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POLYNOMIAL STABILITY OF THERMOELASTIC TIMOSHENKO SYSTEM WITH NON-GLOBAL TIME-DELAYED CATTANEO'S LAW
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In this paper, we consider a one dimensional thermoelastic Timoshenko system in which the heat flux is given by Cattaneo's law and acts locally on the bending moment with a time delay. We prove its well-posedness, strong stability, and polynomial stability.

Introduction

In this paper, we investigate the stability of a thermoelastic Timoshenko system in which the heat flux given by Cattaneo's law acts locally on the bending moment with a time delay. More precisely, we consider the following system:

(1.1)

           ρ 1 ϕ tt -k 1 (ϕ x + ψ) x = 0 in (0, ) × (0, ∞), ρ 2 ψ tt -k 2 ψ xx + k 1 (ϕ x + ψ) + d(θ) = 0 in (0, ) × (0, ∞),
ρ 3 θ t + q x + δψ tx = 0 in (0, 0 ) × (0, ∞), 0 ∈ (0, ), γq t + µ 1 q + µ 2 q(x, t -τ ) + θ x = 0 in (0, 0 ) × (0, ∞), with boundary and initial conditions (1.2)

          
ϕ(0, t) = ϕ( , t) = ψ(0, t) = ψ( , t) = q(0, t) = θ( 0 , t) = 0 in (0, ∞), ϕ(x, 0) = ϕ 0 (x), ϕ t (x, 0) = ϕ 1 (x), ψ(x, 0) = ψ 0 (x) in (0, ), ψ t (x, 0) = ψ 1 (x), θ(x, 0) = θ 0 (x), q(x, 0) = q 0 (x) in (0, 0 ), q(x, t) = f 0 (x, t) in (0, 0 ) × (-τ, 0), where ϕ is the transverse displacement of the beam, ψ is the rotational angle of a filament, θ is the temperature deviations, q is the heat flux. The coefficients ρ 1 , ρ 2 , ρ 3 , k 1 , k 2 , γ, µ 1 , δ are positive real numbers, µ 2 is a non-zero real number. We define

(1.3) d(θ) = δθ x in (0, 0 ) × (0, ∞), 0 in ( 0 , ) × (0, ∞).
In [START_REF] Timoshenko | on the correction for shear of the differential equation for transverse vibrations of prismatic bars[END_REF], the classical Timoshenko-beam system is expressed by

ρ 1 ϕ tt -k 1 (ϕ x + ψ) x = 0 in (0, ) × (0, ∞), ρ 2 ψ tt -k 2 ψ xx + k 1 (ϕ x + ψ) = 0 in (0, ) × (0, ∞).
There are several publications concerning the stabilization of Timoshenko system with different kinds of damping (see [START_REF] Akil | Stability and exact controllability of a Timoshenko system with only one fractional damping on the boundary[END_REF], [START_REF] Bassam | Polynomial stability of the Timoshenko system by one boundary damping[END_REF], [START_REF] Bassam | Stability results of some distributed systems involving mindlin-Timoshenko plates in the plane[END_REF] and [START_REF] Wehbe | Stabilization of the uniform Timoshenko beam by one locally distributed feedback[END_REF]). Alves and al. [START_REF] Alves | On a timoshenko system with thermal coupling on both the bending moment and the shear force[END_REF] studied the thermoelastic Timoshenko system by coupling the thermal laws on both the shear force and the bending moment under Fourier's law, by considering:

(1.4)

             ρ 1 ϕ tt -k 1 (ϕ x + ψ) x + δ 1 θ x = 0 in (0, ) × (0, ∞), ρ 2 ψ tt -k 2 ψ xx + k 1 (ϕ x + ψ) -δ 1 θ + δ 2 ϑ x = 0 in (0, ) × (0, ∞), ρ 3 θ t -µ 1 θ xx + δ 1 (ϕ x + ψ) t = 0 in (0, ) × (0, ∞), ρ 4 ϑ t -µ 2 ϑ xx + δ 2 ψ tx = 0 in (0, ) × (0, ∞),
they proved an exponential stability result without any relation between the coefficients of the system. Moreover,

• Fernandez Sare and Racke [START_REF] Fernández Sare | On the stability of damped timoshenko systems: Cattaneo versus fourier law[END_REF] studied system (1.4) by taking δ 1 = 0 and they showed that the system is exponentially stable if and only if (1.5)

k 1 ρ 1 = k 2 ρ 2 .
• Almeida Junior and al. [START_REF] Almeida Júnior | Stability to 1-d thermoelastic timoshenko beam acting on shear force[END_REF] studied system (1.4) by taking δ 2 = 0 and they also proved exponential stability result provided that (1.5) holds. In [START_REF] Djellali | Exponential stability of thermoelastic timoshenko system with cattaneo's law[END_REF], the authors studied the thermoelastic Timoshenko system where the heat flux given by Cattaneo's law is acting on both shear force and the bending moment, by considering:

(1.6)                      ρ 1 ϕ tt -k 1 (ϕ x + ψ) x + δ 1 θ x = 0 in (0, ) × (0, ∞), ρ 2 ψ tt -k 2 ψ xx + k 1 (ϕ x + ψ) -δ 1 θ + δ 2 ϑ x = 0 in (0, ) × (0, ∞), ρ 3 θ t + q x + δ 1 (ϕ x + ψ) t = 0 in (0, ) × (0, ∞), γq t + q + µ 1 θ x = 0 in (0, ) × (0, ∞), ρ 4 ϑ t + p x + δ 2 ψ tx = 0 in (0, ) × (0, ∞), γ 2 p t + p + µ 2 ϑ x = 0 in (0, ) × (0, ∞),
with boundary conditions

ϕ x (0, t) = ϕ x ( , t) = ψ(0, t) = ψ( , t) = θ(0, t) = θ( , t) = p(0, t) = p( , t) in (0, ∞),
they established an exponential stability result irrespective of the values of the coefficients of the system. However, Fernandez Sare and Racke [START_REF] Fernández Sare | On the stability of damped timoshenko systems: Cattaneo versus fourier law[END_REF] considered system (1.6) with δ 1 = 0 and they showed that the system is not exponentially stable even if (1.5) holds.

The originality of this work lies in the study of the thermoelastic Timoshenko system (1.1)-(1.2), in which the heat flux given by Cattaneo's law acts only on the bending moment and is distributed locally with a time delay.

In fact, from a physical point of view, models with partial differential equations that take into account a certain time delay are generally more realistic than those that do not take into account the effect of the delay, we refer the reader to [START_REF] Akil | Stability results on the kirchhoff plate equation with delay terms on the dynamical boundary controls[END_REF][START_REF] Akil | Stability results of a singular local interaction elastic/viscoelastic coupled wave equations with time delay[END_REF] for systems with time delay.

This paper is organized as follows. In Section 2, we prove the well-posedness of our system by using semigroup approach. In Section 3, following a general criteria of Arendt and Batty, we show the strong stability of our system in the absence of the compactness of the resolvent. Finally, in Section 4, by combining the frequency domain approach with a specific multiplier multiplier method, we prove that the energy of our system decays polynomially with the rate t -1 .

Well-posedness of the system

In this section, we will establish the well-posedness of system (1.1)-(1.2) by using semigroup approach. For this aim, as in [START_REF] Nicaise | Stability and Instability Results of the Wave Equation with a Delay Term in the Boundary or Internal Feedbacks[END_REF], we introduce the following auxiliary change of variable (2.1) z(x, s, t) := q(x, t -sτ ) in (0, 0 ) × (0, 1) × (0, ∞).

Then, system (1.1)-(1.2) becomes (2.2)                  ρ 1 ϕ tt -k 1 (ϕ x + ψ) x = 0 in (0, ) × (0, ∞), ρ 2 ψ tt -k 2 ψ xx + k 1 (ϕ x + ψ) + d(θ) = 0 in (0, ) × (0, ∞), ρ 3 θ t + q x + δψ tx = 0 in (0, 0 ) × (0, ∞), γq t + µ 1 q + µ 2 z(x, 1, t) + θ x = 0 in (0, 0 ) × (0, ∞), τ z t (x, s, t) + z s (x, s, t) = 0 in (0, 0 ) × (0, 1) × (0, ∞),
with the following boundary conditions

(2.3) ϕ(0, t) = ϕ( , t) = ψ(0, t) = ψ( , t) = q(0, t) = θ( 0 , t) = 0 in (0, ∞)
and the following initial conditions (2.4)

     ϕ(x, 0) = ϕ 0 (x), ϕ t (x, 0) = ϕ 1 (x), ψ(x, 0) = ψ 0 (x) in (0, ), ψ t (x, 0) = ψ 1 (x), θ(x, 0) = θ 0 (x), q(x, 0) = q 0 (x) in (0, 0 ), z(x, s, 0) = f 0 (x, -sτ ) in (0, 0 ) × (0, 1).
We set Φ = (ϕ, ϕ t , ψ, ψ t , θ, q, z) , then system (2.2)-(2.4) can be written as the following first order evolution equation

(2.5) Φ t = AΦ, Φ(0) = Φ 0 = (ϕ 0 , ϕ 1 , ψ 0 , ψ 1 , θ 0 , q 0 , f 0 (•, -• τ )) ∈ H,
where the Hilbert space H defined by

H = [H 1 0 (0, ) × L 2 (0, )] 2 × [L 2 (0, 0 )] 2 × L 2 ((0, 0 ) × (0, 1)), is endowed with the inner product (Φ, Φ 1 ) H = 0 k 1 (ϕ x + ψ)(ϕ 1 x + ψ 1 ) + ρ 1 uu 1 + k 2 ψ x ψ 1 x + ρ 2 vv 1 dx + 0 0 (ρ 3 θθ 1 + γqq)dx + τ |µ 2 | 0 0 1 0 zz 1 dsdx,
where Φ = (ϕ, u, ψ, v, θ, q, z) , Φ 1 = (ϕ 1 , u 1 , ψ 1 , v 1 , θ 1 , q 1 , z 1 ) ∈ H. Besides, the operator A : D(A) ⊂ H -→ H is defined by

(2.6) A           ϕ u ψ v θ q z           =               u k 1 ρ -1 1 (ϕ x + ψ) x v ρ -1 2 [k 2 ψ xx -k 1 (ϕ x + ψ) -d(θ)] -ρ -1 3 (q x + δv x ) -γ -1 [µ 1 q + µ 2 z(•, 1) + θ x ] -τ -1 z s               , with domain (2.7) D(A) =                    Φ = (ϕ, u, ψ, v, θ, q, z) ∈ H such that ϕ, ψ ∈ H 2 (0, ), u, v ∈ H 1 0 (0, ), θ ∈ H 1 R (0, 0 ) := θ ∈ H 1 (0, 0 ) | θ( 0 ) = 0 , q ∈ H 1 L (0, 0 ) := q ∈ H 1 (0, 0 ) | q(0) = 0 , z ∈ L 2 ((0, 0 ), H 1 (0, 1)), z(•, 0) = q in (0, 0 )                   
The energy of system (2.2)-(2.4) is given by

E(t) = 1 2 (ϕ, ϕ t , ψ, ψ t , θ, q, z) 2 H .
Here and throughout the paper, the assumptions on µ 1 and µ 2 satisfy

|µ 2 | < µ 1 .
Proposition 2.1. The operator A defined above is m-dissipative.

Proof. For all Φ = (ϕ, u, ψ, v, θ, q, z) ∈ D(A), we have

(AΦ, Φ) H = k 1 0 (u x + v)(ϕ x + ψ)dx + k 1 0 (ϕ x + ψ) x udx + k 2 0 v x ψ x dx + k 2 0 ψ xx vdx -k 1 0 (ϕ x + ψ)vdx -δ 0 0 θ x vdx - 0 0 (q x + δv x )θdx -µ 1 0 0 |q| 2 dx -µ 2 0 0 z(•, 1)qdx - 0 0 θ x qdx -|µ 2 | 0 0 |z(•, 1)| 2 dx + |µ 2 | 0 0 |q| 2 dx ,
using integration by parts and the fact that Φ ∈ D(A), we get

(AΦ, Φ) H = -µ 1 0 0 |q| 2 dx - µ 2 0 0 z(•, 1)qdx - |µ 2 | 2 0 0 |z(•, 1)| 2 dx + |µ 2 | 2 0 0 |q| 2 dx.
Consequently, by Young's inequality, we claim

(2.8) (AΦ, Φ) H ≤ -(µ 1 -|µ 2 |) 0 0 |q| 2 dx ≤ 0, which implies that A is dissipative. Let us prove that A is maximal. For this aim, let F = (f 1 , f 2 , f 3 , f 4 , f 5 , f 6 , f 7 ) ∈ H, we look for Φ = (ϕ, u, ψ, v, θ, q, z) ∈ D(A) a unique solution of (2.9) -AΦ = F ∈ H.
Detailing (2.9), we obtain

u = -f 1 ∈ H 1 0 (0, ), (2.10) -k 1 (ϕ x + ψ) x = ρ 1 f 2 ∈ L 2 (0, ) (2.11) v = -f 3 ∈ H 1 0 (0, ), (2.12) -k 2 ψ xx + k 1 (ϕ x + ψ) + d(θ) = ρ 2 f 4 ∈ L 2 (0, ), (2.13) q x + δv x = ρ 3 f 5 ∈ L 2 (0, 0 ), (2.14) µ 1 q + µ 2 z(•, 1) + θ x = γf 6 ∈ L 2 (0, 0 ), (2.15) z s = τ f 7 ∈ L 2 ((0, 0 ) × (0, 1)), (2.16)
with the following boundary conditions (2.17)

ϕ(0) = ϕ( ) = ψ(0) = ψ( ) = q(0) = θ( 0 ) = 0 and z(•, 0) = q in (0, 0 ).
From (2.16), we obtain z ∈ L 2 ((0, 0 ); H 1 (0, 1)). Moreover, from (2.17), we deduce that

(2.18) z = τ s 0 f 7 (•, ξ 1 )dξ 1 + q.
Inserting (2.12) in (2.14), we get q x = δf 3 x + ρ 3 f 5 , consequently, from (2.17) and the fact that F ∈ H, we deduce that q ∈ H 1 L (0, 0 ) and

(2.19) q = δf 3 + ρ 3 x 0 f 5 (ξ 2 )dξ 2 .
Now, from (2.15), we deduce that θ ∈ H 1 R (0, 0 ) and

(2.20)

θ x = -(µ 1 + µ 2 ) δf 3 + ρ 3 x 0 f 5 (ξ 2 )dξ 2 -µ 2 τ 1 0 f 7 (•, ξ 1 )dξ 1 + γf 6 ,
as a consequence, we get

θ = 0 x (µ 1 + µ 2 ) δf 3 (ξ 3 ) + ρ 3 ξ3 0 f 5 (ξ 2 )dξ 2 + µ 2 τ 1 0 f 7 (ξ 3 , ξ 1 )dξ 1 -γf 6 (ξ 3 ) dξ 3 . Let (φ 1 , φ 2 ) ∈ H 1 0 (0, ) 2 
, multiplying (2.11) and (2.13) by φ 1 and φ 2 respectively, integrating over (0, ), then using formal integrations by parts, we obtain

(2.21) B((ϕ, ψ), (φ 1 , φ 2 )) = L(φ 1 , φ 2 ), ∀(φ 1 , φ 2 ) ∈ H 1 0 (0, ) 2 ,
where

B((ϕ, ψ), (φ 1 , φ 2 )) = 0 k 1 (ϕ x + ψ)(φ 1 x + φ 2 ) + k 2 ψ x φ 2 x dx
and

L(φ 1 , φ 2 ) = 0 ρ 1 f 2 φ 1 + ρ 2 f 4 φ 2 dx + δ 0 0 (µ 1 + µ 2 ) δf 3 + ρ 3 x 0 f 5 (ξ 2 )dξ 2 + µ 2 τ 1 0 f 7 (•, ξ 1 )dξ 1 -γf 6 dx.
It is easy to see that, B is a sesquilinear, continuous and coercive form on (2.13)) hold in the distributional sense, from which we deduce that (ϕ, ψ) ∈ H 2 (0, ) ∩ H 1 0 (0, ) 2 and hence, Φ ∈ D(A) is a unique solution of (2.9). Accordingly, A is an isomorphism, and since ρ (A) is open set of C (see Theorem 6.7 (Chapter III) in [START_REF] Kato | Perturbation Theory for Linear Operators[END_REF]), we easily get R(λI -A) = H for a sufficiently small λ > 0. This, together with the dissipativeness of A, imply that D (A) is dense in H and that A is m-dissipative in H (see Theorems 4.5, 4.6 in [START_REF] Pazy | Semigroups of linear operators and applications to partial differential equations[END_REF]).

H 1 0 (0, ) 2 × H 1 0 (0, )
According to Lumer-Phillips theorem (see [START_REF] Pazy | Semigroups of linear operators and applications to partial differential equations[END_REF]), Proposition 2.1 implies that the operator A generates a C 0semigroup of contractions e tA in H which gives the well-posedness of (2.5). Then, we have the following result:

Theorem 2.1. For all Φ 0 ∈ H, system (2.5) admits a unique weak solution Φ(t) = e tA Φ 0 ∈ C 0 (R + , H). Moreover, if Φ 0 ∈ D(A), then the system (2.5) admits a unique strong solution

Φ(t) = e tA Φ 0 ∈ C 0 (R + , D(A))∩ C 1 (R + , H).

Strong Stability

In this section, we will prove the strong stability of system (2.2)-(2.4). The main result of this section is the following theorem.

Theorem 3.1. The C 0 -semigroup of contraction e tA t≥0 is strongly stable in H; i.e., for all Φ 0 ∈ H, the solution of (2.5) satisfies lim t→∞ e tA Φ 0 H = 0.

According to Theorem A.2, to prove Theorem 3.1, we need to prove that the operator A has no pure imaginary eigenvalues and σ(A) ∩ iR is countable. The proof of these results is not reduced to the analysis of the point spectrum of A on the imaginary axis since its resolvent is not compact. Hence the proof of Theorem 3.1 is divided into the following two Lemmas.

Lemma 3.1. For all λ ∈ R, we have iλI -A is injective i.e., ker(iλI -A) = {0}.

Proof. From Proposition 2.1, we have 0 ∈ ρ(A). We still need to show the result for λ ∈ R * . For this aim, suppose that λ = 0 and let Φ = (ϕ, u, ψ, v, θ, q, z) ∈ D(A) such that

(3.1) AΦ = iλΦ.
Equivalently, we have the following system

u = iλϕ, (3.2) k 1 (ϕ x + ψ) x = iλρ 1 u, (3.3) v = iλψ, (3.4) k 2 ψ xx -k 1 (ϕ x + ψ) -d(θ) = iλρ 2 λv, (3.5) q x + δv x = -iλρ 3 θ, (3.6) µ 1 q + µ 2 z(•, 1) + θ x = -iλγq, (3.7) z s = -iλτ z. (3.8)
From (2.8) and (3.1), we obtain

(3.9) 0 = (iλΦ, Φ) H = (AΦ, Φ) H ≤ -(µ 1 -|µ 2 |) 0 0 |q| 2 dx ≤ 0.
Thus, we have (3.10) q = 0 in (0, 0 ), consequently, from (3.8) and the fact that z(•, 0) = q in (0, 0 ), we deduce that 

         ϕ xx = -ψ x - λ 2 ρ 1 k 1 ϕ in ( 0 , ), ψ xx = k 1 k 2 ϕ x + k 1 -λ 2 ρ 2 k 2 ψ in ( 0 , ).
Let Ψ = (ϕ, ϕ x , ψ, ψ x ) . From the above system and the regularity of ϕ and ψ, we deduce that

(3.16) Ψ x = A λ Ψ in ( 0 , ), Ψ( 0 ) = 0,
where

A λ =      0 1 0 0 -λ 2 ρ1 k1 0 0 -1 0 0 0 1 0 k1 k2 k1-λ 2 ρ2 k2 0      .
The solution of the above differential equation is given by

Ψ(x) = exp(A λ (x -0 ))Ψ( 0 ) = 0, ∀x ∈ ( 0 , ).
From the above estimation, (3.2) and (3.4), we deduce that

u = ϕ = v = ψ = 0 in ( 0 , ).
Finally, we conclude that Φ = 0.

Lemma 3.2. For all λ ∈ R, we have R(iλI -A) = H.

Proof. From Proposition 2.1, we have 0 ∈ ρ(A). We still need to show the result for λ ∈ R * . For this aim, let

F = (f 1 , f 2 , f 3 , f 4 , f 5 , f 6 , f 7 ) ∈ H, we look for Φ = (ϕ, u, ψ, v, θ, q, z) ∈ D(A) a solution of (3.17) (iλI -A)Φ = F ∈ H.
Detailing (3.17), we obtain

iλϕ -u = f 1 ∈ H 1 0 (0, ), (3.18) iρ 1 λu -k 1 (ϕ x + ψ) x = ρ 1 f 2 ∈ L 2 (0, ), (3.19) iλψ -v = f 3 ∈ H 1 0 (0, ), (3.20) iρ 2 λv -k 2 ψ xx + k 1 (ϕ x + ψ) + d(θ) = ρ 2 f 4 ∈ L 2 (0, ), (3.21) iρ 3 λθ + q x + δv x = ρ 3 f 5 ∈ L 2 (0, 0 ), (3.22) iγλq + µ 1 q + µ 2 z(•, 1) + θ x = γf 6 ∈ L 2 (0, 0 ), (3.23) iτ λz + z s = τ f 7 ∈ L 2 ((0, 0 ) × (0, 1)), (3.24)
with the following boundary condition

ϕ(0) = ϕ( ) = ψ(0) = ψ( ) = q(0) = θ( 0 ) = 0 and z(•, 0) = q in (0, 0 ).
From (3.24) and because z(•, 0) = q in (0, 0 ), we deduce that we obtain

(3.29) -ρ 1 λ 2 ϕ -k 1 (ϕ x + ψ) x = ρ 1 f 2 + iρ 1 λf 1 , (3.30) -ρ 2 λ 2 ψ -k 2 ψ xx + k 1 (ϕ x + ψ) + d 1 d dx 0 x qdy = ρ 2 f 4 + iρ 2 λf 3 + d 2 (f 6 , f 7 ),
where

d 1 (X) = (iγλ + µ 1 + µ 2 e -iτ λ )X in (0, 0 ), 0 in ( 0 , ), with X = d dx 0
x qdy or 0 x qdy, and

d 2 (f 6 , f 7 ) =      µ 2 τ 1 0 e iλτ (ξ-1) f 7 (•, ξ)dξ -γf 6 in (0, 0 ), 0 in ( 0 , ).
We set

H := [H 1 0 (0, )] 2 × H 1 R (0, 0 ), V := (ϕ, ψ, 0
x qdy), and W := (Φ, Ψ, 0

x Qdy) ∈ H. Multiplying (3.29), (3.30), and (3.28) by Φ, Ψ, and -0

x Qdy, respectively, then integrating over (0, ) and using formal integration by parts:

(3.31) (B 1 + B 2 )(V, W ) = L(W ), ∀W ∈ H, where (3.32) B 1 (V, W ) = k 1 0 (ϕ x + ψ)(Φ x + Ψ)dx + k 2 0 ψ x Ψ x dx + ρ 3 γλ 2 0 0 0 x qdy 0 x
Qdy dx 

-iρ 3 µ 1 λ 0 0 0 x qdy 0 x Qdy dx + 0 0 qQdx, (3.33) 
B 2 (V, W ) = -ρ 1 λ 2 0 ϕΦdx -ρ 2 λ 2 0 ψΨdx - 0 d 1 0 x qdy Ψ x dx -iρ 3 µ 2 λe -iτ λ
L(W ) = 0 (ρ 1 f 2 + iρ 1 λf 1 )Φdx + 0 [ρ 2 f 4 + iρ 2 λf 3 + d 2 (f 6 , f 7 )]Ψdx - 0 0 G 0 x Qdy dx.
Let H be the dual space of H, define the following operators

(3.35) B j : H -→ H V -→ B j V , j ∈ {1, 2}, such that (3.36) (B j V ) (W ) = B j (V, W ) , ∀W ∈ H.
We need to prove that the operator B 1 + B 2 is an isomorphism. For this purpose, we divide the proof into two steps:

Step 1. In this step, we prove that the operator B 2 is compact. Indeed, from (3.33) and (3.36) we have

(3.37) |B 2 (V, W )| ≤ C V [L 2 (0, )] 2 ×L 2 (0, 0) W H ,
for some positive constant C, and consequently, using the compact embedding from H into L 2 (0, ) 2 ×L 2 (0, 0 ), we deduce that B 2 is a compact operator.

The compactness property and the fact that B 1 is an isomorphism imply that the operator B 1 + B 2 is a Fredholm operator of index 0 = dim ker(B 1 + B 2 ) -dim R(B 1 + B 2 ) ⊥ . Now, following Fredholm alternative, we simply need to prove that the operator B 1 + B 2 is injective to obtain that it is an isomorphism.

Step 2. In this step, we want to prove that the operator B 1 + B 2 is injective (i.e. ker(B 1 + B 2 ) = {0}).

So, let ϕ, ψ, 0

x qdy ∈ ker(B 1 + B 2 ) which gives

(B 1 + B 2 ) ϕ, ψ, 0
x qdy , W = 0, ∀W ∈ H. Thus, we find that

(3.38)              -ρ 1 λ 2 ϕ -k 1 ( ϕ x + ψ) x = 0 -ρ 2 λ 2 ψ -k 2 ψ xx + k 1 ( ϕ x + ψ) + d 1 d dx 0 x qdy = 0, iρ 3 λ(iγλ + µ 1 + µ 2 e -iτ λ ) 0 x qdy + q x + iδλ ψ x = 0, ϕ(0) = ϕ( ) = ψ(0) = ψ( ) = q(0) = 0.
Therefore, the vector Φ defined by Φ = ϕ, iλ ϕ, ψ, iλ ψ, (iγλ + µ 1 + µ 2 e -iτ λ ) 0

x qdy, q, qe -iτ λs belongs to D(A) and satisfies iλ Φ -A Φ = 0, and consequently Φ ∈ ker(iλI -A). Hence, Lemma 3.1 yields Φ = 0 as a result ϕ = ψ = 0 and ker(B

1 + B 2 ) = {0}.
Steps 1 and 2 guarantee that the operator B 1 + B 2 is an isomorphism. Furthermore, it is easy to see that the operator L is an antilinear and continuous form on H. Therefore, (3.31) admits a unique solution V ∈ H. In (3.31), by taking the test functions W ∈ [D(0, )] 2 × D(0, 0 ), we see that ((3.28), (3.29), (3.30)) holds in distributional sense, hence q ∈ H 1 L (0, 0 ) and ϕ, ψ ∈ H 2 (0, ) ∩ H 1 0 (0, ). Moreover, from (3.25) and (3.27), we deduce that z ∈ L 2 ((0, 0 ); H 1 (0, 1)) and θ ∈ H 1 R (0, 0 ). Finally, we claim that

Φ = ϕ, iλϕ -f 1 , ψ, iλψ -f 3 , θ, q, z ∈ D(A),
is the unique solution of (3.2).

Proof of Theorem 3.1. From Lemma 3.1, the operator A has no pure imaginary eigenvalues (i.e. σ p (A)∩iR = ∅). Moreover, from Lemma 3.1 and Lemma 3.2, iλI -A is bijective for all λ ∈ R and since A is closed, we conclude, with the help of the closed graph theorem, that iλI -A is an isomorphism for all λ ∈ R, hence σ(A) ∩ iR = ∅.

Polynomial Stability

In this section, we will prove the polynomial stability of system (2.2)-(2.4). The main result of this section is the following theorem. Theorem 4.1. For all Φ 0 ∈ D(A), there exists a constant C > 0 independent of Φ 0 such that the energy of system (2.2)-(2.4) satisfies the following estimation

E(t) ≤ C t Φ 0 2 D(A) , ∀ t > 0.
According to Theorem A. 

1 λ 2 (iλI -A) -1 L(H) < ∞.
As condition (4.1) was checked in Section 3, we only need to prove the second condition. Condition (4.2) is proved by a contradiction argument. For this purpose, suppose that (4.2) is false, then there exists

{(λ n , Φ n := (ϕ n , u n , ψ n , v n , θ n , q n , z n ) )} n≥1 ⊂ R * + × D(A) with (4.3) λ n → ∞ as n → ∞ and Φ n H = 1, ∀n ≥ 1, such that (4.4) (λ n ) 2 (iλ n I -A)Φ n = F n := (f 1 n , f 2 n , f 3 n , f 4 n , f 5 n , f 6 n , f 7 n ) → 0 in H as n → ∞.
For simplicity, we drop the index n. Equivalently, from (4.4), we have

iλϕ -u = λ -2 f 1 , (4.5) iρ 1 λu -k 1 (ϕ x + ψ) x = ρ 1 λ -2 f 2 , (4.6) iλψ -v = λ -2 f 3 , (4.7) iρ 2 λv -k 2 ψ xx + k 1 (ϕ x + ψ) + d(θ) = ρ 2 λ -2 f 4 , (4.8) iρ 3 λθ + q x + δv x = ρ 3 λ -2 f 5 , (4.9) iγλq + µ 1 q + µ 2 z(•, 1) + θ x = γλ -2 f 6 , (4.10) iτ λz + z s = τ λ -2 f 7 . (4.11)
Inserting (4.5) in (4.6), (4.7) in (4.8) and (4.9), we get

ρ 1 λ 2 ϕ + k 1 (ϕ x + ψ) x = -ρ 1 λ -2 f 2 -iρ 1 λ -1 f 1 , (4.12) ρ 2 λ 2 ψ + k 2 ψ xx -k 1 (ϕ x + ψ) -d(θ) = -ρ 2 λ -2 f 4 -iρ 2 λ -1 f 3 , (4.13) iρ 3 λθ + q x + iδλψ x = ρ 3 λ -2 f 5 + δλ -2 f 3 x . (4.14)
Here we will check condition (4.2) by finding a contradiction with (4.3) i.e. by showing Φ H = o(1). For clarity, we divide the proof into three Lemmas. From the above system and the fact that Φ H = 1 and F H = o(1), we infer that (4.15) λϕ L 2 (0, ) , λψ L 2 (0, ) , ϕ x L 2 (0, ) , ψ x L 2 (0, ) , θ L 2 (0, 0 ) = O(1),

ϕ xx L 2 (0, ) , ψ xx L 2 (0, ) = O(λ).
Also, for all Ω ⊆ (0, ), we have (4.16)

ψ xx L 2 (Ω) ≤ O(λ) λψ L 2 (Ω) + O(1).
Lemma 4.1. The solution Φ = (ϕ, u, ψ, v, θ, q, z) ∈ D(A) of (4.5)-(4.11) satisfies the following estimations

0 0 |q| 2 dx = o(λ -2 ), 0 0 1 0 |z| 2 dsdx = o(λ -2 ), 0 0 |z(•, 1)| 2 dx = o(λ -2 ), 0 0 |θ x | 2 dx = o(1), 0 0 |θ| 2 dx = o(λ -1 ).
Proof. First, taking the inner product of (4.4) with Φ in H and using (2.8), we get

0 0 |q| 2 dx ≤ λ -2 (µ 1 -|µ 2 |) -1 (F, Φ) H ≤ λ -2 (µ 1 -|µ 2 |) -1 F H Φ H = o(λ -2 ).
From (4.11) and since z(•, 0) = q in (0, 0 ), we have

z = qe -iτ λs + τ λ -2
s 0 e iλτ (ξ-s) f 7 (•, y)dy in (0, 0 ) × (0, 1), consequently, by using Cauchy-Schwarz's inequalities, we deduce that

0 0 1 0 |z| 2 dsdx ≤ 2 0 0 |q| 2 dx + 2τ 2 λ -4 0 0 1 0 s 0 |f 7 (•, y)|dy 2 dsdx ≤ 2 0 0 |q| 2 dx + 2τ 2 λ -4 0 0 1 0 s s 0 |f 7 (•, y)| 2 dydsdx ≤ 2 0 0 |q| 2 dx + 2τ 2 λ -4 1 0 sds 0 0 1 0 |f 7 (•, y)| 2 dydx = 2 0 0 |q| 2 dx + τ 2 λ -4 0 0 1 0 |f 7 (•, y)| 2 dydx = o(λ -2 ),
and

0 0 |z(•, 1)| 2 dx = 0 0 qe -iτ λ + τ λ -2 1 0 e iλτ (ξ-1) f 7 (•, y)dy 2 dx ≤ 2 0 0 |q| 2 dx + 2τ 2 λ -4 0 0 1 0 |f 7 (•, y)|dy 2 dx ≤ 2 0 0 |q| 2 dx + 2τ 2 λ -4 0 0 1 0 |f 7 (•, y)| 2 dydx = o(λ -2 ).
Now, from (4.9), we obtain

0 0 |θ x | 2 dx = 0 0 -iγλq -µ 1 q -µ 2 z(•, 1) + γλ -2 f 6 2 dx ≤ (γ 2 λ 2 + µ 2 1 ) 0 0 |q| 2 dx + µ 2 2 0 0 |z(•, 1)| 2 dx + γ 2 λ -4 0 0 |f 6 | 2 dx = o(1).
Finally, multiplying (4.13) by (ρ 3 λ) -1 θ, integrating over (0, 0 ), using integration by parts:

0 0 |θ| 2 dx = (ρ 3 λ) -1 0 0 qθ x dx -iδ 0 0 ψθ x dx + λ -2 0 0 (ρ 3 f 5 + δf 3 x )θdx ≤ (ρ 3 λ) -1 q L 2 (0, 0) θ x L 2 (0, 0) + δ ψ L 2 (0, 0 ) =O(λ -1 ) θ x L 2 (0, 0) + λ -2 (ρ 3 + δ) F H θ L 2 (0, 0 ) =O (1) 
= o(λ -1 ).

Lemma 4.2. The solution Φ = (ϕ, u, ψ, v, θ, q, z) ∈ D(A) of (4.5)-(4.11) satisfies the following estimations

ψ x 2 L 2 (ω4) = o λ -2 and λψ 2 L 2 (ω5) = o(λ -2 ).
Proof. To prove this Lemma, for some j, k ∈ N, 1 ≤ j ≤ 7, and 0 < ε < 0 14 , we need to define the following intervals:

ω k = (kε, 0 -kε), ∀ j -1 ≤ k ≤ j
and as well we need to fix functions h j ∈ C 1 (ω 0 ) such that 0 ≤ h j (x) ≤ 1, for all x ∈ ω 0 and

h j (x) = 1 if x ∈ ω j , 0 if x ∈ ω 0 \ω j-1 .
For simplicity, let us divide the proof into four steps:

Step1. In this step, we prove: (4.17)

ψ x 2 L 2 (ωj ) ≤ max ρ 3 δ max x∈ωj |h j (x)|, ρ 3 δ , 1 δ max x∈ωj |h j (x)|, 1 δ , 1 θ L 2 (ωj-1) + θ x L 2 (ωj-1) ψ L 2 (ωj-1) + λ -1 ψ x L 2 (ωj-1) + ψ xx L 2 (ωj-1) q L 2 (ωj-1) + λ -3 F H ψ x L 2 (ωj-1) .
For this aim, Multiplying (4.14) by δ -1 λ -1 h j ψ x and integrating over ω j-1 , we get (4.18)

ωj-1 h j |ψ x | 2 dx = -i ρ 3 δ ωj-1 h j θψ x dx - 1 δλ ωj-1 h j q x ψ x dx + λ -3 ωj-1 h j (ρ 3 δ -1 f 5 + f 3 x )ψ x dx .
Since h j (x) = 0, ∀x ∈ ∂ω j-1 , then integration by parts and Cauchy-Schwarz's inequality yield, ωj-1

h j θψ x dx = ωj-1 (h j θ + h j θ x )ψdx ≤ max x∈ωj |h j (x)| θ L 2 (ωj-1) + θ x L 2 (ωj-1) ψ L 2 (ωj-1)
and ωj-1

h j q x ψ x dx = ωj-1 (h j ψ x + h j ψ xx )qdx ≤ max x∈ωj |h j (x)| ψ x L 2 (ωj-1) + ψ xx L 2 (ωj-1) q L 2 (ωj-1) .
Moreover, by Cauchy-Schwarz's inequality, we get ωj-1

h j (ρ 3 δ -1 f 5 + f 3 x )ψ x dx ≤ ρ 3 δ -1 + 1 F H ψ x L 2 (ωj-1) .
Using (4.18), the above inequalities, and the fact that

ψ x 2 L 2 (ωj ) ≤ h j ψ x 2 L 2 (ωj-1)
, we deduce (4.17).

Step 2. In this step, we prove:

(4.19) λψ 2 L 2 (ωj ) ≤ max k 2 ρ -1 2 , k 2 ρ -1 2 max x∈ωj |h j (x)|, k 1 ρ -1 2 max x∈ωj |h j (x)|, k 1 ρ -1 2 , δρ -1 2 , ρ 2 ψ x 2 L 2 (ωj-1)
+ ψ x L 2 (ωj-1) + θ x L 2 (ωj-1) ψ L 2 (ωj-1)

+ ψ L 2 (ωj-1) + ψ x L 2 (ωj-1) ϕ L 2 (ωj-1) + ψ 2 L 2 (ωj-1) + (λ -2 + λ -1 ) F H ψ L 2 (ωj-1) .
So, multiplying (4.13) by ρ -1 2 h j ψ and integrating over ω j-1 , we infer (4.20)

ωj-1 h j |λψ| 2 dx = -k 2 ρ -1 2 ωj-1 h j ψ xx ψdx + k 1 ρ -1 2 ωj-1 h j (ϕ x + ψ)ψdx + δρ -1 2 ωj-1 h j θ x ψdx -ρ 2 ωj-1 h j (λ -2 f 4 + iλ -1 f 3 )ψdx .
Using integrations by parts and Cauchy-Schwarz's inequality, we get ωj-1

h j ψ xx ψdx = - ωj-1 h j |ψ x | 2 dx - ωj-1 h j ψ x ψdx ≤ ψ x 2 L 2 (ωj-1) +max x∈ωj |h j (x)| ψ x L 2 (ωj-1) ψ L 2 (ωj-1)
and ωj-1

h j (ϕ x + ψ)ψdx = - ωj-1 (h j ψ + h j ψ x )ϕdx + ωj-1 h j |ψ| 2 dx ≤ max x∈ωj |h j (x)| ψ L 2 (ωj-1) + ψ x L 2 (ωj-1) ϕ L 2 (ωj-1) + ψ 2 L 2 (ωj-1) .
Moreover, owing to Cauchy-Schwarz's inequality, we obtain ωj-1

h j θ x ψdx ≤ θ x L 2 (ωj-1) ψ L 2 (ωj-1)
and ωj-1

h j (λ -2 f 4 + iλ -1 f 3 )ψdx ≤ λ -2 + λ -1 F H ψ L 2 (ω j-1)
.

Using (4.20) and the above inequalities, we deduce (4.19).

Step 3. In this step, we prove that 

(4.21) λψ 2 L 2 (ω3) = O λ -2 and ψ xx 2 L 2 (ω3) = O(1
k 2 ρ 3 δ -1 I 1 -ik 2 (δλ) -1 I 2 + k 2 ω2 h 3 |ψ x | 2 dx = -ik 2 ω2 h 3 (δ -1 ρ 3 λ -3 f 5 + iλ -3 f 3 x )ψ x dx and (4.25) ρ 2 ω2 h 3 |λψ| 2 dx + k 2 I 3 -k 1 ω2 h 3 (ϕ x + ψ)ψdx -δ ω2 h 3 θ x ψdx = -ρ 2 ω2 h 3 (λ -2 f 4 + iλ -1 f 3 )ψdx,
where

I 1 = ω2 h 3 θψ x dx, I 2 = ω2 h 3 q x ψ x dx and I 3 = ω2 h 3 ψ xx ψdx.
Using integration by parts, I 1 , I 2 , and I 3 become

I 1 = - ω2 h 3 θ x ψdx - ω2 h 3 θψdx, I 2 = - ω2 h 3 qψ xx dx - ω2 h 3 qψ x dx and (4.26) I 3 = - ω2 h 3 |ψ x | 2 dx - ω2 h 3 ψ x ψdx
Now, Cauchy-Schwarz's inequality yields

|I 1 | ≤ h 3 θ x L 2 (ω2) h 3 ψ L 2 (ω2) =:A1 + max x∈ω3 |h 3 (x)| θ L 2 (ω2) ψ L 2 (ω2) .
In view of (4.13), we have

k 2 ψ xx = -ρ 2 λ 2 ψ + k 1 (ϕ x + ψ) + δθ x -ρ 2 λ -2 f 4 + iρ 2 λ -1 f 3 in ω 2 .
Hence,

k 2 I 2 = ρ 2 λ 2 ω2 h 3 qψdx -k 1 ω2 h 3 q(ϕ x + ψ)dx -δ 2 h 3 qθ x dx + ρ 2 ω2 h 3 q(λ -2 f 4 -iλ -1 f 3 )dx -k 2 ω2 h 3 qψ x dx.
Consequently, we obtain

k 2 λ -1 |I 2 | ≤ ρ 2 h 3 q L 2 (ω2) h 3 λψ L 2 (ω2) =:A2 +k 1 λ -1 q L 2 (ω2) ϕ x L 2 (ω2) + ψ L 2 (ω2) + δλ -1 q L 2 (ω2) θ x L 2 (ω2) + ρ 2 (λ -3 + λ -2 ) q L 2 (ω2) F H + k 2 λ -1 max x∈ω3 |h 3 (x)| q L 2 (ω2) ψ x L 2 (ω2) .
Adding (4.24) and (4.25), then using (4.26), we infer

ρ 2 √ h 3 λψ 2 L 2 (ω2) = - k 2 ρ 3 δ I 1 + ik 2 δλ I 2 + k 2 ω2 h 3 ψ x ψdx + k 1 ω2 h 3 (ϕ x + ψ)ψdx + δ ω2 h 3 θ x ψdx ≤ k 2 ρ 3 δ -1 |I 1 | + δ -1 k 2 λ -1 |I 2 | + k 2 max x∈ω3 |h 3 (x)| ψ x L 2 (ω2) ψ L 2 (ω2) + k 1 h 3 ϕ x L 2 (ω2) h 3 ψ L 2 (ω2) =:A3 +k 1 ψ 2 L 2 (ω2) + δ h 3 θ x L 2 (ω2) h 3 ψ L 2 (ω2) =:A4
Thus, we get

ρ 2 √ h 3 λψ 2 L 2 (ω2) ≤ k 2 ρ 3 δ -1 A 1 + k 2 ρ 3 δ -1 max x∈ω3 |h 3 (x)| θ L 2 (ω2) ψ L 2 (ω2) + δ -1 A 2 + δ -1 k 1 λ -1 q L 2 (ω2) ϕ x L 2 (ω2) + ψ L 2 (ω2) + λ -1 q L 2 (ω2) θ x L 2 (ω2) + δ -1 ρ 2 (λ -3 + λ -2 ) q L 2 (ω2) F H + δ -1 k 2 λ -1 max x∈ω3 |h 3 (x)| q L 2 (ω2) ψ x L 2 (ω2) + k 2 max x∈ω3 |h 3 (x)| ψ x L 2 (ω2) ψ L 2 (ω2) + A 3 + k 1 ψ 2 L 2 (ω2) + A 4 ,
as a consequence of (4.15), Lemma 4.1, (4.22), (4.23), we deduce that

ρ 2 h 3 λψ 2 L 2 (ω2) ≤ k 2 ρ 3 δ -1 A 1 + δ -1 A 2 + A 3 + A 4 + o(λ -2
). Using Young's inequalities, we obtain

                         A 1 ≤ 1 2c 1 (λ) h 3 θ x 2 L 2 (ω2) + c 1 (λ) 2 h 3 ψ 2 L 2 (ω2) , A 2 ≤ ρ 2 2c 2 h 3 q 2 L 2 (ω2) + c 2 ρ 2 2 h 3 λψ L 2 (ω2) , A 3 ≤ k 2 1 2c 3 (λ)ρ 2 h 3 ϕ x 2 L 2 (ω2) + ρ 2 c 3 (λ) 2 h 3 ψ 2 L 2 (ω2) , A 4 ≤ δ 2 2c 4 (λ)ρ 2 h 3 θ x 2 L 2 (ω2) + ρ 2 c 4 (λ) 2 h 3 ψ 2 L 2 (ω2) ,
where c 1 (λ), c 2 , c 3 (λ), c 4 (λ) are positive constants to be determined. Hence we can infer that Step 4: In this step, we finish the proof, with this intention, take j = 4 in (4.17 Proof. First, multiplying (4.13) by h 6 ϕ x and integrating over ω 5 , then using integration by parts, Cauchy-Schwarz's inequality, (4.15) and Lemmas 4.1-4.2, we deduce that

ρ 2 √ h 3 λψ 2 L 2 (ω2) ≤ k 2 ρ 3 δ -1 2c 1 (λ) h 3 θ x 2 L 2 (ω2) + k 2 ρ 3 δ -1 c 1 (λ) 2 h 3 ψ 2 L 2 (ω2) + δ -1 ρ 2 2c 2 h 3 q 2 L 2 (ω2) + c 2 ρ 2 δ -1 2 h 3 λψ 2 L 2 (ω2) + k 2 1 2c 3 (λ)ρ 2 h 3 ϕ x 2 L 2 (ω2) + ρ 2 c 3 (λ) 2 h 3 ψ 2 L 2 (
k 1 ω5 h 6 |ϕ x | 2 dx = ω5 h 6 (ρ 2 λ 2 ψ + k 2 ψ xx -k 1 ψ -δθ x + ρ 2 λ -2 f 4 + iρ 2 λ -1 f 3 )ϕ x dx = ω5 h 6 (ρ 2 λ 2 ψ -k 1 ψ -δθ x + ρ 2 λ -2 f 4 + iρ 2 λ -1 f 3 )ϕ x dx -k 2 ω5 (h 6 ϕ x + h 6 ϕ xx )ψ x dx ≤ max (ρ 2 , k 1 , δ) λ 2 ψ L 2 (ω5) + ψ L 2 (ω5) + θ x L 2 (ω5) + (λ -2 + λ -1 ) F H ϕ x L 2 (ω5)
+ k 2 max max Thus, the first estimation in Lemma 4.3 is proved . Now, multiplying (4.12) by h 7 ϕ and integrating over ω 6 , then using integration by parts, Cauchy-Schwarz's inequality, (4.15), Lemmas 4.1-4.2, the first estimation of Lemma 4.3, we obtain

ρ 1 ω6 h 7 |λϕ| 2 dx = ω6 h 7 (-k 1 (ϕ x + ψ) x -ρ 1 λ -2 f 2 -iρ 1 λ -1 f 1 )ϕdx = ω6 h 7 (-ρ 1 λ -2 f 2 -iρ 1 λ -1 f 1 )ϕdx + k 1 ω6 (h 7 ϕ + h 7 ϕ x )(ϕ x + ψ)dx ≤ ρ 1 (λ -2 + λ -1 ) F H ϕ L 2 (ω6) + k 1 max max x∈ω7 |h 7 (x)|, 1 ϕ L 2 (ω6) + ϕ x L 2 (ω6) ϕ x L 2 (ω6) + ψ L 2 (ω6)
= o(1).

Finally, the above estimation finished the proof. 

  (3.11) z = qe -iλτ s = 0 in (0, 0 ) × (0, 1).Inserting(3.10) and (3.11) in (3.6), we get θ x = 0 in (0, 0 ) and d(θ) = 0 in (0, ), since θ( 0 ) = 0, we infer (3.12) θ = 0 in (0, 0 ). Now, (3.4) and (3.6) imply that (3.13) v x = ψ x = 0 in (0, 0 ). Since ψ(0) = v(0) = 0, then (3.14) v = ψ = 0 in (0, 0 ), From (3.5), (3.12), (3.14), we obtain ϕ x = 0 in (0, 0 ), hence, using ϕ(0) = 0 and (3.2), we get u = ϕ = 0 in (0, 0 ). Inserting (3.2) and (3.4) in (3.3) and (3.5), we obtain (3.15)

( 3 . 0 e 1 0exqdy + µ 2 τ 0 x 1 0eG = -iρ 3 µ 2 τ λ 0 x 1 0ex f 6

 301116 25) z = qe -iτ λs + τ s iλτ (ξ-s) f 7 (•, ξ)dξ.Consequently, from (3.23), we deduce that (3.26)θ x = -(iγλ + µ 1 + µ 2 e -iτ λ )q -µ 2 τ iλτ (ξ-1) f 7 (•, ξ)dξ + γf 6 .Moreover, since θ( 0 ) = 0, then we get(3.27) θ = (iγλ + µ 1 + µ 2 e -iτ λ ) 0 iλτ (ξ-1) f 7 (y, ξ)dξdy -γ 0 x f 6 dy.Inserting (3.20) and the above equation in (3.22), we get(3.28) iρ 3 λ(iγλ + µ 1 + µ 2 e -iτ λ ) 0 x qdy + q x + iδλψ x = G,where iλτ (ξ-1) f 7 (y, ξ)dξdy + iρ 3 γλ0 dy + ρ 3 f 5 + δf 3 x .Inserting(3.18) in (3.19), (3.20) and (3.26) in (3.21), then using the fact that

2 L 2 Lemma 4 . 3 . 2 L 2

 224322 ), then using (4.21),(4.15) and Lemma 4.1, we obtain ψ x (ω4) = o(λ -2 ). Finally, by taking j = 5 in (4.19) and by using the above estimation with (4.15) and Lemma 4.1, we getλψ 2 L 2 (ω5) = o(λ -2). The solution Φ = (ϕ, u, ψ, v, θ, q, z) ∈ D(A) of (4.5)-(4.11) satisfies the following estimations ϕ x (ω6) = o(1) and λϕ 2 L 2 (ω7) = o(1).

x∈ω6 |h 6

 6 (x)|, 1 ϕ x L 2 (ω5) + ϕ xx L 2 (ω5) ψ x L 2 (ω5) = o(1).

Proof of Theorem 4 . 1 : 0 χ ρ 1 |λϕ| 2 + k 1 |ϕ x | 2 x dx - 2k 1 0χψ x ϕ x dx = 2 0χ ρ 1 λ

 41022121 First, from Lemmas 4.2-4.3, we deduce that (4.27)ω7 ρ 1 |λϕ| 2 + k 1 |ϕ x | 2 + ρ 2 |λψ| 2 + k 2 |ψ x | 2 dx = o(1).Now, let us fix a function χ ∈ C 1 ([0, ]) such that χ(0) = χ( ) = 0. Multiplying (4.12) and (4.13) by -2χϕ x and -2χψ x , respectively and integrating over (0, ), then taking the real part, yield--2 f 2 + iρ 1 λ -1 f 1 ϕ x dx

  (δλ) -1 h 3 ψ x and h 3 ψ, respectively, and integrating over ω 2 , we have(4.24) 

			).
	First, taking j = 1 in (4.17), using Lemma 4.1, and (4.15), we get
	(4.22)	ψ x	2 L 2 (ω1) = o(λ -1 ).
	Now, take j = 2 in (4.19) and use the above estimation with Lemma 4.1 and (4.15), we deduce that
	(4.23)	λψ 2 L 2 (ω2) = o(λ -1 ).
	Multiplying (4.13) and (4.14) by -ik 2		

  From the above estimation, Lemma 4.1, (4.15), and (4.16), we deduce thatλψ 2 L 2 (ω3) ≤ h 3 λψ 2 L 2 (ω2) = O(λ -2 ) and ψ xx 2 L 2 (ω3) = O(1).

										ω2)
			+	δ 2 2c 4 (λ)ρ 2		h 3 θ x	2 L 2 (ω2) +	ρ 2 c 4 (λ) 2	h 3 ψ 2 L 2 (ω2) + o(λ -2 ).
	Now, taking								
					c 1 (λ) =	λ 2 δρ 2 4k 2 ρ 3	, c 2 =	δ 4	, c 3 (λ) = c 4 (λ) =	λ 2 4	,
	we get								
	ρ 2 2	h 3 λψ 2 L 2 (ω2) ≤	2 ρ 2 λ 2	(k 2 ρ 3 ) 2 δ 2	+ δ 2 θ x	2 L 2 (ω2) +	2ρ 2 δ 2 q 2 L 2 (ω2) +	2k 2 1 λ 2 ρ 2	ϕ x

L 2 (ω2) + o(λ -2 ).

and

Adding the above equations, then using integration by parts, we get

Using Cauchy-Schwarz's inequality in the above equation, we deduce that

,

we deduce that

(0, )\ω7 

Now, from (4.27) and (4.28), we obtain (4.29)

Finally, from the above estimation and Lemma 4.1, we deduce that Φ H = o(1).

Appendix A. Some notions and stability theorems

In order to make this paper more self-contained, we recall in this short appendix some notions and stability results used in this work.

Definition A.1. Assume that A is the generator of C 0 -semigroup of contractions e tA t≥0 on a Hilbert space H. The C 0 -semigroup e tA t≥0 is said to be (1) Strongly stable if lim t→+∞ e tA x 0 H = 0, ∀ x 0 ∈ H.
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(2) Exponentially (or uniformly) stable if there exists two positive constants M and ε such that

(3) Polynomially stable if there exists two positive constants C and α such that

To show the strong stability of a C 0 -semigroup we rely on the following result due to Arendt-Batty [START_REF] Arendt | Tauberian theorems and stability of one-parameter semigroups[END_REF].

Theorem A.2. Assume that A is the generator of a C 0 -semigroup of contractions e tA t≥0 on a Hilbert space H. If A has no pure imaginary eigenvalues and σ (A) ∩ iR is countable, where σ (A) denotes the spectrum of A, then the C 0 -semigroup e tA t≥0 is strongly stable. Finally for the polynomial stability of a C 0 -semigroup of contractions we use the following result due to Borichev and Tomilov [START_REF] Borichev | Optimal polynomial decay of functions and operator semigroups[END_REF] (see also [START_REF] Batty | Non-uniform stability for bounded semi-groups on Banach spaces[END_REF] and [START_REF] Liu | Characterization of polynomial decay rate for the solution of linear evolution equation[END_REF]).