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We investigate a general optimization problem with a linear objective in which the coefficients are uncertain and the uncertainty is represented by a belief function. We consider five common criteria to compare solutions in this setting: generalized Hurwicz, strong dominance, weak dominance, maximality and E-admissibility. We provide characterizations for the non-dominated solutions with respect to these criteria when the focal sets of the belief function are Cartesian products of compact sets. These characterizations correspond to established concepts in optimization. They make it possible to find non-dominated solutions by solving known variants of the deterministic version of the optimization problem or even, in some cases, simply by solving the deterministic version.

Introduction

Our paper focuses on a very general class of optimization problems where the objective function is linear (LOP). LOP covers a broad range of practical problems in diverse areas such as transportation, scheduling, network design, and profit planning, to name only a few important domains. In many realistic situations, one often encounters uncertainty on the coefficients of the objective function. Various approaches have been developed to model the uncertainty on coefficients, including robust optimization frameworks that represent uncertainty using discrete scenario sets [START_REF] Kouvelis | Robust discrete optimization and its applications[END_REF][START_REF] Dias | Shortest path problems with partial information: models and algorithms for detecting dominance[END_REF][START_REF] Guillaume | Robust optimization with scenarios using random fuzzy sets[END_REF] and intervals [START_REF] Inuiguchi | Minimax regret solution to linear programming problems with an interval objective function[END_REF][START_REF] Kasperski | Discrete optimization with interval data[END_REF][START_REF] Dias | Shortest path problems with partial information: models and algorithms for detecting dominance[END_REF][START_REF] Kouvelis | Robust discrete optimization and its applications[END_REF][START_REF] Chanas | The computational complexity of the criticality problems in a network with interval activity times[END_REF].

In the former representation, all possible realizations or scenarios of coefficients are explicitly listed to obtain the so-called scenario set. In the interval representation, each coefficient is constrained to lie within a given closed interval, and the scenario set is the Cartesian product of these intervals.

In this paper, we investigate the case where the uncertainty on the coefficients is evidential, i.e., modelled by a belief function [START_REF] Shafer | A mathematical theory of evidence[END_REF]. More specifically, we assume that each so-called focal set of the considered belief function is a Cartesian product of compact sets, with each compact set describing possible values of each coefficient. Such a belief function is a direct and natural generalization of the interval representation, which arises when intervals are extended to compact sets and probabilities are assigned to scenario sets. It can be illustrated as follows: in a network with three cities A, B, and C, under good weather conditions, it may take 20 to 30 minutes to travel from A to B, and 10 to 20 minutes to travel from B to C; however under bad weather conditions, the travel times from A to B (resp. B to C) takes 30 to 40 minutes (resp. 15 to 25 minutes) and the forecast tells us that the probability of good weather (resp. bad weather) is 0.8 (resp. 0.2).

In the presence of evidential uncertainty on coefficients, the notion of best, i.e., optimal, solutions becomes ill-defined. In our preliminary work1 [START_REF] Vu | On modelling and solving the shortest path problem with evidential weights[END_REF], which considered the shortest path problem (SPP) where each path has an evidential weight, we drew inspiration from [START_REF] Dias | Shortest path problems with partial information: models and algorithms for detecting dominance[END_REF] and utilized decision theory under evidential uncertainty [START_REF] Denoeux | Decision-making with belief functions: a review[END_REF], to define the best paths as those that are non-dominated with respect to some preference relation over paths built on the notions of their lower and upper expected weights. Specifically, we studied the cases of the preference relations obtained from three common criteria for decision-making, namely generalized Hurwicz, strong dominance, and weak dominance.

Besides [START_REF] Vu | On modelling and solving the shortest path problem with evidential weights[END_REF], optimization problems under evidential uncertainty were explored recently in [START_REF] Helal | The capacitated vehicle routing problem with evidential demands[END_REF][START_REF] Tedjini | The vehicle routing problem with time windows and evidential service and travel times: A recourse model[END_REF][START_REF] Guillaume | Robust optimization with scenarios using random fuzzy sets[END_REF]. The authors of [START_REF] Helal | The capacitated vehicle routing problem with evidential demands[END_REF][START_REF] Tedjini | The vehicle routing problem with time windows and evidential service and travel times: A recourse model[END_REF] considered various variants of the vehicle routing problem with different uncertainty factors. In the resulting optimization problems, solutions had evidential costs and were compared according to their upper expected costs, i.e., using a particular case of the generalized Hurwicz criterion. Guillaume et al. [START_REF] Guillaume | Robust optimization with scenarios using random fuzzy sets[END_REF] considered the LOP problem with evidential coefficients, where each focal set of the belief function on the coefficients can be any discrete scenario set. They defined best solutions as the non-dominated ones according to the generalized Hurwicz criterion and they provided complexity results regarding the problem of finding such solutions.

In this paper, we expand upon the work [START_REF] Vu | On modelling and solving the shortest path problem with evidential weights[END_REF] by investigating a much broader class of problems, i.e., LOP, and by incorporating two additional well-known criteria from the literature [START_REF] Augustin | Introduction to imprecise probabilities[END_REF]: maximality and E-admissibility. More specifically, this paper's primary contributions are summarized as follows:

1. We propose models for LOPs in which the coefficients in the objective are subject to evidential uncertainty. Here, each feasible solution is regarded as an act, which is a fundamental concept in decision theory. These models are based on five common criteria from the literature for comparing acts, namely generalized Hurwicz, strong dominance, weak dominance, maximality, and E-admissibility. A key feature of these models is that they make use of the expressive nature of the belief function framework as they allow for incomparability of some solutions due to a lack of information.

2. We provide a characterization for the non-dominated solutions of each criterion, given our assumption about the focal sets. These characterizations correspond to established concepts of optimization. This makes it possible to find non-dominated solutions by solving known variants of the deterministic version of the LOP or even, in some cases (e.g., the case of the generalized Hurwicz criterion), simply by solving its deterministic version. For instance, we can use SPP-related algorithms to efficiently find non-dominated solutions for the five criteria in the case of the SPP. In our opinion, this is the main advantage of our works compared to [START_REF] Helal | The capacitated vehicle routing problem with evidential demands[END_REF][START_REF] Tedjini | The vehicle routing problem with time windows and evidential service and travel times: A recourse model[END_REF][START_REF] Guillaume | Robust optimization with scenarios using random fuzzy sets[END_REF],

where finding non-dominated solutions with respect to the Hurwicz criterion was much harder in general than solving the deterministic version.

We note that the idea of using decision theory under uncertainty, and specifically maximality and a special case of the generalized Hurwicz criterion, to formalize optimization problems under (severe) uncertainty was first proposed in [START_REF] Quaeghebeur | Constrained optimization problems under uncertainty with coherent lower previsions[END_REF], where the very general theory of coherent lower previsions is used as the uncertainty representation framework. However, the resulting models were studied in detail and connected to their deterministic counterparts only in a few special uncertainty cases, such as the case of intervals (vacuous previsions); the case of the evidential representation of uncertainty was not investigated.

The rest of this paper is organized as follows. Sections 2 and 3 present necessary background material on the LOP and belief function theory, respectively. Sections 4 and 5 are devoted to the formalization and resolution of the LOP with evidential coefficients, respectively. The paper ends with a conclusion in Section 6.

Optimization problems with a linear objective (LOP)

Many real-world problems have variables that are either integers or a mixture of integers and real numbers. In this paper, we mainly focus on the following optimization problem:

max / min c T x s.t. x ∈ X ⊆ Z n1 ≥0 × R n2 ≥0 with n 1 + n 2 = n. (LOP)
where X ̸ = ∅ is a set of feasible solutions and c is a vector of objective function

coefficients c i ∈ R.
A very important class of Problem LOP is linear mixed-integer programming (MIP) problems:

max / min c T x s.t. M x ≤ b, x ∈ Z n1 ≥0 × R n2 ≥0 . (MIP)
where M is a m × n matrix and b is a m-vector. We require that M and b have rational entries [START_REF] Wolsey | Integer and combinatorial optimization[END_REF]. A practical instance of Problem MIP is the uncapacitated lot sizing problem (Example 1).

Example 1 (Uncapacitated lot sizing). The problem is to decide on a production plan for an n-period horizon for a single product. The parameters of the problem are:

• f t , which is the fixed cost of producing in period t;

• p t , which is the production cost in period t;

• h t , which is the unit storage cost in period t;

• d t , which is the demand in period t.

The problem can be modelled by the following optimization problem:

min n t=1 p t x t + n t=1 h t s t + n t=1 f t y t s t-1 + x t = d t + s t (t = 1, 2, . . . , n) x t ≤ M y t (t = 1, 2, . . . , n) s 0 = 0, s t , x t ≥ 0, y t ∈ {0, 1} (t = 1, 2, . . . , n) (ULS)
where the decision variables are:

• x t , which is the amount produced in period t;

• s t , which is the stock at the end of period t;

• y t = 1 if production occurs in t and y t = 0 otherwise; and where M is a big constant value.

Problem LOP is referred to as a 0-1 combinatorial optimization problem (01COP) when X ⊆ {0, 1} n :

max / min c T x s.t. x ∈ X ⊆ {0, 1} n . (01COP)
This class includes many important problems. Below, we provide two of the most notable examples.

Example 2 (The shortest path problem (SPP)). Let G = (V, A) be a directed graph with set of vertices V , set of arcs A and weight c ij ≥ 0 for each arc (i, j) in A. Let s and t be two vertices in V called the source and the destination, respectively.

Finding a s-t shortest path, i.e., a s-t path of lowest weight, can be modelled as the following optimization problem:

min (i,j)∈A c ij x ij (s,i)∈A x si - (j,s)∈A x js = 1 (t,i)∈A x ti - (j,t)∈A x jt = -1 (k,i)∈A x ki - (j,k)∈A x jk = 0, ∀k ∈ V \{s, t} x ij ∈ {0, 1}, ∀(i, j) ∈ A (SPP)
where each s-t path is identified with a set x = {x ij |(i, j) ∈ A} of which element

x ij = 1 if arc (i, j
) is in the path and x ij = 0 otherwise.

Example 3 (The 0-1 knapsack problem (01KP)). Suppose a company has a budget of W and needs to choose which items to manufacture from a set of n possible items, each with a production cost of w i and fixed profit of p i (all values are numbers in unit e). The 01KP involves selecting a subset of items to manufacture that maximizes the total profit while keeping the total production costs below W . The 01KP can be formulated as

max n i=1 p i x i s.t. n i=1 w i x i ≤ W x i ∈ {0, 1} (i = 1, 2, . . . , n). (01KP)
The sets of feasible solution in Examples 2 and 3 are described by linear constraints. However, it should be noted that Problem 01COP is not limited to problems with linear constraints as X can be any set.

When X is a convex subset of R n ≥0 , Problem LOP becomes a convex opti- mization problem (CV): max / min c T x s.t. x ∈ X ⊆ R n ≥0 is convex. (CV)
This class includes linear programming as a particular case.

Belief function theory

Let Ω be the set, called frame of discernment, of all possible values of a variable of interest ω. In belief function theory [START_REF] Shafer | A mathematical theory of evidence[END_REF], adapting the presentation of [START_REF] Wasserman | Belief functions and statistical inference[END_REF], partial knowledge about the true (unknown) value of ω, when Ω is a closed subset of R n as will be the case in this paper, is represented by a mapping m : C → [0, 1] called mass function, where C is assumed here to be a finite collection of closed subsets of Ω, such that A∈C m(A) = 1 and m(∅) = 0.

Mass m(A) quantifies the amount of belief allocated to the fact of knowing only

that ω ∈ A. A subset A ⊆ Ω is called a focal set of m if m(A) > 0.
The set of all focal sets of m is denoted by F.

The mass function m induces a belief function Bel and a plausibility function P l defined on B(Ω) the Borel subsets of Ω: 

Bel(A) = B∈F :B⊆A m(B), P l(A) = B∈F :B∩A̸ =∅ m(B). (1) 
E P (h), E m (h) := inf P ∈P(m) E P (h). (2) 
A well-known result [START_REF] Wasserman | Belief functions and statistical inference[END_REF]Section 2.4] states that the upper and lower expected values of h can be computed as:

E m (h) = A∈F m(A) sup ωi∈A h(ω i ), (3) 
E m (h) = A∈F m(A) inf ωi∈A h(ω i ). (4) 
When mass function m is clear from the context, E m (h) and E m (h) may be simply written E(h) and E(h), respectively.

Assume Ω represents the state of nature and its true value is known in the form of some mass function m. Assume further that a decision maker (DM) needs to choose an act (decision) f from a set Q. The outcome of each act can vary based on the prevailing state of nature. Denoting by O the set of possible outcomes, each act can thus be formalized as a mapping f : Ω → O.

Depending on the context, outcomes induce either utilities or costs. Utilities (resp. costs) of outcomes can be quantified by an utility function u

: O → R (resp. cost function l : O → R). We assume that for any f , u • f (resp. l • f )
is a bounded real-valued map. In the following, to keep the discussion concise, we concentrate on presenting the treatment when the outcomes are associated with an utility function since a cost minimization can be turned in a utility maximization by taking the negative. Moreover, to enhance comprehension, we will use a specific problem, the SPP, to illustrate the results of the cost function case in Section 5.

In this framework, the DM's preference over acts is denoted by ⪰, where f ⪰ g means that act f is preferred to act g. The preference relation is typically assumed to satisfy the reflexivity property (f ⪰ f for any f ) and the transitivity property (if f ⪰ g and g ⪰ k, then f ⪰ k for any f , g, and k), making it a preorder. Furthermore, if the relation is antisymmetric (f = g for any f and g such that f ⪰ g and g ⪰ f ), then it becomes an order. Relation ⪰ is complete if for any two acts f and g, f ⪰ g or g ⪰ f , otherwise, it is partial. Additionally, f is strictly (resp. equally) preferred to g, which is denoted by f ≻ g (resp.

f ∼ g), if f ⪰ g but not g ⪰ f (resp. if f ⪰ g and g ⪰ f ).
Typically, the DM seeks solutions in the set Opt of non-dominated acts:

Opt = {f ∈ Q : ∄g such that g ≻ f }. (5) 
If relation ⪰ is complete, finding one solution in Opt is enough since solutions in

Opt are preferred equally between each other and strictly preferred to the rest Q\Opt. In this case, solutions in Opt are also called optimal acts. On the other hand, if relation ⪰ is partial, the DM may need to identify all solutions in Opt.

Usually, the DM constructs his preference over acts based on some criterion.

We denote by ⪰ cr his preference according to some criterion cr and by Opt cr its associated set of non-dominated (or best) acts. In this paper, we consider five common criteria defined as follows for any two acts f and g [START_REF] Denoeux | Decision-making with belief functions: a review[END_REF]:

1. Generalized Hurwicz criterion: f ⪰ α hu g if αE m (u • f ) + (1 -α)E m (u • f ) ≥ αE m (u • g) + (1 -α)E m (u • g) (6)
for some fixed parameter α ∈ [0, 1], representing an optimism/pessimism degree, and where E m (u • f ) and E m (u • f ) denote, respectively, the upper and lower expected utilities of act f with respect to mass function m. Relation ⪰ α hu is complete and we have f ≻ α hu g if ( 6) is strict. The set of non-dominated acts with respect to ⪰ α hu is denoted by Opt α hu .

Strong dominance criterion

: f ⪰ str g if E m (u • f ) ≥ E m (u • g). (7) 
Relation ⪰ str is partial and we have f ≻ str g if ( 7) is strict. The set of non-dominated acts with respect to ⪰ str is denoted by Opt str .

Weak dominance criterion

: f ⪰ weak g if E m (u • f ) ≥ E m (u • g) and E m (u • f ) ≥ E m (u • g). (8) 
Relation ⪰ weak is partial and we have f ≻ weak g if at least one inequality in ( 8) is strict. The set of non-dominated acts with respect to ⪰ weak is denoted by Opt weak .

Maximality criterion

: f ⪰ max g if E m (u • f -u • g) ≥ 0 ⇐⇒ ∀P ∈ P(m), E P (u • f ) ≥ E P (u • g), (9) 
Relation ⪰ max is partial and we have f

≻ max g if E m (u • f -u • g) > 0.
The set of non-dominated acts with respect to ⪰ max is denoted by Opt max .

5. E-admissibility criterion: Let Opt adm be the set of non-dominated solutions with respect to E-admissibility criterion, then f ∈ Opt adm iff there exists P ∈ P(m) such that E P (u • f ) ≥ E P (u • g) for any act g.

Note that

Opt adm ⊆ Opt max and Opt weak ⊆ Opt max ⊆ Opt str with usually strict inclusions (see [START_REF] Destercke | A decision rule for imprecise probabilities based on pairwise comparison of expectation bounds[END_REF]).

We can observe that E-admissibility differs from other decision criteria, as it directly defines a set of non-dominated acts (choice set), without the need for explicitly defining a preference relation. However, we can still construct a preference relation from the choice set (see [START_REF] Denoeux | Decision-making with belief functions: a review[END_REF]).

Given these criteria, a relevant question for the DM is which criterion should be chosen. The choice of the criterion depends on factors such as its properties or its associated computational cost of determining non-dominated acts.

For instance, when comparing strong dominance and maximality, the computational cost associated with maximality is generally higher than that of strong dominance, but strong dominance is more conservative than maximality since

Opt max ⊆ Opt str . However, dealing with this question is beyond the scope of our paper. We refer to the excellent review papers of Troffaes [START_REF] Troffaes | Decision making under uncertainty using imprecise probabilities[END_REF] and Denoeux [START_REF] Denoeux | Decision-making with belief functions: a review[END_REF] for comprehensive discussions of these criteria.

LOP with evidential coefficients: modelling

In As will be seen, making a particular assumption about the nature of the focal sets of m is useful. This assumption relies on the following definition.

Definition 1. Given a subset A ⊆ Ω, we denote by A ↓i its projection on Ω i .

We say that A is a rectangle iff it can be expressed as the Cartesian product of its projections, that is:

A = × n i=1 A ↓i .
The assumption about the focal sets of m is the following: Assumption 1 (Rectangular with Compact projections (RC)). Each focal set of m is a rectangle where each of its projection is a compact subset of R.

Let m be a mass function satisfying the RC assumption and let F r be a focal set of m. The minimum and maximum values of its projection F ↓i r will be denoted hereafter l r i and u r i , respectively.

While assuming focal sets to be rectangular may seem restrictive, it has been argued in [START_REF] Aguirre | Inclusionexclusion principle for belief functions[END_REF] that such focal sets arise in many practical situations, such as in the example given in the Introduction and, for instance, it results from the combination of marginal mass functions m i defined on Ω i under the assumption of independence [START_REF] Couso | Independence concepts in evidence theory[END_REF]. The compactness assumption is also rather mild as it allows 

F 1 =[l sa , u sa ] × [l sb , u sb ] × [l st , u st ] × [l at , u at ] × [l bt , u bt ] =[2, 3] × [1, 3] × [4, 5] × [1, 2] × [2, 4].
and, similarly, The preference over feasible solutions, and the associated best solutions, can then be defined using any of the five criteria recalled in Section 3. In the next section, we provide the main results of this paper, which concern best solutions with respect to these five criteria and under assumption RC.

F 2 =[3, 4] × [2, 4] × [5, 6] × [2, 3] × [3, 5].
Remark 1. In [START_REF] Guillaume | Robust optimization with scenarios using random fuzzy sets[END_REF], Problem LOP with evidential coefficients is also considered.

The essential difference2 between [START_REF] Guillaume | Robust optimization with scenarios using random fuzzy sets[END_REF] and the present paper is the nature of the focal sets of the mass function m on the coefficients: in [START_REF] Guillaume | Robust optimization with scenarios using random fuzzy sets[END_REF], they are assumed to be discrete scenario sets, whereas here we assume them to be RC. Hence, for instance, the mass function in Example 4 fits the setting of [START_REF] Guillaume | Robust optimization with scenarios using random fuzzy sets[END_REF] but does not fit ours, whereas the mass function in Example 5 fits our setting but does not fit the one of [START_REF] Guillaume | Robust optimization with scenarios using random fuzzy sets[END_REF].

LOP with evidential coefficients: solving

In this section, we provide methods for finding best (non-dominated) solutions, with respect to the five criteria presented in Section 3, of Problem LOP when coefficients in the objective function are evidential, i.e., are known in the form of some mass function m on Ω with set of focal sets F = {F 1 , . . . , F K }.

For i ∈ {1, . . . , n}, let π i be the map from Ω to R such that π i (c) = c i , i.e., π i (c) is nothing but coefficient c i of scenario c ∈ Ω. As will be seen, the upper E(π i ) and lower E(π i ) expected values of π i with respect to m are central in our characterizations of the non-dominated solutions for the five criteria. These values can be computed easily under assumption RC:

Proposition 1.
Under assumption RC, we have

E(π i ) = K r=1 m(F r )u r i , (10) 
E(π i ) = K r=1 m(F r )l r i . (11) 
Proof. We have

E(π i ) = K r=1 m(F r ) max c∈Fr π i (c) (12) 
= K r=1 m(F r ) max ci∈F ↓i r c i . (13) 
Similarly, we obtain E(π i ) = K r=1 m(F r ) min ci∈F ↓i r c i . The proposition follows from the fact that under assumption RC, the projection F ↓i r of focal set F r ∈ F, has maximum value u r i and minimum value l r i .

To simplify the exposition of our results, E(π i ) and E(π i ) under assumption RC will be denoted hereafter by ūi and li , respectively, i.e., we have

ūi := K r=1 m(F r )u r i , (14) li : 
= K r=1 m(F r )l r i . (15) 
Example 6 (Example 5 continued). Consider the Problem SPP and the mass function in Example 5, with evidential weighted graph in Figure 2. We have for instance for arc s-a:

ūsa = m(F 1 ) • u 1 sa + m(F 2 ) • u 2 sa ( 16 
) = 0.5 • 3 + 0.5 • 4 = 3.5, ( 17 
) lsa = 0.5 • 2 + 0.5 • 3 = 2.5. ( 18 
)
We treat in this section the five criteria in the order that they were introduced in Section 3. Note that, as is the case for Proposition 1 above, all the following Propositions require assumption RC to hold, and thus, for conciseness, we will no longer explicitly state this assumption in the Propositions.

Generalized Hurwicz criterion

We give a characterization for non-dominated solutions with respect to the generalized Hurwicz criterion.

First, we can remark that this criterion relies on the notions of upper and lower expected utilities of acts, acts being here feasible solutions. The upper E(x) and lower E(x) expected utilities of a solution x can be computed easily under assumption RC:

Proposition 2. (Under assumption RC) We have

E(x) = n i=1 ūi x i , (19) 
E(x) = n i=1 li x i . (20) 
Proof. By definition and since each focal set is compact, the upper and lower expected utilities of x are

E(x) = K r=1 m(F r ) max c r ∈Fr ( n i=1 c r i x i ), (21) 
E(x) = K r=1 m(F r ) min c r ∈Fr ( n i=1 c r i x i ). (22) 
The inner maximum and minimum in ( 21) and ( 22) are obtained when each component c r i in c r equals u r i and l r i , respectively. By regrouping terms we get the desired result.

Since ⪰ α hu is complete, it is sufficient to find one solution of the set Opt α hu , as explained in Section 3. To find one such solution, we need to solve the optimization problem,

max / min αE m (x) + (1 -α)E m (x) x ∈ X , (23) 
for some specified value of α ∈ [0, 1].

In 

(αū i + (1 -α) li )x i (24) 
x ∈ X Example 7 (Example 5 continued). To find a best path in Opt α hu for the evidential weighted graph in Figure 2, we need to solve the deterministic SPP in the graph showed in Figure 3, for some specified value of α (we have for instance for arc s-a, using Example 6:

αū sa + (1 -α) lsa = α • 3.5 + (1 -α) • 2.5 = α + 2.5).
For example, if α = 0 then the corresponding shortest paths are s-a-t and s-b-t, while the shortest one is s-t, if α = 1.

Remark 2. Thanks to Proposition 3, we can establish that best acts with respect to the generalized Hurwicz criterion for various α are solutions of a parametric LOP. Hence, methods from parametric optimization can help to solve a whole family of problems parameterized by α. For instance, the standard approach for solving parametric linear programming is the parametric simplex method [24,

Chapter 7]. In the parametric SPP from Figure 3, as the DM varies his optimism/pessimism degree from 0 to 1, the break-point (point where a change in the parameter α causes a sudden change in the solutions) is 0.5. More precisely, for all α ∈ [0, 0.5] the best path is s-a-t, while for all α ∈ [0.5, 1] the optimal one is s-t. We refer to the work of Gusfield [START_REF] Gusfield | Sensitivity analysis for combinatorial optimization[END_REF] for a comprehensive discussion of parametric combinatorial optimization problems.

Strong dominance criterion

In the same spirit as Proposition 3, we give now a characterization for nondominated solutions with respect to the strong dominance criterion when Problem LOP is a maximization problem.

Proposition 4. A solution x is in Opt str iff x is feasible with respect to the following constraints:

x ∈ X (26)

n i=1 ūi x i ≥ z ( 27 
)
where z is the optimal value of Problem LOP in which c i = li , i = 1, 2, . . . , n.

Proof. By definition,

x ∈ Opt str ⇔ ∄y ∈ X such that E(y) > E(x) (28) 
⇔ ∀y ∈ X then E(y) ≤ E(x) (29) 
⇔ max y∈X E(y) ≤ E(x) (30) 
As a special case of Proposition 3, when α = 0, z = max y∈X E(y) is obtained by solving Problem LOP with c i = li . From Proposition 2, we have E(x) = n i=1 ūi x i , and thus the result follows.

We also have a similar result when Problem LOP is a minimization problem.

Proposition 5. A solution x is in Opt str iff x is a feasible with respect to the following constraints:

x ∈ X (31)

n i=1 li x i ≤ z ( 32 
)
where z is the optimal value of Problem LOP in which c i = ūi , (i = 1, 2, . . . , n).

Problem (26 -27) is called a lower bound feasibility problem since it is the feasibility problem with the additional constraint

n i=1 ūi x i ≥ z (see [28, Section I.5.5]).
Since the relation ⪰ str is partial, it may be necessary to identify all solutions in the set Opt str , meaning all feasible solutions of (26 -27). The complexity of this task depends on the structure of Problem LOP itself. In a specific case mentioned in our previous works [START_REF] Vu | On modelling and solving the shortest path problem with evidential weights[END_REF], enumerating Opt str for the SPP amounts to finding all paths in G with arc weights c ij = lij , whose weights are lower than or equal to the lowest weight of a s-t path in G with arc weights c ij = ūij .

Hence, we can use efficient algorithms such as the ones in [START_REF] Byers | Determining all optimal and near-optimal solutions when solving shortest path problems by dynamic programming[END_REF][START_REF] Carlyle | Near-shortest and k-shortest simple paths[END_REF], where the authors studied a problem of determining near optimal paths; for example, they

wished to find all s-t paths in a directed graph whose weights do not exceed more than 5% the lowest weight, which is equivalent to finding all paths whose weights are less than or equal to a given threshold. Example 8 (Example 5 continued). To find the paths in Opt str for the evidential weighted graph in Figure 2, according to Proposition 5 we first compute the lowest weight of a s-t path in the graph in Figure 4b, which is 5.5. The set Opt str comprises then the s-t paths in the graph in Figure 4a that have weights no more than 5.5, which are the paths s-t, s-a-t, and s-b-t.

Weak dominance criterion

There is a strong connection between the weak dominance criterion and biobjective optimization. A bi-objective optimization problem can be expressed as

max / min f 1 (x) (33) max / min f 2 (x) (34) x ∈ X (35) 
As the objectives (33-34) are typically conflicting, there is usually no solution

x that maximizes (resp. minimizes) simultaneously f 1 (x) and f 2 (x). Instead, we seek to find all so-called efficient solutions of (33-35): a solution x is efficient if there is no feasible solution y ∈ X such that

f 1 (y) ≥ f 1 (x) and f 2 (y) ≥ f 2 (x) (resp. f 1 (y) ≤ f 1 (x) and f 2 (y) ≤ f 2 (x))
where at least one of the inequalities is strict.

Example 9. The bi-objective SPP is a particular bi-objective optimization problem. Assume that each arc (i, j) in G has two deterministic attributes c ij and t ij that describes, e.g.,, the cost and the travel time from i to j, respectively. The goal is to find all efficient solutions, i.e., s-t paths, of the following problem:

min (i,j)∈A c ij x ij (36) 
min

(i,j)∈A t ij x ij (37) 
x is a s-t path

We now give a characterization for solutions in Opt weak in terms of efficient solutions of a bi-objective optimization problem. Proposition 6. A solution x is in Opt weak iff x is a efficient solution of the problem:

max / min n i=1 li x i max / min n i=1 ūi x i x ∈ X (39) 
Proof. It is easy to see that x ∈ Opt weak iff x is an efficient solutions with objectives f 1 (x) := E(x) and f 2 (x) := E(x), which, using Proposition 2, leads to Problem (39).

From Proposition 6, identifying solutions in Opt weak is equivalent to finding solutions for Problem (39). Considering again Problem SPP as an example, we can remark that the bi-objective SPP has been extensively studied in the literature. Hence, we can apply off-the-shelf fast methods developed specifically for the bi-objective SPP, such as [START_REF] Duque | An exact method for the biobjective shortest path problem for large-scale road networks[END_REF], to find solutions in Opt weak for Problem SPP. Example 10 (Example 5 continued). Each path in Opt weak is an efficient s-t path in the graph in Figure 5. Opt weak consists of paths s-t and s-a-t (s-b-t is dominated by s-a-t).

Remark 3. It should be noted that any generalized Hurwicz optimal solution with 0 < α < 1 is also a solution of Opt weak . As a result, determining such solutions for various α values can provide an inner approximation of Opt weak . This stems from bi-objective optimization theory, where these solutions are known as supported efficient solutions: they are the solutions of

min x∈X λ 1 f 1 (x)+λ 2 f 2 (x)
for some λ 1 , λ 2 > 0.

Maximality and E-admissibility criteria

Contrary to the other criteria, identifying characterizations for maximality and E-admissibility relies on the nature of Problem LOP. As will be seen, solutions in Opt max and Opt adm are closely related to the notion of possibly optimal solution in robust optimization, where a solution x is referred to as possibly optimal if it is an optimal solution to a problem P for at least one scenario in the set of all possible scenarios Γ. This notion appears in various works in the realm of minimax regret optimization with interval data, such as in [START_REF] Inuiguchi | Minimax regret solution to linear programming problems with an interval objective function[END_REF] for linear programming problems, in [START_REF] Yaman | The robust spanning tree problem with interval data[END_REF] for the minimum spanning tree problem (where the authors called a possibly optimal spanning tree a weak tree),

and in [START_REF] Kasperski | Discrete optimization with interval data[END_REF] for other combinatorial optimization problems. To emphasize the importance of the notion, we frame it in the following definition.

Definition 2. A solution x is a possibly optimal solution of Problem LOP with respect to the set C := × n i=1 [ li , ūi ] if x is an optimal solution for at least one vector c in C. The set of these possibly optimal solutions is denoted by Opt C pos .

The general case

In the general case, i.e., the Problem LOP with evidential coefficients, we are not able to provide similar characterizations for solutions in Opt max and Opt adm as for previous criteria. Instead, we offer partial answers by providing a sufficient condition for solutions of Opt max (Proposition 7) and a necessary condition for solutions of Opt adm (Proposition 8).

Proposition 7. If x ∈ Opt C pos then x ∈ Opt max . Proof. If x is optimal under c o where c o i ∈ [ li , ūi ], for all i ∈ {1, . . . , n} then, ∀y ∈ X , 0 ≥ n i=1 c o i (y i -x i ) = n i:yi≥xi c o i (y i -x i ) + n i:yi<xi c o i (y i -x i ) (40) ⇒ 0 ≥ i:yi≥xi li (y i -x i ) + i:yi<xi ūi (y i -x i ) (41) 
On the other hand,

E(y -x) = K r=1 m(F r ) min c∈Fr n i=1 c i (y i -x i ) (42) = K r=1 m(F r )( i:yi≥xi l r i (y i -x i ) + i:yi<xi u r i (y i -x i )) (43) = i:yi≥xi li (y i -x i ) + i:yi<xi ūi (y i -x i ) (44) 
From ( 41) and (44), we have that ∀y ∈ X , E(y -x) ≤ 0, and thus x ∈ Opt max .

Proposition 8. If x ∈ Opt adm then x ∈ Opt C pos .
Proof. Recall that an act x is a map from Ω to R such that x(c) = n i=1 x i c i . Note that x(c) = n i=1 x i π i (c). Let P ∈ P(m). By linearity of integration, we have

E P (x) = Ω x(c)dP (c) = n i=1 x i Ω π i (c)dP (c) = n i=1
x i E P (π i ).

(45)

Since P ∈ P(m), we have We can now provide a characterization of E-admissibility for Problem MIP by proving that the converse of Proposition 8 also holds. 

E(π i ) ≤ E P (π i ) ≤ E(π i ), i.e., li ≤ E P (π i ) ≤ ūi . (46) 
max c 1 x 1 + c 2 x 2 + c 3 x 3 + c 4 x 4 -2x 1 -x 2 ≤ -6 x 1 + x 2 ≤ 5 -x 1 -2x 2 ≤ -6 x 1 -10x 3 ≤ 2 -x 1 + 10x 3 ≤ 6 x 2 -10x 4 ≤ 2 -x 2 + 10x 4 ≤ 6 x 1 , x 2 ∈{1, 2, 3, 4} x 3 , x 4 ∈{0, 1}
It can easily be checked that the set of feasible solutions X is X = {x := (2, 2, 0, 0), y := (1, 4, 0, 1), z := (4, 1, 1, 0)}. An easy computation gives E(y -

x) = -1 and E(z -x) = -1, thus x ∈ Opt max . Assume x ∈ Opt pos , which means that there exists c ∈ [1, 3] × [1, 3] × {0} × {0} such that c T x ≥ c T y and c T x ≥ c T z. It implies that 2c 1 + 2c 2 ≥ c 1 + 4c 2 and 2c 1 + 2c 2 ≥ 4c 1 + c 2 (47) ⇔ c 1 ≥ 2c 2 and c 2 ≥ 2c 1 . (48) 
Since (48) cannot be true, we get a contradiction and thus x / ∈ Opt pos .

Problem 01COP

We give the characterizations for non-dominated solutions with respect to the maximality and E-admissibility criteria for Problem 01COP. In this case the set of feasible acts X is not convex. Somewhat surprisingly, as we are going to show, the two sets of non-dominated solutions still coincide.

For any x ∈ X , let cxr be the scenario associated to x in focal set F r , such that

cxr i = u r i if x i = 1, cxr i = l r i if x i = 0. ( 49 
)
Lemma 1 is simple but it is the key element to uncover the characterization of the maximality criterion.

Lemma 1. For any x, y ∈ X ,

min c∈Fr c T y -c T x = (c xr ) T y -(c xr ) T x.
Proof. One direction is obvious. We only need to show the other direction. Assume that x is optimal under c o ∈ C. Then for any y, we have

n i=1 c o i x i ≥ n i=1 c o i y i (59) ⇔ i:xi=1,yi=0 c o i ≥ i:yi=1,xi=0 c o i (60) ⇒ i:xi=1,yi=0 ūi ≥ i:yi=1,xi=0 li (61) 
⇔ i:xi=1,yi=0 ūi + i:xi=yi=1 ūi ≥ i:yi=1,xi=0 li + i:xi=yi=1 ūi (62) ⇔ n i=1 cx i x i ≥ n i=1 cx i y i . (63) 
Hence, x is optimal under cx . We are now in the position to provide a characterization for E-admissibility.

We remark here that although the feasible acts X of Problem 01COP may not be in the form M x ≤ b, the convex hull conv(X ) is still a bounded polyhedron as X is a finite set. Hence, it still follows from Propositions 10 and 11 that

x is E-admissible iff x ∈ Opt C pos . However, the nature of Problem 01COP makes it possible to derive a proof for this fact, without relying on the powerful Proposition 10. We feel that it is useful to present a simpler proof here.

Proposition 14. For Problem 01COP, a solution x is in Opt adm iff x is an optimal solution under cx .

Proof. If x ∈ Opt adm then x ∈ Opt max , by Proposition 12 x is a optimal solution under cx . Assume that x is an optimal solution with c i = cx i . We construct an allocation map a of m as:

a(c xr , F r ) = m(F r ), ∀r ∈ {1, . . . , K}. (64) 
We define a discrete probability measure P such that

P ({c}) = cxr =c a(c xr , F r ). (65) 
Thanks to [27, Theorem 1], we have P ∈ P(m). It is easy to see that E P (π i ) = ūi if x i = 1 and E P (π i ) = li if x i = 0. Since x is optimal and by Equation ( 45), E P (x) ≥ E P (y) for any y. Therefore, x is E-admissible.

Consequently, we arrive to the main result.

Proposition 15. If Problem 01COP is a maximization problem then the following are equivalent:

(i) x ∈ Opt max .

(ii) x ∈ Opt adm .

(iii) x is an optimal solution under cx .

(iv) x ∈ Opt C pos .

Let c x be the set of coefficients, defined as follows: c sb =3, and c bt =4, the optimal path is s-t, which also belongs to Opt max . The set Opt max consists of s-a-t, s-b-t, and s-t.

c x i = li if x i = 1, c x i = ūi if x i = 0. ( 66 
The characterization we provided is particularly valuable for E-admissibility.

As noted in [START_REF] Augustin | Introduction to imprecise probabilities[END_REF], verifying whether an act is E-admissible typically involves solving a large linear programming problem. However, Propositions 15 and 16 imply that if Problem 01COP can be solved efficiently (e.g., Problem SPP), checking E-admissibility is also efficient.

Remark 5. Since ⪰ max is a partial relation, Opt max may need to be enumerated. For some problems, such as the SPP, the size of Opt weak (and therefore, the size of Opt max ) grows exponentially with |V | [START_REF] Hansen | Bicriterion path problems[END_REF], making the enumeration a very time-consuming process. Preprocessing can be applied to speed up the process by eliminating the elements x i which are never in any solution of Opt max .

We note that determining whether x i = 1 is part of a possibly optimal solution (i.e., solution in Opt max ) is NP-hard for many polynomially solvable problems such as the SPP or the assignment problem [START_REF] Kasperski | Discrete optimization with interval data[END_REF]. Nonetheless, for an important class of combinatorial optimization problems, i.e., the matroidal problem (which includes the minimum spanning tree problem), Kasperski et al. [START_REF] Kasperski | On combinatorial optimization problems on matroids with uncertain weights[END_REF] showed that this determination can be done efficiently.

Conclusion

In this paper, we have considered a very general optimization problem with a linear objective function (LOP). When coefficients of the objective are evidential, the notion of optimal solution is ill-defined. Therefore, we propose extensions of the notion of optimal solutions to this context, as the sets of non- Topics of future research include i) finding a characterization of the maximality criterion for linear mixed integer programming problems; ii) providing a polynomial representation of all non-dominated solutions with respect to maximality and E-admissibility for combinatorial optimization problems or at least for matroidal problems. Since these latter solutions are also possibly optimal, one possible direction is to expand the works of [START_REF] Destercke | Necessary and possibly optimal items in selecting problems[END_REF], in which a compact representation of possibly optimal solutions is given for the item selection problem (a special case of matroidal problems).

Example 4 .

 4 this section, we formalize what we mean by best solutions of Problem LOP when coefficients in the objective function are evidential, i.e., are known in the form of a mass function, and we also describe a particular assumption about the focal sets of this mass function. Let us assume that the coefficients c i , for all i ∈ 1, . . . , n, in the objective of Problem LOP are only partially known. More specifically, we consider the case where information about the coefficients is modelled by a mass function. Formally, let Ω i be the frame of discernment for the variable c i , i.e., the set of possible values for the coefficients c i and let Ω := × n i=1 Ω i . Any c ∈ Ω will be called a scenario: it represents a possible assignment of values for all coefficients in the objective function. A mass function m on Ω, with set of focal sets denoted by F = {F 1 , . . . , F K }, represents uncertainty about the coefficients. Consider the Problem SPP, let c 1 and c 2 be the two scenarios represented by Figures 1a and 1b, respectively. The mass function m such that m(F 1 ) = 0.4 and m(F 2 ) = 0.6, with F 1 = {c 1 , c 2 } and F 2 = {c 1 }, represents partial knowledge about arc weights.

Figure 1 :

 1 Figure 1: Two possible assignments of values, i.e., two scenarios, for the arc weights.

F

  ↓i to be, e.g., any closed (real) interval or any finite set of real numbers (and thus the practical situation of independent marginal mass functions m i having closed intervals or finite sets as focal sets, fits the RC assumption). RC focal sets are further illustrated by Example 5 in a particular case where they are Cartesian products of intervals. Example 5. Consider the Problem SPP. Let m be the mass function such that m(F 1 ) = 0.5 and m(F 2 ) = 0.5 with focal sets F 1 and F 2 , depicted in Figure 2, such that

1 .F 2 Figure 2 :

 122 Figure 2: Two focal sets which are Cartesian products of intervals.

Figure 3 :

 3 Figure 3: The parametric weighted graph associated with Opt α hu .

Figure 4 :

 4 Figure 4: Two graphs associated with Optstr.

Figure 5 :

 5 Figure 5: The graph associated with Opt weak of which each arc (i, j) has two attributes ( lij , ūij ).

Proposition 11 .Example 11 .

 1111 For Problem MIP, x ∈ Opt adm iff x ∈ Opt C pos . Proof. If x is an optimal solution of Problem MIP under some c o ∈ C then by Proposition 10, x is also an optimal solution of Problem CMIP under c o . As Problem CMIP is convex, by Proposition 9, x is an E-admissible act of Problem CMIP. Moreover, since S ⊆ conv(S), then x is also an E-admissible act of Problem MIP. Corollary 1 states that if x ∈ Opt C pos then x ∈ Opt max for Problem LOP and thus also for Problem MIP. The next example shows that for Problem MIP, we can have x ∈ Opt max but x ̸ ∈ Opt C pos (even when the mass function has a single focal set), i.e., the inclusion between Opt C pos and Opt max in Corollary 1 can be strict. Consider the following optimization problem where each coefficient c 1 , c 2 , c 3 and c 4 in the objective is known to lie in an interval: c 1 ∈ [1, 3], c 2 ∈ [1, 3], c 3 = 0 and c 4 = 0.

Remark 4 .

 4 The proof of Proposition 13 is essentially the same as the proof of[START_REF] Yaman | The robust spanning tree problem with interval data[END_REF] Theorem 2.1] where the authors characterize weak trees.

  ) Likewise, we have the next result.Proposition 16. If Problem 01COP is a minimization problem then the following are equivalent:(i) x ∈ Opt max . (ii) x ∈ Opt adm .(iii) x is an optimal solution under c x .(iv) x ∈ Opt C pos .

Figure 6 :

 6 Figure 6: The graph associated with Optmax and Opt adm in which weights of arc (i, j) are in the interval [ lij , ūij ].

  dominated solutions according to the generalized Hurwicz, strong dominance, weak dominance, maximality and E-admissibility criteria. By considering the particular case where focal sets are Cartesian products of compact sets, we are able to characterize the non-dominated solutions in terms of various concepts in optimization. This makes it possible to find non-dominated solutions by solving known variants of the deterministic version of the LOP or even, in some cases, simply by solving the deterministic version. Specifically, non-dominated acts with respect to generalized Hurwicz are solutions of the deterministic LOP.Non-dominated acts with respect to generalized Hurwicz under unknown optimism/pessimism degree are solutions of the parametric LOP. Non-dominated acts with respect to strong dominance are solutions of a lower-bound feasibility problem. Non-dominated acts with respect to weak dominance correspond exactly to the efficient solutions of the bi-objective LOP problem. Lastly, nondominated acts with respect to maximality and E-admissibility are linked to the robust optimization framework via the concept of possibly optimal solutions of the LOP.

  Proposition 3. A solution x is in Opt α hu iff x is an optimal solution of Problem LOP with coefficients c i = αū i + (1 -α) li .

	Proof. Using Proposition 2, the Problem (23) becomes
	n
	max / min
	i=1
	the case of general focal sets, solving Problem (23) is usually much more
	challenging than solving its deterministic counterpart Problem LOP. For in-
	stance, the deterministic Problem SPP can be solved efficiently in polynomial
	time, but if α = 1 the Problem (23) is weakly NP-hard already in the case
	when mass function m has a single focal set containing two elements [30]. The
	situation worsens if α = 0, as the problem becomes strongly NP-hard and not
	approximable [12, Theorem 1]. However, under assumption RC, the complexity
	of Problem (23) remains unchanged compared to Problem LOP, since it is a
	direct consequence of the following characterization.

  If x ∈ Opt adm then ∃P ∈ P(m) such that E P (x) ≥ E P (y) ∀y. Opt adm ⊆ Opt C pos ⊆ Opt max .In the important case of Problem CV the sets Opt C pos , Opt adm , and Opt max For Problem CV, Opt adm = Opt C pos = Opt max .Proof. As the set of acts X is convex, by the result in [26, Section 3.9.5],Opt adm = Opt max . The result follows from Corollary 1.In the following two sections, we study these inclusions in Corollary 1 with respect to two other wide class of optimization problems besides Problem CV, namely Problems MIP and 01COP. As will be shown, the three sets also coincide for 01COP, whereas only the sets Opt C pos and Opt adm coincide for MIP. Therefore, overall, our findings are that the inclusion between Opt C pos and Opt max in Corollary 1 can be strict, whereas the inclusion between Opt adm and Opt C Proposition 10. Assume that Problem MIP is a maximization problem. For any c ∈ R n , if x * is an optimal solution of Problem MIP, then x * is an optimal solution of Problem CMIP.

	5.4.2. Problem MIP	
	Let S be the feasible set of Problem MIP, consider the following optimization
	problem:	
	max / min c T x s.t. x ∈ conv(S)	(CMIP)
	where conv(S) is the convex hull of S.	
	A fundamental result in integer programming states that Problem CMIP
	is a linear programming problem and we can solve Problem MIP by solving
	Problem CMIP. To make the paper self-contained, we will state the result here
	without providing a proof. Further information and a detailed proof can be
	found in standard textbooks such as [28, Theorems 6.2 and 6.3].	
		From Equa-
	tion (45), where c o i := E P (π i ). By Equation (46), we have c o n i=1 E P (π i )x i ≥ n i=1 E P (π i )y i , and thus x is optimal under c o i ∈ [ li , ūi ].
	A direct consequence of Propositions 7 and 8 is the following result.
	Corollary 1. coincide:	
	Proposition 9. pos is
	actually an equality for three important particular LOPs, i.e., Problems CV,
	MIP and 01COP; it remains an open, non-trivial, question whether there exists
	an instance of Problem LOP for which the inclusion between Opt adm and Opt C pos
	in Corollary 1 is strict.	

This paper is an extended and revised version of[START_REF] Vu | On modelling and solving the shortest path problem with evidential weights[END_REF].

Another important difference with[START_REF] Guillaume | Robust optimization with scenarios using random fuzzy sets[END_REF] is that only the generalized Hurwicz criterion is considered in this latter paper, whereas we consider four additional criteria.

Proof. For any c ∈ F r ,

where the inequality (51) holds because if x i = 0 then y i -x i ≥ 0 and if

Denote by cx the set of coefficients in which cx

Hence, we have:

A characterization of solutions in Opt max is given as follows.

Proposition 12. For Problem 01COP, a solution x ∈ Opt max iff x is an optimal solution under cx .

Proof. By definition,

x ∈ Opt max ⇔ ∄y such that y ≻ max x ⇔ ∄y such that E(y -x) > 0 (54)

Hence, x ∈ Opt max iff x is an optimal solution under cx .

Proposition 12 offers a method to check if a given feasible solution x belongs to Opt max . To do so, one first calculates the optimal value, z x , of Problem 01COP with c i = cx i and then compares