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 73 
Abstract 74 
 75 
As human activities increasingly shape land- and seascapes, understanding human-wildlife 76 
interactions is imperative for preserving biodiversity. Habitats are impacted not only by static 77 
modifications, such as roads, buildings and other infrastructure, but also by the dynamic 78 
movement of people and their vehicles occurring over shorter time scales. While there is 79 
increasing realization that both components of human activity significantly affect wildlife, capturing 80 
more dynamic processes in ecological studies has proved challenging. Here, we propose a novel 81 
conceptual framework for developing a ‘Dynamic Human Footprint’, providing a key link between 82 
anthropogenic stressors and ecological impacts. Specifically, the Dynamic Human Footprint 83 
integrates a range of metrics to fully acknowledge the time-varying nature of human activities and 84 
to enable scale-appropriate assessments of their impacts on wildlife behavior, demography, and 85 
distributions. We review existing terrestrial and marine human mobility data products and provide 86 
a roadmap for how these could be integrated and extended to enable more comprehensive 87 
analyses of human impacts on biodiversity in the Anthropocene. 88 
 89 
 90 
Introduction 91 
 92 
More than half of the Earth’s surface – 70% on land and 57% at sea – has been substantially 93 
altered by human activities 1–4 driving significant changes in the behavior, distribution and viability 94 
of wildlife populations 5,6. Despite the negative consequences for biodiversity as a whole, a 95 
growing body of evidence suggests that behavioral plasticity and natural selection may enable 96 
adaptation to a changing world, even allowing some species to thrive in the Anthropocene 7,8. The 97 
variable responses of wildlife to anthropogenic stressors indicate that the mechanisms governing 98 
human-wildlife interactions and coexistence are complex and context-dependent. 99 
 100 
To study wildlife responses to human activities, ecologists have primarily relied on relatively static 101 
proxies, such as measures of land development or human population density 9–11. While useful 102 
for many analyses, these datasets fail to capture the more dynamic aspects of human activity 103 
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(‘human mobility’; see 12), which may exert additional pressure on wildlife. Dynamic aspects of 104 
human activity represent a key link between anthropogenic stressors and ecological impacts, but 105 
have yet to be widely adopted in wildlife studies. 106 
 107 
As the COVID-19 pandemic unfolded, researchers started exploring opportunities to leverage 108 
human mobility data products to examine how wildlife responded to lockdowns 13. Until then, the 109 
ecological research community had been largely unaware of advances in measuring human 110 
mobility, which were driven by decades of work in other disciplines (e.g., transportation, 111 
geography, computer science, physics) and the private sector 14. The importance of monitoring 112 
and managing human movements to stem the spread of COVID-19 (e.g., via social distancing 113 
and travel restrictions 15) spurred some companies to make human mobility data publicly 114 
available. This increased data accessibility created exciting opportunities for ecologists to 115 
investigate more comprehensively how wildlife is affected by humans – both during and after the 116 
COVID-19 anthropause. Human mobility has multiple components 12. We consider ‘human 117 
mobility’ to encompass the movements of humans and their vehicles (and any associated by-118 
products in the environment), along the full spectrum of spatiotemporal resolutions. This is 119 
distinguished from human infrastructure, which encompasses roads, buildings and additional 120 
anthropogenic landscape modifications (and their associated by-products). For a schematic 121 
overview of key concepts and terminology, please see Figure 1. 122 
 123 
In this contribution we argue that high-resolution human mobility data should be combined with 124 
more conventional static measures (e.g., population density and land cover maps) to capture the 125 
multidimensional, dynamic nature of human activity, and its complex effects on wildlife. But doing 126 
so requires ecologists to understand the accessibility, underpinning, and limitations of human 127 
mobility data products. While a handful of recent studies have begun integrating datasets 128 
reflecting static and dynamic components of human activity, they have been restricted to local 129 
and regional scales 16,17, and their methods are not yet applicable to many other areas across the 130 
world, particularly in the Global South. 131 
 132 
Here, we present a new conceptual framework for integrating the static and dynamic components 133 
of human activity into a multiscale ‘Dynamic Human Footprint’. This extends previous attempts to 134 
quantify how humans modify our planet 18–20 by explicitly incorporating the movements of humans 135 
and their vehicles. Our framework is ‘dynamic’ in two senses – first in that it considers time-varying 136 
information on human mobility, and second, in terms of allowing flexible data aggregation across 137 
a suite of human activities (Fig. 1). We review existing terrestrial and marine human mobility data 138 
products that are of relevance to the ecological research community but have not yet been widely 139 
adopted (Fig. 2-3, Supplementary Table 1). Using recent empirical examples, we then 140 
demonstrate how emerging metrics of human mobility may be integrated into a globally available 141 
Dynamic Human Footprint, enabling refined investigations of anthropogenic impacts on wildlife 142 
behavior, demography, and distribution. We conclude with a set of recommendations for how the 143 
ecological community and other stakeholders can make progress towards integrating a variety of 144 
human mobility metrics to achieve a comprehensive analysis of human impacts on biodiversity in 145 
the Anthropocene (Fig. 4). 146 
 147 



Measuring human mobility  148 
 149 
Here, we outline the major approaches for measuring the dynamic movement of humans and their 150 
vehicles. In 2021, mobile phone subscriptions topped 8 billion worldwide, with over 6 billion of 151 
those subscriptions registered to smartphones 21. The proliferation of mobile devices means that 152 
we can capture human mobility data across broad spatial and temporal extents in most areas that 153 
are inhabited by people. Location data are now commonly collected using mobile phones relying 154 
on onboard GPS receivers, or by identifying the network node (WiFi or cellular network tower) 155 
they are connected to 14,22. Location-based mobile phone services, such as real-time weather, 156 
social media, and fitness applications, similarly collect high-resolution location data from their 157 
users 23. The spatiotemporal resolution and continuity of these data varies greatly between 158 
technologies. While GPS yields precise geographic coordinates, cellular tower networks provide 159 
data at spatial resolutions varying from very precise in urban settings to relatively coarse in rural 160 
areas, depending on local network coverage. Furthermore, various types of human mobility data 161 
vary in their temporal resolution. Data from cellular networks are often more temporally continuous 162 
than GPS data collected from smart-phone applications. 163 
 164 
While network and technology companies collect individually identifiable information, they do not 165 
typically make raw mobile phone data (publicly) available due to geo-privacy concerns and 166 
compliance with national and international regulations (e.g., General Data Protection Regulation 167 
of the European Union). Instead, human location data are anonymized, or aggregated to prevent 168 
the identification of individuals 24. Mobile network data are often aggregated into origin-destination 169 
flows, which provide information on how many users moved between two given geographic areas, 170 
such as the areas served by two mobile phone towers 25. Importantly, the quality of the estimates 171 
of human mobility derived from mobile phone data varies based on the number of devices 172 
contributing data and therefore becomes less precise in more sparsely populated regions. This is 173 
compounded by the fact that access to, and usage of mobile devices varies across the globe 21 174 
and that users of mobile phones, and of different applications, vary geographically and in terms 175 
of their socio-demographic characteristics 26. Therefore, human location data have inherent 176 
spatial, temporal, and socio-demographic biases 27. 177 

In response to the COVID-19 pandemic, a number of private companies started making large 178 
amounts of anonymized human mobility data publicly accessible. Human location data derived 179 
from mobile phones have been widely used, for example, to plan and study the impact of 180 
government restrictions on human mobility during the pandemic 28. Research applications of these 181 
data, however, are constrained by fairly rigid data formats (e.g., aggregation or use of fixed 182 
reference baseline), which limit the potential for reprocessing 29. For example, in the case of 183 
Google Mobility products, estimates of human’ use of ‘greenspaces’ combine national and local 184 
parks into a single index, which may obscure ecological responses. Perhaps most importantly, 185 
there is limited clarity on the long-term support of these public products, making research planning 186 
difficult and future replication attempts impossible. In some cases, researchers have started 187 
working directly with mobile phone network operators to overcome these issues. The European 188 
Commission has asked national mobile network providers to release their network data to its Joint 189 
Research Centre to build a COVID-19 mobility dashboard 30. In general, there is significant scope 190 



for strengthening collaboration between the collectors and holders of large human mobility 191 
datasets and the wider research community. 192 

An alternative to mobile phone-based approaches are data relating to various types of transport. 193 
For example, vehicular transportation data have been used during the COVID-19 pandemic to 194 
explore changes in flow of vehicular traffic 31 and cycling behavior, as local authorities provided 195 
additional space for recreation 32. These types of data are commonly accessible through open 196 
data portals housed by local municipalities (e.g., 33,34) or national authorities. The main 197 
disadvantage of these datasets is that they are typically collected idiosyncratically at specific 198 
locations, most often in urban environments, making them unsuitable for studies in more remote 199 
areas or at larger geographic scales (e.g., 35). Other types of human mobility, such as those 200 
related to agriculture, forestry and hunting, are either documented through land cover proxies or 201 
left uncharacterized. 202 

In contrast to the more regional nature of data collection in terrestrial realms, marine traffic is 203 
monitored globally by the automatic identification system (AIS) – an anti-collision network that 204 
combines transceivers on ships and both in-situ and satellite radar receivers to monitor ships’ 205 
locations. AIS data are available through private companies 36 and governmental institutions. For 206 
example, European marine data can be requested through the SafeSea net initiative 37. These 207 
data have been used to study the impacts of vessel traffic, and resultant noise pollution, on wildlife 208 
38, as patterns of global fishing effort 39,40, and the global reduction of marine traffic during the 209 
COVID-19 anthropause 41. Marine traffic has also been monitored with nightlight data from VIIRS 210 
(Visible Infrared Imaging Radiometer Suite) and VIIRS Boat Detection (VBD) across scales, from 211 
individual vessel detections per night to annual summary grids of detection tallies and average 212 
radiances 42. The global scale of marine data that are available at relatively fine spatiotemporal 213 
resolution, coupled with its good accessibility, provide ecologists with opportunities for broad-214 
scale analyses that presently are out of reach for terrestrial studies. That said, activities such as 215 
recreational fishing cannot currently be assessed at local scales, limiting our understanding of 216 
reported increases in recreational marine human activities during the COVID-19 pandemic 43. 217 

Air traffic can be tracked through data on the total number of flights by FlightRadar24 44. 218 
Additionally, data on passenger flows are available for Europe through the EU Open Data Portal 219 
45, for the US through the International Civil Aviation Organization COVID-19 Air Traffic 220 
Dashboard 46, and for 35,000 city-pairs around the world through the Civil Aviation Data Solutions 221 
(iCADS) portal 47. Air traffic has been severely impacted during the COVID-19 pandemic, with 222 
significant reductions in commercial flights 48,49. 223 

Complementary satellite-sensed data on artificial nightlights and other by-products, such as 224 
nitrogen dioxide from fossil fuel combustion, have been used to measure aspects of human 225 
activity 50,51. For example, artificial nightlights have been used for mapping both vehicles and 226 
infrastructure, from maritime traffic to whole cities 51,52. However, these products only capture 227 
activities that occur at night and produce high-powered lighting, which must be taken into 228 
consideration when charting spatiotemporal patterns in human mobility. These data are available 229 
directly from 53. Daily satellite data on concentrations of various atmospheric gasses have global 230 
coverage 54 and are available from NASA's Earth Data center 53 and from the Sentinel 5 Precursor 231 



satellite of the European Space Agency (ESA). For example, the TROPOMI sensor on-board of 232 
the Sentinel 5P satellite provides measurements of atmospheric gasses, including the most 233 
common anthropogenic pollutants, such as NOx, SO2, ozone and others 55. Satellite-recorded 234 
nighttime images indicated dimming of light in China 51, and NO2 data documented decreases in 235 
pollution levels across European cities due to COVID-19 related changes in human activity 42,56. 236 
One obvious limitation of by-product analyses is that it is challenging to estimate the relative 237 
contributions of dynamic and static components of human activity, which – as we have argued 238 
above – is key for advancing our understanding of ecological impacts.  239 

Towards a Dynamic Human Footprint 240 

In isolation, each of the data types discussed above provide a valuable window into how humans 241 
use different spaces over time, but in combination, they reveal the diversity of our impacts on the 242 
environment. Current approaches to mapping the global influence of humans, particularly the 243 
Human Footprint Index 10 and the Human Modification map 19, aggregate multiple aspects of the 244 
built environment – including infrastructure, land use, and transportation networks – along with 245 
static estimates of human population density and distribution. These indices have been used 246 
extensively, and very productively, for assessing wilderness loss, protected area effectiveness, 247 
and wildlife responses to human encroachment (e.g., 11,57–60). But considering the increasing 248 
availability of high-quality human mobility datasets, we see an opportunity for extending the 249 
concept, by developing a framework for quantifying humans’ dynamic footprint on Earth. 250 

Our proposed ‘Dynamic Human Footprint’ incorporates the multiple ways in which humans affect 251 
environments, by aggregating both static and dynamic metrics spanning the full range of 252 
spatiotemporal scales. Importantly, rather than computing a single index (such as the Human 253 
Footprint Index), we envision a modular set of products that can be tailored to the specific 254 
research question and ecological responses under investigation (Fig 1). 255 

The underlying datasets supporting these footprint estimates depend on which drivers and 256 
spatiotemporal resolutions are required to link different types of human activity to ecological 257 
processes. Questions related to distributional changes for wildlife may require a global-scale, 258 
coarse-grained, human footprint estimate 39, whereas questions related to behavioral responses 259 
would necessitate a fine-grained approach, potentially limited to select locales (e.g., 16) (Fig. 1). 260 
For example, understanding behavioral responses of animals to COVID-19 lockdowns would 261 
benefit from quantifying changes in human mobility at high spatiotemporal resolutions 13,61. If 262 
conducted globally, the footprint estimates for such a study would require all underlying datasets 263 
to have global extent or rely on modeling approaches for appropriate interpolation. In contrast, a 264 
study with a more limited geographic scope would be able to leverage datasets that are only 265 
available locally, such as municipal traffic-flow estimates. In general, our review in the previous 266 
section reveals a striking lack of widely available human mobility data products that could be used 267 
to address ecological responses at finer spatiotemporal scales (Fig. 1). 268 

The development of such products should follow the data processing levels employed by NASA’s 269 
Earth Observing System Data and Information System (EOSDIS)62 and the ESA Earth 270 
Observation Data Access Portal63. Under this system, data products are classified along a scale 271 
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from raw, unprocessed data (Level 0), to corrected data (Level 1), derived variables (Levels 2-3), 272 
and, ultimately, modeled outputs (Level 4). In the context of a Dynamic Human Footprint, each 273 
dataset would be rated corresponding to its processing level. For example, unstandardized mobile 274 
device counts may be considered a Level 0 product, whereas population density estimates may 275 
be considered a Level 3 product. Combined datasets, such as daily aggregate products of human 276 
mobility, would be given a Level 4 distinction, to indicate their synthetic nature.  277 
 278 
As noted above, aggregating across data types will be at the core of the Dynamic Human Footprint 279 
(Fig. 4). When integrating datasets with similar spatiotemporal resolutions and extents, we 280 
propose following previous approaches which rely on standardizing values within and among 281 
datasets (e.g., 10,19). This step alone is not necessarily straightforward, as it requires handling 282 
mismatches in resolutions and a nuanced understanding of the rescaling methods appropriate for 283 
different data types. However, we also envision scenarios where the variables of interest are not 284 
readily available across the full extent required, necessitating more sophisticated methodologies 285 
for interpolation. This would apply, for example, to high-resolution transit or human mobility data 286 
which are not currently available at global, or even regional, scales (see above). It may be possible 287 
to compute finer-scale human mobility estimates by modeling statistical relationships between 288 
coarse mobility data and satellite-sensed auxiliary data, which serve as a proxy for finer-scale 289 
movement 64,65. But this would likely involve the use of complex data-fusion methods and modeling 290 
techniques 64,66. In general, such approaches need to be employed cautiously, as human mobility 291 
is linked, as we had noted above, to a complex set of cultural, socio-demographic, and 292 
environmental factors that vary geographically and must be accounted for 67,68. 293 
 294 
In the following sections, we use recent empirical examples to showcase how a Dynamic Human 295 
Footprint could be employed to advance our understanding of human-wildlife interactions, and 296 
their effects on behavior, demography, and distributions. The datasets used in these case studies 297 
remain limited in their applicability and availability – at fine scales, they are often collected 298 
idiosyncratically (e.g., AIS; 69), while at large scales, they remain relatively coarse proxies of 299 
human activity. Therefore, we see these examples as demonstrating the need for a Dynamic 300 
Human Footprint that enables research on human-wildlife interactions at appropriate – and as yet 301 
largely unachieved – spatiotemporal scales. 302 
 303 
Behavioral responses 304 
The ‘ecology of fear’ hypothesis suggests that the risk of predation alters prey behavior and 305 
physiology in the absence of direct mortality 70. A ‘landscape of fear’ is a species’ perception of 306 
the spatiotemporal patterns of that risk as a result of predator activity 71. Because many animals 307 
are thought to perceive humans as super predators 72, the landscape of fear hypothesis predicts 308 
that animals will avoid human-occupied areas in a similar fashion as they might avoid areas 309 
frequented by predators 73,74. Such human avoidance can manifest in both spatial and temporal 310 
shifts in activity. For example, many animals become more nocturnal in the presence of humans 311 
75, while some prey species select areas of high human mobility, to ‘shield’ themselves from 312 
predators (i.e., the human shield hypothesis) 76,77. As such, to study behavioral responses of 313 
wildlife, human mobility datasets should have high temporal resolution, to capture the dynamic 314 



nature of humans’ movements across habitats (Fig. 1; e.g., sub-daily human mobility or traffic 315 
data that can be collected at <1km2 resolution). 316 
 317 
Implicitly or explicitly incorporating dynamic human activity data can often help understand 318 
animals’ behavioral responses. For example, by integrating land-cover and anthropogenic noise 319 
data, 78 found that the song frequency of White-crowned sparrows (Zonotrichia leucophrys) 320 
increased in response to early COVID-19 lockdown in the San Francisco Bay Area. In contrast, 321 
great white sharks (Carcharodon carcharias) showed no change in space use at a seal colony in 322 
South Australia when cage-diving tourism operations paused for 51 days during lockdown 79. By 323 
integrating dynamic human mobility data, such as driving and walking, 80 researchers were able 324 
to demonstrate that mountain lions (Puma concolor) in California ventured deeper into urban 325 
areas during the COVID-19 pandemic. These studies demonstrate the impacts of reduced human 326 
mobility with little or no corresponding change in infrastructure, indicating that dynamic and static 327 
metrics are not redundant measures of human activity.  328 
 329 
Demographic responses 330 
Human activities can influence wildlife populations by affecting critical life history stages. Vital 331 
rates (e.g., survival, fecundity) can be altered over a wide range of temporal scales (i.e., days to 332 
years) and therefore require human activity data of moderate spatiotemporal resolution (Fig. 1). 333 
Human disturbance can occur even in areas with relatively intact habitat if they attract visitors 334 
pursuing recreational activities. Outdoor recreation differs significantly throughout the week (e.g., 335 
weekends vs. weekdays) and is often spatially heterogeneous, with some areas being used more 336 
frequently than others 81. These differences in human mobility may have substantial impacts on 337 
demographic responses. For example,82 found that recreational use of beaches impacted piping 338 
plover (Charadrius melodus) demographics, by lowering chick survival during weekends and in 339 
areas of intense use 82. Roads, vehicle traffic and collisions are another cause of wildlife mortality 340 
83. Traffic reductions during early COVID-19 lockdowns in central Europe led to strong decreases 341 
in road mortality in large mammals, such as roe deer, but increased collisions with badgers 342 
indicating heterogeneous effects on demographic responses across species 84. But human 343 
impacts on demography must not necessarily be negative. For example, Hentati-Sundberg et al. 344 
85 discovered that tourism typically shielded a seabird colony in the Baltic from gulls and crows. 345 
When tourism declined during COVID-19 lockdowns, visitation rates by White-tailed eagles 346 
(Haliaeetus albicilla) drastically increased, causing – through disturbance, rather than predation 347 
– a 26% decrease in the productivity of common murres (Uria aalge) 85. These nuanced responses 348 
of species to human recreation highlight the importance of integrating spatially explicit and 349 
temporally dynamic information on human mobility into ecological studies. 350 
 351 
Recent advances in detecting sensory pollutants are offering insights into how humans affect 352 
demographic processes of wildlife across larger scales 86,87. For example, datasets on 353 
anthropogenic noise and artificial light sources across the United States were combined with 354 
citizen science bird observations to show that demographic responses to these pollutants, and 355 
adjustments in phenology 88, depended on species traits and habitats 89. These results emphasize 356 
that the impacts of human activities are not uniform across species and that analyses must 357 
consider context dependence 77,90. This is key to informing the design of effective conservation 358 
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interventions 87, such as reducing nightlight emission during peak migration periods or limiting 359 
recreational activities during critical times of the breeding cycle 91. 360 
 361 
Distributional responses 362 
Metrics that characterize the amount of static human infrastructure in an area are the predominant 363 
source of information used to study anthropogenic impacts on species distributions 92,93. 364 
Interactions among static and dynamic components of human activity may determine the 365 
magnitude and direction of anthropogenic impacts on species abundances and distributions. For 366 
example, 17 coupled static (human population density, human footprint) and dynamic (human 367 
noise and artificial nightlight) data with information on bird observations around feeder locations 368 
(feederwatch.org), to reveal impacts on the abundance of several bird and mammal species at 369 
continental scale 17. Similarly, by combining the static Human Footprint Index with direct records 370 
of the presence of humans captured by camera traps, 94 identified thresholds at which species 371 
with different traits are able to persist in human-dominated landscapes.  372 
While some changes in species distributions can occur abruptly over relatively short time periods, 373 
the ranges of individuals, populations and species are typically measured at coarser 374 
spatiotemporal resolutions. The integration of static and dynamic variables into a Dynamic Human 375 
Footprint will allow us to more accurately predict how the distribution of species may change in 376 
response to human by-products (such as anthropogenic noise and artificial nightlights) and 377 
human encroachment 17,77,95. Modeling encroachment in a more detailed way may allow us to 378 
identify thresholds of anthropogenic development 96 or human mobility levels, beyond which 379 
animal populations cannot persist. For example, light pollution may lead to nocturnal species 380 
abandoning or avoiding areas that would otherwise be suitable 77. This may aid our understanding 381 
of the ‘silent forest’ concept which posits that species may be absent in an area because of human 382 
activities, despite otherwise suitable environmental conditions. 383 
 384 
The activities of humans are a major driver of species extinction, and exert strong selective 385 
pressure on the evolution of species 97. The ability to consistently map human modification, 386 
showed that mammalian genetic diversity and effective population sizes are lower in urbanized 387 
areas when compared to natural areas, but less so for birds 98. Further, sociodemographic, such 388 
as economic inequality and racial segregation appear to reduce overall genetic diversity in 389 
terrestrial mammal, reptiles and amphibians 99. A dynamic measure of human activities would 390 
allow quantifying the degree to which human activities may affect behavioral plasticity and 391 
evolution, and more importantly allow a framework to document behavioral changes of wildlife 392 
across a gradient of human activities in both space and time. Such a dynamic measure would 393 
allow a much more detailed exploration than the urban-rural gradient, as some rural areas 394 
experience very high and consistent seasonal influx of humans 395 
 396 
A roadmap for driving progress  397 
 398 
The successful development of a Dynamic Human Footprint critically depends on closer 399 
collaboration among research communities, better connecting insights and approaches from the 400 
fields of ecology, conservation biology, environmental science, geographic information science, 401 
remote sensing, human geography, transportation science, and social science. To bring this 402 



vision to life will require engaging with a diverse array of government agencies, local authorities, 403 
policy makers, and private industries. In the following sections, we provide a forward-looking 404 
vision for facilitating these interactions and for collaboratively tackling specific challenges. 405 
 406 
Unify terminology 407 
Productive collaboration will require a consistent, unified terminology for discussing concepts, 408 
methods, development goals and implementation strategies. We therefore urge the wider 409 
research community to adopt a standardized set of definitions. From an ecological perspective, 410 
terminology in this realm is complicated by the wide range of use cases and associated scales of 411 
analysis. Our proposed Dynamic Human Footprint uses recently established definitions that 412 
clearly distinguish between static and dynamic components of human activity 12.  413 
 414 
Establish data standards 415 
We encourage all parties that create and use human mobility data to adopt a standardized 416 
representation and classification system for describing datasets, mirroring approaches employed 417 
by NASA’s EOSDIS. Doing so, would create transparency across scientific communities and 418 
correctly distinguish between raw data and modeled or aggregated products. Adopting an existing 419 
schema already in use would promote collaboration with the remote sensing community and other 420 
fields (such as the animal tracking community; 100). Aligning the methods and data standardization 421 
used for human and animal tracking will be essential for future efforts to merge these data streams 422 
100. 423 
 424 
Commit to data sharing and long-term support  425 
Commitments from private companies to continue making human mobility data products freely 426 
available will be important for future studies on human-wildlife interactions in the Anthropocene. 427 
To date, most large data providers explicitly state that mobility reports are publicly available for a 428 
limited time to help stem the spread of COVID-19 101, suggesting that access may become 429 
restricted post-pandemic. Committing to data sharing and long-term support does not require 430 
releasing raw data and algorithms, which would raise privacy, ethical and commercial concerns. 431 
Anonymized, aggregated human mobility data products can afford invaluable insights into human-432 
wildlife interactions, and should be made available to the wider research community. 433 
 434 
Increase transparency and flexibility in data aggregation 435 
Considering that data preprocessing can have significant effects on research outcomes, we urge 436 
private companies to provide greater clarity about the methods used to generate currently 437 
available human mobility data products. Furthermore, we recommend that a higher degree of 438 
flexibility be incorporated into aggregate products. Allowing researchers to select the temporal 439 
baseline and categorical binning of aggregate mobility products would enable comparisons across 440 
different data sources and support a much broader range of research applications. This is of 441 
particular relevance for studies of animal species that routinely cross national borders, such as 442 
migratory species 102.  443 
 444 
Address social, demographic, economic and cultural factors 445 



Socioeconomic dimensions are increasingly being integrated into ecology and conservation 446 
research to demonstrate the myriad impacts of structural 103–105. Clearly, patterns in human 447 
mobility are driven by a complex set of social, economic, and cultural factors. For example, the 448 
worldwide total activity of fishing vessels records its lowest levels during the Chinese New Year, 449 
Christmas and New Year 40. In the Middle East, the religious celebration of Ramadan, which 450 
typically greatly influences the mobility and behavior of humans across large areas, was 451 
significantly disrupted during the COVID-19 pandemic 106. We therefore urge close collaboration 452 
with human geographers and social scientists during the development of the Dynamic Human 453 
Footprint. 454 
 455 
Develop systems to monitor change 456 
It will be important for policy makers and funding agencies to support research and private-public 457 
partnerships that enable a dynamic understanding of humans’ footprint on Earth. As the COVID-458 
19 pandemic acutely illustrated, society was overall poorly prepared for changes in human 459 
behavior on large scales and is still grappling to understand the implications across sectors. For 460 
example, how the COVID-19 pandemic has impacted biodiversity across the world, and thus 461 
affected progress towards the United Nations Sustainable Development Goals 14 and 15 (Life on 462 
Water and Life on Earth), remains mostly unknown (but see 49). We therefore need to develop a 463 
higher degree of preparedness, for mapping changes in human mobility, and measuring their 464 
environmental impacts12.  465 
 466 
Construct the Dynamic Human Footprint 467 
Being inherently dynamic in nature, the Dynamic Human Footprint will require open-ended 468 
development. Therefore, this endeavor should embed flexibility with regards to choosing data 469 
sources and modeling approaches, accommodating any future advances. In many regions of the 470 
world, high-resolution data on human mobility will be nearly impossible to collect. This is due to a 471 
variety of factors including differences in the geographical distributions of human populations, 472 
socioeconomic inequalities, technological infrastructure, seasonality, privacy concerns, and 473 
geopolitics 107. Therefore, globally, or even regionally, consistent maps of the Dynamic Human 474 
Footprint will require modeling and data-fusion approaches, which are likely to pose significant 475 
development challenges. 476 
 477 
Conclusions 478 
 479 
As the planet becomes increasingly crowded, we need to understand the complex interactions 480 
between humans and wildlife if we are to safeguard biodiversity for generations to come. 481 
Achieving this demands a rigorous accounting of the multi-dimensional aspects of human activity. 482 
We see an immense, time-sensitive opportunity for the ecological community to engage with other 483 
disciplines, to integrate data across spatiotemporal scales and operationalize a Dynamic Human 484 
Footprint. Human mobility data providers can make invaluable contributions to these efforts by 485 
improving data accessibility, data standardization, and transparency. The insights gained by 486 
incorporating a Dynamic Human Footprint into ecological studies could provide decision makers 487 
with critical novel information for designing highly effective, targeted conservation interventions. 488 
Coordination and collaboration are imperative for understanding and managing human-wildlife 489 



interactions in the Anthropocene. We must tackle this challenge with utmost urgency to protect 490 
the animals that are forced to share space with us. 491 
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Supplementary Table 1: Datasets for static and dynamic components of human activity in 515 
the terrestrial and marine realms. 516 
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 522 

 523 
Figure 1. Motivation for the development of a Dynamic Human Footprint. (left) Human activity has 524 
both static and dynamic components. In contrast to static landscape modifications (e.g., roads and 525 
buildings), human mobility encompasses the dynamic movement of humans and their vehicles. Drivers are 526 
quantified as a set of observed variables, ranging from relatively static assessments of infrastructure and 527 
population density to highly dynamic approximations of human mobility, and aggregated products. These 528 
variables can then be used to examine potential ecological responses along a range of spatiotemporal 529 
scales. (right) Each observed variable has an associated spatiotemporal resolution which dictates the 530 
ecological scales it may be appropriate for (schematic illustration, left panel). The spatiotemporal resolution 531 
of example datasets and their corresponding ecological scale is indicated (right panel). Dashed lines around 532 
icons indicate datasets that are not publicly available, and the yellow dashed line highlights the current lack 533 
of publicly available datasets with high spatiotemporal resolution. 534 
 535 

 536 
Figure 2. Measuring the Dynamic Human Footprint. Selected examples of datasets quantifying human 537 
activities in the terrestrial and marine realms. Spatiotemporal resolutions are presented qualitatively for 538 
comparison purposes only. Icons indicate the respective variable type, corresponding to Figure 1. (a) Staten 539 
Island, New York (March–May 2020). (top row, left to right) Mobility report at the community level, Google; 540 



tropospheric NO2, Sentinel-5 TROPOMI; Human Footprint index, 10; (middle row, left to right) nightlights, 541 
NASA VIIRS; land cover type, USGS; (bottom row, left to right) human mobility, SafeGraph; recreational 542 
activity, Strava Metro; Population  Density, US Census Bureau; road network, US Census Bureau. (b) 543 
English Channel (December 2019). (top row) Cumulative human pressures, 3; (middle row) fishing effort, 544 
Global Fishing Watch; (bottom row) boat detection, NASA VIIRS. 545 
 546 
 547 

 548 
Figure 3. Timeline of the availability of different human activity data products. Lifetime of current data 549 
products, demonstrating the recent availability of many human mobility datasets from 2000 to 2022 (some 550 
products have been available for longer). Datasets are grouped and colored by categories of drivers, as 551 
introduced in Figure 1. For details on the spatiotemporal resolution and extent of terrestrial, aerial, and 552 
marine datasets, see Supplementary Table 1. 553 



 554 
Figure 4. Constructing the Dynamic Human Footprint. Framework for a Dynamic Human Footprint, 555 
leveraging a suite of input variables quantifying human mobility and infrastructure. Fundamental to 556 
achieving this vision is an integration process which begins by allowing users to select the human activity 557 
variables relevant to their application target. Dynamic measures of human mobility are primarily held by 558 
private companies; their use depends on continued support to make them available to the research 559 
community (post-pandemic), transparency about data collection and processing, and robust protocols to 560 
ensure geoprivacy and quality control. Cross-disciplinary collaboration will be necessary for developing the 561 
methodologies necessary for integrating disparate datasets across spatiotemporal resolutions. This in turn 562 
will require a unified terminology, to discuss the various components of human activity, and will be greatly 563 
assisted by adopting a standardized schema of data processing levels, to distinguish raw data from 564 
modeled or aggregated data products. In many cases, data fusion or interpolation approaches will be 565 
needed for areas where human mobility data are unavailable, which consider the underlying sociocultural 566 



context. This process will generate a suite of products that are inherently dynamic, both in terms of their 567 
flexible aggregation and their ability to generate time-varying estimates of human activity. 568 
 569 
  570 
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