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Abstract 

Background. Speech and language pathologists (SLPs) often rely on judgements of speech 

fluency for diagnosing or monitoring patients with aphasia. However, such subjective methods 

have been criticised for their lack of reliability and their clinical cost in terms of time. 

Aims. This study aims at assessing the relevance of a signal-processing algorithm, initially 

developed in the field of language acquisition, for the automatic measurement of speech fluency 

in people with aphasia (PWA). 

Methods & Procedures. Twenty-nine PWA and five control participants were recruited via 

non-profit organizations and SLP networks. All participants were recorded while reading out 

loud a set of sentences taken from the French version of the Boston Diagnostic Aphasia 

Examination. Three trained SLPs assessed the fluency of each sentence on a five-point 

qualitative scale. A forward-backward divergence segmentation and a clustering algorithm were 

used to compute, for each sentence, four automatic predictors of speech fluency: pseudo-

syllable rate, speech ratio, rate of silent breaks, and standard deviation of pseudo-syllable 

length. The four predictors were finally combined into multivariate regression models (a 

multiple linear regression — MLR, and two non-linear models) to predict the average SLP 

ratings of speech fluency, using a leave-one-speaker-out validation scheme. 

Outcomes & Results. All models achieved accurate predictions of speech fluency ratings, with 

average root-mean-square errors as low as 0.5. The MLR yielded a correlation coefficient of 

0.87 with reference ratings at the sentence level, and of 0.93 when aggregating the data for each 

participant. The inclusion of an additional predictor sensitive to repetitions improved further the 

predictions with a correlation coefficient of 0.91 at the sentence level, and of 0.96 at the 

participant level. 

Conclusions. The algorithms used in this study can constitute a cost-effective and reliable tool 

for the assessment of the speech fluency of patients with aphasia in read-aloud tasks. 

Perspectives for the assessment of spontaneous speech are discussed.  
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Introduction 

Fluency can be defined as the ease and speed with which a given task is executed. 

However, when dealing with speech production in people with aphasia (PWA), the 

notion of fluency becomes far more complex. The first reason is that the fluency of 

speech production in general can be apprehended from different perspectives (Lickley, 

2015): the perspective of the speaker’s brain defining a linguistic message and 

programming its articulation (perspective referred to as planning fluency), that of the 

speech signal produced consequently (surface fluency), and that of the impression made 

on the listener (perceived fluency). A second source of complexity arises from the 

classical clinical distinction between fluent and nonfluent aphasias. With the exception 

of conduction aphasia, fluent aphasias, which are generally associated with lesions 

affecting the posterior part of the central sulcus (Hillis, 2023), are characterised by an 

ease of articulation and the ability to produce complex sentences, while potentially 

struggling to access words and making lexical and phonological errors. Nonfluent 

aphasias, which are traditionally associated with regions anterior to the central sulcus, 

are in contrast characterised by an effortful speech production, with a reduced ability to 

articulate, as well as to produce long sentences (Goodglass & Kaplan, 1983; Goodglass 

et al., 2001; Tarulli, 2021). From a linguistic point of view, the criteria used to 

distinguish between the two groups of aphasias are thus complex, involving different 

levels of analysis (i.e., phonetic, phonological, lexical and syntactic). One particularly 

confusing point is that, according to these criteria, even “fluent” aphasias can cause 

disfluencies at the surface level, for example with the increase of silent pauses due to 

the speakers struggling while searching for particular words, that will in turn impact 

perceived fluency (Andreetta & Marini, 2015; Edwards, 2005).  
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These sources of complexity and ambiguity may, at least partially, explain why 

a poor reliability is often observed in subjective judgements of the fluency of PWA 

(Clough & Gordon, 2020; Gordon, 1998; Gordon & Clough, 2022; Kerschensteiner et 

al., 1972; Poeck, 1989). These measures are generally used to categorise/diagnose PWA 

according to the fluent-nonfluent dichotomy, or as continuous variables that can serve 

as quantitative indicators for characterizing speech impairments (Clough & Gordon, 

2020). From a clinical point of view, the lack of reliability is a highly critical issue since 

today the majority of speech-language pathologists (SLPs) working with PWA use 

subjective methods to assess the fluency of their patients (Gordon & Clough, 2022).  

As a consequence, there is a crucial need for the development of new, more 

reliable ways of measuring fluency that could be used for clinical purposes with PWA. 

As underlined by Clough and Gordon (Clough & Gordon, 2020; Gordon & Clough, 

2022), some desirable features of such new fluency metrics would be being continuous 

rather than categorical, multidimensional rather than bimodal, and objective rather than 

subjective. The continuity and multimodality of the metrics are meant to overcome the 

limitations of the too simplistic fluent/nonfluent binary categorization, that has been 

criticised for long (Poeck, 1989) and leave room for the definition of multidimensional 

“fluency profiles”. Those profiles would account for the fluency of PWA at different 

levels of analysis — for example, at one or several of the three levels of increasing 

linguistic complexity proposed by Clough and Gordon (2020): speech production, 

lexical retrieval, and grammatical competence. The objective nature of the metrics 

would guarantee their reliability; however, as some objective methods can be very time-

consuming (e.g., a manual measurement of speech rate), a last desirable feature for the 

new methods would be being easily practicable in the clinical context (Gordon & 

Clough, 2022). 
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To cope with the lack of reliability and objectivity of fluency judgements, a 

recent attempt was made by Metu et al. (2023) to use machine-learning algorithms for 

predicting speech fluency in PWA, as evaluated by SLPs on the Western Aphasia 

Battery-Revised (WAB-R; Kertesz, 2006). They used neural networks, taking as input 

either images (spectrograms), or Mel-frequency cepstral coefficients (MFCCs) and I-

vectors extracted from audio recordings. However, their results showed that the 

judgements of the SLPs on the WAB-R scale lacked reliability in terms of inter-rater 

agreement; also, their machine-learning algorithms were not as useful for predicting the 

WAB-R fluency ratings as “simple” trichotomous judgements made by SLPs who were 

asked to categorise each PWA as fluent, nonfluent or mixed. 

 The problem of time-consuming, potentially unreliable subjective evaluations of 

fluency is also encountered in the domain of first-language (L1) or second-language 

(L2) acquisition, in which teachers and researchers often need to assess and monitor 

learners’ speech production skills (Cucchiarini et al., 2000; Detey, et al., 2020; Fontan 

et al., 2022). More precisely, acquisition studies focus on the assessment of speech 

fluency at the phonetic, surface level, that is, on the extent to which speech produced by 

L1/L2 speakers “flows easily without pauses and other disfluency markers” (Derwing & 

Munro, 2015). Such markers include a number of disfluencies that are also taken into 

account, along with speech rate and pauses, in the field of aphasiology for 

characterizing speech fluency: repetitions, repairs and false starts (Faroqi-Shah et al., 

2020; Gordon & Clough, 2022; Jacks & Haley, 2015; Wang et al., 2013); they do not, 

however, include disfluencies occurring at higher linguistic levels, that is, at the lexical 

and grammatical levels. The studies in L1/L2 acquisition therefore focus on the “speech 

production” level of speech fluency (Clough & Gordon, 2020) — which is also the 

scope of the present study. 
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To develop objective and rapid measures of speech fluency, the earliest works in 

L2 acquisition proposed using metrics based on automatic speech recognition (ASR), 

such as automatically computed estimates of speech and articulation rates (Cucchiarini 

et al., 2000; 2002). One problem with ASR systems is that their results can also lack 

reliability when processing “atypical” speech such as nonnative speakers’ or children’s 

speech (Gelin et al., 2021; Vu et al., 2014), as well as disordered speech (De Russis & 

Corno, 2019) — including that produced by  PWA (Jamal et al., 2017), which could in 

turn bias metrics of speech fluency (e.g., by leading to an under- or overestimation of 

speech rate if shorter or longer words as those actually pronounced are recognised by 

the ASR system). More recent studies have thus proposed discarding ASR and using 

instead automatic, direct acoustic measures for computing predictors of speech fluency. 

Fontan et al. (2018) first used the forward-backward divergence segmentation (FBDS) 

algorithm (André-Obrecht, 1988) to measure speech fluency in Japanese learners of 

French. Contrary to ASR systems, the FBDS algorithm performs an analysis of speech 

signals in the temporal domain only. More precisely, the algorithm focuses on the 

trajectory of the energy over time; whenever a significant change is detected (e.g., an 

abrupt increase of the energy), the corresponding moment is recorded as a segment 

boundary. This process leads to a segmentation in sub-phonemic units that have been 

shown to correspond to different stages involved in the articulatory production of 

speech segments (André-Obrecht, 1988). 

Fontan et al. (2018) used FBDS segments to compute predictors of speech 

fluency, such as estimates of speech rate and of the frequency of occurrence of filled 

and silent pauses. When combined in a multivariate model, these estimates could 

accurately predict speech fluency, as rated by native speakers on a qualitative scale. The 

proof-of-concept was later extended to several other L2 and L1 healthy populations 
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(Fontan et al., 2019, Fontan et al., 2020, Kondo et al., 2020, Fontan et al., 2022), and 

refinements in the methods led to prediction models explaining up to 94% of the 

variance in perceived speech fluency (Fontan et al., 2022). Among these refinements, 

the most recent studies included an automatic clustering of FBDS segments into silent 

breaks and pseudo-syllables. As opposed to “true” syllables whose boundaries are 

identified based on human perception and/or manual acoustic analyses, Farinas and 

Pellegrino (2001) and Rouas et al. (2005) used the term of pseudo-syllables to refer to 

automatically identified clusters of FBDS speech segments consisting a vowel and 

possibly of one or several consonants. Fontan et al. (2022) showed that adding this 

clustering step before the computation of predictors significantly improves the 

prediction of perceived speech fluency. 

Such signal-processing algorithms could be of great interest to the field of 

aphasiology. They provide objective, reliable measures of fluency at the speech 

production level that could be part of the multidimensional fluency profiles that are 

called for in the domain. The automatic estimates of speech rate and of the number of 

silent or filled pauses they rely on are also used for assessing fluency in PWA (Gordon 

& Clough, 2022; Wang et al., 2013), with some of these indicators also being used for 

classifying subtypes of aphasia (Ash et al., 2013; Fraser et al., 2014; Potagas et al., 

2022). Moreover, as they only process speech signals in the temporal domain, the 

algorithms require very low computing resources, which make their execution on 

standard PCs very rapid. They are also meant to be robust to noisy conditions, as the 

threshold used to distinguish speech from silence is relative (Fontan et al., 2022). The 

algorithms could therefore be used in suboptimal, real-life clinical scenarios where time 

is often limited, and high-end audio-recording devices and acoustically-treated rooms 

might not be available for recording patients. 
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Aims 

The main aim of the present study is to investigate whether such signal-processing 

techniques can be used to predict the speech fluency of PWA, as evaluated by 

experienced SLPs. More precisely, the study focuses on the prediction of read-speech 

fluency, that is, of sentences read out loud by PWA and control participants. The choice 

of using, as a first step, speech data collected during a reading task is motivated by the 

ability to compare the results with those of Fontan et al. (2022 and previous studies) 

who used similar materials and methods, and also by the fact that the prediction of 

spontaneous speech fluency is a much more challenging task (Cucchiarini et al., 2000; 

2002), and is thus regarded as a longer-term objective. 

A secondary aim of the study is to investigate whether using nonlinear models 

can yield better prediction outcomes than a multiple linear regression. This is motivated 

by the assumption that some of the predictors, or their relationship, might not be of 

equal importance all along the speech fluency scale (e.g., the presence of silence breaks 

might have a lesser impact on the lower end of the scale, when speech rate is very low, 

than at the higher end). Consequently, as in Fontan et al. (2022), two nonlinear models 

are used in complement to a multiple linear regression: a support vector regressor with a 

radial kernel and a random forest regressor. 

 

Materials and methods 

Speech recordings 

Participants 

Thirty-four adult, native-French participants were recruited for the study, among which 

29 (eight female) were diagnosed with chronic aphasia, and five (two female) were 
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recruited as control participants. At the time of the study, the age of the participants 

with aphasia ranged from 27;1 to 74;6 y.o. (years old; mean: 60;4; standard deviation, 

SD: 11;9). The age of control participants ranged from 23 to 74;10 y.o. (mean: 54;4; 

SD: 22;5).  

Both control participants and PWA had self-reported normal, or corrected-to-

normal visual and hearing abilities. PWA in the sub-acute or chronic stage were 

recruited based on confirmed aphasia diagnosis (including Primary Progressive 

Aphasia), with no history of any other neurological disorder. For PWA the time post-

onset of aphasia ranged from 0;8 to 25 years (mean: 11;1; SD: 16;7). 

In order not to put the participants at risk due to the COVID-19 pandemic 

context that set up during the course of the study, the following non-inclusion criteria 

were also applied: unstable medical condition, obesity, respiratory failure, and immuno-

depressive therapy. Additional individual background information on the participants is 

provided in appendix A. 

All participants were volunteers. PWA were recruited through ads sent to non-

profit associations of PWA attached to the French National Federation of PWA 

(Fédération Nationale des Aphasiques de France – FNAF1), and to SLP local networks. 

Before participating in the study, which was approved by the Research & Ethical 

Committee of Toulouse Federal University (France; file number: 2020-268), all 

participants provided their informed consent.  

 

 

 
1 https://aphasie.fr  
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Data collection 

The data collection took place as part of a larger research protocol (Sahraoui et al., 

2022) designed for the AADI project2 (Aphasie et Discours en Interaction [Aphasia 

And Discourse in Interaction]) that aims at creating a database of oral data collected 

from French-speaking PWA through five speech elicitation tasks: a sentence reading 

task (see below), a storytelling task (free recall of a story like Cinderella), a picture 

description task (using the “Cat rescue” image; Nicholas & Brookshire, 1993), an 

autobiographical interview, and a free oral interaction (conversational dyad). 

The present study uses exclusively data from the read-aloud task, in which 

participants were asked to read aloud a series of 10 sentences of increasing complexity 

taken from the French version of the Boston Diagnostic Aphasia Examination 

(Goodglass et al., 2001; Mazaux & Orgogozo, 1982). Due to the COVID-19 pandemic, 

this task was administered online, using the Zoom platform (Zoom Video 

communications, San Jose, CA). All participants used their own PCs. Sound was 

recorded from the PC built-in microphones, using a 16-bit quantization and a 44100 Hz 

sampling rate. 

Subjective assessment of speech fluency 

Speech materials 

The recordings corresponding to the three longest sentences (in terms of syllable count) 

of the read-aloud task materials were used to collect reference speech-fluency ratings. 

 

2 https://www.researchgate.net/project/Aphasia-and-interactive-discourse-analysis-

creating-a-database-and-new-methods-for-exploiting-data-AADI  
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The three sentences consisted of nine words (13 syllables), eight words (11 syllables), 

and eight words (12 syllables), respectively. The choice of using the longest sentences 

was motivated by the fact that with longer sentences more disfluencies can potentially 

occur, which can increase the variability in the speech production performances of 

PWA and, consequently, the variability in subjective fluency ratings. 

Five of the PWA had significant difficulties in producing one or two out of the 

three target sentences, in which cases the experimenter asked them to move on to the 

next sentence in order to avoid frustration and discouragement. These difficulties 

concerned each of the three target sentences, and led to the loss of seven recordings out 

of the 102 that would have been otherwise expected. As a consequence, the final corpus 

contained 95 recordings (corresponding to 34 participants × 3 sentences − 7 fails). All 

recordings were downsampled to 16 kHz, as this sample rate was required by some of 

the signal-processing algorithms later used to predict speech fluency.   

Rating procedure 

Three SLPs, all of them women, participated in the rating task. None of the SLPs knew 

any of the PWA recruited for the present study. The SLPs were aged 32, 35, and 52 

years old and benefited from eight, 11, and 28 years of professional experience, 

respectively. All three SLPs were native speakers of French, and did not report any 

history of hearing difficulty. 

Each SLP completed the rating task individually, in a quiet room. A custom-

written Python programme was used for the presentation of speech recordings on a 

MacBook Air 13-inches laptop computer (Apple Inc., Cupertino, CA). The raters 

listened to the recordings through Audio-Technica ATH-M50x circumaural headphones 

(Audio-Technica Ltd., Machida, Japan). They were instructed to rate each recording on 

a five-point scale ranging from 1 (very poor fluency) to 5 (excellent fluency), which 
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was displayed under the form of radio buttons on the computer screen. The raters could 

listen to each recording as many times as required before rating it.  

The 5-point fluency rating scale designed for the present study was not used by 

any of the SLPs in their professional practice. As a consequence, prior to the rating task, 

the SLPs were first familiarized with the rating scale by listening to recordings 

illustrating the whole range of the scale. The recordings used as examples were not part 

of the speech materials later used in the proper rating task, and were not recorded from 

any of the PWA recruited for the present study. 

Automatic extraction of predictors of speech fluency 

Forward-backward divergence segmentation and clustering 

Each recording was automatically segmented using the FBDS algorithm (André-

Obrecht, 1988). When processing a given audio signal, the FBDS algorithm performs 

two analyses: one forward (i.e., from the beginning of the recording to the end of the 

recording) and one backwards (i.e., in reverse order). During each of these analyses, the 

algorithm detects significant changes in the trajectory of the signal energy. Such 

changes generally correspond to boundaries between different phones or even between 

different stages of the production of a given phone (e.g., between the onset and the 

sustain of a vowel), hence resulting in a sub-phonemic segmentation of the input signal. 

At the end of the process, the boundaries found during the forward and backward 

analyses are merged together.  

FBDS segments were automatically clustered into pseudo-syllables and silent 

breaks, as this procedure was shown to improve the prediction of speech fluency 

(Fontan et al., 2022). To this end, FBDS segments were first classified as speech or 

silent segments as a function of the ratio between their maximum energy and the 
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maximum energy found in the whole recording. Consecutive silent segments were 

merged together, and the resulting segments were identified as silent breaks if their total 

duration exceeded 250 ms (De Jong & Bosker, 2013). As the process was fully 

automatic, such breaks could occur between words as well as within a word. 

Consecutive speech segments were considered as part of the same pseudo-syllable if the 

signal energy did not decrease below a certain threshold when switching from the first 

segment to the next. An example of the results of these automatic segmentation and 

clustering steps is shown in Figure 1. 

Figure 1. Results of the FBDS segmentation and clustering for the word “l’argumentation” 

([laʁgymɑ̃tasjɔ̃], “the argumentation”) produced by one the participants with aphasia, 

superimposed over the spectrogram of the corresponding audio signal. The IPA-based phonetic 

transcription appearing above the top panel was manually done by the authors.  The bottom 

panel shows the waveform of the signal. 

Computation of predictors of speech fluency 

For each of the 95 recorded sentences, four predictors of speech fluency were calculated 

based on pseudo-syllables and silent breaks: 
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(1) Pseudo-syllable rate, calculated as the number of pseudo-syllables divided by 

the duration of the recording (in ms). As this predictor aims at estimating speech 

rate, it is supposed to be positively correlated with ratings of speech fluency. 

(2) Standard deviation of pseudo-syllable duration (in ms). This predictor is 

assumed to be negatively correlated with ratings of speech fluency. Its value 

should increase with the presence of abnormally long or abnormally short 

pseudo-syllables, as in the case of filled pauses or false starts, respectively. For 

example, for the word “surgit” ([syʁʒi], “appears suddenly”), which is part of 

the linguistic materials used in the present study, short false starts such as [z] or 

[ʃ] may occur in place of the triphonemic syllable [syʁ]. 

(3) Speech ratio, calculated as the total duration of pseudo-syllables (in ms) divided 

by the total duration of the recording (in ms). The value of this estimate should 

decrease with the presence of silence (i.e., silent breaks and silences shorter than 

250 ms). The speech ratio is therefore supposed to be positively correlated with 

ratings of speech fluency. 

(4) Rate of silent breaks, calculated as the number of silent breaks divided by the 

total duration of the recording (in ms), and assumed to be negatively correlated 

with ratings of speech fluency. 

Prediction of speech fluency 

Three models were used to predict speech fluency ratings, among which a multiple 

linear regression (MLR) and two non-linear models: a support vector regression (SVR) 

using a radial kernel, and a random forest regressor (RFR). The SVR and RFR models 

were fed with all four predictors. As the accuracy of multivariate linear predictions can 
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be negatively affected by collinearity, the MLR model implemented a stepwise 

selection, during which any predictor whose contribution was not significant at the 5% 

level was eliminated. 

Given the limited size of the dataset, the three models were trained and 

evaluated using a leave-one-speaker-out (LOSO) setup. This means that for each model 

type (MLR, SVR, and RFR), 34 models were actually developed using the data from n-

1 participants (i.e., from 33 participants) for training purposes, and the data from one 

single participant (i.e., the speaker out of the training set) for testing purposes. Each of 

the 34 participants was used as a test participant, and the goodness-of-fit of each model 

type was finally assessed by computing the average root-mean-square-error (RMSE) 

between actual and predicted speech-fluency ratings for the total number of participants. 

Prior to the evaluation stage, several hyperparameters of the SVR and RFR were 

tuned: the regularization parameter and epsilon value for the SVR, and the number and 

maximum depth of the decision trees for the RFR. A nested-cross-validation (LOSO) 

procedure was used for this fine-tuning, as the creation of a separate validation set was 

not possible due to the limited size of the dataset. 

Statistical analyses 

All prediction models were built with the Scikit-learn 1.1.2 Python library, and their 

performances were assessed through custom-written Python scripts using Pandas 1.4.3 

and Scipy 1.8.1 libraries.  

As far as inferential statistics are concerned, appropriate nonparametric tests 

were used whenever the prerequisites for parametric tests were violated. The data 

visualizations provided in the different Figures were generated using Matplotlib 3.5.2, 

Seaborn 0.12.0., and Librosa 0.9.1 Python libraries. 
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Results 

Reliability of subjective speech-fluency ratings 

Intra-rater reliability 

As each rater assessed the whole set of stimuli twice, intra-rater reliability could be 

assessed by checking the consistency of the ratings provided for the same stimuli. For 

each rater, Spearman rank correlation coefficients (rhos) and Cronbach alphas were 

computed between first and second ratings (Table 1). 

Table 1. Spearman rank correlation coefficients and Cronbach alphas computed between the 

first and second speech-fluency ratings provided by each rater for the same stimuli. 

Rater Spearman’s rho Cronbach’s alpha 

1 0.87*** 0.94 

2 0.76*** 0.88 

3 0.80*** 0.90 

 

The high-to-very-high positive correlation coefficients and alphas indicate a 

high intra-rater reliability. As a consequence, the speech-fluency ratings provided by 

each rater for the same stimuli were averaged for subsequent analyses. 

Inter-rater reliability and agreement 

To check inter-rater reliability, Spearman rhos were computed between the ratings 

provided by each couple of raters (Table 2). 
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Table 2. Spearman rank correlation coefficients computed between speech-fluency ratings 

provided by the three raters. 

 Rater 2 Rater 3 

Rater 1 0.87*** 0.89*** 

Rater 2  0.86*** 

                                *** p < .001 (one-tailed) 

The very strong and positive correlation coefficients (all rhos ≥ 0.86) indicate an 

excellent reliability, which is confirmed by a very high alpha value of 0.95. A Kruskal-

Wallis test indicated that no significant difference existed between the three 

distributions, H(2) = 1.8, p = 0.41. Consequently, speech-fluency ratings were averaged 

across raters to compute the final reference ratings used for the prediction algorithms. 

Figure 2 shows the distribution of these ratings for participants with and without 

aphasia. 

 

Figure 2. Boxplot showing the distribution of reference speech-fluency ratings for PWA and 

control participants. The horizontal line inside the box corresponds to the median rating. The 

bottom and top lines of the box represent the 25th and 75th percentiles, while bottom and top 

whiskers correspond to the minimum and maximum values, respectively. 
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As can be observed, the final reference ratings span the entire range of the 

fluency scale, with minimal and maximum values of 1 and 5, which is desirable for 

regression analysis. As could be expected, the ratings associated with control 

participants are located in the higher end of the scale, with all values bar one 

exceeding 4.5. 

Relationship between automatic predictors and speech-fluency ratings 

Table 3 shows Spearman correlation coefficients observed between each automatic 

predictor of speech fluency and reference ratings. Correlations are strong to very strong, 

with absolute coefficients ranging from 0.63 (for standard deviation of pseudo-syllable 

duration) to 0.87 (for pseudo-syllable rate). As was assumed, pseudo-syllable rate and 

speech ratio are positively correlated with subjective ratings of speech fluency, while 

standard deviation of pseudo-syllable duration and ratio of silent breaks are negatively 

correlated with the ratings. 

Table 3. Spearman rank correlation coefficients computed between each automatic predictor 

and speech-fluency ratings. 

Predictor Spearman’s rho 

Pseudo-syllable rate   0.87*** 

Standard deviation of pseudo-syllable duration −0.63*** 

Speech ratio    0.71*** 

Ratio of silent breaks −0.72*** 

               *** p < .001 (one-tailed) 

Prediction of speech fluency ratings 

Table 4 presents the average RMSE computed between actual and predicted fluency 

ratings using the MLR, SVR, and RFR. As can be observed, all three model types yield 

rather accurate predictions, with average RMSEs equal or below 15% of the speech-
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fluency scale. 

Table 4. Average root-mean-square errors (RMSEs) and standard deviation associated with 

each of the prediction models. 

Model type Average RMSE Standard deviation 

MLR 0.51 0.23 

SVR 0.51 0.26 

RFR 0.59 0.34 

 

A linear mixed model, using the average RMSE observed for each participant as 

the dependent variable, the speaker-out as a random effect, and model type as a fixed 

effect, confirmed that no significant difference existed between the RMSEs achieved by 

the three model types, F(2, 99) = 0.9, p = 0.41. As a consequence, the MLR was used 

for subsequent analyses, as it is the simplest and most interpretable of the three models. 

Figure 3 compares reference subjective fluency ratings to those predicted using 

the MLR. The MLR achieved a very high correlation with reference ratings, with a 

correlation coefficient of 0.87 (see left panel of Figure 3). As, in clinical practice, the 

speech fluency of a given patient would likely be evaluated using more than one 

sentence, reference and predicted ratings were also aggregated for each participant (i.e., 

up to three sentences were considered for each participant). The resulting correlation is 

stronger, with a Pearson’s coefficient of 0.93. The accuracy of the predictions is also 

higher, with a RMSE of 0.4, corresponding to one tenth of the speech fluency scale (see 
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the right panel of Figure 3).  

Figure 3. Scatterplots relating reference speech-fluency ratings to ratings predicted using the 

MLR, and associated regression lines. The left panel shows data at the sentence level (95 data 

points), while the right panel shows data averaged for each participant (34 data points). 

To assess the importance of each automatic predictor, an additional MLR was 

computed to predict the whole 95 reference speech-fluency ratings. According to the 

resulting coefficient of determination, the model explained 78.1% of the variance of 

speech-fluency ratings, based on three predictors: speech ratio, pseudo-syllable rate, and 

standard deviation of pseudo-syllable rate. The rate of silent breaks was eliminated 

during the stepwise selection, probably due to its very strong correlation with speech 

ratio, Spearman’s rho = −0.90, p < 0.001. Table 5 presents the three standardised (beta) 

coefficients associated with each automatic predictor, by order of importance. Speech 

ratio is the automatic measure that contributes the most to the prediction of speech 

fluency. Pseudo-syllable rate and standard deviation of pseudo-syllable duration are of 

similar importance to the model. 

 



 22 

Table 5. Standardised (Beta) coefficients associated with each automatic predictor when 

computing a multiple linear regression. 

Predictor Beta-coefficient 

Speech ratio   0.47 

Pseudo-syllable rate   0.31 

Standard deviation of pseudo-syllable duration −0.30 

 

 

Discussion 

In this study, the signal-processing algorithms used by Fontan et al. (2022) for 

measuring speech fluency in L1 and L2 healthy speakers were used to predict speech 

fluency ratings given by three trained SLPs for PWA and control participants. As, in 

aphasiology, subjective judgements of speech fluency have been criticised for their lack 

of reliability (Clough & Gordon, 2020; Gordon, 1998; Gordon & Clough, 2022; 

Kerschensteiner et al., 1972; Poeck, 1989), a first task was to check the consistency of 

SLP ratings. Very high intra- and inter-rater agreements, at the same level as those 

observed in previous studies in language acquisition using similar fluency scales, were 

obtained. For example, the minimum (0.86) and mean (0.87) inter-rater correlation 

coefficients obtained in this study were exactly the same as those in Fontan et al. 

(2022). These high agreement rates might be explained, at least partially, by the fact that 

in the present study fluency was judged as a continuous variable rather than using the 

clear-cut fluent/non fluent dichotomy potentially more prone to disagreements (Gordon 

& Clough, 2022). Moreover, the current study focused on read speech, which is 

certainly less complex to assess than spontaneous speech, for which no reference as to 

the intended message is available to the raters, and that may involve speech production 

errors at the lexical and syntactic levels. 



 23 

 All automatic predictors of speech fluency derived from FBDS segments were 

strongly associated with subjective ratings. The higher the subjective ratings of speech 

fluency, the higher the rate of pseudo-syllables and speech ratio, and the lower the rate 

of silent breaks and the regularity of pseudo-syllable length. These relationships were 

expected, as speech rate is a known contributor of speech fluency, and silent breaks and 

filled pauses (which increase the variability in syllable length) are classic disfluency 

markers used to characterise the fluency of PWA (Faroqi-Shah et al., 2020; Gordon & 

Clough, 2022; Jacks & Haley, 2015; Wang et al., 2013). 

When combined together into multivariate regression models, the automatic 

measures could achieve accurate predictions of reference speech fluency ratings, 

especially when taking into account several sentences per participant. As in the study of 

Fontan et al. (2022) who used the same predictors for measuring speech fluency in L1 

Korean children, no difference was observed across regression models, and the two 

most important predictors were the speech ratio and the rate of pseudo-syllables. In the 

current study, the predictions are however slightly less accurate than in the study of 

Fontan et al. (2022) where the MLR achieved at the sentence level a RMSE of 0.35, 

against 0.52 in the present study. As both studies used relatively small samples (65 

recordings in the case of Fontan et al., 2022), this small difference might be partially 

due to differences in the distribution of the reference fluency scores. An additional 

explanation is that in the present study, and contrary to the data collected by Fontan et 

al. (2022), a significant part of the recordings (15%) contained word repetitions, with up 

to seven words repeated in a single sentence. Yet, the algorithms developed by Fontan 

et al. (2022) do not account for such disfluencies. When syllables are repeated in the 

speech signal, they are taken into account by the algorithms in exactly the same way the 

other syllables are for the calculation of speech rate and speech ratio. However, contrary 
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to “productive”, non-repeated syllables that may have a positive impact on speech rate 

and speech ratio — and therefore on speech fluency, repeated syllables are disfluencies 

that affect perceived speech fluency in a negative way (Faroqi-Shah et al., 2020; 

Gordon & Clough, 2022). As this effect was not captured by any of the predictors, the 

accuracy of the models might not be optimal.  

In order to take into account repetitions in read-speech data, a simple yet 

potentially effective solution would be to compute the difference between the number of 

pseudo-syllables that are automatically identified by the algorithm and the number of 

syllables that should theoretically have been pronounced according to the sentence 

script. To explore the relevance of this additional predictor, an MLR was computed over 

the whole 95 observations, and using either the three predictors retained by the stepwise 

selection (speech ratio, pseudo-syllable rate and standard deviation of pseudo-syllable 

duration; model 1 in Table 6) or the same three predictors plus the difference between 

the number of pseudo-syllables that were automatically detected and the expected 

number of syllables based on the sentence read by the participants (model 2 in Table 6). 

As can be observed, the new predictor significantly improves the coefficient of 

determination, which increases from 0.78 to 0.83. The RMSE also decreases from 0.53 

to 0.47 (and down to 0.31 if aggregating the data for each participant). Figure 4 shows 

the scatterplots achieved when using the model 2 for predicting speech fluency ratings 

at the sentence or participant level.  
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Table 6. Results of multiple linear regressions using an estimate of the number of unexpected 

pseudo-syllables (model 2) or not (model 1). 

Model Predictors RMSE R2 
change p-value 

1 Speech ratio, pseudo-syllable rate, standard 
deviation of pseudo-syllable duration 0.53 0.78 < 0.001 

2 
All predictors used in model 1 + difference 

between the number of pseudo-syllables and 
the expected number of syllables 

0.47 0.83 0.005 

 

Figure 4. Scatterplots relating reference speech-fluency ratings to ratings predicted using an 

MLR, after adding the estimated number of syllable repetitions as a predictor, and associated 

regression lines. The left panel shows data at sentence level (95 data points), while the right 

panel shows data averaged for each participant (34 data points). 

The study also showed that taking into account several sentences per participant 

could increase the accuracy of the predictions, as was already observed by Fontan et al. 

(2018; see Figure 2). When taking into account only three sentences (or less for the five 

participants who could not read all three sentences), the RMSE decreased from 0.52 to 

0.4. Future research work should investigate if taking into account a higher number of 



 26 

sentences per participant can further increase the accuracy of the predictions. However, 

as any increase of the number of sentences would be at the expense of a reduced 

feasibility of the task in a clinical context, it should be determined up to which point this 

increase in accuracy is desirable.  

All in all, the present study demonstrates that the FBDS algorithm, and the 

automatic schemes developed to cluster FBDS segments into pseudo-syllables and 

silent breaks, can be successfully used to predict the speech fluency of PWA, as 

assessed by trained SLPs and using a read-speech task. The results are all the more 

encouraging as speech was not recorded in acoustically-controlled, laboratory 

conditions but rather in challenging conditions, with participants using the built-in 

microphones of their own PCs during videoconferencing sessions from their home. This 

suggests that the algorithms used in this study are robust and could thus be used in 

clinical conditions (e.g., at the hospital or at the SLP clinic) using standard recording 

devices. The system could be used to rapidly assess, at a very low cost for the 

researchers or clinicians, the fluency of PWA in a task such as the reading task of the 

Boston Diagnostic Aphasia Examination (Goodglass et al., 2001). Such measures could 

be part of the multidimensional fluency profiles proposed by Clough and Gordon 

(Clough and Gordon, 2020; Gordon and Clough, 2022), by providing estimates for the 

“speech production” level, as a complement to higher-level metrics. 

In the longer term, the relevance of these algorithms for the assessment of 

speech fluency of PWA during spontaneous interactions (e.g., during conversational 

dyads such as those recorded for the AADI project; Sahraoui et al., 2022) should be 

studied, as this kind of oral production has a better external validity than read-aloud 

tasks. However, using automatic signal segmentation techniques to predict speech 

fluency is far more complex for spontaneous speech, as in this case perceived fluency 
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tends to be affected by nontemporal aspects of speech production such as grammatical 

and lexical errors (Cucchiarini et al., 2000; 2002). Another obvious difficulty with 

spontaneous speech is that, contrary to read speech, no reference script is available. To 

quantify the number of repetitions in spontaneous speech (i.e., to calculate the 

additional predictor aforementioned), advanced signal-processing algorithms should 

therefore be used, as those developed for the automatic detection of syllable repetitions 

in stuttered speech (Chee et al., 2009; Ramteke et al., 2016; Sahidullah et al., 2023).  

Finally, due to the limited number of PWA in this study, as well as to their 

imbalance in terms of clinical profiles, the analysis of the relationships between 

automatic fluency scores and clinical variables was deemed beyond the objectives of the 

current proof-of-concept. Future research work, using a larger sample of PWA, is 

therefore warranted to investigate if and how automatic scores (overall fluency scores 

and associated predictors) relate to clinical indicators that may impact speech fluency, 

such as aphasia type, time post-onset, and data related to speech rehabilitation 

programmes. 
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Appendix A - Background information on the participants 

A.1 Participants with aphasia 

Participant Sex Age (years) Education since  
1st grade (years) Aphasia type Time post-onset 

(years) 

A01 Male 63.4 24 Broca 25 

A02 Male 48.8 23 Broca 2.2 

A03 Male 71.1 15 Wernicke 10.3 

A04 Male 62.6 15 Broca 6.1 

A05 Male 54.3 22 Broca 17.1 

A06 Male 42.5 14 Wernicke 0.7 

A07 Male 67.4 23 Broca 21.4 

A08 Female 70.3 8 Broca 6.9 

A09 Male 60.7 10 Wernicke 5.5 

A10 Male 49.7 13 Broca 25 

A11 Male 49.4 16 TCMia 2.8 

A12 Male 69 8 Broca 6.1 

A13 Male 61.4 11 Broca 7.5 

A14 Female 56.0 15 Broca 21 

A15 Male 55.9 15 Mixed 3.8 

A16 Male 27.1 16 Wernicke 1.9 

A17 Female 70.1 13 Broca 2.4 

A18 Male 67.4 10 Broca 15.1 

A19 Male 59.0 10 Broca 21.2 

A20 Male 74.5 12 Broca 24.5 

A21 Female 72.5 17 Broca 20.2 

A22 Male 68.1 12 PPAb 4 

A23 Male 60.4 24 Broca 19.9 

A24 Female 33.8 16 PPAb 2.8 

A25 Male 57.0 10 N/A 7.2 
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A26 Male 70.0 11 Broca 24.4 

A27 Female 64.2 11 Wernicke 5.4 

A28 Female 69.7 20 Broca 9.4 

A29 Female 73.5 14 PPAb 1.6 
a Transcortical mixed 
b Primary progressive aphasia 

 

 

A.2 Control participants 

Participant Sex Age (years) Education since  
1st grade (years) 

C01 Female 33.2 19 

C02 Female 74.8 12 

C03 Female 23 17 

C04 Male 73.2 20 

C05 Female 61.1 13 

  

 


