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The Kohn-Sham (KS) system is an auxiliary system whose effective potential is unknown in most
cases. It is in principle determined by the ground state density, and it has been found numerically for
some low-dimensional systems by inverting the KS equations starting from a given accurate density.
For solids, only approximate results are available. In this work, we determine accurate exchange
correlation (xc) potentials for Si and NaCl using the ground state densities obtained from Auxiliary
Field Quantum Monte Carlo calculations. We show that these xc potentials can be rationalized as
an ensemble of a few local functions of the density, whose form depends on the specific environment
and can be well characterised by the gradient of the density and the local kinetic energy density.
The KS band structure can be obtained with high accuracy. The true KS band gap turns out
to be larger than the prediction of the local density approximation, but significantly smaller than
the measurable photoemission gap, which confirms previous estimates. Finally, our findings show
that the conjecture that very different xc potentials can lead to very similar densities and other KS
observables is true also in solids, which questions the meaning of details of the potentials and, at
the same time, confirms the stability of the KS system.

I. INTRODUCTION

Density Functional Theory [1, 2] (DFT) is undoubtedly
one of the biggest success stories of condensed matter the-
ory, since it has made realistic electronic structure calcu-
lations possible for a huge range of materials, and since it
has led to numerous insights [3, 4]. Two main problems
had to be overcome in order to make DFT applicable in
practice: first, it was necessary to find reliable approxi-
mations for the total energy as functional of the ground
state density; second, an efficient way to determine the
ground state density itself was needed. The solution to
both problems relies on the approach of Kohn and Sham
[2], where the interacting system is mapped onto an auxil-
iary system of non-interacting electrons with an effective
Kohn-Sham (KS) potential that is designed to yield the
ground state density. The exchange-correlation (xc) con-
tribution to this potential, vxc(r), and to the xc energy
density per particle, εxc(r), is unknown in most systems.
The initial breakthrough came with the Local Density
Approximation [2] (LDA). This approximation takes the
energy density, and hence vxc(r), locally from the ho-
mogeneous electron gas (HEG), where it was calculated
using Quantum Monte Carlo [5] (QMC). However, to find
approximations that are systematically better than the
LDA has turned out to be exceedingly difficult [6, 7].
Today, in spite of the developments of successful gradi-
ent corrections and sophisticated approximations tailored
by exact constraints [8–11], one may say that there is
still no generally established multi-purpose approxima-
tion beyond the LDA. One of the difficulties is that it is
not easy to benchmark vxc. First, the Kohn-Sham poten-
tial is not an observable by itself, which means, there are
no experimental data to compare with. Second, since vxc

is the potential of an auxiliary system, besides the den-
sity, any other observables calculated in the KS system
can in principle be arbitrarily far from measured values.
The prototype example for this dilemma is the KS eigen-
value band gap[12–14]. For example in the LDA, this
KS gap is in general much smaller than the fundamen-
tal electron addition-removal gap that can be extracted
from direct and inverse photoemission [15, 16]. It would,
however, be too simple to just blame the LDA. While
the exact direct gap of the auxiliary KS system equals
the optical excitation gap in the limit of a single elec-
tron, this is only approximately true in real molecules
or materials. Moreover, the fundamental gap is in gen-
eral larger than the optical gap. The exact fundamental
gap could in principle be determined as a difference of
total energies with varying particle number. The exact
KS eigenvalue gap should be smaller than the exact fun-
damental gap by a constant called derivative discontinu-
ity. Therefore, there is no reason for the eigenvalue gap
of the auxiliary KS system to equal the photoemission
gap of the true material[2, 17]. However, the difference,
i.e., the derivative discontinuity, is in general unknown.
Indeed, the respective errors of the approximate func-
tionals and of the KS system itself have been a matter
of debate for many years. Results derived from many-
body perturbation theory to first order in the screened
Coulomb interaction [18–26] gave evidence that the error
in simple semiconductors is mainly due to the auxiliary
nature of the KS system, i.e., due to the missing deriva-
tive discontinuity[12–14], rather than due to the LDA for
vxc. However, these are merely estimates based on per-
turbation theory, and the numerically exact KS potential
and KS band gap of solids remain to date unknown.

More information is available in low-dimensional, of-
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ten finite, systems, where ways have been proposed to
invert the KS equations and find the KS potential start-
ing from a given density [27–30]. This density could be
determined by analytical or numerical methods. This
has given precious insight about the potential and ob-
servables in the KS system [31–46]. For example, in the
helium atom the exact highest occupied molecular or-
bital (HOMO) lies about 25 eV below the vacuum level,
and an additional electron is unbound. The exact KS
eigenvalue gap, instead, turns out to be only 20.3 eV,
since KS binds the lowest unoccupied molecular orbital
(LUMO)[36, 47, 48]. On top of this underestimate, the
LDA reduces the HOMO-LUMO gap further, yielding
15.85 eV. The inversion of the KS system is not an easy
task, though, and in particular a finite basis set may lead
to drastically modified results [49–53]. Moreover, small
changes in the density can yield large differences in the
potential [54, 55]. Altogether, a reliable inversion of the
KS equations remains a difficult task even for finite sys-
tems, and while various methods have been proposed to
overcome the problems, research in this direction is still
ongoing [54–65].

In realistic three-dimensional periodic systems, the
density of beryllium obtained from x-ray diffraction ex-
periments has been used to determine an auxiliary non-
interacting system[66]. However, to the best of our
knowledge, no results for vxc obtained directly from a
numerically exact density are available. This has sev-
eral reasons, including the fact that data for numeri-
cally exact densities of solids were not available in the
literature, and that the inversion in extended three-
dimensional systems may bear new technical difficulties.
Therefore, to date a series of important fundamental
questions remain to be answered, in particular: How can
we adapt an inversion approach designed for finite sys-
tems to the case of solids, and which kind of precision
can be obtained in solids? How different is the result-
ing vxc from standard approximations for solids, such as
the LDA or Perdew-Burke-Ernzerhof (PBE) generalised
gradient approximation[9] (GGA)? What about observ-
ables in this numerically exact KS system, and in par-
ticular, the band gap? How much does vxc depend on
details of the density? And if it depends significantly, do
the resulting changes have an impact on other KS observ-
ables? Starting from nearly numerical exact densities[67]
for the simple semiconductor bulk silicon and insulating
sodium chloride obtained by the Auxiliary Field (AF)
QMC method [68, 69] in Ref. [70], in the present work
we answer these long-standing questions.

II. HOW TO INVERT THE KS PROBLEM IN
INFINITE SYSTEMS

The probably simplest algorithm to obtain the KS po-
tential from a given density nref has been proposed for
finite systems by van Leeuwen and Baerends[27]. In its
original form it was derived by solving the KS equations

for the KS potential vKS. The result was then translated
into an iteration procedure which relates a potential vi+1

at step i + 1 to the potential vi at step i by the ratio
of the target density nref and the density ni at step i.
As pointed out in [30], the best use of this ratio depends
on the sign of the potential that is updated: for exam-
ple, v may be either the usually negative total vKS, or
its rather positive interaction part vH + vxc with vH the
Hartree potential. In the present work we use

vi+1
xc (r) =

nref(r) + a

ñi(r) + a
vixc(r) , (1)

where a is a parameter that avoids instabilities in regions
of very low density as suggested in [27], and the mixing
ñi = αni−1 + (1−α)ni, with 0 < α < 1, is introduced to
smooth the convergence. This density ñi is also used to
update the Hartree potential at each iteration. Eq. (1)
is clearly a good strategy if vxc is negative, and if the
density at a point r is determined only by the KS poten-
tial at that same point. Suppose that at a given iteration
ñi(r) is larger than nref(r). The algorithm then decreases
the absolute value of vxc(r). If the exchange-correlation
potential is negative, this step makes the potential more
shallow, and less density will be attracted to the point
r in the next iteration, which pushes the solution in the
good direction. Of course, it is not true that n(r) de-
pends only on the KS potential in the same point r, and
it has to be seen to which extent the relation is near-
sighted enough to make the algorithm work in a solid.

The negative sign of the potential that is updated in
(1) is crucial for the algorithm to work, because a pos-
itive sign would drive the result in the wrong direction.
However, contrary to the HEG, a real system can also
exhibit regions of positive vxc. Moreover, while in a low-
dimensional system one can impose that the potential
tends to zero at large distances, in a three-dimensional
solid the zero of the potential is not defined. One cannot
even use the ionization potential theorem, which would
force the eigenvalue of the highest occupied state to be
minus the ionization energy, since this theorem does not
hold in extended systems[71]. The arbitrary energy scale
represents both an advantage and a drawback. On the
upside, it allows us to introduce a rigid negative shift such
that the potential remains negative throughout the itera-
tion. This shift is arbitrary within reasonable limits: if it
is too small, positive regions may appear and become an
obstacle for convergence. If it is too large, the algorithm
becomes unstable, as the shift is multiplied at every step
by the density ratio. Reasonable values lie within the
maximum amplitude of the potential. On the downside,
iteration of (1) yields vxc only up to a constant. This
is not due to our introduction of a shift, but to the fact
that the density does not contain information about the
absolute value of the potential[1]. Therefore, this limi-
tation cannot be avoided. The resulting potential can,
however, be used to calculate a well defined density and
KS observables such as the KS band structure (besides
the meaningless constant shift).
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We have tested the algorithm using known function-
als. As documented in Appendix B, the inversion works
straightforwardly for the LDA, but two further aspects
have to be verified. On one side, the true functional,
unlike the LDA, is non-local, which might influence the
behavior of the algorithm. This is sorted out in Appendix
C. Second, the QMC data contains statistical noise; this
aspect is deepened in Appendix D. Finally, Appendix E
shows that the inversion starting from the QMC density
behaves as expected. It also demonstrates that the final
results do not depend on the starting point of the itera-
tive procedure, including starting points as far from the
final result as, e.g., 0.1× vLDA

xc . For the results shown in
the following, we use as starting point 0.3 × vLDA

xc with
a rigid downwards shift of 0.2 Hartree for silicon and 0.4
Hartree for NaCl. In the following, we report results in
atomic units for both densities (expressed in bohr−3) and
xc potentials (in Hartree).

III. RESULTS

A. Kohn-Sham potential of silicon and sodium
chloride

We have applied the algorithm to obtain the exchange-
correlation potential from the charge density obtained by
AFQMC calculations. For silicon, we have used the re-
sults of Ref. [70]. For NaCl, we have applied additional
symmetry operations to the density from the same Ref.
[70]. Ideally, from the inversion procedure for iteration
i → ∞ one should find nQMC,i(r) → nQMC(r). How-
ever, since the QMC data contains statistical noise, the
inversion has a more limited precision than in the case
of, e.g., clean LDA data (see App. D). The Mean Abso-
lute value of the Percentage Error (MeAPE) of the den-
sity of silicon nQMC,i at iteration i compared to nQMC,
100 × meanr

∣∣1− nQMC,i(r)/nQMC(r)
∣∣, does not fall be-

low 0.02%, while the Maximum (over the unit cell) of the
Absolute value of the Percentage Error (MaAPE) of the
density, 100 × maxr

∣∣1− nQMC,i(r)/nQMC(r)
∣∣, decreases

to 0.38% at i = 20 iterations. This is in any case sufficient
to make significant distinctions between different densi-
ties and potentials. The upper panel of Fig. 1 shows
the Local Percentage Difference (LPD) of the iterative
density with respect to the QMC density after 20 itera-
tions (blue line), 100× (nQMC,20(r)/nQMC(r)− 1), along
a path through the unit cell (the same as in Ref. [70],
see the inset to the second panel of Fig. 1). The result
stays well within the stochastic error bar of the QMC
calculation (grey area). For comparison, we also show
the LPD of the LDA and PBE densities (dot-dashed or-
ange and dashed green lines, respectively), with respect
to the QMC. As also shown in Ref. [70], differences be-
tween LDA, PBE and the QMC densities are largest on
the atoms and also in other regions of low density[72]
(see the magenta line in the second panel of Fig. 1), but
they are still significant in regions of higher density, along

FIG. 1. Density and xc potential of bulk silicon along the
same path across the unit cell as in Ref. [70]. The positions
of atoms are indicated by dotted vertical lines. The iterative
inversion follows Eq. (1) with the QMC density nQMC of sil-
icon as reference density. The potential vQMC,20

xc is obtained
after i = 20 iterations. The density nQMC,20 is calculated
using vQMC,20

xc in the KS equation. The MaAPE at i = 20
compared to nQMC is 0.38 %, and the MeAPE is 0.04%. Top
panel: LPD of nQMC,20 (blue), self-consistent LDA nLDA (or-
ange), and PBE nPBE (green) densities with respect to nQMC.
The grey area is the stochastic error bar of the QMC density.
Second panel: The QMC density nQMC (magenta line). The
inset shows the chosen path across the crystal from Ref. [70].
Third panel: vQMC,20

xc (blue), vLDA
xc (orange), vPBE

xc (green),
and vQMC,10

xc (red). Note that the two QMC potentials (blue
and red lines) are almost indistinguishable. The average po-
tentials are aligned. Bottom panel: LPD of xc potentials with
respect to vQMC,20

xc for LDA (orange), PBE (green), and QMC
at i = 10 (red).

the (110) direction, where LDA and PBE are very simi-
lar, but differ from the QMC result. Most importantly,
the differences between different densities are much larger
than the error due to the inversion of the QMC density:
while the MeAPE at i = 20 is 0.04%, the mean absolute
relative difference between the LDA and QMC densities
is 1.93 %, and it is 1.07 % between the PBE and QMC
densities.

The xc potentials are compared in the third panel of
Fig. 1. For this comparison, the potentials are aligned
at their average value. Our numerically determined and
supposedly most accurate KS xc potential, obtained from
the QMC density, is similar to the local and semi-local
approximations. This result is stable: the QMC result
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obtained at i = 10, where the MaAPE and MeAPE on
the density are 0.90 % and 0.09 %, respectively, is almost
indistinguishable from the one at i = 20. The differences
between QMC on one side, and LDA and PBE on the
other side, can be appreciated in the bottom panel, which
shows the LPD of LDA and PBE with respect to the
QMC xc potential obtained at i = 20. These differences
are similar for LDA and PBE along most of the path. The
MeAPE with respect to the QMC result for potentials is
3.90 % for the LDA and 3.88 % for the PBE: of similar
order, though larger, than the MeAPE of the densities.
Instead, the LPD of the QMC potential at i = 10 with
respect to the potential obtained at i = 20 can hardly be
seen. We have hence reached sufficient precision on the
density, which lies within the QMC error bar, and the xc
potential, which shows some differences with respect to
common functionals. The effect of iterating further using
the noisy QMC data is discussed in the App. D.

Results for sodium chloride show similar trends, with
even better convergence properties of the potential due to
the fact that our QMC density for NaCl is less noisy than
the one of silicon in the important regions of high density
(see also App. D). For the density, we obtain a MeAPE
of 0.03% and a MaAPE of 0.29% at i = 200. Here,
analogous to Fig. 1 for silicon, in Fig. 2 we show the
LPD of the density and of the xc potential along a path
(see the inset to the second panel). The QMC-derived xc
potential differs from the LDA and PBE especially on the
sodium atoms, where the density shows rapid changes.
At first sight, however, and as in the case of silicon, it is
difficult to rationalize the differences between the three
potentials. While it is exciting to see the numerically
exact xc potential for real semiconductors and insulators,
it is useful to switch to a representation that highlights
the essence of the difference, in order to gain more insight.

B. Non-local dependence of the KS
exchange-correlation functional on the density

In order to appreciate the non-locality of the QMC de-
rived potential, we will again compare it to known func-
tionals. It is interesting to add the Tran–Blaha modified
Becke-Johnson potential[73] to the more common func-
tionals LDA and PBE, since this functional is designed
with a different purpose, namely, to yield an eigenvalue
gap closer to the measurable fundamental gap than the
exact KS potential. This requires a compromise concern-
ing the resulting density. The deviation of the latter from
the QMC one is shown in the top and bottom panels of
Fig. 3 and for silicon and NaCl, respectively. The den-
sity errors have opposite sign with respect to those of the
LDA throughout, and they are of similar order of magni-
tude in silicon, and about 4-5 times larger in NaCl. This
raises the question how the potential and KS observables
will compare.

In the LDA, vxc(r) is a monotonic function of n(r).
The exact KS potential is a functional of the density ev-

FIG. 2. Density and xc potential of NaCl along the same
path across the unit cell as in Ref. [70]. The positions of
atoms are indicated by dotted vertical lines. The iterative
inversion follows Eq. (1) with the QMC density nQMC of NaCl
as reference density. The result of the QMC inversion is shown
at i = 200. The MaAPE on the density at i = 200 compared
to nQMC is 0.29 %, and the MeAPE is 0.03%. Top panel: LPD
of nQMC,200 (blue), self-consistent LDA nLDA (orange), and
PBE nPBE (green) densities with respect to nQMC. The grey
area in the top panel indicates the stochastic error bar of the
QMC density. Second panel: The QMC density nQMC (thin
magenta line). The inset shows the chosen path across the
crystal from Ref. [70]. Third panel: vQMC,200

xc (blue), vLDA
xc

(orange) and vPBE
xc (green). The averages of the potentials are

aligned. Bottom panel: LPD of xc potentials with respect to
vQMC,200
xc for LDA (orange) and PBE (green).

erywhere, which means that it can take different values
in different points r where the density, instead, is the
same. This expresses the fact that vxc(r) depends not
just on the local density, but also on the environment. In
order to highlight how the true vxc differs from a function
of the local density, we create a map of vxc(r) with respect
to n(r): for each point r in real space, we add a point
[vxc(r)↔ n(r)] to Fig. 4 and Fig. 5 for silicon and NaCl,
respectively. In the case of the LDA, this plot shows the
universal function vxc(n), the same for silicon and NaCl,
which is identical to the function in the HEG. Beyond the
LDA, different environments may change this function,
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FIG. 3. LPD of self-consistent LDA nLDA (orange), PBE
nPBE (green) and TBmBJ (light blue) densities with respect
to nQMC. The grey area is the stochastic error bar of the
QMC density. (Top panel) Silicon. (Bottom panel) NaCl.

such that it is different for different materials. Moreover,
in one and the same material the presence of different
environments may lead to the presence of more than one
function, and finally, if the result is very sensitive to de-
tails, one might find it difficult to detect anything like a
limited number of functions. All these effects are possi-
ble signatures of the non-local dependence of vxc(r) on
the density, and being able to discern them, and to char-
acterize different environments, may give precious input
for further modeling of vxc.

The maps in Fig. 4 and 5 contain the results of LDA,
PBE, TBmBJ and QMC. The universal LDA result is
given for reference in all panels of Fig. 4 and 5. LDA,
PBE and TBmBJ potentials are directly obtained from
the KS calculation; only the QMC result stems from the
inversion. In silicon, the PBE result (upper panels of Fig.
4) is dominated by a simple monotonic function, but it
is slightly steeper than the LDA function. Moreover, the
result appears to be a little more scattered. Finally, a
new branch appears at low densities. For more insight,
the colors reflect, respectively, the modulus of the local
gradient of the density (left panels) and the KS kinetic
energy density defined as τ(r) = 1

2

∑occ
i |∇φi(r)|2, where

φi are KS orbitals (right panels). The TBmBJ potential
in the bottom panels is similar to the PBE, with an extra
upwards branch at low densities, some blurring at higher
densities and a tendency to be lower than the LDA result
at high density, but the latter two features appear to be
much stronger than in the PBE.

The QMC xc potential in the middle panels is also
blurred. However, this cannot be interpreted as a reliable
feature of the true KS potential, since the QMC data is
noisy, which may also cause blurring, as we have demon-
strated in App. D. The overall shape and branches of the

QMC xc potential, instead, are significant. Similarly to
the PBE and TBmBJ, one can identify a dominant curve,
and, with respect to the LDA, two main changes are seen:
the curve is steeper than that of the LDA, and at low den-
sities an additional branch appears. The change in slope
of the main branch with respect to the LDA goes in the
same direction as in the PBE and TBmBJ results, and it
is more pronounced than in the case of PBE, similarly to
TBmBJ. Also the branching happens in a similar region
as in the case of PBE and TBmBJ. However, the branch
departs in the opposite direction.

In all cases, the extra branch is characterized by a very
different gradient and kinetic energy density with respect
to the main branch at the same local density. Indeed,
the region in space where the potential lies on the extra
branch is close to the center of the atoms, where the den-
sity varies rapidly. It should therefore be noted that it
will be particularly sensitive to details of the pseudopo-
tential. This, together with the fact that the inversion
error on the density is largest on the atoms (see Fig. 11 in
the Appendix), which then also influences the large den-
sity gradients in the vicinity, suggests that the different
directions of the branches observed here would deserve
more studies including many more QMC datasets using
different pseudopotentials and including different mate-
rials, which is beyond the scope of the present work. The
changed slope of the main branch, instead, happens over
the complete range of densities and should be a feature
of silicon independent of the pseudopotential and other
ingredients of the calculation.

The modifications of the different branches with re-
spect to the LDA vLDA

xc may be translated in differ-
ent ways, for example: vexc(r) = F e(n(r))vLDA

xc (n(r))
with a correction factor F e that depends on the lo-
cal density and on an environment e, which must be
characterized. Another possibility would be vexc(r) =
vLDA
xc (Fe(n(r)) × n(r)). The GGAs, for example, are

an attempt to characterize the environment by the local
gradient of the density (see, e.g., [74]). Our results mo-
tivate further search for improved approximations of the
true functional that can be expressed as functions of a
limited number of parameters, such as the local density
and its gradients.

Consistently with the fact that the QMC density for
NaCl is less noisy than in the case of silicon, the map for
NaCl in Fig. 5 (middle panels) shows less scattering. As
for silicon, we find a main branch that corresponds to a
modified LDA. Moreover, there is an additional branch
at low densities and another branch at high density, both
characterized by differences in the gradient or kinetic en-
ergy density. The analogous secondary branches for PBE
(see upper panels) are less pronounced whereas these fea-
tures are much stronger in TBmBJ. The inset in the mid-
dle right panel also shows the QMC density along part of
the path. Numbers indicate to which locations selected
data points correspond. For example, data point 1 on the
additional high-energy branch corresponds to the poten-
tial on the sodium atom, with an environment where the
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FIG. 4. Map of the xc potential of silicon with respect to the local density at all points in the unit cell. Color codes reflect
the modulus of the local gradient of the density (left column) or the local kinetic energy density (right column). Upper figures
are for PBE, middle figures for QMC, and bottom figures for TBmBJ. The LDA is shown in green.
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FIG. 5. Same as Fig. 4, for NaCl. Note the much larger range for n(r) here. Upper panels are for PBE, middle panels for
QMC, and bottom panels for TBmBJ. The LDA is shown in green. The inset in the middle right panel shows the QMC density
along a part of the path across the unit cell. Note that a data point in the main graph (marked by 1) falls into the inset area.
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density is very quickly varying, which explains why the
LDA completely fails. Data point 2, instead, corresponds
to a place with similar density but located in a more gen-
tle environment, although the gradient of the density is
significant. As expected, in this point we are on the main
branch, which is, however, modified with respect to the
LDA.

Similarly, points 3 and 4 on the chlorine atom explain
the extra branch at lower density. These results show
that the potential-density relation presented as maps
such as the one in Figs. 4 and 5 may give further in-
sight about the most efficient way to introduce correction
factors, and about the most important features distin-
guishing different environments, which could eventually
be combined with machine learning approaches [75].

C. Kohn-Sham approximation to the band gap

It is most interesting to look at KS observables other
than the density, in particular, KS eigenvalues: even
though, as discussed above, these do not by themselves
have direct physical meaning in an exact sense, they can
still be seen as an approximation to the physical quan-
tities [76, 77], and they are frequently used as starting
points for calculations in a more appropriate framework,
such as many-body perturbation theory[78]. In particu-
lar, the study of the KS band gap is interesting by itself,
since it is a matter of a long-standing debate. In ab-
sence of knowledge of the exact Kohn-Sham potential, it
was not possible to distinguish between the discrepancies
due to approximations of the functional, and those due
to the difference between the (even exact) Kohn-Sham
system itself and the real material. Precious hints were
already given by work on model systems; for example,
Knorr and Godby [34, 35] determined the xc potential
by inversion from the density of a finite one-dimensional
model semiconducting wire that was then extrapolated
to infinite length. Most of the band gap error was shown
to be due to the fact that the exact KS eigenvalue gap
differs from the fundamental electron addition and re-
moval gap, and not due to approximations. Indeed, the
KS eigenvalue gap calculated at fixed particle number
disregards the derivative discontinuity of the exact xc
potential upon change of particle number [12–14]. Since
the numerically exact density and/or xc potential could
be obtained only for very few, low-dimensional, systems,
several studies used the link between the xc potential and
the self-energy given by the Sham-Schlüter equation [13]
in order to extract vxc from the self-energy. These in-
clude work on a two-plane wave model [13, 79], the sur-
face barrier for semi-infinite jellium [80], finite systems
[21, 81–83], and the study of several real semiconductors
and insulators [18, 20–26]. These studies confirmed that
the error inherent in using Kohn-Sham eigenvalues in-
stead of true electron addition and removal energies is
significant. However, the approaches used to determine
the potential involved themselves approximations whose

quantitative impact on the findings are not known: first,
the Sham-Schlüter equation was linearized in all stud-
ies; second, the self-energy itself was approximated in
many-body perturbation theory, mostly on the GW[84]
level. With the present work, we finally do have an al-
most numerically exact Kohn-Sham potential at hand for
real materials, and we can therefore draw definite conclu-
sions concerning the band structure, and in particular the
band gap, of standard semiconductors and insulators.

With the fact in mind that errors of the potential can
be much larger than errors of the density, the quality of
the gap resulting from inversion has to be checked sep-
arately. To this end, we show in Fig. 6 the direct KS
band gap of silicon (upper panel) and sodium chloride
(lower panel) at Γ as a function of the number of itera-
tions at which the KS potential and corresponding den-
sity were calculated. For all functionals, also when noise
is included, the result converges very rapidly and remains
stable, within 1 meV, over a wide range of iterations even
after the potential has developed huge spikes (in the case
of noisy density for silicon). This means that the results
for the band gaps are reliable with high precision.

Results for the converged band gaps of silicon and NaCl
are shown in Table I. For silicon, our numerically exact
minimum indirect KS band gap is 0.69 eV, about 40 %
larger than the KS gap of 0.49 eV calculated in LDA,
and significantly smaller than the experimental gap [85]
of 1.17 eV. The PBE gap of 0.66 eV is close to the QMC-
derived value. The direct band gap opening of QMC with
respect to LDA is analogously 0.17 eV at Γ and 0.12 eV
at X. TBmBJ yields a direct gap of 3.09 eV, close to
experiment. In NaCl, the situation is similar, with the
QMC-derived gap about 14% larger than the LDA one,
and only 3% larger than the PBE gap. The 5.25 eV
QMC-derived KS gap is again much smaller than the 8.5
eV experimental gap [86], while TBmBJ is again close
to experiment, with a direct gap of 8.93 eV. The QMC
bandwidths do not change in a noteworthy way with re-
spect to LDA (or PBE): in silicon the QMC valence band-
width is reduced by 0.1 eV compared to LDA (and 0.05
eV compared to PBE), while in NaCl the QMC band-
width is 0.15 eV smaller than LDA and 0.04 eV larger
than PBE.[87]

Our QMC derived KS gaps confirm the conclusion of
Ref.[18, 20] and thus definitely highlight the fact that the
true multiplicative KS potential does not yield a “good”
eigenvalue band gap in solids. Overall, the band gap is
an excellent illustration for the fact that the exact Kohn-
Sham system is an auxiliary system designed to yield the
density in principle exactly, but for other observables, it
can only give an approximation. At the same time, the
TBmBJ results illustrate that by enhancing the devia-
tions of the true potential from the LDA one can design
a multiplicative potential which overcorrects the LDA er-
rors on the density and on the KS eigenvalue gap, bring-
ing the latter close to the experimental fundamental gap.
This may yield a compromise between the accuracy of
the density and the search for a simple estimate of the
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FIG. 6. Convergence with the number of iterations of the
direct band gap at Γ obtained from the inversion, for silicon
(upper panel) and NaCl (lower panel). Shown are the results
of LDA (orange), noisy LDA (purple), PBE (green), TBmBJ
(light blue) and QMC (blue). The horizontal continuous lines
are the reference results, which are obtained directly from the
KS calculation except for the noisy LDA where the reference
is the result at i0 = 24, and for QMC, where the reference
is the result at i0 = 20. The clean and noisy LDA results
are almost entirely overlapping and converge to the reference
result of clean LDA, 2.55 eV. The QMC result converges to
2.72 eV.

fundamental gap.
There is another interesting aspect to this study of the

band gap: while in certain cases (in particular, the noisy
LDA) the potential can develop huge spikes during the
iterations, the gap, similarly to the density, remains close
to the reference value. This means that very different xc
potentials can yield not only very similar densities, but
also very similar KS observables more in general. Fig. 6
also shows that the gaps corresponding to clean and noisy
LDA densities are almost indistinguishable, i.e., the noise

Si NaCl

indirect direct at Γ direct at Γ

QMC derived 0.69 2.72 5.25

PBE 0.66 2.60 5.08

LDA 0.49 2.55 4.59

TBmBJ 1.19 3.09 8.93

Exp. 1.17 [85] 3.05[88] 8.5[86]

3.40[85]

TABLE I. KS minimum band gaps and direct band gaps at
Γ (eV) in comparison with experimental photoemission gaps
from Refs. [85, 86, 88].

does not affect KS observables. The band gap results
confirm the statement, mostly based on findings from
low-dimensional systems, that examining the xc potential
alone is not sufficiently meaningful[89–91]. Our study
also suggests that an effort is needed to distinguish in the
KS potential crucial features, which must be contained in
good functionals, from others that may be quantitatively
strong in the potential, but insignificant for its effects.

IV. CONCLUSION

In conclusion, we have shown that a simple algorithm
allows one to obtain the Kohn-Sham xc potential for pe-
riodic semiconductors and insulators, given their ground
state density. The precision that can be obtained is lim-
ited by the quality of the input data. Here, we use den-
sities taken from AFQMC calculations, and the limiting
factor is the stochastic noise. Nevertheless, meaningful
results are obtained, with an error bar smaller than the
difference between the resulting potentials and their LDA
PBE, or TBmBJ counterparts, which allows us to safely
draw conclusions. In particular, for the materials stud-
ied here, namely bulk silicon and NaCl, the xc potential
functional of the density everywhere can be represented
in terms of two or three functions of the local density,
each of which is determined by a specific environment.
These environments appear to be characterized by the
local gradient of the density or, even more clearly, by the
local kinetic energy density. The function that represents
most of the data points is close to the LDA, but with
slight material-dependent deviations. PBE also predicts
deviations and the existence of the additional functions,
although it does not always describe them well. On the
other hand, our results clearly illustrate that very dif-
ferent potentials may lead to very similar densities, and
more generally, to very similar KS observables. In partic-
ular, the KS band gap converges rapidly with the number
of iterations of the inversion process, while the xc poten-
tial still undergoes violent modifications. More work is
needed to discern important features of the xc potential
from those that do not influence KS observables; sum
rules and other exact constraints may be helpful for this
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[8–11]. Our results for the KS band gap confirm previ-
ous conjectures based on model systems and/or many-
body perturbation theory, which predict that the exact
KS band gap is closer to the LDA one than to the measur-
able electron addition and removal gap, in other words,
that the derivative discontinuity of the true xc poten-
tial is sizable. Still, the LDA error is non negligible,
whereas PBE predicts the exact KS gap with an error
of less than 5% for the materials studied here. Our work
highlights directions for the improvement of density func-
tionals, stressing the need for, and usefulness of, QMC
calculations of the density in many more materials.
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Appendix A: Computational details

We have adopted the same computational parame-
ters (lattice constants, cutoff energies and k-point grids)
and pseudopotentials as in Ref. [70]. Following Ref.
[70], all the LDA, PBE, TBmBJ and QMC results have
been obtained with the same optimized norm-conserving
LDA pseudopotentials[92]. We have employed the Abinit
code[93] and verified that it gives the same numerical re-
sults as the Quantum Espresso code[94] used in Ref. [70]
for LDA and PBE. For the calculations with the TBmBJ
functional, composed of a modified version of the Becke-
Johnson exchange potential[95] and a LDA correlation
part, we have used the Abinit implementation[96] with
the libxc library[97]. The KS inversion algorithm has
been implemented in our own KS python code, which is
interfaced with the Abinit code.

Appendix B: Accuracy of the algorithm: inverting
the LDA

To illustrate the reliability of the inversion algorithm,
it is instructive to examine a case where the density-
potential relation is well known; as a start, we choose
the LDA [98]. This means that in Eq. (1), nref = nLDA

is the density obtained in a standard LDA Kohn-Sham
self-consistent calculation with exchange-correlation po-
tential vLDA

xc at convergence. Ideally, from the iteration
procedure for i→∞ we should find vLDA,i

xc → vLDA
xc and

nLDA,i → nLDA. Fig. 7 and 8 show results for silicon.
In Fig. 7 (upper panel) the Maximum (over the

unit cell) of the Absolute value of the Percentage Error
(MaAPE) of the density nLDA,i compared to the LDA
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FIG. 7. Errors of the iteration procedure as a function of
number of iterations i in silicon. Top panel: MaAPE of the
density for the inverted LDA (orange), inverted noisy LDA
(purple) and QMC (blue) xc potentials. Each inverted den-
sity is compared to its corresponding reference result. In the
inset: MeAPE of the density for the inverted LDA, noisy LDA
and QMC xc potentials. Bottom panel: MaAPE of the xc po-
tential for the inverted LDA (orange) and inverted noisy LDA
(purple). In these cases the error is defined with respect to
vxc of KS LDA, since the xc potential that yields the noisy
density is unknown. In the inset: MeAPE of the xc potential
for the inverted LDA and inverted noisy LDA potentials.

one, 100 × maxr

∣∣1− nLDA,i(r)/nLDA(r)
∣∣, is shown as a

function of the iteration number i. It decreases smoothly
and very fast. The same is true for the Mean Absolute
(over the unit cell) Percentage Error (MeAPE), given in
the inset.

In Fig. 8 snapshots for the errors on density and
vxc are presented. The upper panel gives 100 ×(
nLDA,i(r)/nLDA(r)− 1

)
, the Local Percentage Differ-

ence (LPD) along a path through the unit cell (the same
as in Ref. [70]) of the density at i = 500 iterations (or-
ange dashed line) with respect to the LDA one. In the
scale of the figure, it is close to zero everywhere: it is
largest, with a maximum of 6.55 ×10−4 %, in places of
low LDA density, shown by the thin magenta line in the
middle panel. Note that the density is close to zero on
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and in blue QMC densities with respect to nLDA. Middle
panel: Self-consistent LDA density nLDA (thin magenta line).
Lower panel: LPD of vLDA,500

xc (orange) and self-consistent
PBE potential vPBE

xc (green) with respect to vLDA
xc .

the silicon atoms. The LPD of the potential is shown
in the bottom panel of Fig. 8. Because of the arbitrary
shift, only a comparison of the variations of the potential
is pertinent. Indeed, during the iterations the average
potential continuously moves upwards. The figure has
been obtained by re-aligning at the end of the iterations
the average potentials. This requires a final downwards
shift of the iterative potential of 0.06 Hartree. Again,
the maximum error is found in places of lower density.
The only significant error is found in the point exactly
on the silicon atoms, where the density is almost vanish-
ing. As we will also see below for other functionals, the
result in this specific point cannot be considered to be re-
liable. Also for other regions, however, it is true that the
LPD is significantly larger for the potential than for the
density. This can also be appreciated in Fig. 7 (bottom
panel), where the open circles in the main panel give the
MaAPE and MeAPE on the xc potential as a function
of iterations. In order to illustrate that the remaining
errors are small enough to make discussions meaning-
ful, the errors in Fig. 8 are compared to the difference

FIG. 9. Map of the xc potential of silicon with respect to
the local density at all points in the unit cell. The results of
the KS cycle (circles) are compared to the result of inversion
(triangles) for PBE (green) and TBmBJ (light blue).

between two different functionals obtained directly from
the KS calculation, here, between LDA and PBE (see
green lines). The top panel contains the LPD of the
PBE density with respect to the LDA self-consistent one,
100×(nPBE(r)/nLDA(r)−1). This difference can be seen
very clearly, since it is more than 104 times larger than
the inversion error. The LPD of the PBE with respect to
the LDA xc potential, 100× (vPBE

xc (r)/vLDA
xc (r)− 1), can

be found in the bottom panel. Differences can be seen
throughout the path, although regions of lower density
show larger differences. These differences are, though
slightly larger, of the same order as the differences in the
density. Except for immediate vicinity of the atoms, they
are much larger than the error of the inversion, like in the
case of the density. This demonstrates that the inversion
yields meaningful results, with an error bar that is much
smaller than the differences of interest, except for few
points of very small density.

Appendix C: Inversion of non-local functionals

The true xc functionl is expected to be non-local, and
testing the LDA alone is therefore not sufficient. For a
conclusive test, we should invert functionals with a simi-
lar degree of non-locality as the QMC results. Figs. 4 and
5 show that the deviation from a local potential-density
relation of the QMC-derived potential is larger than for
the PBE and smaller than for the TBmBJ functional.
This means that PBE and TBmBJ cover the range of
non-locality of the true KS potential. We have therefore
also performed the inversion tests with these two func-
tionals, with the results given in Figs. 9 and 10.

As one can see, except for the points of lowest den-
sity the agreement between the reference result and the
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FIG. 10. Map of the xc potential of NaCl with respect to
the local density at all points in the unit cell. The results of
the KS cycle (circles) are compared to the result of inversion
(triangles) for PBE (green) and TBmBJ (light blue).

result of the inversion is again very good, and definitely
accurate enough to distinguish the main features of the
potentials. We conclude that non-locality in the range of
that of the true KS potential does not hamper the use of
our inversion algorithm.

Appendix D: Inversion starting from noisy densities

To conclude on the reliability of the results, we also
have to take into account the fact that the QMC re-
sults have statistical errors. In order to elucidate the
influence of the QMC stochastic noise on the results, we
have taken the LDA density n(r) and added point-wise
Gaussian noise, which is obtained from a normal distri-
bution with mean zero and standard deviation given by
the characteristic AFQMC statistical error bar scaled by
n(r). To appreciate what this means, the yellow curve
in the upper panel gives the relative difference of the
noisy LDA density with respect to the clean one. Fig.
11 shows results for the inversion starting from this new
reference density. The error of the inversion of the noisy
LDA data is displayed in Fig. 7 (upper panel, purple
curve). It behaves similarly to the QMC inversion error:
the MaAPE decreases rapidly and reaches a minimum,
from whereon a slight increase followed by a decrease is
noted. The MeAPE, instead, reaches a plateau. The in-
version error on the density is given by the purple curve
in the upper panel of Fig. 11, representing the LPD
100 × (nLDA+noise,39(r)/nLDA+noise(r) − 1) at 39 itera-
tions. It is of similar magnitude as the noise itself, as in
the QMC case. Iterating further to i = 150 (red), only a
slight smoothing of the error on the density is observed.
The bottom panel of Fig. 11 shows xc potentials: the
red curve is the xc potential resulting from inversion of

FIG. 11. Relation between noise and errors of the iterative
procedures that use nQMC or nLDA+noise as reference densi-
ties. Top panel: In yellow, LPD of the LDA density from the
KS calculation decorated with a point-wise Gaussian noise
nLDA+noise with respect to the clean LDA density nLDA. The
noise lies within the stochastic error bar of the QMC calcula-
tion (grey area). In purple, LPD of nLDA+noise,39 at the itera-
tion i = 39, where the MaAPE on the density with respect to
nLDA+noise has its first minimum. Here, the MaAPE is 0.56%,
and the MeAPE is 0.15%. In red, LPD of nLDA+noise,150 at
the iteration i = 150, where the MaAPE is 0.54%. In blue,
LPD of nQMC,500 at the iteration i = 500, where the MaAPE
is 0.21% and the MeAPE is 0.02%, with respect to nQMC.
Bottom panel: the LDA vLDA

xc potential (orange) is compared
to the xc potentials obtained by inversion of the QMC density
vQMC,500
xc (blue), and by inversion of the noisy LDA density
vLDA+noise,24
xc (brown dashed line), vLDA+noise,39

xc (purple), and
vLDA+noise,150
xc (red) at i = 150.

the noisy LDA data at i = 150. It has spikes that are
of the same order as those of vQMC,500

xc (blue curve) and
that are in percentage orders of magnitude larger than
the noise of the density, again as in the case of vQMC,500

xc .
With such an error bar, one would not be able to distin-
guish the LDA and QMC potentials. By way of contrast,
the xc potential resulting from the noisy LDA data but at
only i = 39 iterations, where the MaAPE on the density
has its minimum, shows only very small spikes (purple
curve). The result is stable in the range of iterations pre-
ceding that minimum: the bottom panel also shows the
result for i = 24 (brown dashed curve), with a virtually
indistinguishable potential. Moreover, this potential is
close to the clean LDA potential, given by the orange
curve. In this range of iterations, we can consider the
resulting potential to be reliable. The spikes that de-
velop by iterating further, instead, may suffer from the
fact that the noisy density and the KS LDA hamiltonian
are not completely consistent, which means that a higher
precision cannot be reached.

The observations concerning the behavior of the noisy
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LDA are strictly analogous to our QMC-based results,
as we will also discuss in the next section. This gives
strong evidence for the fact that the inversion problem
of the QMC data after a certain number of iterations is
indeed due to the stochastic noise of the QMC. More-
over, it suggests that a sufficiently reliable xc potential is
obtained by taking the result in the range where a stable
and relatively smooth potential is obtained, and before
the MeAPE on the density stops to decrease. In the
present case, this confirms the choice i = 20, for which
the QMC xc potential is given in Fig. 1. In other words,
this xc potential is, to the best of our knowledge, today’s
most precise estimate for the true xc potential of bulk
silicon.

FIG. 12. Map of the xc potential versus the local density in
silicon. Main panel: Results of the inversion of QMC for dif-
ferent i. Each vxc is plotted against its own density. QMC
inversion results are shown at 10 (smooth potential) and 20
(minimum of MaAPE of the density) iterations. For one den-
sity below 0.01, additional results at i = 50 and i = 100 are
given, to illustrate the stability of the extra branch. In the
inset, KS LDA is compared to the inversion of noisy LDA at
24 (smooth potential) and 39 (minimum of MaAPE of the
density) iterations.

Finally, Fig. 12 confirms that the noise is at least par-
tially responsible for the blurring of the QMC result ob-
served in the map [vxc(r) ↔ n(r)] in Fig. 4: inversion
of the noisy LDA data leads to a more scattered poten-
tial, as shown in the inset of Fig. 12. The comparison
of the result for i = 24 and i = 39 also shows that it
remains essentially a scattered version of the clean LDA
result, with a blurring according to the number of iter-
ations, whereas no additional features are caused by the
noise. In the main panel, we compare different iterations
of the QMC result. Also in this case higher i leads to
stronger blurring, but the extra branch is confirmed to
be a stable feature. Note that the point at lowest density
on the extra branch undergoes large oscillations with the
number of iterations. All other points, instead, are well
behaved, as it is illustrated on the figure for the point of

second-lowest density.
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FIG. 13. Analog of Fig. 11, but for NaCl. Here spikes in
noisy LDA and QMC are less developed than in the case of
silicon. Note that the QMC error bar is smaller than in the
case of silicon, in particular in regions of significant density.

For completeness, we investigate the issue of noise also
in NaCl. Details are displayed in Fig. 13. As one can
see, the QMC error bar is smaller in this case, especially
in the important region of high density. Therefore, al-
though qualitatively the noise has similar effects as in
the case of silicon, quantitatively the effect on the results
is negligible, as one can see in the local potential-density
relation displayed in Fig. 14.

Appendix E: More about the inversion starting from
the QMC density

Here, we will examine the consequences of noise on the
inversion of the QMC results of silicon, where the effect
is more pronounced than in NaCl.

The first interesting fact is that the error of the QMC
inversion behaves similarly to that of the noisy LDA. This
can be appreciated in Fig. 7 (upper panel), where the
MaAPE of the density as a function of the number of
iterations i is given by the blue curve. It shows an over-
all decrease, but with a pronounced minimum at i = 20.
At this point, it has decreased to 0.38%. The minimum
is followed by a modest increase, after which the error
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FIG. 14. Map of the xc potential versus the local density
in NaCl. The result of the inversion of LDA with gaussian
noise for i = 200 is compared to the clean LDA xc potential
resulting from the KS calculation.

decreases again monotonously. Instead, as the inset in
Fig. 7 shows, in correspondence to the minimum the
MeAPE reaches a plateau of about 0.02% and a better
precision cannot be reached. For this reason, the inver-
sion error remains larger than what we obtained in the
case of the inverted clean LDA, by about a factor 500 for
the MaAPE and 1000 for the MeAPE.

Of course, one could think to continue the iterations,
since Fig. 7 shows that the MaAPE could be decreased
further. However, the fact that a plateau is reached in the
MeAPE anticipates that one might encounter problems
when doing so. The blue curve in the upper panel of
Fig. 11 shows the density from the QMC inversion at
i = 500, where the MaAPE has decreased from 0.38% to
0.21 %. Indeed, the error is now further away from the
QMC error bar in the most critical points along the path,
with respect to the i = 20 result shown in Fig. 8. Also
the MeAPE has decreased from 0.04 % at i = 20 to 0.02
% at i = 500. However, the xc potential obtained from
the QMC inversion, shown in the bottom panel of Fig.
11 (blue curve), is no longer smooth. It develops spikes
that become even more pronounced when one iterates
further, while still decreasing the MaAPE on the density,
but with a quite constant MeAPE, which points to a mere
redistribution of errors (see Fig. 15 for illustration).

Visibly, the algorithm does not succeed in improving
the result any further and introduces unexpected features
when trying to do so. Difficulties with the inversion pro-
cedure have also been reported for finite systems, and
they have been attributed to the finite basis set which
may introduce an inconsistency between density and ex-
ternal potential [49–53]. In the present work, as we have
verified, the results are sufficiently well converged to ex-
clude basis set problems. Instead, the strict analogy to
the behavior observed for the noisy LDA is strong evi-
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FIG. 15. Exchange-correlation potentials obtained by inver-
sion of the QMC density of bulk silicon, at three different
iteration steps. All three potentials yield a very similar, ac-
curate density. The MeAPE of the density is 0.04% at i = 20,
0.02 % at i = 500, and the same value at i = 1000. For the
MaAPE, we get 0.38% at i = 20, 0.21% at i = 500, and 0.18%
at i = 1000.
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FIG. 16. Silicon: error of the inverted QMC density as a
function of the iteration number for three different choices of
the shift of the starting point. The starting point is 0.1vLDA

xc +
shift.

dence for the fact that here the QMC stochastic noise is
the limiting factor. We stress again that noise leads to
blurring, not to the appearance of spurious features, and
its effect can therefore be detected and tested.

Finally, it is important to note that the results of the
inversion do not depend on the starting point. This is
true both for the shape and for the average value of the
starting potential. The latter is important for the con-
vergence behavior: Fig. 16 shows that a value of the
initial shift which guarantees that the potential does not
change sign improves the convergence for silicon signifi-
cantly. Fig. 17 shows results obtained for a starting point
corresponding to different fractions of vLDA

xc : the scatter
plot of silicon shows stability both of the main and of the
extra branch, except for the point of very low density.
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FIG. 17. Map of the xc potential of silicon with respect to the
local density for three different choices of the starting point.
The three xc potentials have the same MeAPE of 0.02 %.
This precision is reached at i = 11, 20 or 38 when the starting
point is a shifted vLDA

xc , 0.3vLDA
xc or 0.1vLDA

xc , respectively.
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M. Marsili, N. Marzari, F. Mauri, N. L. Nguyen, H.-
V. Nguyen, A. O. de-la Roza, L. Paulatto, S. Poncé,
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