk58 & sk & sk & 390 & yes & Ngra 03 & & OR165999 & no & Amphipoda & Gammarus balcanicus & Gbal & This study & yes & F2A2-3F4A2-3 & но7-04 & A & OR142009 & OR166557 & This Sudy \\
\hline Nosema granulosis & Ngra & sk6 & sk & sk & 690 & yes & Ngra b03 & & OR165993 & no & Amphipoda & Gammarus balcanicus & Gbal & This study & yes & F2A2F4A2-3 & Sk41 & A & OR142006 & OR166558 & This Sudy \\
\hline Nosema granulosis & Ngra & SK69 & sk & sk & 697 & yes & Ngra bo3 & & OR166000 & no & Amphipoda & Gammarus balcanicus & Gbal & This study & no & & & & & & \\
\hline Nosema granulosis & Ngra & sk82 & sk & sk & 691 & yes & Ngra b03 & & OR166001 & No & Amphipoda & Gammarus balcanicus & Gbal & This study & yes & F2A2-3F4A2-3 & но7-04 & A & OR142008 & OR166659 & This study \\
\hline Nosema granulosis & Ngra & sk92 & sk & sk & 685 & yes & Ngra b03 & & OR166002 & no & Amphipoda & Gammarus balcanicus & Gbal & This study & yes & F2A2F4A2-3 & Sk41 & A & OR141993 & OR166660 & This Study \\
\hline Nosema granulosis & Nera & sk94 & sk & sk & 690 & yes & Ngra 03 & & OR166003 & No & Amphipoda & Gammarus balcanicus & Gbal & This study & yes & F2A2F4A2-3 & Sk41 & A & OR141994 & & This Study \\
\hline Nosema granulosis & Ngra & sk98 & sk & sk & 693 & yes & Ngra bo3 & & OR166004 & no & Amphipoda & Gammarus balcanicus & Gbal & This study & yes & F2A2FAA2-3 & Sk41 & A & OR141995 & OR166661 & This Study \\
\hline Nosema granulosis & Ngra & SlB-05 & SLB & PL & 687 & yes & Nerar 01 & & Mk719268 & No & Amphipoda & Gammarus reeselii & Groe & Quiles et al., 2019 & yes & F2C3F4nd & н05-02 & c & OR142080 & & This Study \\
\hline Nosema granulosis & Ngra & SLB-08 & SLB & PL & 687 & yes & Ngra 01 & & Mk719269 & no & Amphipoda & Gammarus reeselii & Groe & Quiles etal., 2019 & yes & F2C3FAnd & н05-02 & c & OR142081 & - & This Study \\
\hline Nosema granulosis & Ngra & SlB-12 & SLB & PL & 317 & yes & Ngra 01 & & Mk719264 & no & Amphipoda & Gammarus roselii & Groe & Quiles et al., 2019 & yes & F2C3FAnd & н05-02 & c & OR142082 & - & This Study \\
\hline Nosema granulosis & Ngra & SPl-40 & SPI & \({ }^{\text {at }}\) & Shorter/365 & yes & Ngra 01 & & EF091823 & no & Amphipoda & Dikerogammarus villosus & Dvil & Wattie et al 2007 & no & & & & & & \\
\hline Nosema granulosis & Nera & STE1-A & Stei & DE & 299 & yes & Ngra 01 & & ON113518 & No & Amphipoda & Gammarus fossarum & Gfos & Pratie tal 2022 & No & & & & & & \\
\hline Nosema granulosis & Ngra & Stel-b & stei & DE & 299 & yes & Ngra 01 & & ON113518 & no & Amphipoda & \(G\) Gammarus pulex & Gpul & Pratiet al 2022 & No & & & & & & \\
\hline Nosema granulosis & Ngra & stel-c & Ste1 & DE & 299 & yes & Ngra 01 & & ON113518 & No & Amphipoda & Gammarus reeselii & Groe & Pratie tal 2022 & No & & & & & & \\
\hline Nosema granulosis & Ngra & ste-03 & stg & fr & 480 & yes & Ngrar 01 & & MK719434 & no & Amphipoda & Gammarus reeselii & Groe & Quiles et al., 2019 & No & & & & & & \\
\hline Nosema granulosis & Ngra & ste.09 & STG & fr & 480 & yes & Ngra 01 & & Mk719435 & no & Amphipoda & Gammarus reeselii & Groe & Quiles et al., 2019 & yes & F2C3F4nd & н05-02 & c & OR142083 & - & This study \\
\hline Nosema granulosis & Ngra & STG-12 & stg & \({ }_{\text {fr }}\) & 304 & yes & Ngra 01 & & Mk719432 & no & Amphipoda & Gammarus reeselii & Groe & Quiles et al., 2019 & no & & & & & & \\
\hline Nosema granulosis & Ngra & TER-1 & ter & GB (sco) & 1143/1168 & yes & A011833 & yes & A001833 & yes & Amphipoda & Gammarus duebeni & Gdue & Terry etal., 1999 & yes & F2C1F4C1 & DQ996233 & c & DQ996233 & - & Ironside 2007 \\
\hline Nosema granulosis & Ngra & บа03-07M & บa03 & UA & 726 & yes & Ngra bo3 & & OR166006 & no & Amphipoda & Gammarus balcanicus & Gbal & This study & yes & F2A2-3F4And & н07-04 & A & OR141999 & - & This study \\
\hline Nosema granulosis & Ngra & UA03-12M & va03 & ua & 726 & yes & Ngra bo3 & & OR166007 & No & Amphipoda & Gammarus balcanicus & Gbal & This study & yes & F2A2F4A2-3 & Sk41 & A & OR141996 & OR16669 & This Study \\
\hline Nosema granulosis & Ngra & UA31-22M & ua31 & UA & 717 & yes & Ngra b03 & & OR166008 & no & Amphipoda & Gammarus balcanicus & Gbal & This study & yes & F2A2F4nd & sk41 & A & OR141997 & & This study \\
\hline Nosema g granulosis & Ngra & UA31-M58 & UA31 & UA & 1011 & yes & Ngra bo3 & yes & OR166009 & no & Amphipoda & Gammarus balcanicus & Gbal & This study & no & & & & & & \\
\hline Nosema granulosis & Ngra & & hud & เv & 337 & yes & Ngrar 03 & & кт633991* & no & Amphipoda & Gammarus fossarum & Gfos & Weigand et al., 2016 & No & & & & & & \\
\hline Nosema granulosis & Ngra & & hud & เv & 337 & yes & Ngra 03 & & кт633991* & no & Amphipoda & Niphargus schellenbergi & Nsch & Weigand et al., 2016 & No & & & & & & \\
\hline Nosema empoascae & Nemp & & & & 1189 & yes & D0996238 & yes & DQ996238 & no & Hemiptera & Empoasca fabae & Efab & Ironside 2007 & yes & DQ996232 & DQ996232 & & & & Ironside 2007 \\
\hline Vairimorpha austropotamobii & Vaus & & & . & 1139 & yes & mf34634 & yes & mF344634 & No & Decapoda & Austropotamobius pollipes & Apal & Pretto etal 2017 & yes & mF344629 & mF344629 & & & & Pretto etal 2017 \\
\hline Vairimorpha cheracis & vche & & & - & 1127 & yes & AF327408 & yes & Af327408 & No & Decapoda & Cherax destructor & Cdes & Moodie et al 2003 & yes & DQ996235 & DQ996235 & & & & Ironside 2007 \\
\hline Varimoropha necatrix & Vnec & & & - & & & & & & No & Lepidoptera & Pseudaletia unipuncta & Puni & Ironside 2007 & yes & D0996236 & D0996236 & & & & Ironside 2007 \\
\hline Nosema antherceae & Nant & & & - & 1232 & ves & EU864526 & yes & EU864526 & yes & Lepidoptera & Anthercea pernyi & Aper & Shen DS & no & & & & & & \\
\hline Nosema plutellae & Nolu & & & - & 1230 & yes & AY969987 & yes & A9960987 & yes & Lepidoptera & Plutella xylostea & Pxyl & Ku etal 2007 & No & & & & & & \\
\hline Nosema bombycis & Nbom & & & - & 1232 & yes & D85503 & Yes & D85503 & yes & Lepidoptera & Bombyx mori & Bmor & Hatakeyama DS & yes & DQ996231 & DQ996231 & & & & Ironside 2007 \\
\hline Nosema disstriae & Ndis & & & - & 1232 & yes & Eu219085 & YES & EU219085 & yes & Lepidoptera & Malacosoma disstria & Mdis & Kyei-Poku etal 2008 & Yes & HQ457438 & HQ457438 & & & & Kyei-Poku unpub \\
\hline Nosema trichoplusioe & Ntri & & & - & 1233 & yes & NTUO9282 & yes & 00982 & yes & Lepidoptera & Trichoplusia ni & Tni & Fries etal 1996 & yes & DQ996234 & DQ996234 & & & & Ironside 2007 \\
\hline Nosema tyriae & Ntyr & & & - & 1233 & yes & A012606 & yes & A012606 & yes & Lepidoptera & Tyria jacobaeae & Tjac & Canning et al 1999 & yes & A278948 & A278948 & & & & Cheney et a l unpub \\
\hline Ordospora colligata & Ocol & & & - & 1973 & yes & AF394529 & yes & AF394529 & yes & Diplostraca & Daphia magna & Dmag & Refarde et al 2002 & yes & XM_014708712 & XM_014787712 & & & & Pombert etal 2015 \\
\hline Vairimorpha apis & Vapi & & & - & 1242 & yes & nav26534 & yes & NAU26534 & yes & Hymenoptera & Apis mellifera & Amel & Fries etal 1996 & yes & D0996230 & DQ996230 & & & & Ironside 2008 \\
\hline Vairimorpha ceranae & ver & & & - & 1259 & yes & NCU26533 & yes & \({ }^{26533}\) & yes & Hymenoptera & Apis cerana & Acer & Fries etal 1996 & yes & хм_002993356 & xm_02995356 & & & & Cormann etal 2009 \\
\hline Varimorpha necatrix & Vnec & & & - & 1244 & yes & Y00266 & Yes & Y00266 & yes & Lepidoptera & Lacanobia oleracea & Lola & Vossbrincket al 1987 & yes & AF600234 & Af060234 & & & & Hirtetal 1999 \\
\hline
\end{tabular}

\section*{Table S3. Estimates of Average Evolutionary Divergence over Sequence Pairs within Groups}

The number of base substitutions per site from averaging over all sequence pairs within each group are shown.
Analyses were conducted using the Kimura 2-parameter model [1]. This analysis involved 36 nucleotide sequences.
Codon positions included were 1st+2nd+3rd+Noncoding. All ambiguous positions were removed for each sequence pair (pairwise deletion option).
There were a total of 1025 positions in the final dataset.
Evolutionary analyses were conducted in MEGA11 [2] The presence of \(n / c\) in the results denotes cases in which it was not possible to estimate evolutionary distances
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline WITHIN groups & SE & & & & & \\
\hline A 0.02299468 & 0.003771363 & & & & & \\
\hline B 0.020679952 & 0.004310813 & & & & & \\
\hline E 0.008799772 & 0.002409033 & & & & & \\
\hline C 0.022969903 & 0.00358103 & & & & & \\
\hline D 0.003240104 & 0.001249442 & & & & & \\
\hline F n/c & \(\mathrm{n} / \mathrm{c}\) & & & & & \\
\hline AMONG groups & SE & & & & & \\
\hline & A B & E & C & D & F & \\
\hline A & & 0.0159 & 0.0255 & 0.0253 & 0.0320 & 0.0237 \\
\hline B & 0.1920 & & 0.0230 & 0.0208 & 0.0234 & 0.0209 \\
\hline E & 0.3492 & 0.2993 & & 0.0262 & 0.0260 & 0.0392 \\
\hline C & 0.3247 & 0.2868 & 0.3304 & & 0.0128 & 0.0291 \\
\hline D & 0.3735 & 0.3284 & 0.3381 & 0.1308 & & 0.0395 \\
\hline F & 0.1981 & 0.1776 & 0.3793 & 0.3149 & 0.3728 & \\
\hline
\end{tabular}
1. Kimura M. (1980). A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution \(16: 111-120\). 2. Tamura K., Stecher G., and Kumar S. (2021). MEGA 11: Molecular Evolutionary Genetics Analysis Version 11. Molecular Biology and Evolution https://doi.org/10.1093/molbev/msab120.
>AF060234
AAAGGAGAAGAAGAAAGTGATGGTAAAGTAATTTTGAATGGAGAAAGAGTTCATAATATT CTGAAGAAGATTGTAAATGAAGATGCTGTGTTTTTGGGTTTTGATCAGAAGTTTACTAAG CCTGAGTGGCTTATTTTGACTGTTCTTTTAGTTCCTCСТССТTCTGTAAGGCCTAGTATT GTCATGGAAGGAATGTTGAGAGCAGAAGATGATTTGACTCATAAATTGGCAGATATAGTA AAAGCTAATACTTATCTTAAGAAATATGAATTAGAAGGGGCACCTGGTCATGTAGTAAGG GATTATGAACAATTACTCCAATTTCATATTGCCACAATGATTGACAATGACATAAGTGGC CAACCACAGGCACTTCAGAAAAGTGGGCGCCCTTTAAAAAGCATTTCTGCTCGACTGAAA GGCAAAGAAGGGCGAGTCCGGGGAAATTTAATGGGAAAAAGGGTAGATATGAGCATGATG GCTCATTTTGTCCGAGTCATGGAAGGCAAAACTTTTAGACTAAATTTGTCTTGTGTCTCG СССТАТАACGCGGATTTTGACGGGGACGAAATGAATCTTCACATGCCGCAAAGTTACAAC AGTAAGGCGGAATTAGAAGAATTATGTTTAGTAAGTAAACAAGTATTAAGTCCACAATCT AATAAACCAGTAATGGGGATAGTACAAGACAGTTTAACAGCTCTAAGACTTTTTACATTA CGAGATTCATTTTTTGATCGTAGAGAAACAATGCAATTATTATATTCTGTAAATATTAAT AATTATGAGTTTACTGATTCGTCGAAATTAATTATGACTCATGATGACTCATTTGGTAAT ААТТТАСАТАСТGAAGAATCTTCAAATATTATGAAAATATTAAATTTCССАGСТАТТТСТ TATCCTAAGAAATTGTGGACTGGTAAACAAATCTTAAGTTACATTTTACCAAATACAATT TATAATGGAAAATCTAATGAGCACAACGAAGAAGACTTGGAAAATGTCGAAGATTCTTAC GTCATAATTAGAAATGG
>DQ996236
AAAGGAGAAGAAGAAAGTGATGGTAAAGTAATTTTGAATGGAGAAAGAGTTCATAATATT TTAAAGAAGATTGTAAATRAAGATGCTGTGTTTTTGGGTTTTGATCAGAAGTTTACTAAG CCCGAGTGGCTTATTTTGACTGTTCTTTTAGTTCCTCCTCCTTCTGTAAGGCCTAGTATT GTCATGGAAGGAATGTTGAGAGCAGAAGATGATTTGACTCATAAATTGGCAGATATTGTG AAAGCTAATACTTATCTTAAGAAATATGAATTAGAAGGGGCACCTGGTCATGTAGTAAGG GATTATGAACAATTACTCCAATTTCATATTGCCACAATGATTGACAATGACATAAGTGGC CAACCACAGGCACTTCAGAAAAGTGGGCGCCCTTTAAAAAGCATTTCTGCTCGACTGAAA GGCAAAGAAGGGCGAGTCCGGGGAAATTTAATGGGAAAAAGGGTAGATATGAGCATGATG GCTCATTTTGTCCGAGTCATGGAAGGCAAAACTTTTAGACTAAATTTGTCTTGTGTCTCG CCGTATAACGCGGATTTTGACGGGGACGAAATGAATCTTCACATGCCGCAAAGTTACAAC AGTAAGGCGGAATTAGAAGAATTATGTTTAGTAAGTAAACAAGTATTAAGTCCACAATCT AATAAACCAGTAATGGGGATAGTACAAGACAGTTTAACAGCTCTAAGACTTTTTACATTA CGAGATTCATTTTTTGATCGTAGAGAAACAATGCAATTATTATATTCTGTAAATATTAAT AATTATGAGTTTACTGATTCGTCGAAATTAATTATGACTCATGATGACTCATTTGRTAAT AАТТТАСАТАСТGAAGAATCTTCAAATATTATGAAAATATTAAATTTCССАGСTATTTСТ TATCCTAAGAAATTGTGGACTGGTAAACAAATCTTAAGTTACATTTTACCAAATACAATT TATAATGGAAAATCTAATGAGCACAACGAAGAAGACTTGGAAAATGTCGAAGATTCTTAC GTCATAATTAGAAATGG
>XM_002995356
AAAGGTGAAGAAGACAGTGATGGAAAAGTTATTTTAAATGGTGAAAGGGTGCATAATATT TTAAAGAAAATTTCTGATGAAGATTCAACATATTTAGGATTTGATACAAAATATAGTAAA CCGGATTGGCTTGTTATAACTGTACTTCTTGTTCCTCCACCATCAGTTAGACCATCTATT GTTATGGAAGGGATGCTTAGAGCAGAAGATGATTTGACACATAAATTGGCTGATATAGTT AAAGCTAACACGTATTTAAAAAAATATGAATTAGAAGGAGCACCAGGTCATGTGATAAGA GATTATGAACAGTTATTACAATTTCATATTGCTACTATGATTGATAATGATTTAAGTGGA CAACCACAAGCTTTACAAAAAAGTGGAAGACCAATAAAATCCATTAGTGCTAGATTAAAA GGTAAAGAAGGTCGTGTTAGAGGAAATTTAATGGGAAAAAGAGTAGATATGTCAATGATG GGACATTTCGTTCGAGTTATGGAAGGTAAAACTTTTAGATTAAATTTAAGTTGTACGTCA CCGTATAATGCGGATTTCGATGGAGACGAAATGAATCTTCATATGCCACAGAGTTACAAT ACTAAAGCAGAATTAGAAGAATTGTGTTTGGTTAGTAAACAAGTTCTAAGTCCTCAATCA AACAGACCTGTAATGGGTATTGTACAGGATTCTTTAACCAGTCTAAGGCTTTTTACACTT AGAGATACTTTTTTTGATAAAAGAGAAACAATGCAATTACTTTATTCCATAAACTTAAGC AAATATGAAAATTTTAAT-
AATGAAGATATGCATAAAACT---TCTATTATGGATTTATTAAATTATCCAACAATTTCT TATCСТАAGAAATTATGGACAGGAAAGCAAATCTTTAGTTATATTTTACCGAATATTGTA TATTCAGCTGTGTCTAATGAACACGATGAAAATGATCTTGAAAATTTAAAAGATACAGTA GTAATCATTCGTAATGG

\begin{abstract}
>DQ996230
AAAGGGGAAGAAAACTCCGACGGTAAAGTTATTTTAAATGGAGAAAGGGTTTTGAGTATT TTGAAAAAAATTTCTGAACAAGATGCTAATTATATGGGATTTGATTTTGTTAATAGTAAA CCCGAATGGTTAATTTTGACTGTTTTGCTAGTTCCTCСТССТTСTGTAAGACCTTCTATT GTTATGGAGGGAATGTTAAGAGCAGAAGATGATCTAACACACAAATTGGCTGATATTATA AAAGCAAATACATATTTAAAAAAATATGAGTTGGAAGGCGCTCCTGGTCATGTTATAAGG GATTATGAACAATTACTACAATTTCATATGGCTACAATGGTAGATAATGATTTAAGTGGA CAACCACAAGCTTTACAAAAAAGTGGAAGGCCTATAAAGTCGATTAGTGCTAGATTAAAA GGAAAAGAAGGTCGAGTACGAGGAAATTTGATGGGCAAAAGGGTAGATATGTCTATGATG GGTCATTACGTCAGAGTGATGGAAGGAAAAACRTTTAGATTAAATTTGAGTGTCACAACT CCGTATAATGCAGATTTTGACGGAGATGAAATGAATTTACACATGCCACAATCACATAAT TCAAGAGCAGAGCTTGAAGAACTCTGTCTGGTATCTAAACAAGTATTGACACCACAAGCT AATCGTCCTATAATGGGTATTGTACAAGAYACACTAACTGGACTTCGTTTGTTTACTTTA AGAGACTCGTTTTTTGATAAACGAGAAACGATGCTATTACTTTATTCAGTAGATCTTGAG AAATATGAAAATTTA
------------AAAGAAGGT---GGAATTTGTGAATTTATGAATYGTCCAGCAATTTCA TATCCAAAGMAATATTGGACAGGAAAACAAATTATCAGTTTTATTTTACCTGATATAATT TTTAATGGAAATTCAAATGAATTTGATGARGAGGATTTAGAAAATGTTAAAGATTTAAAA ATTTATTTAAGAAACGG
>AJ278948
AAAGGAGAAGATAACTCAGAAGGGAAGGTCATTTTAAATGGAGAGAAAGTTCACAGTATT TTTAAAAAGATTTCTGATGAAGATATTGAAGTTTTAGGTTTTGATCTTGCTTACAGTACA CCCGAATGGCTTATTTTAACTGTCTTATTGGTACCTCCACCATCGGTAAGACCTTCGATT GTTATGGAAGGGATGCTAAGAGCAGAAGATGATCTTACACACAAACTTTCTGATATTATC AAATCCAACACTTACCTTAAGAAATACGAAATGGAAGGAGCACCAGGGCATATAATTCGA GATTATGAACAACTTTTACAATTTCATGTGGCTACTTTAATAGACAATGACATTAGTGGA CAACCACAAGCCCTTCAGAAAAGTGGTAGACCTTTGAAATCTATTTCTGCCCGACTTAAA GGAAAGGAAGGACGTGTTAGAGGAAATCTTATGGGTAAGAGAGTGGACATGTCTATGATG GT----CACAGTTCGTGTGATG---AGGAAGACTTTCGTTT---AATTGAGTGTCACTTCT CCNTATAATGCCGATTTTGATGGAGATGAAATGAATCTTCATATGCCACAAAATTACAAT TCCATTGCAGAATTAGAAGAAATTTGTATGGTACCCAAACAAATTCTTGGACCTCAAAGT AACAAACCTGTCATGGGAATCGTTCAAGATACTCTCACTGGTCTAAGATTTTTTACAGTT CGAGATGCATTTTTTGATAAAAATGAGATGATGCAAGTCCTTTATTCCATAGATTTTGAG AAATATTATGATATAGGT---CTCGACAGTGTCATTAAAAAGGGTAAAAAATTGGA------CATGGGAGCTAAGGAGTAC---AGTTTAATGGGGTTACTCTCAAAACCAGCTATTCAG AAACCAAAACAGTTGTGGACAGGCAAACAAATTTTAAGTTTTATTTTTCCTAATGTCTAT TATAAAAATTCGTCCAATGAAAGTCGGGAAAATGACTTAGAAAATGTCTCGGACACGTCT GTAGTAATATGCGGAGG >DQ996231
AAAGGAGAAGATAACTCAGAAGGGAAGGTTATTTTAAATGGAGAGAAAGTTCACAGTATT TTTAAAAAGATTTCTGATGAAGATATTGAAGTTTTAGGTTTTGATCTTGCTTACAGTAGA CCCGAATGGCTTATTTTAACCGTCTTGTTGGTACCTCCACCATCAGTAAGACCTTCGATT GTTATGGAAGGGATGTTAAGAGCAGAGGATGATCTTACACACAAACTTTCTGATATTATT AAATCCAACACTTACCTTAAGAAATACGAAATGGAAGGAGCACCAGGGCATATAATTCGA GATTATGAACAGCTTTTACAATTTCATGTGGCTACTTTAATAGACAACGACATTAGTGGA CAGCCACAAGCACTTCAGAAAAGTGGTAGACCTTTGAAATCTATTTCTGCCCGACTTAAA GGAAAGGAAGGGCGTGTTAGAGGAAATCTTATGGGTAAGAGAGTTGACATGTCTATGATG GGCCACAAAGTTCGTGTGATGGAAGGGAAGACTTTCCGTTTAAATTTGAGTGTCACTTCT CCTTATAATGCCGATTTTGATGGAGATGAAATGAATCTTCATATGCCACAAAATTACAAT TCAATTGCTGAATTAGAAGAAATTTGTATGGTACCCAAACAAATTCTTGGACCTCAAAGT AACAAACCTGTCATGGGGATCGTTCAAGATACTCTCACTGGTCTTAGATTTTTTACAGTT CGAGATGCATTTTTTGATAAAAATGAGATGATGCAAGTTCTTTATTCCATAGATTTCGAT AAATATTATGATATAGGT---CTTGACAGTGTCATTAAAAAGGGTAAAAAATTGGA------CATGGGTGCTAAGGAGTAC---AGTTTAATGGGTTTACTCTCAAAACCAGCTATTCAA AAACCAAAACAGTTGTGGACAGGTAAGCAAATTTTAAGTTTTATTTTTCCTAATGTCTTT TACAAAAATTCGTCCAATGAAAGTCGGGAAAATGACTTAGAAAATGTCTCGGATACGTCT GTAGTAATATGTGGAGG
\end{abstract}
>DQ996234
AAAGGAGAAGATAACTCAGAAGGGAAGGTCATTCTAAATGGAGAGAAAGTCCACAGTATT TTTAAAAAGATTTCTGATGAAGATATTGAAGTTTTAGGTTTTGATCTTGCTTACAGTAGA CCCGAATGGCTTATTTTAACCGTCTTGTTGGTACCTCCACCATCAGTAAGACCTTCGATT GTCATGGAAGGGATGCTAAGAGCAGAGGATGATCTTACACACAAACTTTCTGATATTATT AAATCTAACACTTACCTTAAGAAATACGAAATGGAAGGAGCACCGGGACATATAATTCGA GATTATGAACAACTTTTACAATTTCATGTGGCTACTTTAATAGACAACGACATTAGTGGA CAACCACAAGCCCTTCAGAAAAGTGGTAGACCTTTGAAATCTATTTCTGCCCGACTTAAA GGAAAGGAAGGACGTGTTAGAGGAAATCTTATGGGTAAGAGAGTGGACATGTCTATGATG GGTCACAAAGTTCGTGTGATGGAAGGGAAGACTCTCCGTTTAAATTTGAGTGTCACTTCT CCTTATAATGCCGATTTTGATGGAGATGAAATGAATCTTCATATGCCACAAAATTACAAT TCCATTGCAGAATTGGAAGAAATTTGTATGGTACCCAAACAAATTCTTGGACCTCAAAGT AACAAACCTGTCATGGGGATCGTTCAAGATACTCTCACTGGTCTTAGATTTTTTACAGTT CGAGATGCATTTTTCGATAAAAATGAGATGATGCAAGTCCTTTATTCCATAGATTTTGAT AAATATTATGATATAGGT---CTTGACAGTGTCATTAAAAAGGGTAAAAAATTGGA------CATGGGAGCTAAAGAGTAC---AGTTTAATGGGGTTACTCTCAAAACCAGCCATTCAA AAACCAAAACAGTTGTGGACAGGTAAACAAATTTTAAGTTTTATTTTTCCTAATGTCTTT TACAAAAATTCGTCCAATGAAAGTCGGGAAAATGACTTAGAAAATGTCTCGGATACCTCT GTAGTAATATGTGGAGG
>HQ457438
AAAGGGGAAGATAACTCGGAAGGGAAGGTTATTTTAAACGGAGAAAAAGTTCATAGTATT TTTAAAAAGATATCTGACGAAGACATTGAAGTTTTAGGTTTTGATCTTGCTTACAGTAGA CCTGAATGGCTTATTTTAACTGTTTTATTGGTTCCTCCACCATCTGTAAGACCTTCGATT GTTATGGAAGGGATGTTAAGAGCAGAAGATGATCTTACACACAAACTTTCTGATATTATT AAATCCAACACTTACCTTAAGAAATACGAAATGGAAGGAGCACCAGGTCATATAATTCGA GATTATGAGCAACTTTTACAATTTCATGTAGCAACTTTAATTGACAACGACATTAGTGGC CAACCACAGGCCCTTCAGAAAAGTGGGCGACCTTTGAAATCTATTTCTGCTCGACTTAAA GGAAAGGAAGGACGTGTTAGAGGAAATCTTATGGGTAAGAGAGTGGATATGTCTATGATG GGGCACAAAGTCCGTGTGATGGATGGAAAGACTTTCCGTCTAAATTTGAGTGTCACTTCT CCTTATAATGCCGATTTTGATGGAGATGAAATGAATCTTCATATGCCACAAAATTACAAT TCTATTTCTGAACTAGAAGAAATTTGTATGGTTCCCAAACAAATTCTTGGACCTCAAAGT AATAAACCTGTCATGGGAATTGTTCAAGATACTCTCACTGGTCTAAGATTTTTTACAGTT CGAGATGCATTTTTTGATAAAAATGAGATGATGCAAGTCCTTTATTCTATAGATTTTGAG AAATACTATGATATAGGT---CTTGATAGTGTCATTAAAAAAGGTAAAAAGTTTGA------CATGGGGGCTAAAGAGTAC---AGTTTAATGGGTTTACTCTCAAAACCGGCCATTCAA AAACCAAAACAGTTGTGGACAGGCAAACAAATTTTAAGTTTTATTTTTCCCAATGTCTTT TACAAAAATTCGTCCAATGAAAGTCGGGAAAATGACCAAGAAAATGTTTCTGATACGTCT GTGGTAATATGCGGAGG
>HQ457435
AAAGGAGAAGATAACACAGAAGGAAAAGTCATTTTAAACGGAGAGAAAGTTCATAGTATT TTCAAAAAGATTTTAGATGAAGACATTGAAGTTTTAGGTTTTGATCTCGCCTACAGTAGA CCAGAATGGCTTATTTTAACCGTTTTGTTGGTGCCTCCACCGTCAGTAAGACCTTCTATT GTCATGGAAGGGATGTTAAGAGCAGAGGATGATCTTACTCACAAACTTTCTGATATTATT AAATCTAATACTTACCTTAAGAAATACGAAATGGAAGGAGCACCAGGGCATATTATTCGA GATTATGAACAACTGTTACAATTTCATGTGGCCACTTTAATAGACAACGACATTAGTGGA CAACCACAGGCCCTTCAGAAAAGTGGTAGGCCTTTGAAATCTATTTCAGCTCGACTTAAA GGAAAGGAAGGACGTGTTAGAGGAAATCTTATGGGTAAGAGAGTGGACATGTCTATGATG GGGCACAAAGTTCGTGTGATGGCAGGGAAGACTTTCCGTTTAAATTTAAGTGTTACTTCT ССТTACAACGCCGATTTTGATGGAGATGAAATGAACCTTCATATGCCACAAAATTACAAT TCTATTTCCGAGTTAGAAGAAATTTGTATGGTACCCAAACAAATTCTCGGACCTCAAAGT AACAAACCCGTCATGGGAATCGTTCAAGATACACTCACCGGTCTAAGATTTTTTACAGTT CGAGATGCATTTTTTGATAAAAATGAGATGATGCAAGTACTTTATTCTATAGATTTCGAG AAATACTATGATATTGGT---CTTGATAGTGTCATTAAAAAAGGTAAAAAGTTGGA------CATGGGTGCTAAAGAATAT---AGTTTAATGGCTTTACTCTCAAAACCGGCCATTCAA AAACCAAAACAGTTGTGGACAGGTAAGCAAATTTTAAGTTTTATTTTTCCTAATGTCTTT TACAAAAATTCGTCTAATGAAAGTCGGGAAAATGATTTAGAAAATGTTTCGGTTACATCT GTCGTAATATGCGGAGG

\footnotetext{
>F2ndF4A1
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNGGAAAAACTTTTAGATTGAATTTGAGTGTAACATCT CCATATAATGCTGATTTTGATGGTGATGAAATGAATTTGCACATGCCACAGAGTTATAAT ACTGTTTCTGAACTAGAAGAAATTTGTATGGTTTCTAAACAGGTACTAGGACCGCAAAGC AACAAACCTGTAATGGGAATTGTTCAAGATACTTTAACGGGCTTGCGATTTTTTACAATT AGAGATTCTTTCTTTGATAAATGTGAGATGATGCAGGTTTTATATTCTATTGATTTAGAT AAGTACAATGATATTGGC---TTAGATAGTATTACAAGAGAAGGTAAGAAATTAGA------TATTAAACCAAAAGAATAT---AATCTGTTGAAGCTCCTCAATACTCCAGCAATTCAA AAGCCAAAACARCTTTGGACAGGTAAACAAATTCTAAGTTTTATTTTTCCGAATATTTTC TATCAAAATGTTTCTAATGAAAATTNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNN
>F2A2-A3F4A2
NNNNNNNNNNNNNNNNNNGAAGGAAAAGTCATCCTTAATGGTGAAAGAGTTCACAGTATT TTCAAGAAAATTTCTGATGAAGATATTGTTATGTTAGGATTTGATTTAGAATTTAGCAGG CCTGAATGGCTTATTCTTACTGTTCTTTTGGTACCACCACCAGCAGTTAGACCTTCTATT GTTATGGAAGGAATGTTAAGAGCTGAAGATGATCTAACACATAAACTTGCTGATATTATT AAATCAAATACATATTTGAAGAAGTATGAGCTTGAAGGTGCTCCRGGACATATTATWAGA GATTATGAACAGCTTTTACAATTCCACATTGCAACTCTCATTGATAATGATATTAGTGGA CAACCACAGGCTTTGCAAAAAAGCGGTAGACCGTTGAAATCGATCTCAGCAAGACTCAAG GGGAAAGAAGGAAGAGTCAGAGGAAATCTTATGGGNNNNNNNNNNNNNATGTCTATGATG GGCCATAGAGTACGTGTAATGTCAGGAAAAACTTTTAGATTGAATTTGAGTGTAACATCT CCATATAATGCTGATTTTGATGGTGATGAAATGAATTTACACATGCCACAGAGTTATAAT ACTATTTCTGAACTTGAAGAAATTTGTATGGTTTCTAAACAGGTACTAGGACCACAAAGC AACAAACCTGTAATGGGAATTGTTCAAGATACTCTAACGGGCTTGAGATTTTTTACAATT AGAGATTCATTCTTTGATAAATGTGAGATGATGCAAGTTTTATATTCTATTGATTTAGAT AAGTACAATGATATTGGC---TTAGATAGTATTACAAGAGAAGGTAAGAAATTGGA------TATTAAACCAAAAGAATAT---AATCTGTTGAAGCTCCTTAATACTCCAGCAATTCAA AAGCCAAAACAGCTTTGGACAGGTAAACAAATTCTAAGTTTTATTTTTCCGAATATTTTC TATCAAAATGTTTCTAATGAAAATTTTGAAAAAGATATTGAAAACTTTTCGGATACTCAA GTAGTAATCTGTGAGGG
>F2A2F4A2
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNGGTGAAAGAGTTCACAGTATT TTCAAGAAAATTTCTGATGAAGATATTGTTATGTTAGGATTTGATTTAGAATTTAGCAGG CCTGAATGGCTTATTCTTACTGTTCTTTTGGTACCACCACCAGCAGTTAGACCTTCTATT GTTATGGAAGGAATGTTAAGAGCTGAAGATGATCTAACACATAAACTTGCTGATATTATT AAATCAAATACATATTTGAAGAAGTATGAGCTTGAAGGTGCTCCGGGACATATTATAAGA GATTATGAACAGCTTTTACAATTCCACATTGCAACTCTCATTGATAATGATATTAGTGGA CAACCACAGGCTTTGCAAAAAAGCGGTAGACCGTTGAAATCGATCTCAGCAAGACTCAAG GGGAAAGAAGGAAGAGTCAGAGGAAATCTTATGNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNGGAAAAACTTTTAGATTGAATTTGAGTGTAACATCT CCATATAATGCTGATTTTGATGGTGATGAAATGAATTTACACATGCCACAGAGTTATAAT ACTATTTCTGAACTTGAAGAAATTTGTATGGTTTCTAAACAGGTACTAGGACCACAAAGC AACAAACCTGTAATGGGAATTGTTCAAGATACTCTAACGGGCTTGAGATTTTTTACAATT AGAGATTCATTCTTTGATAAATGTGAGATGATGCAAGTTTTATATTCTATTGATTTAGAT AAGTACAATGATATTGGC---TTAGATAGTATTACAAGAGAAGGTAAGAAATTGGA------TATTAAACCAAAAGAATAT---AATCTGTTGAAGCTCCTTAATACTCCAGCAATTCAA AAGCCAAAACAGCTTTGGACAGGTAAACAAATTCTAAGTTTTATTTTTCCGAATATTTTC TATCAAAATGTTTCTAATGAAAATTTTGAAAAAGATATTGAAAACTTTTCGGATACTCAA GTAGTAATCTGTGAGGG
}

\footnotetext{
>F2A3F4A2-3
NNGGGAGAAGACAATTCAGAAGGAAAAGTCATCCTTAATGGTGAAAGAGTTCACAGTATT TTCAAGAAAATTTCTGATGAAGATATTGTTATGTTAGGATTTGATTTAGAATTTAGCAGG CСTGAATGGCTTATTCTTACTGTTCTTTTGGTACCACCACCAGCAGTTAGACCTTCTATT GTTATGGAAGGAATGTTAAGAGCTGAAGATGATCTAACACATAAACTTGCTGATATTATT AAATCAAATACATATTTGAAGAAGTATGAGCTTGAAGGTGCTCCAGGACATATTATTAGA GATTATGAACAGCTTTTACAATTCCACATTGCAACTCTCATTGATAATGATATTAGTGGA CAACCACAGGCTTTGCAAAAAAGCGGTAGACCGTTGAAATCGATCTCAGCAAGACTCAAG GGGAAAGAAGGAAGAGTCAGAGGAAATCTTATGGGNNNNNNNNNNNNNATGTCTATGATG GGCCATAGAGTACGTGTAATGTCAGGAAAAACTTTTAGATTGAATTTGAGTGTAACATCT CCATATAATGCTGATTTTGATGGTGATGAAATGAATTTACACATGCCACAGAGTTATAAT ACTATTTCTGAACTTGAAGAAATTTGTATGGTTTCTAAACAGGTACTAGGACCACAAAGC AACAAACCTGTAATGGGAATTGTTCAAGATACTCTAACGGGCTTGAGATTTTTTACAATT AGAGATTCATTCTTTGATAAATGTGAGATGATGCAAGTTTTATATTCTATTGATTTAGAT AAGTACAATGATATTGGC---TTAGATAGTATTACAAGAGAAGGTAAGAAATTGGA------TATTAAACCAAAAGAATAT---AATCTGTTGAAGCTCCTTAATACTCCAGCAATTCAA AAGCCAAAACAGCTTTGGACAGGTAAACAAATTCTAAGTTTTATTTTTCCGAATATTTTC TATCAAAATGTTTCTAATGAAAATTTTGAAAAAGATATTGAAAACTTTTCGGATACTCAA GTAGTAATCTGTGAGGG
>F2ndF4A4
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNGATTTTTTACAATT AGAGATTCTTTCTTTGATAAATGTGAGATGATGCAGGTTTTATATTCTATTGATTTAGAT AAGTACAATGATATTGGC---TTAGATAGTATTACAAGAGAAGGTAAGAAATTRGA------TATTAAACCAAAAGAATAT---AATCTCTTGAAGCTCCTCAATACTCCAGCAATTCAA AAGCCAAAACAGCTTTGGACAGGCAAACAAATTCTAAGTTTTATTTTTCCGAATATTTTC TATCAAAATGTTTCCAATGAAAATTTTGAAAAAGACCTTGAAAACTTTTCGGATACTCAA GTAGTCATCTGTGNNNN
>F2ndF4A5
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNAATGAATTTGCACATGCCACAGAGTTATAAT ACTATTTCTGAACTAGAAGAAATTTGTATGGTTTCTAAACAGGTACTAGGACCGCAAAGC AACAAACCTGTAATGGGAATTGTTCAAGATACTTTAACGGGCTTGCGATTTTTTACAATT AGAGATTCTTTCTTTGATAAATGTGAGATGATGCAGGTTTTATATTCTATTGATTTAGAT AAGTACAATGATATTGGC---TTAGATAGTATTACAAGAGAAGGTAAGAAATTAGA------TATTAAACCAAAAGAATAT---AATCTGTTGAAGCTCCTCAATACTCCAGCAATTCAA AAGCCAAAACAGCTTTGGACAGGYAAACAAATTCTAAGTTTTATTTTTCCGAATATTTTC TATCAAAATGTTTCTAATGAAAATTTTGAAAAAGACCTTGAGAACTTTTCGGATACTCAA GTAGTCATCTGNNNNNN
}

\footnotetext{
\(>\) F2A6F4nd
NNNNNNNNNNNNNNNTTCCGAAGGAAAGTCATCCTTAATGGTGAAAGAGTTCACAGTATT TTCAAGAAAATTTCTGATGAAGATATTGTTATGTTAGGATTTGATTTAGAATTTAGCAGG CCTGAATGGCTTATTCTGACAGTTCTTTTGGTACCACCACCAGCAGTTCGACCTTCTATT GTTATGGAAGGGATGCTAAGAGCTGAAGATGATCTAACACATAAACTTGCAGATATTATT AAATCTAATACTTATTTGAAGAAGTATGAGCTTGAAGGAGCTCCTGGCCATATAATTAGA GATTATGAACAGCTTTTACAATTCCACATTGCAACTTTAATTGATAATGATATTAGTGGA CAACCACAGGCTTTGCAAAAAAGTGGTAGACCCTTAAAATCGATCTCAGCAAGACTCAAG GGGAAAGAAGGAAGAGTCAGAGGAAATCTTATGGGTAAGAGAGTAGANNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNN
\(>\) F2B4F4nd
NNNNNNNNNNNNNNNNNNNNNNNNNNNGTCATTCTTAATGGTGAAAGAGTCCACAGTATA TTCAAGAAGATTTCCGACGAAGATATTGAAATGTTAGGCTTTGATTTGGAATATAGTAGG CCAGAATGGCTTATTTTAACAGTCTTATTGGTACCTCCCCCAGCAGTTCGACCTTCTATC GTCATGGAAGGAATGCTCAGAGCTGAAGATGATCTAACACACAAACTAGCCGATATTATA AAATCAAATACCTATCTAAAGAAGTATGAGCTTGAAGGTGCACCAGGTCATATCATTAGG GATTATGAACAGCTTCTTCAGTTTCATATAGCAACTCTTATTGACAATGACATCAGTGGA CAACCACAGGCCTTACAAAAAAGCGGAAGACCATTAAAATCTATCTCAGCCAGACTCAAG GGGAAGGAAGGAAGAGTTAGAGGTAATCTTATGGGNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNN---NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN------NNNNNNNNNNNNNNNNNNN---NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNN
>F2B1F4B1
NNGGGAGAAGATAACTCGGAAGGAAAAGTTATTCTTAATGGTGAGAGAGTCCACAGTATA TTTAAGAAGATTTCCGACGAAGATATTGAAATGTTAGGCTTTGATTTGGAATATAGTAGA CCTGAATGGCTTATTCTAACAGTCTTATTGGTACCGCCCCCTGCAGTTCGACCTTCTATC GTCATGGAAGGAATGCTTAGAGCTGAAGATGATCTAACTCACAAACTAGCCGATATTATA AAATCGAATACGTATCTAAAGAAGTATGAGCTTGAAGGAGCACCAGGTCATATCATTAGG GATTATGAACAGCTTCTTCAGTTTCATATAGCAACTCTTATTGACAATGACATCAGTGGA CAACCACAGGCCTTGCAAAAGAGCGGAAGACCGTTAAAATCAATCTCAGCCAGACTCAAG GGGAAGGAAGGAAGAGTTAGAGGTAATCTTATGGGNNNNNNNNNNNNNNTGTCTATGATG GGGCACAGAGTAAAAGTAATGTCAGGTAAGACTTTTAGACTGAATTTGAGTGTAACATCC CCATACAATGCGGACTTTGATGGTGATGAAATGAATTTACATATGCCACAGAGTTATAAT AСТАТАТСAGAACTTGAAGAAATTTGTATGGTCTCTAAGCAAGTTTTAGGCCCACAAAGC AACAAACCAGTTATGGGAATTGTCCAGGATACTCTTACTGGTCTAAGATTTTTTACTATT AGAGATTCATTCTTTGATAAGAATGAAATGATGCAAGTTTTGTATTCCATCGACCTAGAC AAGTATAATGATATTAAT---CTTGATTGTATCACCAGAGAAGGTAAGAAAATAAA------TATAAAGCCAAAGGAATAC---AATCTTATCAAACTTCTTAATACACCAGCAATTCAA AAGCCAAAACAGTTATGGACAGGTAAACAAATTTTAAGCTTTATTTTCCCGAATGTCTTT TACAAAGCTTCATCCAATGAACACTACGAAAATGATACGGAAAACTTCTCCGATACACAA GTAGTCATTTGTGAAGG
}

\footnotetext{
>F2B2F4B2
NNGGGAGAAGATAACTCGGAAGGAAAAGTTATTCTTAATGGTGAGAGAGTCCACAGTATA TTTAAGAAGATTTCCGACGAAGATATTGAAATGTTAGGCTTTGATTTGGGATATAGTAGA CCTGAATGGCTTATTCTAACAGTCTTATTGGTACCGCCCCCTGCAGTTCGACCTTCTATC GTCATGGAAGGAATGCTTAGAGCTGAAGATGATCTAACTCACAAACTAGCCGATATTATA AAATCGAATACGTATCTAAAGAAGTATGAGCTTGAAGGAGCACCAGGTCATATCATTAGG GATTATGAACAGCTTCTTCAGTTTCATATAGCAACTCTTATTGACAATGACATCAGTGGA CAACCACAGGCCTTGCAAAAGAGCGGAAGACCGTTAAAATCAATCTCAGCCAGACTCAAG GGGAAGGAAGGAAGAGTTAGAGGTAATCTTATGGGNNNNNNNNNNNNNATGTCTATGATG GGGCACAGAGTAAAAGTAATGTCAGGTAAGACTTTTAGACTGAATTTGAGTGTAACATCC CCATACAATGCGGACTTTGATGGTGATGAAATGAATTTACATATGCCACAGAGTTATAAT ACTATATCAGAACTTGAAGAAATTTGTATGGTCTCTAAGCAAGTTTTAGGCCCACAAAGC AACAAACCAGTTATGGGAATTGTCCAGGATACTCTTACTGGTCTAAGATTTTTTACTATT AGAGATTCATTCTTTGATAAGAATGAAATGATGCAAGTTTTGTATTCCATCGACCTAGAC AAGTATAATGATATTAAT---CTTGATTGTATCACCAGAGAAGGTAAGAAAATAAA------TATAAAGCCAAAAGAATAC---AATCTTATCAAACTTCTTAATACACCAGCAATTCAA AAGCCAAAACAGTTATGGACAGGTAAACAAATTTTAAGCTTTATTTTCCCGAATGTCTTT TACAAAGCTTCATCCAATGAACACTACGAAAATGATACGGAAAACTTCTCCGATACACAA GTAGTCATTTGTGAAGG
>F2B1F4B2
NNGGGAGAAGATAACTCGGAAGGAAAAGTTATTCTTAATGGTGAGAGAGTCCACAGTATA TTTAAGAAGATTTCCGACGAAGATATTGAAATGTTAGGCTTTGATTTGGAATATAGTAGA CCTGAATGGCTTATTCTAACAGTCTTATTGGTACCGCCCCCTGCAGTTCGACCTTCTATC GTCATGGAAGGAATGCTTAGAGCTGAAGATGATCTAACTCACAAACTAGCCGATATTATA AAATCGAATACGTATCTAAAGAAGTATGAGCTTGAAGGAGCACCAGGTCATATCATTAGG GATTATGAACAGCTTCTTCAGTTTCATATAGCAACTCTTATTGACAATGACATCAGTGGA CAACCACAGGCCTTGCAAAAGAGCGGAAGACCGTTAAAATCAATCTCAGCCAGACTCAAG GGGAAGGAAGGAAGAGTTAGAGGTAATCTTATGGGNNNNNNNNNNNNNNNNNNNNNNNNG GGGCACAGAGTAAAAGTAATGTCAGGTAAGACTTTTAGACTGAATTTGAGTGTAACATCC CCATACAATGCGGACTTTGATGGTGATGAAATGAATTTACATATGCCACAGAGTTATAAT ACTATATCAGAACTTGAAGAAATTTGTATGGTCTCTAAGCAAGTTTTAGGCCCACAAAGC AACAAACCAGTTATGGGAATTGTCCAGGATACTCTTACTGGTCTAAGATTTTTTACTATT AGAGATTCATTCTTTGATAAGAATGAAATGATGCAAGTTTTGTATTCCATCGACCTAGAC AAGTATAATGATATTAAT---CTTGATTGTATCACCAGAGAAGGTAAGAAAATAAA------TATAAAGCCAAAAGAATAC---AATCTTATCAAACTTCTTAATACACCAGCAATTCAA AAGCCAAAACAGTTATGGACAGGTAAACAAATTTTAAGCTTTATTTTCCCGAATGTCTTT TACAAAGCTTCATCCAATGAACACTACGAAAATGATACGGAAAACTTCTCCGATACACAA GTAGTCATTTGTGAAGG
>F2B3F4B3
NNNNNNNNNNNNNNNNNNNNNNNNNNAGTTATTCTTAATGGTGAGAGAGTCCACAGTATA TTTAAGAAGATTTCCGACGAAGATATTGAAATGTTAGGCTTTGATTTGGAATATAGTAGA CCTGAATGGCTTATTCTAACAGTCTTATTGGTACCGCCCCCTGCAGTTCGACCTTCTATC GTCATGGAAGGAATGCTTAGAGCTGAAGATGATCTAACTCACAAACTAGCCGATATTATA AAATCGAATACGTATCTTAAGAAGTATGAGCTTGAAGGAGCACCAGGTCATATCATTAGG GATTATGAACAGCTTCTTCAGTTTCATATAGCAACACTTATTGACAATGACATCAGTGGA CAACCACAGGCCTTGCAAAAAAGCGGAAGACCGTTAAAATCAATCTCAGCCAGACTCAAG GGGAAGGAAGGAAGAGTTAGAGGTAATCTTATGGGNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNTGAATTTACATATGCCACAGAGTTATAAT ACTATATCAGAACTTGAAGAAATTTGTATGGTCTCTAAGCAAGTTTTAGGCCCACAAAGC AACAAACCAGTCATGGGAATTGTTCAAGATACTCTTACTGGTCTAAGATTTTTTACTATT AGAGATTCATTCTTTGATAAGAATGAAATGATGCAAGTTTTGTATTCCATCGACCTAGAC AAGTATAATGATATTAAT---CTTGATTGTATCACCAGAGAAGGTAAGAAAATAAA------TATAAAGCCAAAGGAATAC---AATCTTATCAAACTTCTTAATACACCAGCAATTCAA AAGCCAAAACAGTTATGGACAGGTAAACAAATTCTAAGCTTTATTTTTCCAAATGTCTTT TACAAAGCTTCATCCAATGAACACTACGAAAATGATACGGAAAACTTCTCCGATACACAA GTAGTCATTTGTGAAGG
}
>DQ996235
AAGGGCGAGGACAACAACGAGGGGAAGGTCATTCTAAATGGCGAGAAGGTCCACAGCATC TTCAAGAAGATCTCGGACGAGGACATCACTGCCCTGGGGTTCGACCTGGAGTTCAGCAGG CCCGAGTGGCTTGTTTTGACTGTCTTGCTGGTGCCCCCСССTGCGGTACGCCCTTCCATC GTAATGGAGGGCATGCTGAGGGCAGAGGATGATTTGACACACAAGCTGTCGGACATCATC AAGTCCAATACATACCTTAAGAAGTACGAGCTGGAGGGGGCCCCTGGGCACATCATCAGG GACTACGAGCAGCTCCTCCAGTTCCACATTGCGACCCTGATAGACAACGACATAAGCGGG CAGCCACAGGCACTGCAGAAGAGCGGCAGGCCGTTGAAGTCGATCTCCGCCCGCCTCAAG GGGAAGGAAGGGCGCGTGAGGGGCAACCTGATGGGCAAGAGGGTCGACATGTCGATGATG GGCCACAAGGTCCGTGTGATGGCGGGCAAGACCTTCAGGCTGAACCTGAGTGTCACCTCC СССТАСАACGCGGATTTCGATGGGGACGAGATGAATCTCCACATGCCCCAAAGCTACAAC TCTGTTGCCGAGTTGGAGGAGATTTGCATGGTCCCCAAACAAATCCTCGGGCCACAAAGC AACAAGCCGGTCATGGGAATCGTCCAAGACACCCTCACCGGCTTGCGGTTCTTCACCATG AGGGACTCGTTCTTCGACAAGTGCGAGATGATGCAGATCCTGTACTCCATCGACCTTGAC AGGTACAATGACATAGGG---ATAGACACAGTGACACGGGAGGGCAAAAGGCTCGA------CATCAAGTCCAAGGAATAC---AGCCTTCTCAGGCTCCTCGAGACCCCCGCCATCCAA AGGCCCAAGGAGCTGTGGACGGGGAAGCAGATTCTGAGCTTCATCTTCCCCAACGTCTTC TACCAGGCAGCGTCCAACGAGRGCGTGGAGGATGATCGGGAGAACATTTCAGACACGGCT GTTGTCATYTGCGGGGG

\section*{>F2E1F4E1}

NNNNNNNNNNNNNNCACTGAAGGGAAGGTCATCCTGAATGGGGAGAGGGTCCACAGCATC TTCAAGAAGATCTCGGACGAGGATATAGAAATGCTGGGCTTTGACCTGGTCTATAGTCGC CCAGAATGGCTCATCCTGACTGTCCTTCTTGTTCCGCCCCCGGCTGTCAGGCCTTCTATC GTCATGGAAGGGATGCTGAGGGCAGAGGATGATTTGACACACAAGCTGGCAGATATAATC AAGTCCAATACCTATCTAAAGAAGTACGAGCTTGAAGGGGCTCCTGGTCACATCATAAGA GACTACGAGCAGCTCCTCCAGTTCCACATTGCTAСTCTTATCGACAATGATATAAGCGGC CAGCCCCAGGCCTTGCAGAAGAGCGGTAGGCCTCTCAAGTCGATCTCAGCCAGGCTCAAA GGCAAGGAAGGGCGTGTAAGAGGCAATCTTATGGGNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNATGAATCTGCACATGCCCCAGAGCTACAAC ACAGTCTCYGAGCTTGAGGAGATCTGCATGGTCTCCAAGCAGGTTCTCGGCCCCCAAAGC AATAAGCCGTGTATGGGAATTGTCCAGGACACCCTCACAGGTCTCCGATTTTTCACAGTA CGAGACGCCTTTTTCGACAGGAATGAAATGATGCAGGTCCTGTACTCCATCGACCTGGAG AAGTACCACGACGTAGGT---CTGGACACCATCACCAAGGAAGGAAAGAAGCTAGA------CATCAAATCCAAGGAGTAC---AACCTGATGAAGCTCCTTAGATTCCCAGCCATCCAG AAGCCTAAGAAACTTTGGACGGGCAAGCAAATCTTAAGTTTTATTTTCCCGAATATTTTT TACCAAAATGTCTCAAACGAGAATTACGAAAATGACACCGAAAACTTTTCAGACACGTCT GTGGTGATTTGTGGGGG
>F2E2F4nd
NNNNNNNNNNNNNNCACTGAAGGGAAGGTCATCCTGAACGGGGAGAGAGTCCACAGCATC TTCAAGAAGATCTCGGACGAGGATATAGAAATGCTGGGCTTTGACCTGGTCTATAGTCGC CCAGAATGGCTCATCCTGACTGTCCTTCTTGTTCCACCCCCGGCTGTCAGGCCTTCTATC GTCATGGAAGGGATGCTGAGGGCAGAGGATGATTTGACACACAAGCTAGCAGATATAATC AAGTCCAATACCTATCTAAAGAAGTACGAGCTTGAAGGGGCGCCTGGTCACATCATAAGA GACTACGAGCAGCTCCTCCAGTTCCACATTGCTAСTCTTATCGACAATGATATAAGCGGC CAGCCCCAGGCCTTGCAGAAGAGCGGTAGGCCTCTCAAGTCGATCTCAGCCAGGCTCAAA GGCAAGGAAGGGCGTGTGAGAGGCAATCTTATGGGNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNN---NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN------NNNNNNNNNNNNNNNNNNN---NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNN

\footnotetext{
>F2E3F4nd
NNNNNNNNNNNNNNCACTGAAGGGAAGGTCATCCTAAATGGGGAGAGAGTCCACAGCATC TTCAAGAAGATCTCGGACGAGGATATAGAAATGCTGGGCTTTGACCTGGTCTATAGTCGC CCAGAATGGCTCATCCTGACTGTCCTTCTTGTCCCACCCCCGGCTGTCAGGCCTTCTATC GTCATGGAAGGGATGCTGAGGGCAGAGGATGATTTGACACACAAGCTCGCAGATATAATC AAGTCCAATACCTATCTAAAGAAGTACGAGCTTGAAGGGGCTCCTGGTCACATCATAAGA GACTACGAGCAGCTCCTCCAGTTCCACATTGCTACTCTTATCGACAATGATATAAGCGGC CAGCCCCAGGCCTTGCAGAAGAGCGGTAGGCCTCTCAAGTCGATCTCAGCCAGGCTCAAA GGCAAGGAAGGGCGTGTGAGAGGCAATCTTATGGGTNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNN---NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN------NNNNNNNNNNNNNNNNNNN---NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNN

\section*{>F2E1F4E4}

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNGGCTCATCCTGACTGTCCTTCTTGTTCCGCCCCCGGCTGTCAGGCCTTCTATC GTCATGGAAGGGATGCTGAGGGCAGAGGATGATTTGACACACAAGCTGGCAGATATAATC AAGTCCAATACCTATCTAAAGAAGTACGAGCTTGAAGGGGCTCCTGGTCACATCATAAGA GACTACGAGCAGCTCCTCCAGTTCCACATTGCTACTCTTATCGACAATGATATAAGCGGC CAGCCCCAGGCCTTGCAGAAGAGCGGTAGGCCTCTCAAGTCGATCTCAGCCAGGCTCAAA GGCAAGGAAGGGCGTGTAAGAGGCAATCTTATGGNNNNNNNNNNNNNNATGTCTATGATG GGCCACAGGGTTCGTGTGATGGGAGGAAAGACCTTTAGACTAAACCTGAGTGTGACCTCC CCGTACAATGCAGACTTTGACGGAGACGAGATGAATCTGCACATGCCCCAGAGCTACAAC ACAGTCTCYGAGCTTGAGGAGATCTGCATGGTCTCCAAGCAGGTTCTCGGCCCCCAAAGC AATAAGCCGTGTATGGGAATTGTCCAGGACACCCTCACAGGTCTCCGATTTTTCACAGTA CGAGACGCCTTTTTCGACAGGAATGAAATGATGCAGGTCCTGTACTCCATCGACCTGGAG AAGTACCACGACGTAGGT---CTGGACACCATCACCAAGGAAGGAAAGAAGCTAGA------CATCAAATCCAAGGAGTAC---AACCTGATGAAGCTCCTTAGATTCCCAGCCATCCAG AAGCCTAAGAAACTTTGGACGGGCAAGCAAATCTTAAGTTTTATTTTCCCGAATATTTTT TACCAAAATGTCTCAAACGAGAATTACGAAAATGACACCGAAAACTTTTCAGACACGTCT GTGGTGATTTGTGGGGG
>F2ndF4E2
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNATGATG GGCCACAGGGTTCGTGTGATGGGAGGAAAGACCTTTAGACTAAACCTGAGTGTGACCTCC CCGTACAATGCAGACTTTGACGGAGACGAGATGAATCTGCACATGCCCCAGAGCTACAAC ACAGTCTCYGAGCTTGAGGAGATCTGCATGGTCTCCAAGCAGGTTCTCGGCCCCCAAAGC AATAAGCCGTGTATGGGAATTGTCCAGGACACCCTCACAGGTCTCCGATTTTTCACAGTA CGAGACGCCTTTTTCGACAGGAATGAAATGATGCAGGTCCTGTACTCCATCGACCTGGAG AAGTACCACGACGTAGGT---CTGGACACCATCACCAAGGAAGGAAAGAAGCTAGA------CATCAAATCCAAGGAGTAC---AACCTGATGAAGCTCCTTAGATTCCCAGCCATCCAG AAGCCTAAGAAACTTTGGACGGGCAAGCAAATCTTAAGTTTTATTTTCCCGAATATTTTT TACCAAAATGTCTCAAACGAGAATTACGAAAATGACACCGAAAACTTTTCAGACACGTCT GTGGTGATTTGTNNNNN
}
>F2E1F4E5
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNACCTGGTCTATAGTCGC CCAGAATGGCTCATCCTGACTGTCCTTCTTGTTCCGCCCCCGGCTGTCAGGCCTTCTATC GTCATGGAAGGGATGCTGAGGGCAGAGGATGATTTGACACACAAGCTGGCAGATATAATC AAGTCCAATACCTATCTAAAGAAGTACGAGCTTGAAGGGGCTCCTGGTCACATCATAAGA GACTACGAGCAGCTCCTCCAGTTCCACATTGCTACTCTTATCGACAATGATATAAGCGGC CAGCCCCAGGCCTTGCAGAAGAGCGGTAGGCCTCTCAAGTCGATCTCAGCCAGGCTCAAA GGCAAGGAAGGGCGTGTAAGAGGCAATCTTATGGGNNNNNNNNNNNNNATGTCTATGATG GGCCACAGGGTTCGTGTGATGGGAGGAAAGACCTTTAGACTAAACCTGAGTGTGACCTCC CCGTACAATGCAGACTTTGACGGAGACGAGATGAATCTGCACATGCCCCAGAGCTACAAC ACAGTCTCYGAGCTTGAGGAGATCTGCATGGTTTCCAAGCAGGTTCTCGGCCCCCAAAGC AATAAGCCGTGTATGGGAATTGTCCAGGACACCCTCACAGGTCTCCGATTTTTCACAGTA CGAGACGCCTTTTTCGACAGGAATGAAATGATGCAGGTCCTGTACTCCATCGACCTGGAG AAGTACCACGACGTAGGT---CTGGACACCATCACCAAGGAAGGAAAGAAGCTAGA------CATCAAATCCAAGGAGTAC---AACCTGATGAAGCTCCTTAGATTCCCAGCCATCCAG AAGCCTAAGAAACTTTGGACGGGCAAGCAAATCTTAAGTTTTATTTTCCCGAATATTTTT TACCAAAATGTCTCAAACGAGAATTACGAAAATGACACCGAAAACTTTTCAGACACGTCT GTGGTGATTTGTGGGGG
>F2ndF4E3
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNAAAGACCTTTAGACTAAACCTGAGTGTGACCTCC CCGTACAATGCAGACTTTGACGGAGACGAGATGAATCTGCACATGCCCCAGAGCTACAAC ACAGTCTCCGAACTTGAGGAGATCTGCATGGTCTCCAAGCAGGTTCTCGGCCCCCAAAGC AATAAGCCGTGTATGGGGATTGTTCAGGACACCCTCACAGGTCTCCGATTTTTCACAGTA CGAGACGCCTTTTTCGACAGGAATGAAATGATGCAGGTCCTGTACTCCATCGACCTGGAG AAGTACCACGACGTAGGT---CTGGACACCATCACAAAGGAAGGAAAGAAGCTGGA------CATCAAATCTAAGGAGTAC---AACCTGATGAAGCTCCTTAGATTCCCAGCCATCCAG AAGCCTAAGAAACTTTGGACGGGCAAGCAAATCTTAAGTTTTATCTTCCCGAATATTTTT TACCAAAATGTCTCAAACGAGAATTACGAAAATGACACCGAAAACTTTTCAGACACGTCT GTGGTGATTTGTGGGGG
>DQ996232
AAAGGAGAAGACAATTCCGAAGGGAAAGTTATCTTAACTGGAGAGAGAGTCTACAGCATC TTTAAGAAGATTTCAGACGAAGACATTGAGTATTTAGGATTTGATTCACAATACAGCAGA CCCGAATGGTTAATTCTAACTGTCCTTCTTGTCCCCCCACCAGCTGTCCGTCCTTCTATT GTAATGGAGGGAATGTTAAGAGCCGAAGATGATTTAACACACAAGCTAGCAGACATCATA AAGTCCAACACGTATCTAAAGAAGTACGAGTTAGAAGGGGCACCTGGCCACATTATAAGG GATTACGAACAACTATTACAATTTCACATTGCAACACTAATAGACAACGATCTTAGCGGA CAACCACAGGCCCTCCAAAAGAGCGGAAGGCCCCTCAAGTCTATTTCGGCCCGGCTCAAA GGGAAGGAGGGGAGAGTTAGAGGCAACCTAATGGGTAAAAGGGTAGATATGTCAATGATG GCACACAAAGTTCGTGTGATGGGCGGTAAAACTTTTAGATTAAATTCGAGCGTCACCTCC CCGTACAACGCAGACTTTGACGGAGACGAAATGAATCTGCACATGCCACAAAGCTTCAAC ACAATTTCCGAACTTCAAGAGATTTGCATGGTTTCTAAGCAAGTCTTAGGCCCCCAAAGC AACAAGCCCGTCATGGGAATCGTCCAAGACACGCTGACGGGCCTGAGGCTTTTCACTTTA AGGGACGCCTTCTTCGATAAAAACGAAATGATGCAAATTGTGTATTCCATTGACTTGGAG AGGTACAACGACATTTGT---TTAGACTCGGAAAGCAGGGAGGGAAAGAAAAATAA------TTTACAATCTAAGGGTTAT---AATCTTCTAAAGCTCATTGAATCTCCTGCCATCAAC AAACCCAAACAACTTTGGACGGGCAAGCAAATCTTAAGTTTTATTCTTCCGAATATTTTG TATGAAAACAATTCAAATGAACAACGGGAGGGAGACAAAGAGAACTACTCGGATACGTCG GTTGTGATAGTCAATGG

\footnotetext{
>F2C1F4C1_DQ996233
AAAGGAGAAGACAACTCAGAGGGGAAGGTGATTCTGAATGGAGAAAGGGTCCACAGTATT TTCAAGAAGATATCTGATGAGGATATTCTTAGGCTTGGGTTTGATTTAGAATTTAGTAGA CCAGAATGGTTGATTCTTACAGTGCTACTGGTACCACCCCCAGCTGTGAGACCTTCTATA GAAATGGAAGGGATGCTCAGGGCAGAAGATGATCTTACCCACAAACTAGCAGATATTATC AAAGCTAATACCTATCTCAAGAAGTACGAACTAGAAGGAGCACCAGGCCACATTATCAGA GATTACGAACAATTACTCCAATTCCACATAGCTACTCTGATAGACAATGATATTTCTGGA CAACCCCAAGCTCTACAAAAGAGTGGGAGACCTCTGAAATCCATCTCAGCTAGATTGAAA GGGAAAGAAGGGAGAGTAAGAGGGAATCTTATGGGNNNNNNNNNNNNNATGTCTATGATG GGCCACAGAGTCAAAGTAATGWCTGGGAAGACTTCTAGATTAAATCTCAGTGTGACATCT ССТTACAATGCAGATTTCGATGGAGATGAAATGAATCTCCACATGCCCCAGAGCTACAAC AССАТСТССGAACTAGAAGAAATTTGTATGGTTTCTAAGCAGGTCCTAGGGCCCCAGAGC AATAAGCCAGTGATGGGGATAGTCCAAGATACTCTCACAGGGTTGAGATTCTTTACGATT CGAGATGCTTTCTTTGATAAGAGAGAGATGATGCAAGTTCTGTACTCCATAGAGCAGAAT ATAAATA GAAGACAGGACAGT-------
------------AGCAATTAT---GGGATTCTAGATCTTCTGAATAGACCAGCCATCCAG AAGCCCAAAGAGCTCTGGACAGGCAAGCAGATACTAAGCTTCATCTTCCCCAGTGTATTC TACCAGACACAGTCTGAGGA -TCCTGAGAATCTCTCGGACTCTGCA
GTGGTAATTATAGGAGG
>F2C1bF4C1
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNGGAGAAAGGGTCCACAGTATT TTCAAGAAGATYTCTGATGAGGATATTCTTAGGCTTGGGTTTGATTTAGAATTTAGTAGA CCAGAATGGTTGATTCTTACAGTGCTACTGGTACCACCCCCAGCTGTGAGACCTTCTATA GTAATGGAAGGGATGCTCAGGGCAGAAGATGATCTTACCCACAAACTAGCAGATATTATC AAAGCTAATACCTATCTCAAGAAGTACGAACTAGAAGGAGCMCCAGGCCACATTATCAGA GATTACGAACAATTACTCCAATTCCACATAGCTACTCTGATAGACAATGATATTTCTGGA СААССССАAGСТСТАСАAAAGAGTGGGAGAССТСТGAAATCСАTСTСАGСTAGATTGAAA GGGAAAGAAGGGAGAGTAAGAGGGAATCTTATGNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNCTGGGAAGACTTCTAGATTAAATCTCAGTGTGACATCT CСTTACAATGCAGATTTCGATGGAGATGAAATGAATCTCCACATGCCCCAGAGCTACAAC ACCATCTCCGAACTAGAAGAAATTTGTATGGTTTCTAAGCAGGTCCTAGGGCCCCAGAGC AATAAGCCAGTGATGGGGATAGTCCAAGATACTCTCACAGGGTTGAGATTCTTTACGATT CGAGATGCTTTCTTTGATAAGAGAGAGATGATGCAAGTTCTGTACTCCATAGAGCAGAAT ATAAATA -GAAGACAGGACAGT-------
------------AGCAATTAT---GGGATTCTAGATCTTCTGAATAGACCAGCCATCCAG AAGCCCAAAGAGCTCTGGACAGGCAAGCAGATACTAAGCTTCATCTTCCCCAGTGTATTC TACCAGACACAGTCTGAGGA -TCCTGAGAATCTCTCGGACTCTGCA
GTGGTAATTATAGGAGG
>F2C1bC4F4C1-4
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNGGAGAAAGGGTCCACAGTATT TTCAAGAAGATTTCTGAYGAGGATATTCTTAGGCTTGGGTTTGATTTRGAATTTAGTAGA CCAGAATGGTTGATTCTTACAGTGCTACTGGTACCACCCCCAGCTGTGAGACCTTCTATA GTAATGGAAGGGATGCTCAGGGCAGAAGATGATCTTACCCACAAACTAGCAGATATTATC AAAGCYAATACCTATCTCAAGAAGTACGAACTAGAAGGAGCMCCAGGCCACATTATCAGA GATTACGAACAATTACTCCAATTCCACATAGCTACTCTRATAGACAATGATATTTCTGGA CAACCMCAAGCTCTACARAAGAGTGGGAGACCTCTGAAATCYATCTCAGCTAGATTGAAA GGRAAAGAAGGGAGAGTAAGAGGRAATCTTATGNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNCTGGGAAGACTTCTAGATTAAATCTCAGTGTGACATCT CСTTACAATGCAGATTTCGATGGAGATGAAATGAATCTCCACATGCCCCAGAGCTACAAC ACCATCTCCGAACTAGAAGAAATYTGTATGGTTTCTAAGCAGGTCCTAGGRCCCCAGAGC AATAAGCCAGTGATGGGGATAGTSCAAGAYACTCTCACAGGGTTGAGATTCTTTACGATT CGAGATGCTTTCTTTGATAAGAGAGAGATGATGCAAGTTCTGTACTCCATAGAGCAGAAT ATAAATA -GAAGACAGGACAGT-------
------------AGCAATTAT---GGGATTCTAGATCTTCTGAATAGACCAGCCATCCAG AAGCCCAAAGAGCTCTGGACAGGCAAGCAGATACTAAGCTTCATCTTCCCCAGTGTATTC TACCAGACACAGTCTGAGGA -TCCTGAGAATCTCTCGGACTCTGCA
}

\footnotetext{
>F2C4F4C4
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNGGAGAAAGGGTCCACAGTATT TTCAAGAAGATTTCTGACGAGGATATTCTTAGGCTTGGGTTTGATTTGGAATTTAGTAGA CCAGAATGGTTGATTCTTACAGTGCTACTGGTACCACCCCCAGCTGTGAGACCTTCTATA GTAATGGAAGGGATGCTCAGGGCAGAAGATGATCTTACCCACAAACTAGCAGATATTATC AAAGCCAATACCTATCTCAAGAAGTACGAACTAGAAGGAGCACCAGGCCACATTATCAGA GATTACGAACAATTACTCCAATTCCACATAGCTACTCTAATAGACAATGATATTTCTGGA CAACCACAAGCTCTACAGAAGAGTGGGAGACCTCTGAAATCTATCTCAGCTAGATTGAAA GGAAAAGAAGGGAGAGTAAGAGGAAATCTTATGNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNAATGAATCTCCACATGCCCCAGAGCTACAAC ACCATCTCCGAACTAGAAGAAATCTGTATGGTTTCTAAGCAGGTCCTAGGACCCCAGAGC AATAAGCCAGTGATGGGGATAGTGCAAGACACTCTCACAGGGTTGAGATTCTTTACGATT CGAGATGCTTTCTTTGATAAGAGAGAGATGATGCAAGTTCTGTACTCCATAGAGCAGAAT ATAAATA GAAGACAGGACAGT-------
-----------AGCAATTAT---GGGATTCTAGATCTTCTGAATAGACCAGCCATCCAG ARGCCCAAAGAGCTCTGGACAGGCAAGCAGATACTAAGCTTCATCTTCCCCAGTGTATTC TACCAGACACAGTCTGAGGA -TCCTGAGAATCTCTCGGACTCTGCA
GTAGTAATTATAGGAGG
>F2C6F4C5
NNNNNNNNNNNNNNCTCAGAGGGGAAGGTGATTCTGAATGGAGAAAGGGTCCACAGTATT TTCAAGAAGATTTCTGACGAGGACATTCTTAGGCTTGGGTTTGATTTGGAATTCAGTAGA CCAGAATGGTTGATTCTTACAGTGCTACTGGTACCACCCCCAGCTGTGAGACCTTCTATA GTAATGGAAGGGATGCTCAGGGCAGAAGATGATCTTACCCACAAACTAGCAGATATTATC AAAGCCAATACCTATCTCAAGAAGTACGAACTAGAAGGAGCACCAGGCCACATTATCAGA GATTACGAACAATTACTCCAATTCCACATAGCTACTCTRATAGACAATGATATTTCTGGA CAACCCCAAGCTCTACAAAAGAGTGGGAGACCTTTGAAATCCATCTCAGCCAGATTGAAA GGTAAAGAAGGGAGAGTAAGAGGGAATCTTATGGGNNNNNNNNNNNNNNNNNNNNNNNNG GGCCACAGAGTCAAAGTAATGTCTGGGAAGACCTTTAGATTAAATCTCAGTGTGACATCT ССТТАСАATGCAGATTTCGATGGAGACGAAATGAATCTCCACATGCCCCAGAGCTACAAC ACCATCTCCGAACTAGAAGAAATTTGTATGGTTTCTAAGCAGGTCCTAGGGCCCCAGAGC AATAAGCCAGTGATGGGGATAGTCCAAGATACTCTCACAGGGTTGAGATTCTTTACGATT CGAGATGCTTTCTTTGATAAGAGAGAGATGATGCAAGTTCTGTACTCCATAGAGCAGAAT ATAAATA -GAAGACAGGACAGT-------
------------AGCAATTAT---GGGATTCTAGATCTTCTGAATAGACCAGCCATCCAG AAGCCCAAAGAGCTCTGGACAGGCAAGCAGATCCTAAGCTTCATCTTCCCCAGTGTATTC TACCAGACACAGTCTGAGGA---------------TCCTGAGAATCTCTCGGACTCTGCA GTAGTAATTATAGGAGG
>F2C5F4C5
NNNNNNNNNNNNNNNNNNNNGGGGAAGGTGATTCTGAATGGAGAAAGGGTCCACAGTATT TTCAAGAAGATTTCTGACGAGGACATTCTTAGGCTTGGGTTTGATTTGGAATTCAGTAGA CCAGAATGGTTGATTCTTACAGTGCTACTGGTACCACCCCCAGCTGTGAGACCTTCTATA GTAATGGAAGGGATGCTCAGGGCAGAAGATGATCTTACCCACAAACTAGCAGATATTATC AAAGCCAATACCTATCTCAAGAAGTACGAACTAGAAGGAGCACCAGGCCACATTATCAGA GATTACGAACAATTACTCCAATTCCACATAGCTACTCTAATAGACAATGATATTTCTGGA CAACCCCAAGCTCTACAAAAGAGTGGGAGACCTTTGAAATCCATCTCAGCCAGATTGAAA GGTAAAGAAGGGAGAGTAAGAGGGAATCTTATGGNNNNNNNNNNNNNNATGTCTATGATG GGCCACAGAGTCAAAGTAATGTCTGGGAAGACCTTTAGATTAAATCTCAGTGTGACATCT ССТTACAATGCAGATTTCGATGGAGACGAAATGAATCTCCACATGCCCCAGAGCTACAAC ACSATCTCCGAACTAGAAGAAATTTGTATGGTTTCTAAGCAGGTCCTAGGGCCCCAGAGC AATAAGCCAGTGATGGGGATAGTCCAAGATACTCTCACAGGGTTGAGATTCTTTACGATT CGAGATGCTTTCTTTGATAAGAGAGAGATGATGCAAGTTCTGTACTCCATAGAGCAGAAT ATAAATA -GAAGACAGGACAGT-------
------------AGCAATTAT---GGGATTCTAGATCTTCTGAATAGACCAGCCATCCAG AAGCCCAAAGAGCTCTGGACAGGCAAGCAGATCCTAAGCTTCATCTTCCCCAGTGTATTC TACCAGACACAGTCTGAGGA -TCCTGAGAATCTCTCGGACTCTGCA
}

\footnotetext{
>F2ndF4C2
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNATTAAATCTCAGTGTGACATCT CCATACAATGCAGATTTCGATGGAGATGAAATGAATCTCCACATGCCCCAGAGCTACAAC ACCATCTCTGAACTAGAAGAAATCTGTATGGTTTCTAAGCAGGTCCTAGGCCCCCAGAGC AATAAGCCAGTGATGGGGATAGTCCAAGATACTCTCACAGGGTTGAGATTCTTTACGATT CGAGATGCTTTCTTTGACAAGAGAGAGATGATGCAAGTTCTGTACTCCATAGAGCAGAAT ATAAATA GAAGAGAGGACAGT
------------AGCAATTAT---GGGATTCTAGATCTTCTAAATAGACCAGCCATCCAG AAGCCCAAAGAGCTCTGGACAGGCAAGCAGATCCTAAGCTTCATCTTCCCCAGTGTATTC TACCAGACACAGTCTGAGGA TCCTGAGAATCTCTCGGACTCTGCA
GTGGTAATTATAGGAGG
>F2ndF4C6_JX213747
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNATGTCTATGATG GGCCACAGAGTCAAAGTAATGWCTGGGAAGACTTCTAGATTAAATCTCAGTGTGACATCT CСTTACAATGCAGATTTCGATGGAGATGAAATGAATCTCCACATGCCCCAGAGCTACAAC ACCATCTCCGAACTAGAAGAAATTTGTATGGTTTCTAAGCAGGTCCTAGGGCCCCAGAGC AATAAGCCAGTGATGGGGATAGTCCAAGATACTCTCACAGGGTTGAGATTCTTTACGATT CGAGATGCTTTCTTTGATAAGAGAGAGATGATGCAAGTTCTGTACTCCATAGAGCAGAAT ATAAATG ACAGT
AGCAATTAT---GGGATTCTAGATCTTCTGAATAGACCAGCCATCCAG AAGCCCAAAGAGCTCTGGACAGGCAAGCAGATACTAAGCTTCATCTTCCCCAGTGTATTC TACCAGACACAGTCTGAGGA---------------TCCTGAGAATCTCTCGGACTCTGCA
GTGGTAATTATAGGAGG
>F2C3F4C3
GAAGGAGAAGACAACTCAGAGGGGAAGGTGATTCTGAATGGAGAAAGAGTCCACAGTATT TTCAAGAAGATTTCCGATGAAGATATTCTTAGGCTTGGTTTTGATCTAGAATTTAGTAGA CCAGAATGGTTGATTCTTACAGTGCTTCTGGTACCACCCCCAGCAGTGAGACCTTCTATA GTTATGGAAGGGATGCTCAGGGCAGAAGATGATCTTACCCACAAACTAGCAGATATTATC AAAGCCAATACCTATCTCAAGAAGTACGAACTAGAAGGAGCACCAGGCCACATTATTAGA GATTACGAACAATTACTCCAATTCCACATAGCTACTCTGATAGACAATGATATTTCTGGA СААССТСАAGСТСТАСАAAAGAGTGGAAGACCTCTGAAATCTATCTCAGCTAGACTGAAA GGGAAAGAAGGGAGAGTAAGAGGAAATCTTATGGGNNNNNNNNNNNNNATGTCTATGATG GGCCACAGAGTCAAAGTAATGTCTGGTAAGACCTTTAGATTAAATCTCAGTGTGACATCT ССТТАСАACGCAGATTTCGATGGAGATGAAATGAACCTCCACATGCCCCAGAGCTACAAC ACCATCTCCGAGCTAGAAGAAATTTGTATGGTCTCTAAACAGGTCCTAGGACCCCAGAGC AATAAGCCAGTGATGGGGATAGTGCAAGATACTCTCACAGGGCTGAGGTTCTTTACGAAT CGAGATGCTTTCTTTGATAAGAGAGAAATGATGCAAGTTCTGTACTCCATAGAGCAGAAT ATAAATA -GAAGGCAGGACAGT-------
------------AGCAATTAT---GGGATTCTAGATCTGCTGAATAGACCAGCCATCCAG AAGCCCAAAGAGCTCTGGACTGGGAAGCAGATCCTAAGCTTCATCTTCCCCAGTGTATTC TACCAGACACAGGGAGAGGA---------------TCCTGAGAATCTCTCAGACTCTGCA
GTAGTAATTATAGGAGG
}
>F2D1F4D1
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNTCAAACTCGGGTTTGATTTGGAATTCAGTAGA CCAGAGTGGTTGATCCTTACAGTTCTACTTGTGCCACCCCCAGCAGTCAGACCATCCATA GTCATGGAAGGGATGCTCAGGGCAGAGGATGATCTCACCCACAAACTGGCAGATATCATC AAAGCCAATACWTATCTCAAGAAGTACGAACTAGAAGGAGCCCCAGGCCATATAATCCGA GACTATGAGCAATTACTCCAGTTCCACATAGCCACTCTCATAGACAATGATATCTCAGGA CAACCACAAGCTCTTCAGAAGAGTGGSAGACCACTGAAGTCGATCTCAGCMAGACTGAAA GGCAAGGAAGGCAGAGTCMGAGGGAATCTTATGGGNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNGATGAATCTCCACATGCCCCAGAGCTACAAY ACCATTTCTGAATTAGAAGAGATCTGCATGGTCTCCAAACAGGTCTTGGGTCCCCAGAGC AATAAGCCAGTGATGGGGATAGTCCAAGACACWCTCACTGGTCTGAGATTCTTTACTATC CGAGATGCСTTCTTTGATAAGAGAGAGATGATGCAAGTCTTGTACTCAATAGACCAGAAW ATCAATA -GGAGACAGGACAGT
-AGCAACTAT---GGGATCYTAGATCTTCTTAGTAGACCTGCCATTCAG AAGCCCAAAGAGCTTTGGACTGGGAAACAGATTCTCAGCTTCATCTTCCCCAGTGTTTTC TACCAGACCCAGTCTGAGGA---TCTCTTGGACTCTTCTGAGAATCTCTCGGACTCTTCA GTGGTGATCATCGGTGG
>F2D4F4D4
NNNNNNNNNNNNNNNNNNNNNGGGAAGGTGATTCTCAATGGAGAAAGAGTCCACAGTATT TTCAAGAAGATTTCGGATGAAGATATTCTCAAACTCGGGTTTGATTTGGAATTCAGTAGA CCAGAGTGGTTGATCCTTACAGTTCTACTTGTGCCACCCCCAGCAGTCAGACCATCCATA GTCATGGAAGGGATGCTCAGGGCAGAGGATGATCTCACCCACAAACTGGCAGATATCATC AAAGCCAATACATATCTCAAGAAGTACGAACTAGAAGGAGCCCCAGGCCATATAATCCGA GACTATGAGCAATTACTCCAGTTCCACATAGCCACTCTCATAGACAATGATATCTCAGGA CAACCMCAAGCTCTTCAGAAGAGTGGGAGACCACTGAAGTCGATCTCAGCMAGACTGAAA GGCAAGGAAGGCAGAGTCMGAGGGAATCTTATGGGNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNGATGAATCTCCACATGCCCCAGAGCTACAAY ACCATTTCTGAATTAGAAGAGATCTGCATGGTCTCCAAACAGGTCTTGGGTCCCCAGAGC AATAAGCCAGTGATGGGGATAGTCCAAGACACWCTCACTGGTCTGAGATTCTTTACTATC CGRGATGCCTTCTTTGATAAGAGAGAGATGATGCAAGTCTTGTACTCAATAGACCAGAAT ATCAATA--GGAGACAGGACAGT -AGCAACTAT---GGGATCCTAGATCTTCTTAGTAGACCTGCCATTCAG AAGCCCAAAGAGCTTTGGACTGGGAAACAGATTCTCAGCTTCATCTTCCCCAGTGTTTTC TACCAGACCCAGTCTGAGGA---TCTCTTGGACTCTTCTGAGAATCTCTCGGACTCTTCA GTGGTGATCATCGGTGG
>F2D2F4D2
NNNNNNNNNNNNNNNNNNNNNGGGAAGGTGATTCTCAATGGAGAAAGAGTCCACAGTATT TTCAAGAAGATTTCGGATGAAGATATTCTCAAACTCGGGTTTGATTTGGAATTCAGTAGA CCAGAGTGGTTGATCCTTACAGTTCTACTTGTGCCACCCCCAGCAGTCAGACCATCCATA GTCATGGAAGGGATGCTCAGGGCAGAGGATGATCTCACCCACAAACTGGCAGATATCATC AAAGCCAATACWTATCTCAAGAAGTACGAACTAGAAGGAGCCCCAGGCCATATAATCCGA GACTATGAGCAATTACTCCAGTTCCACATAGCCACTCTCATAGACAATGATATCTCAGGA CAACCMCAAGCTCTTCAGAAGAGTGGGAGACCWCTGAAGTCGATCTCAGCAAGACTGAAA GGCAAGGAAGGCAGAGTCAGAGGGAATCTTATGGGNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNGATGAATCTCCACATGCCCCAGAGCTACAAC ACCATTTCTGAATTAGAAGAGATCTGCATGGTCTCCAAACAGGTCTTGGGTCCCCAGAGC AATAAGCCAGTGATGGGGATAGTCCAAGACACWCTCACTGGTCTGAGATTCTTTACTATC CGRGATGCCTTCTTTGATAAGAGAGAGATGATGCAAGTCTTGTACTCAATAGACCAGAAW ATCAATA GGAGACAGGACAGT -AGCAACTAT---GGGATCYTAGATCTTCTTAGTAGACCTGCCATTCAG AAGCCCAAAGAGCTTTGGACTGGGAAACAGATTCTCAGCTTCATCTTCCCCAGTGTTTTC TACCAGACCCAGTCTGAGGA---TCTCTTGGACTCTTCTGAGAATCTCTCGGACTCTTCA GTGGTGATCATCGGTGG

\footnotetext{
>F2D3F4D3
NNNNNNNNNNNNNNNNNNNNNGGGAAGGTGATTCTCAATGGAGAAAGAGTCCACAGTATT TTCAAGAAGATTTCGGATGAAGATATTCTCAAACTCGGGTTTGATTTGGAATTCAGTAGA CCAGAGTGGTTGATCCTTACAGTTCTACTTGTGCCACCCCCAGCAGTCAGACCATCCATA GTCATGGAAGGGATGCTCAGGGCAGAGGATGATCTCACCCACAAACTGGCAGATATCATC AAAGCCAATACATATCTCAAGAAGTACGAACTAGAAGGAGCCCCAGGCCATATAATCCGA GACTATGAGCAATTACTCCAGTTCCACATAGCCACTCTCATAGACAATGATATCTCAGGA CAACCACAAGCTCTTCAGAAGAGTGGSAGACCWCTGAAGTCGATCTCAGCAAGACTGAAA GGCAAGGAAGGCAGAGTCMGAGGGAATCTTATGGGNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNGATGAATCTCCACATGCCCCAGAGCTACAAY ACCATTTCTGAATTAGAAGAGATCTGCATGGTCTCCAAACAGGTCTTGGGTCCCCAGAGC AATAAGCCAGTGATGGGGATAGTCCAAGACACTCTCACTGGTCTGAGATTCTTTACTATC CGAGATGCCTTCTTTGATAAGAGAGAGATGATGCAAGTCTTGTACTCAATAGACCAGAAT ATCAATA GGAGACAGGACAGT
AGCAACTAT---GGGATCYTRGATCTTCTTAGTAGACCTGCCATTCAG
AAGCCCAAAGAGCTTTGGACTGGGAAACAGATTCTCAGCTTCATCTTCCCCAGTGTTTTC TACCAGACCCAWTCTGAGRA---TCTCTTGGACTCTTCTGAGAATCTCTCGGACTCTTCA GTGGTGATCATCGGTGG
>F2D5F4D6
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNGATTCTCAATGGWGAAAGAGTCCACAGTATT TTCAAGAAGATTTCGGATGAAGATATTCTCAAACTCGGGTTTGATTTGGAATTCAGTAGA CCAGAGTGGTTGATCCTCACAGTTCTACTTGTGCCACCCCCAGCAGTCAGACCATCCATA GTCATGGAAGGGATGCTCAGGGCAGAGGATGATCTCACCCACAAACTGGCAGATATCATC AAAGCCAATACATATCTCAAGAAGTACGAACTAGAAGGAGCCCCAGGCCATATAATCCGA GACTATGAGCAATTACTCCAGTTCCACATAGCCACTCTCATAGACAATGATATCTCAGGA CAACCACAAGCTCTTCAGAAGAGTGGGAGACCWCTGAAGTCGATCTCAGCCAGACTGAAA GGAAAGGAAGGCAGAGTCAGAGGGAATCTTATGGGTAAGAGAGTAGAANNGTCGATGATG GGCCACAGAGTGAAAGTGATGTCAGGGAAGACYTTCAGACTGAATCTCAGTGTGACTTCT CCGTACAATGCTGATTTCGATGGGGATGAGATGAATCTCCACATGCCCCAGAGCTACAAY ACCATTTCTGAATTAGAAGAGATCTGCATGGTCTCCAAACAGGTCTTGGGTCCCCAGAGC AATAAGCCAGTGATGGGGATAGTCCAAGACACWCTTACTGGTCTGAGATTCTTTACTATC CGAGATGCCTTCTTYGATAAGAGAGAGATGATGCAAGTCTTGTACTCAATAGACCAGAAT ATCAATA GGAGACAGGACAGT \(\qquad\) -AGCAACTAT---GGGATCYTRGATCTTCTTAGTAGACCTGCCATTCAG AAGCCCAAAGAGCTTTGGACTGGGAAACAGATTCTCAGCTTCATCTTCCCCAGTGTTTTC TACCAGACCCAGTCTGAGGA---TCTCTTGGACTCTTCTGAGAATCTCTCGGACTCTTCA GTGGTGATCATCGGTGG
>F2ndF4D8
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNATGATG GGCCACAGAGTGAAAGTGATGTCAGGGAAGACYTTCAGACTGAATCTCAGTGTGACTTCT CCGTACAATGCTGATTTCGATGGGGATGAGATGAATCTCCACATGCCCCAGAGCTACAAY ACCATTTCTGAATTRGAAGAGATCTGCATGGTCTCCAAACAGGTCTTGGGTCCCCAGAGC AATAAGCCAGTGATGGGGATAGTCCAAGACACWCTTACTGGTCTGAGATTCTTTACTATC CGRGATGCCTTCTTYGATAAGAGAGAGATGATGCAAGTCTTGTACTCAATAGACCAGAAT ATCAATA GGAGACAGGACAGT
AGCAACTAT---GGGATCTTGGATCTTCTTAGTAGACCTGCCATTCAG
AAGCCCAAAGAGCTTTGGACTGGGAAACAGATTCTCAGCTTCATCTTCCCCAGTGTTTTC TACCAGACCCAGTCTGAGGA---TCTCTTGGACTCTTCTGAGAATCTCTCGGACTCTTCA gTGGTGATCATTGGTGG
}

\footnotetext{
>F2D6F4D7
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNGATTCTCAATGGWGAAAGAGTCCACAGTATT TTCAAGAAGATTTCGGATGAAGATATTCTCAAACTCGGGTTTGATTTGGAATTCAGTAGA CCAGAGTGGTTGATCCTCACAGTTCTACTTGTGCCACCCCCAGCAGTCAGACCATCCATA GTCATGGAAGGGATGCTCAGGGCAGAGGATGATCTCACCCACAAACTGGCAGATATCATC AAAGCCAATACATATCTCAAGAAGTACGAACTAGAAGGAGCCCCAGGCCATATAATCCGA GACTATGAGCAATTACTCCAGTTCCACATAGCCACTCTCATAGACAATGATATCTCAGGA CAACCACAAGCTCTTCAGAAGAGTGGGAGACCTCTGAAGTCGATCTCAGCCAGACTGAAA GGMAAGGAAGGCAGAGTCAGAGGGAATCTTATGGGTAAGAGAGTAGAAATGTCGATGATG GGCCACAGAGTGAAAGTGATGTCAGGGAAGACYTTCAGACTGAATCTCAGTGTGACTTCT CCGTACAATGCTGATTTCGATGGGGATGAGATGAATCTCCACATGCCCCAGAGCTACAAY ACCATTTCTGAATTRGAAGAGATCTGCATGGTCTCCAAACAGGTCTTGGGTCCCCAGAGC AATAAGCCAGTGATGGGGATAGTCCAAGACACWCTTACTGGTCTGAGATTCTTTACTATC CGGGATGCCTTCTTTGATAAGAGAGAGATGATGCAAGTCTTGTACTCAATAGACCAGAAT ATCAATA GGAGACAGGACAGT
AGCAACTAT---GGGATCTTGGATCTTCTTAGTAGACCTGCCATTCAG
AAGCCCAAAGAGCTTTGGACTGGGAAACAGATTCTCAGCTTCATCTTCCCCAGTGTTTTC TACCAGACCCAGTCTGAGGA---TCTCTTGGACTCTTCTGAGAATCTCTCGGACTCTTCA GTGGTGATCATCGGTGG
>F2D7F4D9
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNGATTCTCAATGGTGAAAGAGTCCACAGTATT TTCAAGAAGATTTCGGATGAAGATATTCTCAAACTCGGGTTTGATTTGGAATTCAGTAGA CCAGAGTGGTTGATCCTCACAGTTCTACTTGTGCCACCCCCAGCAGTCAGACCATCCATA GTCATGGAAGGGATGCTCAGGGCAGAGGATGATCTCACCCACAAACTGGCAGATATCATC AAAGCCAATACATATCTCAAGAAGTACGAACTAGAAGGAGCCCCAGGCCATATAATCCGA GACTATGAGCAATTACTCCAGTTCCACATAGCCACTCTCATAGACAATGATATCTCAGGA CAACCMCAAGCTCTTCARAAGAGTGGSAGACCWCTGAAGTCGATCTCAGCCAGACTGAAA GGMAAGGAAGGCAGAGTCAGAGGGAATCTTATGGGTAAGAGAGTAGAAATGTCGATGATG GGCCACAGAGTGAAAGTGATGTCAGGGAAGACYTTCAGACTGAATCTCAGTGTGACTTCT CCGTACAATGCTGATTTCGATGGGGATGAGATGAATCTCCACATGCCCCAGAGCTACAAC ACCATTTCTGAATTAGAAGAGATCTGCATGGTCTCCAAACAGGTCTTGGGTCCCCAGAGC AATAAGCCAGTGATGGGGATAGTCCAAGACACACTCACTGGTCTGAGATTCTTTACTATC CGAGATGCCTTCTTTGATAAGAGAGAGATGATGCAAGTCTTGTACTCAATAGACCAGAAT ATCAATA GGAGACAGGACAGT
AGCAACTAT---GGGATCCTAGATCTTCTTAGTAGACCTGCCATTCAG
AAGCCCAAAGAGCTTTGGACTGGGAAACAGATTCTCAGCTTCATCTTCCCCAGTGTTTTC TACCAGACCCAGTCTGAGGA---TCTCTTGGACTCTTCTGAGAATCTCTCGGACTCTTCA GTGGTGATCATCGGTGG
>F2ndF4D10 NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNGTCGATGATG GGCCACAGAGTGAAAGTGATGTCAGGGAAGACTTTCAGACTGAATCTCAGTGTGACTTCT CCGTACAATGCTGATTTCGATGGGGATGAGATGAATCTCCACATGCCCCAGAGCTACAAC ACCATTTCTGAATTRGAAGAGATCTGCATGGTCTCCAAACAGGTCTTGGGTCCCCAGAGC AATAAGCCAGTGATGGGGATAGTCCAAGACACACTTACTGGTCTGAGATTCTTTACTATC CGRGATGCCTTCTTTGATAAGAGAGAGATGATGCAAGTCTTGTACTCAATAGACCAGAAT ATCAATA -GGAGACAGGACAGT
AGCAACTAT---GGGATCYTRGATCTTCTTAGTAGACCTGCCATTCAG
AAGCCCAAAGAGCTTTGGACTGGGAAACAGATTCTCAGCTTCATCTTCCCCAGTGTTTTC TACCAGACCCAGTCTGAGGA---TCTCTTGGACTCTTCTGAGAATCTCTCGGACTCTTCA GTGGTGATCATCGGTGG
}

\footnotetext{
>F2C6F4D5
NNNNNNNNNNNNNNNNNNNAGGGGAAGGTGATTCTGAATGGAGAAAGGGTCCACAGTATT TTCAAGAAGATTTCTGACGAGGACATTCTTAGGCTTGGGTTTGATTTGGAATTCAGTAGA CCAGAATGGTTGATTCTTACAGTGCTACTGGTACCACCCCCAGCTGTGAGACCTTCTATA GTAATGGAAGGGATGCTCAGGGCAGAAGATGATCTTACCCACAAACTAGCAGATATTATC AAAGCCAATACCTATCTCAAGAAGTACGAACTAGAAGGAGCACCAGGCCACATTATCAGA GATTACGAACAATTACTCCAATTCCACATAGCTACTCTRATAGACAATGATATTTCTGGA CAACCCCAAGCTCTACAAAAGAGTGGGAGACCTTTGAAATCCATCTCAGCCAGATTGAAA GGTAAAGAAGGGAGAGTAAGAGGGAATCTTATGGGNNNNNNNNNNNNNNNNNNNNNNNG GGCCACAGAGTGAAAGTGATGTCAGGGAAGACTTTCAGACTGAATCTCAGTGTGACTTCT CCGTACAATGCTGATTTCGATGGGGATGAGATGAATCTCCACATGCCCCAGAGCTACAAC ACCATTTCTGAATTAGAAGAGATCTGCATGGTCTCCAAACAGGTCTTGGGTCCCCAGAGC AATAAGCCAGTGATGGGGATAGTCCAAGACACWCTTACTGGTCTGAGATTCTTTACTATC CGRGATGCCTTCTTTGATAAGAGAGAGATGATGCAAGTCTTGTACTCAATAGACCAGAAT ATCAATA GGAGACAGGACAGT AGCAACTAT---GGGATCYTRGATCTTCTTAGTAGACCTGCCATTCAG AAGCCCAAAGAGCTTTGGACTGGGAAACAGATTCTCAGCTTCATCTTCCCCAGTGTTTTC TACCAGACCCAGTCTGAGGA---TCTCTTGGACTCTTCTGAGAATCTCTCGGACTCTTCA GTGGTGATCATCGGTGG
>MF344629
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNGAGATATGCATGGTATCTAAGCAAGTACTGGGACCCCAAAGC AATAAGCCTGTAATGGGAATTGTTCAAGATACTCTTACAGGCCTGAGATTCTTCACTATC AGAGATTCCTTCTTTGATAAAAATGAGATGATGCAGGTTTTGTACTCCATCGACTTAGAC AAATACAATGATATAAAT---CTCGACAGTATCACCAGAGAAGGTAAGAAAATAAA------TATCAAGCCAAAGGAATAC---AGCCTTATCAAACTGCTCAATACACCAGCAATATCA AAGCCTAAACAGTTATGGACTGGTAAACAAATCTTAAGCTTTATTTTCCCGAATGTTTTC TACAAAGCGTCATCTAATGAAAATTTCGAGAATGACACAGAGAATTTTTCTGATACTCAG GTAGTCATCTGTGAGGG
>F2ndF4F1
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNCAGGGTCAAAGTTATGGGAGGAAAAACTTTTAGATTGAATCTAAGTGTGACATCT CCTTATAACGCGGATTTCGATGGAGATGAAATGAATCTACACATGCCTCAGAGTTACAAT TCTATTTCTGAACTTGAAGAGATCTGTATGGTATCTAAACAAATCCTTGGACCTCAAAGC AATAAACCAGTAATGGGAATTGTTCAGGATACTCTTACTGGTTTAAGATTTTTTACTATT AGAGATTCTTTCTTTGATAAGAATGAAATGATGCAAGTTCTATATTCTATTGATTTAGAT AAATACAATGATATAAAT---CTTGACTGCATCACGAGGGAAGGTAAGAAATTGAA------CATAAGGCCAAAGGAATAC---AATCTTGTAAAACTTCTTAATACTCCAGCAATCCAA AAACCAAAACAGCTTTGGACAGGCAAACAGATTCTAAGCTTTATCTTTCCGAATGTTTTC TACAAGGCTGCATCTAATGAAAACTTTGAGAATGATACCGAGAACTTTTCTGATACACAA GTAGTCATCTGTGAGGG
}
>XM_014708712_Ordospora_colligata
NNNGGAGAGGAAAGCGGAGAGGGTAAGGTGATGCTGAATGGCGAGCGTGTATACAGCATA TTCAAGAAAATAAGCGATGCAGACTGTGAACACATGGGATTTGACCTGAAGTACAGTCGA CCGGAATGGATGATTCTTACTGTGCTTCTTGTTCCTCCACCGACGGTGAGGCCATCTATT GTGATGGAAGGCTCGCTGCGTGGAGAGGATGACCTAACACACAAGCTTGCAGACATAATC AAGTCTAATGGATACCTGAAGAAGTATGAACAAGAAGGAGCACCTGGGCATATATTGCGT GATTACGAGCAGCTGCTGCAGTTTCATGTTGCCACGCTGATTGACAATGACATTGGAGGG CAACCACAAGCGCTGCAAAAGAGTGGAAGACCGTTGAAATCAATATCAGCGAGGCTGAAA GGAAAAGAAGGGCGGATAAGAGGAAACCTGATGGGTAAAAGAGTGGACATGTCTATGATG GCACACTATGTAAGGGTTATGGATAACAAGACGTTCAGGCTGAACTTGAGTGTTACATCT CCATATAATGCAGACTTTGATGGAGACGAGATGAATTTGCACATGCCACAGAGTTATACG TCGAAGTCTGAGCTTGAAGAATTGGTTCTTGTGCCGAACCAGATTATATCGCCGCAGTCT AACAAACCTGTGATGGGGATAGTCCAAGACACACTTACAGGGCTCAGACTCCTTACGCTT AGAAACACATTTCTAGACGAACGAGAGACAATGTCGCTACTTTATGCGGTGAATTC---------------------TCAGTTTGATGATATGCCAGTCGGGGAGAATGCAAGAGCAGAG TTCAAGAGGACTAAGGAGTAT---GACATCATGAAGGTTCTAGCAAGACCAAGTATAGCA AAACCAAAGAAGCTGTGGACAGGAAAGCAGGTGCTGAGTTTTATTCTACCATGCCTGAAT TATTCTGGATTCTCATCTGAGCATAATGATGAAGATAAAGAAAATGCAAATGACACGGTT GTGCGAATTCAGGATGG

Results of ASAP analysis:
\begin{tabular}{|c|c|c|c|}
\hline Nb of subsets & \multicolumn{2}{|l|}{-score P-val (rank) W} & W (rank) Treshold dist. \\
\hline 112.50 & \(6.54 \mathrm{e}-04\) (1) & 2.58e-03 (4) & 0.112635 \\
\hline 114.00 & \(1.41 \mathrm{e}-03\) (2) & 2.46e-03 (6) & 0.186576 \\
\hline * 174.00 & \(4.71 \mathrm{e}-01\) (7) & 3.91e-03 (1) & 0.030950 \\
\hline * 155.00 & \(7.93 \mathrm{e}-03\) (3) & 2.10e-03 (7) & 0.040951 \\
\hline 156.50 & \(2.50 \mathrm{e}-01\) (5) & 1.72e-03 (8) & 0.053581 \\
\hline 118.00 & \(8.88 \mathrm{e}-01\) (11) & 2.50e-03 (5) & 0.223591 \\
\hline * 168.50 & \(9.40 \mathrm{e}-01\) (14) & 2.76e-03 (3) & 0.035194 \\
\hline * 2010.00 & \(3.97 \mathrm{e}-01\) (6) & 9.24e-04 (14) & 0.007322 \\
\hline 1310.50 & \(9.00 \mathrm{e}-01\) (12) & 1.68e-03 (9) & 0.064135 \\
\hline * 1911.00 & \(8.30 \mathrm{e}-01\) (9) & 9.83e-04 (13) & 0.009095 \\
\hline
\end{tabular}

Partition 1
Asap-Score: 2.500000
Proba: 1.399791e-03
Nb subsets with recursion:11 (without recursion: 10)
W (rank) 2.87e-03 (4)
Treshold dist. 0.112099

Subset[ 1 ] n: 2 ;id: AF060234 DQ996236
Subset[ 2 ] n: 1 ;id: XM_002995356
Subset[ 3 ] n: 1 ;id: DQ996230
Subset[ 4 ] n: 5 ;id: AJ278948 DQ996231 DQ996234 HQ457438 HQ457435
Subset[ 5 ] n: 3 ;id: F2A3F4A2-3 F2A2-A3F4A2 F2A2F4A2
Subset[ 6 ] n: 4 ;id: F2B1F4B1 F2B1F4B2 F2B2F4B2 F2B3F4B3
Subset[ 7 ] n: 1 ;id: DQ996235
Subset[ 8 ] n: 3 ;id: F2E1F4E1 F2E1F4E4 F2E1F4E5
Subset[ 9 ] n: 1 ;id: DQ996232
Subset[ 10 ] n: 15 ;id: F2C1F4C1_DQ996233 F2C1bF4C1 F2C1bC4F4C1-4 F2C4F4C4 F2C6F4C5 F2C5F4C5 F2C3F4C3 F2D1F4D1 F2D4F4D4 F2D2F4D2 F2D3F4D3 F2D5F4D6 F2D6F4D7 F2D7F4D9 F2C6F4D5
Subset[ 11 ] n: 1 ;id: XM_014708712_Ordospora_colligata

Results of bPTP analysis
Accptance rate: 0.098944000000000004
Merge: 249995
Split: 250005
Estimated number of species is between 19 and 29
Mean: 23.85
\# Most supported partition found by simple heuristic search
Species 1 (support = 1.000)
XM_014708712_Ordospora_colligata
Species 2 (support = 1.000)
DQ996230
Species 3 (support = 1.000)
DQ996232
Species 4 (support \(=1.000\) )
MF344629

Species 5 (support \(=1.000\) )
F2ndF4F1

Species 6 (support \(=0.994\) )
AF060234,DQ996236
Species 7 (support = 1.000)
XM_002995356
Species 8 (support = 1.000)
DQ996235
Species 9 (support \(=0.954\) )
F2E1F4E1,F2E2F4nd,F2E3F4nd,F2E1F4E4,F2ndF4E2,F2E1F4E5,F2ndF4E3
Species 10 (support \(=1.000\) )
HQ457438
Species 11 (support \(=1.000\) ) HQ457435

Species 12 (support = 1.000)
DQ996234
Species 13 (support = 1.000) DQ996231

Species 14 (support = 1.000) AJ278948

Species 15 (support = 1.000)
F2A6F4nd
Species 16 (support \(=0.994\) )
F2B4F4B3
Species 17 (support \(=0.968\) )
F2B1F4B1,F2B2F4B2,F2B1F4B2,F2B3F4B3
Species 18 (support \(=0.909\) )
F2D1F4D1,F2D4F4D4,F2D2F4D2,F2D3F4D3,F2D7F4D9,F2D5F4D6,F2ndF4D8,F2D6F4D7,F2ndF4D10

Species 19 (support = 0.995)
F2C6F4D5

Species 20 (support \(=0.658\) )
F2C6F4C5,F2C5F4C5,F2ndF4C2
Species 21 (support = 0.608)
F2C1F4C1_DQ996233,F2C1bF4C1,F2C1bC4F4C1-4,F2ndF4C6_JX213747
Species 22 (support = 0.649)
F2C4F4C4
Species 23 (support \(=0.649\) )
F2C3F4C3

F2ndF4A1,F2ndF4A5,F2ndF4A4
Species 25 (support \(=0.514\) )
F2A3F4A2-3,F2A2-A3F4A2,F2A2F4A2```

