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Abstract
This article introduces a new decision tree algorithm that accounts for time-varying covari-
ates in the decision-making process. Traditional decision tree algorithms assume that the
covariates are static and do not change over time, which can lead to inaccurate predictions
in dynamic environments. Other existing methods suggest workaround solutions such as the
pseudo-subject approach, discussed in the article. The proposed algorithm utilises a differ-
ent structure and a time-penalised splitting criterion that allows a recursive partitioning of
both the covariates space and time. Relevant historical trends are then inherently involved
in the construction of a tree, and are visible and interpretable once it is fit. This approach
allows for innovative and highly interpretable analysis in settings where the covariates are
subject to change over time. The effectiveness of the algorithm is demonstrated through a
real-world data application in life insurance. The results presented in this article can be seen
as an introduction or proof-of-concept of our time-penalised approach, and the algorithm’s
theoretical properties and comparison against existing approaches on datasets from various
fields, including healthcare, finance, insurance, environmental monitoring, and data mining
in general, will be explored in forthcoming work.

Keywords Decision tree · Time-varying covariate · Data mining ·
Longitudinal study · Algorithm

1 Introduction

Decision trees are a popular machine learning tool for data mining as well as classification
and regression predictions. Growing such a tree is a data-driven process based on a set of
input covariates and a target variable. The most famous decision tree algorithm is arguably
Classification and Regression Trees (CART), introduced by [6]. CART constructs a binary
tree by recursively partitioning the feature space into smaller and smaller subsets, based on
a splitting criterion that maximises the separation between the target variable’s values in
each subset. However, traditional decision tree algorithms like CART assume that the input
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features or covariates are static and do not change over time. In many real-world settings, this
assumption is unrealistic, and the time-dynamic nature of the covariates is highly informative
and should be included in the tree construction. In such settings, not accounting for dynamic
features results in information loss, hence a loss of accuracy and richness of analysis.

Other data-driven approaches can already efficiently seize the time dimension of features
in prediction and data-mining settings. One can think of neural networks (see [35] or [52]
for instance). Yet conventional parametric statistical models or machine learning approaches
such as logistic regression or most tree-based models cannot handle time-varying covariates
straightforwardly. They assume that individual observations are independently distributed.
Because of the longitudinal structure of a time-varying dataset (see Section 2.2 for more
details), this independence hypothesis cannot bemet: different observations of a single subject
are naturally strongly correlated. To address this limitation, some existing tree-basedmethods
suggest workarounds such as the pseudo-subject approach in survival trees (see [19]), which
create artificial left-truncated and right-censored subjects by pooling observations over time,
or the inclusion of a mixed effect model structure around a tree-based core (see [23, 24,
47]). Such computationally intensive methods proved to yield competitive results in many
prediction frameworks, yet we argue in the following sections that they are not entirely
satisfying in terms of interpretability.

In this article, we introduce “Time-penalised Tree” (TpT), a new decision tree algorithm
that accounts for time-varying covariates in the decision-making process. Our algorithm
utilises a different structure and a time-penalised splitting criterion that allows for recursive
partitioning of both time and the features space. We detail the algorithm and suggest a data-
mining and visualisation application based on real data from a life insurer. However, it is
crucial to underscore the inherent limitations in the current scope of this study. Recognising
the need for further refinement, this work primarily concentrates on introducing and demon-
strating the applicability of TpT. Nevertheless, two crucial aspects remain unaddressed:
firstly, the imperative need for a comprehensive exploration into the statistical properties and
theoretical foundations of this new tool; and secondly, the essential comparative analysis
of TpT results against existing longitudinal techniques, trained on well-studied datasets and
evaluated with consistent indicators. This introduction sets the stage for future investigations,
acknowledging the identified gaps and emphasising their significance in shaping the future
trajectory of our research.

The rest of this paper is structured as follows. We recall the basics about classification and
regression trees aswell as time-varying covariates analysis inSection2,we also brieflypresent
existing approaches and frame their interpretability flaws. Then we detail the specificities of
TpT in Section 3 and explain its benefits, which is the main contribution of this work. In
Section 4, we show a concrete application of our framework on a real-world life-insurance
dataset, with visuals and illustration work, demonstrating the interpretability properties of
TpT. Eventually, Section 5 concludes this paper and details future works.

2 Preliminaries

2.1 Classification and regression trees

In this section, we briefly describe the mechanisms of a simple yet powerful data-
mining and prediction model: decision trees, and more specifically, classification and
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Fig. 1 Decision tree recursive partitioning

regression trees or CART [6]. Here, we assume that all covariates are time-independent.
LetD = {(x(i), y(i))}N

i=1 be a dataset of N individuals with x(i) =
(

x (i)
1 , . . . , x (i)

p

)
, the vec-

tor of p covariates and y(i) the target variable for the i-th subject. The covariates and target
spaces are respectively denoted X and Y . Decision trees create a recursive partitioning of
X based on binary decision rules. This partitioning can be visualised directly in the case
where there are two covariates x1 and x2 (see Fig. 1). In that case, individual observations are
represented as dots that are eventually clustered into nL distinct, non-overlapping regions of
X denoted (L1, . . . , LnL ).
More generally it can be visualised as a tree (see Fig. 2), with yes/no questions within each
node and terminal nodes - or leaves - corresponding to the nL regions of the covariates space.
Because the regions defined by leaves are non-overlapping, every individual i belongs to
a single leaf, and a unique prediction is made for all individuals falling in a specific leaf.
More generally, let g be a node, at g, we define D(g) ⊆ D such as D(g) = {(x(i), y(i)) ⊆
D | x(i) ∈ g}, the set of observations in the node g. The quantity N (g) = |D(g)| is then the
number of individuals in the node.
In a classification context, the label given by the tree T for subject i , falling in leaf L is given
by

fT (x(i)) = mode
(
{y(i),∀i | x(i) ∈ L}

)
= fT (L).

In a regression context, the label given by the tree T for subject i in leaf L is given by

fT (x(i)) = mean
(
{y(i),∀i | x(i) ∈ L}

)
= fT (L).

Fig. 2 Decision tree example
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In both cases, a decision tree yields a single constant label1 for an entire region: its mode
or mean. The accuracy of a tree is then based on its ability to minimise the error it com-
mits when assigning labels. Among all possible trees - thus, all possible partitions of X
- the optimal one should maximise a predetermined objective measure (such as the label
assignment accuracy, for instance). Such a tree theoretically exists but cannot generally be
found in a computationally reasonable time. Therefore algorithms like CART use a top-down
greedy approach: they start from an initial node - the root - containing all observations in
D. Then they find the covariate x j and the threshold d2 such that they optimise a splitting
criterion. The root is then split into those two child nodes for which the same splitting process
is repeated until a stopping criterion is triggered. Once grown, this tree is called maximal
tree. From an algorithmic perspective, growing amaximal CART can be summarised as such:

Algorithm 1 Growing a maximal CART.
1: Input: Training dataset D
2: Output: Maximal CART Tmax
3: Initialise the root node g with the entire dataset D
4: Grow(g)
5:
6: Function Grow(g):
7: if Stopping criteria met (e.g., maximum depth, minimum samples) then
8: Let g be a leaf with the prediction fT (g).
9: else
10: For all possible covariates and thresholds find the pair (xk , d) that obtain the best splitting criterion.
11:
12: Split the node g along covariate xk at threshold d into two child nodes gr and gl .
13: Grow(gr )
14: Grow(gl )
15: end if

Such a tree over-fits the data, and predictions made on observations that were not used to
grow the tree are usually inaccurate. That is why a last step is required: the maximal tree is
pruned to a sub-tree that has better generalisation abilities. The pruning step is described in
Section 2.1.3. A decision tree is therefore defined by its splitting criterion, stopping rule(s),
and its pruning process.

2.1.1 Splitting criterion

Originally, CART produces, at every node, a split that minimises the heterogeneity regarding
the target variable within each child node. Equivalently, the optimal split is to maximise
the loss of heterogeneity between the considered node and its child nodes: the so-called
goodness-of-split. Therefore, measures of heterogeneity are needed when the target variable
is categorical (for classification tasks) and when it is numerical (for regression tasks).

1 or prediction, in such contexts
2 The set of classes for categorical covariates
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Classification In a P-classes classification problem, let us define pl , l ∈ {1, . . . , P} as the
proportion of observations of class l in D. We extend this idea by defining pl(g) as the
proportion of observation of class l inD(g). An impurity function φ, is a function measuring
the heterogeneity, defined for pl , l ∈ {1, . . . , P}, with pl ≥ 0 and

∑
l pl = 1 such that:

• φ(p1, . . . , pP ) ≥ 0,
• The minimum of φ is reached whenever any of the pl = 1, then φ(p1, . . . , pP ) = 0,
• The maximum of φ is reached for φ( 1

P , . . . , 1
P ),

• φ is symmetric with regard to its arguments.

ForCART,usual classification impurities are the entropy (φ(p1, . . . , pK )=−∑
i pi log(pi )),

Gini (φ(p1, . . . , pK ) = 1
2

∑
i pi (1− pi )) or the Twoing measure. For our purposes, no fur-

ther specificities are needed and in full generality, the impurity - or heterogeneity - of node
g is measured by I (g) = φ(p1(g), . . . pK (g)). At each node of a CART, the optimal split is
chosen as the split that reduces the impurity the most. That is to say, the split that maximises
the following gain function by splitting the parent node gp into the two child nodes gl and gr is

G(gp; gl , gr ) = I (gp) −
(
N (gl)

N (gp)
I (gl) + N (gr )

N (gp)
I (gr )

)
. (1)

Of course, various other criteria and ideas for splitting exist. This paper does not aim to
review all of them but we refer the astute reader to such comparisons of splittingmethods (see
[5, 9, 36, 48] or [15] for instance). The efficacy of each splitting criterion has been discussed
but no definitive consensus over which one is the finest exists. All measures prove desirable
properties in particular scenarios while demonstrating drawbacks in others.

Regression In a regression context, the best split can be chosen with the target variable
empirical variance or mean squared error, a natural choice of heterogeneity measure. We
define M SE(g) the mean squared error at node g, as

MSE(g) =
∑

{i |x(i)∈g}

(
ȳg − y(i)

)2
, (2)

with ȳg = 1
N (g)

∑

{i |x(i)∈g}
y(i).

Then, the gain function to maximise when splitting the parent node gp into the two child
nodes gl and gr is obviously

G(gp; gl , gr ) = M SE(gp) −
(
N (gl)

N (gp)
M SE(gl) + N (gr )

N (gp)
M SE(gr )

)
. (3)

Even if technically, M SE is not an impurity function, we clearly see that (3) is the
regression equivalent of (1). Thus in the following sections, we use the general notations of
(1) with I (g) ≡ M SE(g) when the target variable is numerical.

2.1.2 Stopping rules

Stopping rules can be specified. In that case, the growing phase continues until one of them is
met. First of all, a node will not split any further if all observations it contains have the same
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target variable value. Other commonly used stopping rules are: a minimum improvement
in the splitting criterion, a maximum depth of the tree (parameter: maxdepth), a mini-
mum number of observations in a node (parameter: minsplit), or a minimum number of
observations in the hypothetical child nodes that would result from a new split.

2.1.3 Tree pruning

The stopping rules affect the size of themaximal tree. No or weak stopping rules will generate
a high-variance/low-bias over-fitted tree whereas constraining ones will lead to smaller,
more interpretable low-variance/high-bias under-fitted trees. The idea of cost-complexity
pruning developed by Breiman emerged from the need to find a compromise between the
two extremes.

The main idea behind cost-complexity pruning is to consider sub-trees of the maximal
tree and evaluate them with a cost function that increases as the error rate rises and decreases
as the number of leaves drops. When a tree is pruned at a node, the weighted summed error
of the leaves increases while the number of leaves reduces, thus a pruned sub-tree is selected
only if the error gain is counter-balanced by the complexity loss. The cost of a tree T is given
by:

Cα(T ) = R(T ) + αψ(nL ), α ≥ 0, (4)

where R(T ) is the sumof all errors or impurities of the leaves ofT , weighted by the number of
individuals they represent. The function ψ is an increasing function of nL , it is originally set
to ψ(nL) = nL in Breiman’s work [6], but has demonstrated relevant properties when set to
ψ(nL) = √

nL in classification settings (see Appendix A.1 for more details and references).
The penalty α is the complexity parameter: the higher it is, the smaller the pruned tree.With a
reasonable choice of ψ , the interest of α is that for a fixed complexity parameter value, there
exists a unique smallest sub-tree T of the maximal tree Tmax that minimises Cα(T ). Thus by
decreasing α, we can construct a sequence of pruned optimal sub-trees [T1, T2, . . . , Tmax] of
different sizes. This tree sequence is such that T1 is the root node, T2 a sub-tree of T with
more leaves and accuracy than T1 and so on until Tmax, the unpruned maximal tree. With
Breiman’s notation, we have

Tmax ⊇ · · · ⊇ T2 ⊇ T1.

The optimal complexity parameter value, hence the best tree in the sequence is usually
selected using cross-validation.

2.2 Longitudinal notations

This paper aims to enrich the growing process of decision trees in the presence of time-
varying covariates. To do so, let us introduce some notations borrowed from the existing
longitudinal literature including works of [42] or [54]. Let us assume a very general setting
wherewewant to build a datasetDlong , encompassing the time-varying features of N subjects,
which are repeatedly measured over time. In all generality, let us assume that among the p
covariates, pT V of them are time-varying and pT I others are time-invariant. At time t , the
set of covariates is given by x(t) = (

x1, x2, . . . , x pT I , x pT I +1(t), . . . , x p(t)
)
. In order to

simplify the notations, we consider all constant features as a special case of time-varying
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Table 1 A longitudinally structured dataset

ID Time window start Time window end Covariate 1 ... Covariate p Target variable

1 t(1)0 t(1)1 x(1)
0,1 ... x(1)

0,p y(1)
0

1 t(1)1 t(1)2 x(1)
1,1 ... x(1)

1,p y(1)
1

1 t(1)2 t(1)3 x(1)
2,1 ... x(1)

2,p y(1)
2

1 t(1)3 t(1)4 x(1)
3,1 ... x(1)

3,p y(1)
3

2 t(2)0 t(2)1 x(2)
0,1 ... x(2)

0,p y(2)
0

3 t(3)0 t(3)1 x(3)
0,1 ... x(3)

0,p y(3)
0

3 t(3)1 t(3)2 x(3)
1,1 ... x(3)

1,p y(3)
1

3 t(3)2 t(3)3 x(3)
2,1 ... x(3)

2,p y(3)
2

... ... ... ... ... ... ...

covariates, with x(t) = (
x1(t), x2(t), . . . , x p(t)

)
with xk(t) = xk , ∀t and ∀k ∈ [1, . . . , pT I ].

Let n(i) be the number of distinct times t (i)j , j = 0, 1, . . . , n(i) − 1 at which subject i has been
observed. At time t (i)j , subject i has a vector of covariates denoted x(i)

j =
(

x (i)
j,1, . . . , x (i)

j,p

)
.

Classical longitudinal setting For a given subject i , covariates are stored in rows, one row
per observation window [t (i)j , t (i)j+1). Each row contains the unique

(
t (i)j , t (i)j+1, x

(i)
j , y(i)

j

)
ele-

ments, with y(i)
j the target variable observed at time t (i)j . They are completed by the subject

unique identifier i . Each row represents what we will now call an observation. We build
Dlong as the collection of all observations structured longitudinally :

Dlong =
{(

i,
{

t (i)j , t (i)j+1, x
(i)
j , y(i)

j

}n(i)−1

j=0

)}N

i=1

Or, displayed as in Table 1:

2.3 Existing longitudinal tree-based algorithms

The problem when splitting time-varying covariates Whether they are designed for sur-
vival analysis or not, longitudinal tree-based models exist and propose various methods
to include time-varying covariates that cannot naturally fit in the tree-growing algorithm
described in Algorithm 1. As an illustrative example, let x1(t) be a numerical time-varying
covariate. At each node, a splitting rule of the form “x1(t) ≤ d”3 should be able to split
subjects into two child nodes. A subject for which this rule is true at all observed times will
go in one child node without any ambiguity. On the other hand, the general case where the
rule is true for some periods but false for anywhere else is unclear and needs to be addressed.

3 Note that the same reasoning can be applied to categorical time-varying covariates as well.
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The “eventually not longitudinal” methods The most naive model would be a regular
CART, trained on all observations in the longitudinal dataset without taking the correlation
between observations of the same subject into account. As stated by [46], this would simply
ignore the capital aspect of dealing with longitudinal data: “The covariation induced by
making several observations of some continuous response on the same unit, as occurs with
repeated measures designs, cluster designs, and longitudinal studies, poses data analytic
problems. Analysis of such designs that ignore the covariance structure are known to produce
incorrect variance estimate.”. Other naive attempts consist of summarising the longitudinal
trajectories of time-varying covariates with a small number of parameters. For instance,
one could think of only keeping the mean value of every trajectory, the median, its final
slope, the baseline value, or the most recent one, ignoring all the remaining information.
This leads to a loss of precious information. A similar idea is to regress every longitudinal
covariate against time and possibly other features, within-subjects to include the parameters
of the regression - intercept and slope - as baseline covariates. It can be argued that if the
longitudinal covariates are all strongly linearly associated with time, which is rarely the case
in practice, this kind of alternative solution can be relevant. Eo and Cho [16] proposed a
model called mixed-effects longitudinal tree (MELT) able to handle a longitudinal response
by fitting a mixed-effect model at each node of the tree. Subjects are then split based on the
heterogeneity of their slopes. Kundu and Harezlak [28] extended this idea of approximating
the information contained in the longitudinal covariates by a combination of splits on baseline
covariates and implemented it in the R package LongCART. Other approaches (such as
[41] and more recently [37]) designed longitudinal trees that use lagged response values as
potential predictors, but still do not treat either the outcome or the covariates as inherently
dynamic with time. Overall, in these methods, information is lost during the process, and the
number of measurements per subject in real datasets can be too small to obtain consistent
time-invariant surrogates to the time-varying covariates.

The “CART-extended”methods [46] and [14] independently proposed the first applications
that clearly define an extension to the CART method and directly account for correlation in
the response variable. They both suffered limitations as they were designed for a longitu-
dinal response but time-fixed covariates where all the subjects were measured at the same
observation times, with the same interval between them. On the one hand, Segal’s regres-
sion tree consisted of imputing a covariance structure between all observations in the split
procedure. An autoregressive structure where correlations between two observations of the
same subject decline exponentially with time, or a compound symmetry structure where the
correlation between two observations of the same subject is constant regardless of how far
apart the measurements are, have been suggested. This led to many theoretical questions
about defining that covariance structure as well as practical ones regarding the complexity
of the computations. On the other hand, De’Ath’s procedure simply modified the CART
algorithm by allowing it to consider an entire matrix containing all the observations for one
subject as a single observation. Allowing that was done by using the gain of MSE as a split-
ting criterion, and replacing the 1-dimensional mean in the MSE with a multi-dimensional
mean modified with a covariance structure; the prediction given by the tree would then be
the multi-dimensional mean of the observation in the terminal nodes. In both cases, those
methods can be seen as fitting a model to the longitudinal outcome at every node as part of
the splitting criterion. More recent works by [29] as well as [26] followed and improved the
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idea of De’Ath, by redefining the node impurity measure with the Mahalanobis distance and
estimating the covariance matrix from the whole data set. It is worth mentioning that other
articles extended the idea of Segal, to binary responses and classification trees (see [55]), in a
clustering context using deviance as a goodness-of-fit criterion for partitioning (see [1]) and
then to every type of longitudinal response - not only continuous or binary - usingGeneralised
estimating equations (see the works of [30–32]). Such models show advantages in terms of
predictive ability and interpretability but do not handle time-varying covariates.

The “state-of-the-art” methods In the work of [22, 47] and their respective extensions
(see [11, 24]4 and [18]), a general mixed-effect model is assumed for the longitudinal out-
come. The tree-based part only predicts fixed effects whereas individual estimated parameters
account for all the time-varying effects. Such approaches can estimate longitudinal outcomes
but the inclusion of time-varying covariates is handled via the pseudo-subject workaround
detailed in the next paragraph. It relies on the assumption that all the dependency between sev-
eral observations of the same subject is captured by the random effect of the mixed model. In
a survival setting, Left-truncated and right-censored (LTRC) trees and forests (see [19] and its
extensions, [53]) proposed a model based on those ideas: they allowed subjects to be divided
into pseudo-subjects and used an adjusted log-rank test in the splitting procedure to accom-
modate for left truncation and ensure that the independence implicit assumption does not lead
to biased results. We refer the astute reader to the works mentioned in this paragraph as we
consider them to be the most advantageous approaches today. The algorithms corresponding
to their respective work are the R packages REEMtree, LongituRF, LTRCtrees and
LTRCforests, the R function REEMctree and the Python library MERF.

Pseudo-subjects LTRC trees and forests, as well as mixed-effect tree-based models (at least
their tree-based part), consider the unmodifiedDlong as an input and run through a CART-like
growing process, finding optimal binary decision rules at each node of the tree. Whenever a
split produces an ambiguity as described in Section 2.3, the periods

[
t (i)j , t (i)j+1

)
where their

splitting rule “x1(t) ≤ d” is true would go to the left node, and the other would go to the right
node, thus dividing all the observations of one subject into distinct groups of observations
called pseudo-subjects. It cleverly addresses the time-handling issuewhen the bias that comes
with correlated LTRC observations is neutralised otherwise. In such models, any individual
can be spread in many different tree leaves - even if, at any fixed time, any individual will
have a single observation that will fall into a unique one. Treating one subject’s observations,
not as an indivisible block of information but rather as multiple pseudo subject’s data leads
to a loss of interpretability. In our opinion, none of these procedures can inherently handle
time-varying covariates, while maintaining CART’s interpretability. A unique trajectory per
subject would ensure a clear visualisation of the data: the algorithm should be designed to
separate individuals whose features are significantly diverging regarding the target variable
rather than pseudo-subjects.

3 Time-penalised trees

We present here the building blocks of a newway to think about decision trees in the presence
of time-varying covariates: time-penalised trees or TpT. Let Dlong be a longitudinal dataset,

4 Louis Capitaine also worked on a promising generalisation of decision trees and forests that must be
acknowledged. We refer to Appendix A.2 for further details.
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and T = [0;max
i; j

(t (i)j )] be the continuous observation interval of time. We define D(t) as the
dataset containing, for every subject i , her unique observation with the maximal observation
time t (i)j such that t (i)j ≤ t and t (i)

n(i)−1
≥ t , where x(i)(t) ∈ X (t) is the vector of covariates

and y(i)(t) ∈ Y(t) the target variable at time t . Eventually,N (t) = |D(t)| is the total number
of subjects under study at time t . In the same way as in CART, let g be a node, which is also
identified with a sub-region of X ×© T it represents, letD(g) be the set of observations in the
node g and N (g) = |D(g)| the number of subjects it contains.

The idea behind TpT is to build a tree that benefits from all the longitudinal information
available and where the concept of time is central: at each node, we chose to split along
covariates and time. As stated in Section 2.1, a tree-growing algorithm is defined by its split-
ting criterion, stopping rule(s), and pruning process. This applies to TpT and the algorithm
we propose can be described as in Algorithm 2. In the end, a final Time-penalised Tree would
look like the tree depicted in Fig. 3.

Algorithm 2 Growing a maximal TpT.
1: Input: Training longitudinal dataset Dlong
2: Output: Maximal TpTmax
3: Initialise the root node gp with the entire dataset at time t = 0, Dlong(0)
4: Grow(gp , 0)
5:
6: Function Grow(gp , tp):
7: if Stopping criteria met (e.g., maximum depth, minimum samples) then
8: Let gp be a “terminal leaf”.
9: else
10: For all possible covariates xk , thresholds d and time points tc ≥ tp find the triplet (xk , d, tc) such that

a partitioning of Dlong(tc) along xk , at threshold d obtains the best splitting criterion.
11:
12: Split the node gp : all subjects with t(i)

n(i)−1
< tc go to a “duration leaf” gt . All other subjects - with

t(i)
n(i)−1

≥ tc - are split along covariate xk at threshold d into two child nodes gr and gl .
13: Grow(gr , tc)
14: Grow(gl , tc)
15: end if

Let us detail how to understand the TpT depicted in Fig. 3. The root node appears in blue,
and leaf nodes appear in green. The root node contains all subjects of D(t0) and is then split
into three nodes:

• a left child node containing all subjects from the root node for whom the covariate x1 is
inferior or equal to the threshold d1, at time t1,

• a right child node containing all subjects from the root node for whom the covariate x1
is greater than d1, at time t1,

• a third node (depicted horizontally from the root node in Fig. 3) containing all subjects
from the root node without any observation at time t1 or later. Without any information
about the value of x1 at time t1, such subjects cannot be spread into one of the child
nodes. As this third node cannot be split any further, it constitutes a duration leaves.

The right and left child nodes, thus, each contain non-overlapping subsets ofD(t1) and are
themselves split further, along optimal covariates, thresholds, and at times that are≥ t1. This
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Fig. 3 Illustration of a TpT

iterative splitting process continues until a stopping criterion is met and the nodes cannot be
partitioned any further. The final nodes obtained at the very end of every branch constitute
terminal leaves.

Remark 1 A remark about the time notations of Fig. 3 needs to be made, in order to avoid
any confusion. The time points that figure along the vertical axis on the left of Fig. 3 can be
understood as the times of arrival to the node: the last time that was used to split the subjects
in the previous node. Conversely, the time point mentioned inside any given node is part of
the decision rule: the optimal time at which the node is split. For instance, all subjects from
D(t0) arrive at the root node (hence the “t0” on the left axis) and the root node is then split
based on the value of covariate x1, at time t1 ≥ t0 (hence the “t1” inside the root node).

Defining TpT stopping rules is exactly similar to CART (see Section 2.1.2). Its splitting
criterion to be optimised at each node, as well as its pruning process, meanwhile, aremodified
and discussed in the sections below.

Before going into more details, a few comments can be made about the structure of a
TpT. In our methodology, all nodes are forced to split on time, with the constraint that
such split times are chosen to increase with the depth of the tree. Thus time, or duration,
is not considered as a regular covariate but is rather treated as an object of analysis, or as
a second dimension of the response variable which can be reminiscent of survival analysis.
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TpT is a consistent approach whenever it is strongly suspected that time is the predominant
variable with the greatest impact in explaining the response variable, or more generally if the
relationship between time and a variable of interest is the primary subject under study.

Remark 2 With the proposed partitioning process, the overall data will be divided given their
features at different times (as illustrated in Fig. 3), and the optimal splitting covariates and
thresholds are chosen locally for subjects that were effectively observed up to the splitting
time. In the same way a CART tree can prove to be unstable due to the high variability of leaves
with too few observations, a TpT adds a second layer of instability as fewer observations
will be available as time grows. Moreover, the same comment can be made about duration
leaves, which typically contain a small number of observations. As for other decision tree
algorithms, the implementation of stopping rules, or the use of ensemble methods can help
diminish the high-variance of single nodes.

3.1 TpT splitting criterion

The split function for TpT is rather straightforward.Wewant to select the split on a covariate,
at a threshold and a time that will maximise a time-penalised split criterion. The division of
a node into two child nodes and a duration leaf has been detailed for the root node of Fig. 3,
and in all generality, a single split of a parent node gp into the three nodes gl (the left child
node), gr (the right child node), and gt (the duration leaf), is illustrated in Fig. 4.

To obtain such a split, we have to define a time-penalised split criterion, as

Gγ (gp; gl , gr , gt ) =
[

I (gp) −
( N (gl )

N (gp)
I (gl ) + N (gr )

N (gp)
I (gr ) + N (gt )

N (gp)
I (gt )

)]
·e−γ ·(tc−tp),

(5)
with γ ∈ R

+, I (g) an impurity or MSE function as described in Section 2.1.1, tp and tc
the respective times of the parent node and child nodes and γ the penalty parameter. We can
immediately see that this is simply the classical CART splitting criterion with an additional
exponential penalty term, depending on how distant in time the considered split is. The
exponential penalty that we propose induces that the more time distance there is between a

Fig. 4 Single split of a TpT
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parent node and its potential child node, the more penalised the split. Without that penalty
term, a TpT would have early splits at advanced times, and much information contained in
early observations would be lost. It ensures that early observations are explored and exploited
and that distant splits are selected early in the tree if and only if they are greatly informative.
In other words, splits are chosen where covariates and time points are informative about the
target variable; we first try to find close splits if they can detect heterogeneity but distant
splits will be considered if they are very informative. We can find examples of this type of
exponential consideration of time in time series analysis with exponential smoothing (see
[8, 25]), where exponential functions are used to assign exponentially decreasing weights
over time. As far as our knowledge extends, instances of tree-based modified splitting criteria
where exponential weights were introduced are very rare. A first reference can be found in
Section 5.5 of the PhD thesis of [7], which uses localised splitting criteria that are based
on local averaging in regression trees or local proportions in classification trees, weighted
by exponential weights. The weights have no link to time or a measure of distance from
the previous node. Goldstein [21] also suggested using exponential weights in tree-based
algorithms to promote splits on covariates that were already used in previous splits over
others.

The partitioning procedure of TpT can also be visualised similarly to Fig. 1, the only
difference is that the iterative splits occur on different versions of the longitudinal dataset.
Instead of partitioning the feature space alone, we need to illustrate how TpT partitions the
feature space at different times.

Consider two time-varying covariates x1(t) and x2(t) et let us assume that t0 = 0: at depth
0 and t = 0, the tree is only a root and D(0) is not partitioned (as it can be seen on the left
side of Fig. 5). We can see that on the first iteration of the algorithm, a first split, at t = 0
creates a division of D(t1)5 such as illustrated on the right side of Fig. 5.

If we go on with the iterative partitioning, at depth 2 and t = t1, all subjects that have
been observed up to t = t2 within each partition, are once again split into two subgroups.
This creates a division of D(t2) such as depicted in Fig. 6.

Eventually, a few more steps of the iterative partitioning procedure can be visualised as
in Fig. 7. It is the representation of a classical binary split procedure, with the inclusion of
a time dimension. The routes of all subjects can be displayed in that representation: the red,
blue and green paths in Fig. 7 are examples of such individual trajectories.

Remark 3 Several things need to be noted regarding the partitioning illustration depicted in
Fig. 7.

First, duration leaves are not represented here: the red trajectory for instance, does not
split after time t = t1 because the subject it represents has not been observed at time t2 or
later. Its course at time t2 being unknown, it stops in the region of D(t1), which is then a
duration leaf for similar subjects.

Secondly, this illustration shows that divisions of early steps transpose into continuous
partitions in further steps: this is not true in general. The two groups formed by the partition
of D(t1) may not be represented by a unique region of D(t2), split at a constant threshold
over one covariate. To illustrate that point with a concrete example, let us assume that one of
the covariates in D is the subject’s salary. The set of all individuals with a salary ≤ 1, 000
at time t1 is composed of individuals without any observation at time t2, of subjects with a

5 Please refer to Remark 1 for more insights on why the split of subjects observed at a given time occurs at
an ulterior time
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Fig. 5 TpT 1-depth recursive partitioning

salary that increased by t2 and is > 1, 000 and of others still earning ≤ 1, 000. A set of
subjects within a unique connected region of the feature space at time t1 generally lies within
disconnected sub-regions of the feature space at time t2.

Eventually, it is also to be noted that not every disjoint region splits at every time step of
the partitioning. There are times when several splits occur, others where only one region is
partitioned, and others where none. All those points are not depicted in Fig. 7 for simplicity’s
sake.

We can already foresee that higher values of γ ensure that the next optimal split is more
likely to be close in time to the previous node (a distant split is to be chosen only if it is
very interesting). The produced TpTwill be close to a CART with all longitudinal covariates

Fig. 6 TpT 2-depth recursive partitioning
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Fig. 7 TpT recursive partitioning and individual trajectories

values blocked at t = t0. And it can be easily proven that

T pT (Dlong) −→
γ→+∞ C ART (Dlong(t0)). (6)

It allows a TpT to explore the covariates space but prevents it from exploring the time
dimension. On the contrary, lower values of γ are more likely to produce distant splits and
the constructed TpT will show similarities with a CART where all longitudinal covariates
values rapidly approach their final value. It allows a TpT to split along the time dimension
quickly but prevents it from exploring the covariates space at any given time.

Remark 4 Because the impurities of the parent and child nodes can be computed at different
time points, it can happen that Gγ < 0. Such cases imply that a specific stopping rule must
be enforced for TpT: Gγ must be positive for a node to split. Otherwise, it would allow
ineffective splits.

Remark 5 In reality, time-varying features may only occupy a small portion of overall fea-
tures. If the time-varying features can be identified a priori, one can think of applying the time
penalty only on splits along time-varying features, and an unpenalised splitting criterion for
baseline covariates. This is equivalent to our approach for any split that does not produce a
duration leaf. Indeed, in that case, a split on a baseline covariate will always be chosen at
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the current node time. However, we argue that in the general case where a duration leaf can
be produced, penalising splits on time-fixed features can still reduce the node heterogeneity.

3.2 TpT pruning process

For a TpT, the penalty parameter γ affects the tree’s dimensions (depth and number of leaves,
see Section 4 for an analysis on the matter). An optimal γ that minimises the impurity of
the tree (the weighted sum of all leaves impurities) can be chosen but it is not a pruning
process comparable to cost-complexity pruning. For a given γ , a maximal TpT can be grown
and may over-fit the data. To control for bias and over-fitting, various pruning strategies can
be considered. First, Breiman’s cost-complexity pruning is still well-defined under the TpT
framework, for a given γ , and can be applied as long as all duration nodes - denoted as
gt in previous illustrations and algorithm - are considered as leaves. We suggest a slightly
different adaptation of this pruning strategy to select both α and γ simultaneously. It consists
of selecting the pair (α, γ ) that minimises Cα(T ), the cost of the tree. Simpler pruning
strategies such as Reduced Error Pruning (see [40]) can also be used. Their advantages and
flaws are notably discussed in [17] as well as their tendency to over/under-prune.

4 Applications

Such a longitudinal datamining algorithm can prove useful in various fields (medicine, sports
analytics, taxonomy, biology), here we applied it to a life insurance customer segmentation
analysis. For that purpose, we use a real-world dataset of 983 policyholders (PHs), a subset
of the dataset used in [49, 50], and we investigate the link between the PH’s characteris-
tics through time and the final outcome of their policies, a categorical response variable.
Throughout the lifetime of such insurance policies, a series of events can occur. Firstly, one
policyholder’s coverage can be increased with premium payments that are highly flexible,
both in terms of amount and frequency, and are adjusted according to the policyholder’s
financial circumstances and preferences. Additionally, policyholders may decide to reduce
their coverage by withdrawing a portion of their policy. We refer to these events as partial
lapses, enabling PHs to adjust their coverage to better align with their changing needs. Other
financial operations can occur, such as the payment of interest or profit sharing from the
insurer to the PH, and the payment of fees from the PH to the insurer. Insurance companies’
information systems are usually designed to keep track of those operations at the policy level,
thus actuaries and life insurers often have access to the complete history of their policyhold-
ers as the information system is updated in real-time. Eventually, one’s insurance plan ends
whenever the PH dies or decides to terminate it by lapsing. In the end, the timeline of such
insurance policies can be illustrated in Fig. 86, below.

At any given time a policy is either active, has been lapsed by the policyholder, or has
ended because of her death. Among all insurance plans subscribed between 1998 and 2019,
in our dataset, 57.4% are active, 22.8% ended with the death of the policyholders, and 19.8%
lapsed.Weonly consider uncensored observations here,we thus have 46%of churned policies
and 54% that ended with death. For this application, our data mining goal is to gain insights
into the PH’s pathways that lead to these different outcomes. We want to find time-dependent

6 Illustration taken from [49]
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Fig. 8 Example of policyholders timelines

clusters of individuals with similar timelines and outcomes at a given time. This is thus a
time-dependent classification problem, where the target variable is the final outcome of the
policies, the tree growswith the survival time and splits on potentially time-varying covariates
such as age, rate, Customer LifetimeValue (CLV), face amount (FA) or gender.More detailed
descriptions of the dataset used can be found in [49, 50]. In all visualisations of the following
sections, all leaves or regions that contain a majority of policies that ended with the PH’s
death are labelled “D”, and all those that contain amajority of policies that endedwith lapse
(or churn) are labelled “C”. In terms of colours, the proportion of each class is represented
by a nuance between (for a 100% proportion of “D”) and (for a 100%

proportion of “C”). For example, a leaf or region with 50% of churners is represented by
the colour . Since we only consider PHs that were observed until the termination of
their policy, there are no censored observations to consider.

4.1 Properties of TpT for themaximal tree

First of all, Table 3 inAppendixA.3 displays the results obtained byTpTwith various choices
for the time penalty parameter γ . It shows the dimensions of TpTs (depth and number of
leaves), their global impurities and costs, the highest time point when a split occurred, and the
average time atwhich any subject is split. Graphs of those results can be found in Fig. 18. Here
we considered unpruned trees using the time-penalised version of the Gini impurity measure
as a splitting rule (5) and without any stopping criterion. For this application, we computed
the cost of the tree with a choice of α =

√
3 log 2
2N , suggested by [44], who demonstrated

for dyadic trees pruned with a square-root penalty, generates a tree whose error converges
optimally to the Bayes error. The pruning process then only consist of selecting γ as the
solution of argmin

γ
Cα(T ).

We can observe that the depth and number of leaves grow with γ . This was to be expected,
as a TpT that does not penalise time-distant splits will quickly find high impurity-gain splits
at distant times thus preventing the exploration of less distant time periods. Conversely, the
same phenomenon explains that the average time when splits occur is a decreasing function
of γ . As the penalty parameters get high values, any future split is heavily penalised and can
not compete with splits at time t0, regardless of their potential unpenalised gain. Eventually
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Fig. 9 Split times distribution for the optimal unstopped and unpruned TpT

and very interestingly, we observe that the unpenalised TpT, as well as the heavily penalised
one, are not optimal in terms of global impurity. There exists an optimal choice of γ that
generates a TpTminimising the sumof its leaves impurities. This tree has a penalty parameter
of 0.2725, a depth of 17 and a number of leaves of 190 - 173 terminal leaves and 17 duration
leaves - and is displayed in Appendix A.3 as long with more results and graphs obtained with
diverse settings, with various impurity measures.

Such trees, without stopping criterion and post-pruning are useful to discuss the properties
of TpTs but do not yield immediate insights on our dataset. Nevertheless, there is one statistic
that proves to be insightful: the distribution of times when splits occur. Obviously, with an
exponentially penalised splitting criterion, the more distant from its parent time tp a split time
tc is, the more penalised it is and the less likely it is to be selected. The a priori probability
for a time to be selected as a split time is ∝ e−γ ·(tp−tc), which reflects the importance of the
time component of the goodness-of-split. Thus, by weighting the frequency of times when
splits occur with an exponential factor, we balance this bias and retrieve the importance of
the time periods. In the optimal unpruned and unstopped tree, the splitting time points are
distributed as depicted in (Fig. 9).
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In the weighted histogram, we can clearly see that some periods seem to be critical split
points that differentiate active policies from lapsers or policies that are likely to end with the
policyholder’s death. Interestingly, we see that t = 0 and t = 8 are particularly important
in terms of differentiation between policies’ outcomes. For t = 0, the insight is clear: most
of the information that separates the churners from policies that end with the PH’s death can
be retrieved from the baseline covariates: for instance, it can be seen in the early splits of
the optimal tree (see Appendix A.3 - More results) that the age at subscription seems to be
very informative - older PHs are more exposed to the mortality risk - and thus is selected
at baseline. Regarding the important splits at t = 8, we see in that they correspond to splits
on age, CLV, or FA. CLV is highly dependent on both age and FA, thus we could argue that
age and FA are the most informative covariates at t = 8. By law, French life insurance plans
ensure that when a given policy is at least eight years old, the policyholder can lapse without
any surrender penalty. This is a clear incentive not to churn before one’s policy reaches 8
years of seniority. It seems consistent to observe that this threshold is pointed out in our
analysis. The third year of seniority comes right after t = 0 and t = 8 in terms of temporal
importance, which does not have any obvious business justification. However, every split at
t = 3 is either a split on CLV or the FA of the policy, thus we can argue that the final outcome
of a policy seems dependent on its FA 3 years after subscription.

Fig. 10 Characteristics of a maximal TpT, trained on 9,873 PHs with various γ
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Characteristics of TpTs grown with various γ are described in Fig. 10. It gives the split
times distribution in Fig. 11. For example, the unpenalised (γ = 0) sub-optimal TpT with
γ = 0, depicted in Fig. 12 only splits at times t = 0 , t = 3 or t ≥ 8, with respectively 1, 1
and 24 splits. This application has also been tried on a larger longitudinal dataset, containing
119,431 observations of 9,873 PHs, but due to the heavy computation time, all other analyses
are carried out on the smaller dataset.

4.2 Use-case with a stopping rule

A clear strength of decision trees is their interpretability. Obviously, trees with hundreds
of leaves each containing a handful of subjects can not be interpreted. Here we decided to
investigate the results obtained by TpTs with various γ , using the time-penalised version of
the Gini impurity measure as a splitting rule and including a stopping criterion: any leaf must
contain at least 50 individuals otherwise it does not split. This choice of stopping rule is not
close to the default value for the minsplit parameter in most CART implementations, but
it will generate shorter, less over-fitted TpTs, better suited for direct interpretability and data
analysis. Here are the results for TpT on our longitudinal dataset, with minsplit= 50. Graphs
of those results can be found in Fig. 13.

Fig. 11 Split times distribution for the optimal TpT, trained on 9,873 PHs
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Fig. 12 Over-fitted unpenalised, unstopped and unpruned TpT

Among all the different TpTs in Table 2, we can discuss which one minimises the tree cost.
First of all, we see here that the treeswith γ = 0 and γ → ∞ are not the best in terms of global
cost. This is a critical result: γ = 0 is the case where the last observed observation points are
quickly considered whereas early periods are not really considered, and high γ represents the
case where a tree is grown only on the baseline values of all time-varying covariates. Thus,
TpT shows that considering the time in the splitting process improves the global purity of the
tree, it better differentiates between individuals with different outcomes and trajectories. In
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Fig. 13 Characteristics of TpT (minsplit: 50) depending on the time penalty

terms of interpretability, Fig. 14 shows that the optimal TpT is a compromise between small
TpTs with time-distant splits and a large baseline tree without any temporal information.
Whole-page versions of those trees can be found in Appendix A.4.
An important temporal dependence that can be learned from the tree is the fact that there
exists an incentive not to lapse before eight years of seniority. It is clearly depicted in the
optimal TpT - γ = 0.035 - as the duration leaves generated by splits occurring at times ≥ 8
contain a majority of policyholders that did not lapse. It means that regardless of their age,
subjects with a seniority ≤ 8 years do not lapse. The TpT with no time penalty - γ = 0 -
can capture the same temporal dependence for splits that occur immediately after 8 years for
older PH but fails to do so for younger ones. This is explained by the fact that for the latter,
the unpenalised TpT quickly finds an excellent split at time t = 15, which prevents splits
around 8 years from being found. This is a compelling argument in favour of a time penalty.
Furthermore, the TpT with a very high time penalty produces a tree that only splits at time
t = 0, thus no temporal insights can be found with it. If we were to conclude from such a
tree, we could say that Age is the most important covariate, and allow for a good partitioning
of D but we cannot have any temporal analysis. This is an argument in favour of TpT and
the suggested γ selection process.
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Fig. 14 TpTs with γ = 0, γ = 0.035 and γ → ∞, respectively

4.3 Pathways visualisations

In terms of datamining and clustering, let us focus on the optimalTpTobtained in the previous
section and depicted in Fig. 15. In the same way a decision tree is a representation of all
observations in a cross-sectional dataset, a TpT is a complete representation of a longitudinal
one and we can highlight the pathway of any given policyholder in the tree. Unlike any other
longitudinal tree-based model, any individual has a unique continuous trajectory in the tree.
The pathways of five policyholders selected at random from our dataset are represented with
five distinct dashed lines in the following TpT.
Thus, the longitudinal dataset and all individual timelines can be easily represented as a
partitioning. All PHs are represented on the y-axis and the region of the covariate space
where they belong changes as a function of time, on the x-axis. In this example, the 18 leaves
of Fig. 15 correspond to the 18 final regions of Fig. 16, as t → ∞.
The numbers in each region of Fig. 16, as well as their heights, are the number of PHs they
contain, and the five individual trajectories represented as pathways in the tree correspond to
the five horizontal lines within the global timeline. Let us take a few examples to understand
this Figure. In the TpT displayed in Fig. 15, 520 policyholders are older than 62.5 years old,
at subscription, they all go from the root to the first right node of the tree. At that point, we
see the trajectories of three policyholders (depicted in light blue, red and brown dashed lines)
taking that path to the right. Their trajectories spread after the next split at t = 1. Similarly,
those 520 PHs can be found in the lower region of Fig. 16, with t ∈ [0, 1] on the y-axis. The
light blue, red, and brown dashed paths can be found in that region. After that, when t > 1,
these PHs’ trajectories are never in the same region again, the same way they can never be
found in the same node of the corresponding TpT. This type of visualisation leads to a better
analysis of the periods where changes in the outcome can occur.

5 Conclusion, limitations and future work

5.1 Conclusion

This paper exhibits TpT, a new tree-based data-mining algorithm that accounts for time-
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Fig. 15 Individual longitudinal trajectories in the optimal TpT (minsplit = 50)

varying covariates through time-penalised splitting criteria.Ourmethods handle time-varying
covariates as well as longitudinal target variables inherently. Contrary to existing approaches,
it does not need workaround strategies such as the pseudo-subject method and provides a tree
that separates “complete individuals”, as each subject covariates trajectory corresponds to a
single unique trajectory in the final tree. Pruning strategies were proposed and tested with
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Fig. 16 Global timeline and individual longitudinal trajectories

real datasets and illustrative examples. The algorithm proves to have appealing data-mining
and visualisation potential in various fields that could be explored more deeply in the future.

5.2 Limitations and future work

Right away, it is crucial to acknowledge the general limitations of this work, before going
into more technical details. First of all, the need for a thorough investigation into the sta-
tistical properties and theoretical underpinnings of the developed tools is evident to ensure
their reliability and robustness. Such theoretical work is critical and constitutes forthcoming
research. Secondly, conducting comprehensive comparisons of TpT with existing longitu-
dinal techniques, employing well-studied datasets and consistent indicators is pivotal for a
more rigorous evaluation of the proposed methods. These identified gaps in the current work
underscore the necessity for subsequent research on TpT.
Besides those points, and with the algorithm as it is defined for data-mining purposes, many
improvement paths can be considered:

Firstly, the introduction of a penalised splitting criterion, and thus a penalty parameter
could be discussed more thoroughly. The current multiplicative exponential form of penal-
isation has been duly justified but one could explore the effects of different approaches.
Other distributions of the future time cut-off penalties such as Gamma (with parameters
α < 1, β ≥ 1 or α = 1, β > 2), Pareto, Weibull (with parameter k < 1) or Log-logistic
(β ≤ 1) could be justified on concrete examples. Furthermore, we are aware that the exponen-
tial formulation, for example, might downplay connections across time that have substantial
time lag arising from delayed after-effects (for example, an increase in lapses days, weeks,
or years after a major economic event or after a new regulation). In that case, we argue that
the optimal formulation of the time penalty function should vary depending on the intended
application and the anticipated lagged effects. Moreover, in the algorithm as it stands, every
point in time can be considered for a potential cut-off; some time-horizon limit where distant
splits would simply be ignored would have an impact on the shape of the final tree. Eventu-
ally, the possibility of a penalty parameter that changes along the growth of the tree is yet
to be explored. In all those scenarios, the penalty parameter affects the width and length of
the final tree and can even be interpreted as a pre-pruning parameter. The properties of that
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pre-pruning as well as the choice of an optimal γ are yet to be discussed. On a final note, we
do not know if any technical properties (see [5, 9]) of the penalised splitting criterion still
hold. That knowledge will certainly not affect the concrete applications of TpT but is more
of a theoretical interest.

Secondly, we showed in illustrative applications that time-outliers can be easily miscate-
gorized as the TpT can send them early in one direction of the tree from which they will not
escape. In addition to that, those observations are likely to end up being isolated in a leaf if
the stopping rules allow it, thus creating either very heterogeneous terminal leaves, or sparse
duration leaves. On the one hand, it forces observation into an early path that may not be
consistent with later observations. On the other hand, this behaviour is linked to an abrupt
change of the covariates and target variable trajectories in time, which is a discriminating
feature that can justify that such subjects end up in a specific leaf. We see two ways to handle
this specific property:

• A first idea would be to modify the TpT algorithm to make it less greedy. Instead of
choosing the best split at each node,we could consider finding the best sequence of several
consecutive splits. This multi-step ahead strategy would ensure that abrupt changes in
covariates in the future are anticipated in early splits. In caseswhere the penalty parameter
is low, this approach also ensures that the TpT does not grow too fast with time.

• Another innovative solution is to introduce the possibility for an outlier in a node to
teleport into another one, at a similar depth/split time in the tree. For instance, if it so
happens that a subject trajectory suddenly becomes significantly different from the other
ones in the samenode, it can be clever to acknowledge that it is no longer consistent to keep
it in the said node. This solution has drawbacks: it requires testing for outliers in every
node, at every step. If one is found, it can only be teleported if another node within which
the subject would not be an outlier is found. Moreover, it is a straightforward solution for
data mining but other adaptations are necessary if TpT is to be used for predictive tasks.
Despite this, it would still ensure individual trajectories for every subject in the tree and
it would consolidate the global within-node homogeneity.

Other probabilistic approaches could help represent individual paths for circumstances where
subjects fall down incorrect trajectories early on (with an estimation of the uncertainty) or
where subjects fall in sparse duration leaf (with the projection of the covariates beyond the
duration of the observed subject).

Then, our last point raises another capital question: the applications shown in Section 4
only exhibit the potential of TpT for clustering tasks with uncensored data; can it be adapted
to prediction ones? And can it be adapted to censorship?

In our context, a prediction is an estimation of a subject’s target variable y(i) at a time
t , given its covariate history up to t . An obvious research path in that direction is to mimic
the example of CART. For a subject in node g, predicting the mean of the target variable
at time t of all subjects emerging from node g is to be tried. It perfectly translates in terms
of interpretability: the prediction of an outcome at time t for individual i is the mean of the
outcomes at time t of all subjects taking the same trajectory in the tree. There are several
obvious drawbacks to this approach: there needs to exist observations of other subjects at
time t . And even if some exist, the variance of the prediction is directly linked to the number
of such subjects. There are also good reasons to think that survival analysis can be carried out
directly under the TpT framework. Indeed, for data mining purposes, subjects are distributed
in the final tree considering their last observed time. Censorship and event occurrences are
visible in the duration nodes gt . AdaptingTpT for prediction tasks in a survival context would
require additional work to account for censorship (by weighting the censored observations
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Fig. 17 Yao et al. survival decision tree, taken from [54]

by the inverse probabilities of censoring weights (IPCW) in the splitting criterion, see [51]),
but this specific topic is not in the scope of our paper. Exploring the properties and predictive
performance of this approach is left as future work and other methods such as fitting a
longitudinal model7 at every node, not for splitting but for prediction purposes are also
studied.

Eventually, if prediction is made possible in the future, exploring the performance of
ensemble methods for TpT looks like a reasonable next step. Such approaches are in contra-
diction with the research of interpretability that motivated TpT, but competitive predictive
performance could justify them.

Eventually, we can conclude by adding some broader thoughts. The elaboration of this
article naturally arose from the gaps detected in the longitudinal tree-based models’ literature
for data mining and the potential use of TpT for actuarial applications. Nevertheless, similar
research problems also emerged from different origins, and answer different research prob-
lems. For instance, sequence analysis in social science (see [33]) or time-sequence/clinical
pathway/treatment sequence analysis in the medical field whether its purpose is data visu-
alisation (see [39]) or data-mining (see [2, 12, 13]) also deal with individual trajectories of
subjects with time-varying features. Such topics are closely related to our work and demon-
strate a broader interest in analysing time-varying behaviours in any decision-making field.
The recent work of [54] (see specifically appendices A and B) suggests a survival method
that yields a decision tree that splits along covariates and time points. Such a tree and its
similarity with a TpT can be observed in Fig. 17. This could be adapted to TpT for survival
prediction purposes and future actuarial as well as broader research could benefit from such
works.

Eventually, consistency results for TBMs trained on cross-sectional datasets (see [20, 27,
43]) could be extended for TpT. As a matter of fact, the splitting criterion at each node is

7 A mixed effect model in regression or a joint model in survival setting for instance
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evaluated at a given fixed time point, thus on independent observations and a single deep
TpT can be studied as a concatenation of numerous time-invariant shallow CART. Thus,
given a sufficiently large training set, we obtain sufficiently deep concatenated CARTs, all
consistent for a fixed time. Conditions for the consistency of TpT, in the sense that the
trajectory of any individual along the tree tends to a minimal classification error at each time
step, could be derived. The mathematical work that consists of extending the consistency
results of cross-sectional TBMs to TpT constitutes future research.

Appendix

About cost-complexity pruning

Even though the original cost function of the CART algorithm described by [6] is penalised
proportionally to its number of leaves nL , several works on the matter suggest other types
of penalty. [3] shows that applying risk bounds to CART implies a penalty with ψ(nL) =√

nL . In later works, [34, 38], then [45] also showed that risk bounds with a penalty using
ψ(nL) = √

nL can be derived for classification trees whereas penalties proportional to nL

can only be derived in specific cases discussed by [4]. In summary, square-root penalties
appear to have a much stronger theoretical foundation than nL proportional ones in various
contexts, notably for classification tasks.

Fréchet trees

Another very interesting and general approach is Fréchet trees - and Fréchet forest - by [10].
It is a tree-building procedure that allows handling data for which input covariates and the
outcome take values in general metric spaces. Concretely, it is designed to handle covariates
and outcomes that can be any functions and can be, in particular, functions of time. In this
article, they illustrate the prediction ability of Fréchet forests on longitudinal data and the
robustness of their method to missing data and time shifts. Several limitations can be pointed
out: firstly the mathematical assumption of the existence of the Fréchet mean in the output
space must be verified and that mean must be approximated as precisely as possible. Another
limitation is the interpretability, as it is always the case with bagging techniques, but here it
is also true for individual Fréchet trees: if covariates’ importance can be analysed, relevant
threshold and time points can not be easily observed. Eventually, the computational burden
of this algorithm is also important. This method has been implemented in the R package
FrechForest.

More results

Results without stopping criterion

The maximal unpruned and unstopped TpT, obtained with the time-penalised Gini splitting
criterion and an optimal time penalty achieves a depth of 17, has 190 leaves - 173 terminal
leaves, 17 duration leaves - and is too large to be fully displayed as a tree here. However, we
can still represent it as a list of decisions describing how the dataset is partitioned:
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The maximum depth achieved is 17
The number of leaves is 190
173 terminal leaves and 17 duration leaves
The tree impurity is : 0.06270710057403012
The penalized tree impurity is : 0.3556124586066797
The maximum time where a split occured is 10.0
The average split time is 0.9805922147055561

The tree is:
depth = 0 if Age <= 65.5 at t = 0.0, samples: 983
and no duration leaf

then depth = 1 if Age <= 42.5 at t = 0.0, samples: 463
and no duration leaf

then depth = 2 if GENDER <= 1.5 at t = 0.0, samples: 110
and no duration leaf

then depth = 3 if Age <= 30.5 at t = 0.0, samples: 58
and no duration leaf

then depth = 4{value: CHURNED, samples: 29}
else depth = 4 if CLV <= 9.16 at t = 0.0, samples: 29
and no duration leaf

then depth = 5{value: CHURNED, samples: 9}
else depth = 5 if FACE_AMOUNT <= 7197.19 at t = 2.0, samples: 20
and no duration leaf

then depth = 6 if FACE_AMOUNT <= 3654.22 at t = 2.0, samples: 9
and no duration leaf

then depth = 7 if Age <= 39.5 at t = 2.0, samples: 5
and no duration leaf

then depth = 8{value: CHURNED, samples: 3}
else depth = 8{value: CHURNED 0.5, samples: 2}

else depth = 7{value: DEATH, samples: 4}
else depth = 6{value: CHURNED, samples: 11}

else depth = 3{value: CHURNED, samples: 52}
else depth = 2 if GENDER <= 1.5 at t = 0.0, samples: 353
and no duration leaf

then depth = 3 if Age <= 53.5 at t = 0.0, samples: 154
and no duration leaf

then depth = 4 if Age <= 52.5 at t = 0.0, samples: 53
and no duration leaf

then depth = 5 if CLV <= 13.11 at t = 0.0, samples: 47
and no duration leaf

then depth = 6 if FACE_AMOUNT <= 3196.44 at t = 3.0, samples: 10
and duration leaf has 1 samples. Label is: CHURNED 1.0

then depth = 7{value: CHURNED, samples: 7}
else depth = 7{value: CHURNED 0.5, samples: 2}

else depth = 6 if CLV <= 88.4 at t = 0.0, samples: 37
and no duration leaf

then depth = 7 if Nb_Contrats <= 1.5 at t = 0.0, samples: 14
and no duration leaf

then depth = 8 if CLV <= 40.05 at t = 0.0, samples: 12
and no duration leaf

then depth = 9 if Age <= 45.5 at t = 0.0, samples: 8
and no duration leaf

then depth = 10{value: DEATH, samples: 3}
else depth = 10 if CLV <= 17.03 at t = 0.0, samples: 5
and no duration leaf

then depth = 11{value: DEATH, samples: 2}
else depth = 11{value: CHURNED, samples: 3}

else depth = 9{value: DEATH, samples: 4}
else depth = 8{value: CHURNED, samples: 2}

else depth = 7 if CLV <= 591.46 at t = 0.0, samples: 23
and no duration leaf

then depth = 8 if CLV <= 352.28 at t = 0.0, samples: 18
and no duration leaf

then depth = 9 if CLV <= 155.3 at t = 0.0, samples: 16
and no duration leaf

then depth = 10 if CLV <= 190.4 at t = 1.0, samples: 9
and no duration leaf

then depth = 11{value: CHURNED 0.5, samples: 2}
else depth = 11{value: CHURNED, samples: 7}

else depth = 10 if CLV <= 178.0 at t = 0.0, samples: 7
and no duration leaf

then depth = 11{value: DEATH, samples: 2}
else depth = 11 if CLV <= 259.66 at t = 0.0, samples: 5
and no duration leaf

then depth = 12{value: CHURNED, samples: 3}
else depth = 12{value: CHURNED 0.5, samples: 2}

else depth = 9{value: DEATH, samples: 2}
else depth = 8{value: CHURNED, samples: 5}

else depth = 5{value: CHURNED, samples: 6}
else depth = 4 if CDI_NOM_PRODUIT <= 1.5 at t = 0.0, samples: 101
and no duration leaf

then depth = 5 if FACE_AMOUNT <= 10325.88 at t = 4.0, samples: 83
and duration leaf has 3 samples. Label is: DEATH 1.0

then depth = 6 if CLV <= 16.28 at t = 4.0, samples: 41
and no duration leaf
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then depth = 7 if Age <= 60.5 at t = 6.0, samples: 8
and duration leaf has 1 samples. Label is: CHURNED 1.0

then depth = 8{value: CHURNED 0.5, samples: 2}
else depth = 8{value: DEATH, samples: 5}

else depth = 7 if CLV <= 89.04 at t = 4.0, samples: 33
and no duration leaf

then depth = 8{value: CHURNED, samples: 8}
else depth = 8 if CLV <= 100.4 at t = 4.0, samples: 25
and no duration leaf

then depth = 9{value: DEATH, samples: 2}
else depth = 9 if CLV <= 181.96 at t = 4.0, samples: 23
and no duration leaf

then depth = 10{value: CHURNED, samples: 5}
else depth = 10 if CLV <= 310.27 at t = 5.0, samples: 18
and no duration leaf

then depth = 11{value: DEATH, samples: 3}
else depth = 11 if Age <= 68.5 at t = 5.0, samples: 15
and no duration leaf

then depth = 12 if FACE_AMOUNT <= 3972.54 at t = 5.0, samples: 11
and no duration leaf

then depth = 13{value: DEATH, samples: 3}
else depth = 13 if CLV <= 748.3 at t = 6.0, samples: 8
and no duration leaf

then depth = 14{value: CHURNED, samples: 4}
else depth = 14 if CLV <= 917.37 at t = 6.0, samples: 4
and no duration leaf

then depth = 15{value: DEATH, samples: 2}
else depth = 15{value: CHURNED, samples: 2}

else depth = 12{value: CHURNED, samples: 4}
else depth = 6 if FACE_AMOUNT <= 17894.43 at t = 4.0, samples: 39
and no duration leaf

then depth = 7{value: DEATH, samples: 8}
else depth = 7 if Age <= 65.5 at t = 5.0, samples: 31
and no duration leaf

then depth = 8 if CLV <= 1745.92 at t = 5.0, samples: 17
and no duration leaf

then depth = 9 if FACE_AMOUNT <= 21616.0 at t = 5.0, samples: 5
and no duration leaf

then depth = 10{value: DEATH, samples: 3}
else depth = 10{value: CHURNED, samples: 2}

else depth = 9 if CLV <= 3172.41 at t = 5.0, samples: 12
and no duration leaf

then depth = 10{value: CHURNED, samples: 6}
else depth = 10 if FACE_AMOUNT <= 64766.89 at t = 6.0, samples: 6
and no duration leaf

then depth = 11{value: DEATH, samples: 3}
else depth = 11{value: CHURNED, samples: 3}

else depth = 8 if FACE_AMOUNT <= 20931.16 at t = 6.0, samples: 14
and duration leaf has 1 samples. Label is: DEATH 1.0

then depth = 9{value: CHURNED, samples: 2}
else depth = 9 if CLV <= 10948.21 at t = 9.0, samples: 11
and duration leaf has 4 samples. Label is: DEATH 1.0

then depth = 10 if CLV <= 5539.86 at t = 9.0, samples: 4
and no duration leaf

then depth = 11{value: DEATH, samples: 2}
else depth = 11{value: CHURNED, samples: 2}

else depth = 10{value: DEATH, samples: 3}
else depth = 5 if CLV <= 3.37 at t = 0.0, samples: 18
and no duration leaf

then depth = 6{value: CHURNED 0.5, samples: 2}
else depth = 6 if CLV <= 21.3 at t = 0.0, samples: 16
and no duration leaf

then depth = 7{value: CHURNED, samples: 6}
else depth = 7 if CLV <= 363.44 at t = 0.0, samples: 10
and no duration leaf

then depth = 8{value: CHURNED 0.5, samples: 4}
else depth = 8 if CLV <= 2068.21 at t = 0.0, samples: 6
and no duration leaf

then depth = 9{value: CHURNED, samples: 4}
else depth = 9{value: CHURNED 0.5, samples: 2}

else depth = 3 if CDI_NOM_PRODUIT <= 1.5 at t = 0.0, samples: 199
and no duration leaf

then depth = 4 if Age <= 60.5 at t = 0.0, samples: 167
and no duration leaf

then depth = 5 if Age <= 43.5 at t = 0.0, samples: 115
and no duration leaf

then depth = 6 if CLV <= 82.12 at t = 0.0, samples: 4
and no duration leaf

then depth = 7{value: DEATH, samples: 2}
else depth = 7{value: CHURNED 0.5, samples: 2}
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else depth = 6 if CLV <= 2145.92 at t = 3.0, samples: 111
and duration leaf has 1 samples. Label is: DEATH 1.0

then depth = 7 if FACE_AMOUNT <= 28288.52 at t = 3.0, samples: 94
and no duration leaf

then depth = 8 if CLV <= 910.67 at t = 3.0, samples: 92
and no duration leaf

then depth = 9 if CLV <= 840.53 at t = 3.0, samples: 80
and no duration leaf

then depth = 10 if FACE_AMOUNT <= 12512.22 at t = 6.0, samples: 78
and no duration leaf

then depth = 11 if CLV <= 217.81 at t = 8.0, samples: 65
and duration leaf has 4 samples. Label is: CHURNED 0.5

then depth = 12 if Age <= 66.5 at t = 8.0, samples: 24
and no duration leaf

then depth = 13 if Age <= 54.5 at t = 8.0, samples: 20
and no duration leaf

then depth = 14 if Age <= 55.5 at t = 10.0, samples: 7
and duration leaf has 1 samples. Label is: CHURNED 1.0

then depth = 15{value: CHURNED, samples: 3}
else depth = 15{value: DEATH, samples: 3}

else depth = 14 if CLV <= 74.87 at t = 8.0, samples: 13
and no duration leaf

then depth = 15{value: CHURNED, samples: 10}
else depth = 15{value: CHURNED 0.67, samples: 3}

else depth = 13 if Age <= 67.5 at t = 8.0, samples: 4
and no duration leaf

then depth = 14{value: DEATH, samples: 2}
else depth = 14{value: CHURNED 0.5, samples: 2}

else depth = 12 if Age <= 53.0 at t = 8.0, samples: 37
and no duration leaf

then depth = 13{value: CHURNED 0.5, samples: 2}
else depth = 13 if FACE_AMOUNT <= 3848.48 at t = 10.0, samples: 35
and duration leaf has 5 samples. Label is: CHURNED 0.8

then depth = 14 if FACE_AMOUNT <= 3086.41 at t = 10.0, samples: 8
and no duration leaf

then depth = 15{value: CHURNED, samples: 6}
else depth = 15{value: CHURNED 0.5, samples: 2}

else depth = 14{value: CHURNED, samples: 22}
else depth = 11 if Age <= 60.5 at t = 7.0, samples: 13
and duration leaf has 1 samples. Label is: DEATH 1.0

then depth = 12 if FACE_AMOUNT <= 16037.28 at t = 8.0, samples: 8
and no duration leaf

then depth = 13{value: DEATH, samples: 3}
else depth = 13 if Age <= 57.5 at t = 8.0, samples: 5
and no duration leaf

then depth = 14{value: DEATH 0.67, samples: 3}
else depth = 14{value: CHURNED, samples: 2}

else depth = 12{value: CHURNED, samples: 4}
else depth = 10{value: DEATH, samples: 2}

else depth = 9{value: CHURNED, samples: 12}
else depth = 8{value: DEATH, samples: 2}

else depth = 7{value: CHURNED, samples: 16}
else depth = 5 if Age <= 64.5 at t = 0.0, samples: 52
and no duration leaf

then depth = 6 if CLV <= 251.48 at t = 0.0, samples: 43
and no duration leaf

then depth = 7 if FACE_AMOUNT <= 73.34 at t = 3.0, samples: 29
and no duration leaf

then depth = 8{value: DEATH, samples: 3}
else depth = 8 if CLV <= 119.45 at t = 3.0, samples: 26
and no duration leaf

then depth = 9 if CLV <= 54.46 at t = 4.0, samples: 11
and no duration leaf

then depth = 10{value: CHURNED 0.67, samples: 3}
else depth = 10{value: CHURNED, samples: 8}

else depth = 9 if FACE_AMOUNT <= 3331.54 at t = 3.0, samples: 15
and no duration leaf

then depth = 10{value: DEATH, samples: 2}
else depth = 10 if CLV <= 445.55 at t = 3.0, samples: 13
and no duration leaf

then depth = 11{value: CHURNED, samples: 3}
else depth = 11 if CLV <= 709.34 at t = 3.0, samples: 10
and no duration leaf

then depth = 12 if CLV <= 622.04 at t = 3.0, samples: 4
and no duration leaf

then depth = 13{value: CHURNED 0.5, samples: 2}
else depth = 13{value: DEATH, samples: 2}

else depth = 12 if FACE_AMOUNT <= 16863.76 at t = 3.0, samples: 6
and no duration leaf

then depth = 13{value: CHURNED, samples: 3}
else depth = 13{value: DEATH 0.67, samples: 3}

else depth = 7 if Nb_Contrats <= 1.5 at t = 0.0, samples: 14
and no duration leaf

then depth = 8 if FACE_AMOUNT <= 22229.94 at t = 1.0, samples: 11
and no duration leaf

then depth = 9{value: DEATH 0.67, samples: 3}
else depth = 9{value: DEATH, samples: 8}

else depth = 8{value: CHURNED, samples: 3}
else depth = 6 if CLV <= 633.18 at t = 0.0, samples: 9
and no duration leaf

then depth = 7{value: CHURNED, samples: 7}
else depth = 7{value: CHURNED 0.5, samples: 2}

else depth = 4 if CLV <= 2081.39 at t = 0.0, samples: 32
and no duration leaf

then depth = 5 if Age <= 63.5 at t = 0.0, samples: 30
and no duration leaf

then depth = 6 if FACE_AMOUNT <= 37433.94 at t = 3.0, samples: 26
and duration leaf has 2 samples. Label is: CHURNED 1.0

then depth = 7{value: CHURNED, samples: 21}
else depth = 7{value: CHURNED 0.67, samples: 3}
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else depth = 6 if Age <= 64.5 at t = 0.0, samples: 4
and no duration leaf

then depth = 7{value: CHURNED 0.5, samples: 2}
else depth = 7{value: CHURNED, samples: 2}

else depth = 5{value: CHURNED 0.5, samples: 2}
else depth = 1 if Age <= 72.5 at t = 0.0, samples: 520
and no duration leaf

then depth = 2 if CLV <= 2.73 at t = 0.0, samples: 180
and no duration leaf

then depth = 3 if CLV <= 99.7 at t = 2.0, samples: 13
and no duration leaf

then depth = 4 if CLV <= 11.97 at t = 3.0, samples: 11
and no duration leaf

then depth = 5{value: CHURNED, samples: 9}
else depth = 5{value: CHURNED 0.5, samples: 2}

else depth = 4{value: DEATH, samples: 2}
else depth = 3 if CLV <= 2982.24 at t = 0.0, samples: 167
and no duration leaf

then depth = 4 if Nb_Contrats <= 2.5 at t = 0.0, samples: 165
and no duration leaf

then depth = 5 if CDI_NOM_PRODUIT <= 1.5 at t = 0.0, samples: 159
and no duration leaf

then depth = 6 if CLV <= 153.51 at t = 0.0, samples: 146
and no duration leaf

then depth = 7 if Nb_Contrats <= 1.5 at t = 1.0, samples: 61
and no duration leaf

then depth = 8 if Age <= 70.5 at t = 1.0, samples: 58
and no duration leaf

then depth = 9 if GENDER <= 1.5 at t = 1.0, samples: 30
and no duration leaf

then depth = 10 if CLV <= 152.49 at t = 1.0, samples: 17
and no duration leaf

then depth = 11{value: DEATH, samples: 10}
else depth = 11 if CLV <= 212.33 at t = 1.0, samples: 7
and no duration leaf

then depth = 12{value: CHURNED 0.5, samples: 2}
else depth = 12{value: DEATH, samples: 5}

else depth = 10 if FACE_AMOUNT <= 3475.12 at t = 1.0, samples: 13
and no duration leaf

then depth = 11 if FACE_AMOUNT <= 1499.92 at t = 1.0, samples: 7
and no duration leaf

then depth = 12{value: DEATH, samples: 2}
else depth = 12 if Age <= 69.5 at t = 1.0, samples: 5
and no duration leaf

then depth = 13{value: CHURNED, samples: 3}
else depth = 13{value: CHURNED 0.5, samples: 2}

else depth = 11 if CLV <= 195.51 at t = 1.0, samples: 6
and no duration leaf

then depth = 12{value: DEATH, samples: 4}
else depth = 12{value: CHURNED 0.5, samples: 2}

else depth = 9 if FACE_AMOUNT <= 2307.93 at t = 1.0, samples: 28
and no duration leaf

then depth = 10 if CLV <= 35.73 at t = 1.0, samples: 6
and no duration leaf

then depth = 11{value: DEATH, samples: 4}
else depth = 11{value: CHURNED 0.5, samples: 2}

else depth = 10{value: DEATH, samples: 22}
else depth = 8{value: CHURNED 0.67, samples: 3}

else depth = 7 if CLV <= 161.62 at t = 0.0, samples: 85
and no duration leaf

then depth = 8{value: CHURNED, samples: 2}
else depth = 8 if CLV <= 1185.78 at t = 0.0, samples: 83
and no duration leaf

then depth = 9 if CLV <= 1072.6 at t = 0.0, samples: 69
and no duration leaf

then depth = 10 if Nb_Contrats <= 1.5 at t = 0.0, samples: 67
and no duration leaf

then depth = 11 if CLV <= 296.66 at t = 0.0, samples: 61
and no duration leaf

then depth = 12 if CLV <= 240.56 at t = 0.0, samples: 22
and no duration leaf

then depth = 13 if CLV <= 396.72 at t = 1.0, samples: 14
and no duration leaf

then depth = 14 if CLV <= 342.37 at t = 1.0, samples: 7
and no duration leaf

then depth = 15{value: CHURNED 0.5, samples: 2}
else depth = 15{value: DEATH, samples: 5}

else depth = 14 if CLV <= 428.3 at t = 1.0, samples: 7
and no duration leaf

then depth = 15{value: CHURNED, samples: 3}
else depth = 15 if GENDER <= 1.5 at t = 1.0, samples: 4
and no duration leaf

then depth = 16{value: DEATH, samples: 2}
else depth = 16{value: CHURNED 0.5, samples: 2}
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else depth = 13{value: DEATH, samples: 8}
else depth = 12 if CLV <= 522.24 at t = 0.0, samples: 39
and no duration leaf

then depth = 13 if CLV <= 388.65 at t = 0.0, samples: 24
and no duration leaf

then depth = 14 if Age <= 70.5 at t = 0.0, samples: 12
and no duration leaf

then depth = 15 if CLV <= 308.23 at t = 0.0, samples: 8
and no duration leaf

then depth = 16{value: CHURNED 0.5, samples: 2}
else depth = 16{value: DEATH, samples: 6}

else depth = 15 if CLV <= 320.33 at t = 0.0, samples: 4
and no duration leaf

then depth = 16{value: CHURNED, samples: 2}
else depth = 16{value: CHURNED 0.5, samples: 2}

else depth = 14 if CLV <= 427.18 at t = 0.0, samples: 12
and no duration leaf

then depth = 15{value: CHURNED, samples: 4}
else depth = 15 if CLV <= 507.19 at t = 0.0, samples: 8
and no duration leaf

then depth = 16 if GENDER <= 1.5 at t = 0.0, samples: 6
and no duration leaf

then depth = 17{value: DEATH, samples: 3}
else depth = 17{value: CHURNED 0.67, samples: 3}

else depth = 16{value: CHURNED, samples: 2}
else depth = 13 if CLV <= 735.13 at t = 0.0, samples: 15
and no duration leaf

then depth = 14{value: DEATH, samples: 8}
else depth = 14 if CLV <= 767.92 at t = 0.0, samples: 7
and no duration leaf

then depth = 15{value: CHURNED, samples: 2}
else depth = 15 if FACE_AMOUNT <= 47527.88 at t = 1.0, samples: 5
and no duration leaf

then depth = 16{value: DEATH, samples: 3}
else depth = 16{value: CHURNED 0.5, samples: 2}

else depth = 11{value: DEATH, samples: 6}
else depth = 10{value: CHURNED, samples: 2}

else depth = 9 if Age <= 71.0 at t = 0.0, samples: 14
and no duration leaf

then depth = 10{value: DEATH, samples: 11}
else depth = 10{value: DEATH 0.67, samples: 3}

else depth = 6 if FACE_AMOUNT <= 7905.44 at t = 2.0, samples: 13
and no duration leaf

then depth = 7 if FACE_AMOUNT <= 1385.41 at t = 3.0, samples: 8
and duration leaf has 2 samples. Label is: CHURNED 1.0

then depth = 8{value: DEATH, samples: 2}
else depth = 8{value: CHURNED, samples: 4}

else depth = 7{value: DEATH, samples: 5}
else depth = 5 if Nb_Contrats <= 4.5 at t = 1.0, samples: 6
and no duration leaf

then depth = 6{value: CHURNED, samples: 4}
else depth = 6{value: DEATH, samples: 2}

else depth = 4{value: CHURNED, samples: 2}
else depth = 2 if CLV <= 24.19 at t = 0.0, samples: 340
and no duration leaf

then depth = 3 if CLV <= 23.77 at t = 0.0, samples: 70
and no duration leaf

then depth = 4 if Age <= 81.5 at t = 0.0, samples: 68
and no duration leaf

then depth = 5 if Age <= 76.5 at t = 0.0, samples: 53
and no duration leaf

then depth = 6 if CDI_NOM_PRODUIT <= 1.5 at t = 0.0, samples: 32
and no duration leaf

then depth = 7 if CLV <= 1.72 at t = 0.0, samples: 24
and no duration leaf

then depth = 8 if CLV <= 2.86 at t = 1.0, samples: 7
and no duration leaf

then depth = 9{value: DEATH, samples: 3}
else depth = 9{value: CHURNED 0.5, samples: 4}

else depth = 8{value: DEATH, samples: 17}
else depth = 7 if GENDER <= 1.5 at t = 4.0, samples: 8
and duration leaf has 2 samples. Label is: CHURNED 0.5

then depth = 8{value: CHURNED, samples: 2}
else depth = 8 if CLV <= 56.71 at t = 4.0, samples: 4
and no duration leaf

then depth = 9{value: CHURNED 0.5, samples: 2}
else depth = 9{value: DEATH, samples: 2}

else depth = 6 if CLV <= 1.5 at t = 0.0, samples: 21
and no duration leaf

then depth = 7{value: CHURNED, samples: 3}
else depth = 7 if CLV <= 101.49 at t = 3.0, samples: 18
and duration leaf has 1 samples. Label is: DEATH 1.0

then depth = 8 if Age <= 79.5 at t = 3.0, samples: 13
and no duration leaf

then depth = 9{value: CHURNED, samples: 2}
else depth = 9 if GENDER <= 1.5 at t = 3.0, samples: 11
and no duration leaf

then depth = 10 if CLV <= 24.93 at t = 3.0, samples: 4
and no duration leaf

then depth = 11{value: DEATH, samples: 2}
else depth = 11{value: CHURNED, samples: 2}

else depth = 10 if Age <= 80.5 at t = 3.0, samples: 7
and no duration leaf

then depth = 11{value: DEATH 0.67, samples: 3}
else depth = 11{value: DEATH, samples: 4}

else depth = 8{value: CHURNED, samples: 4}
else depth = 5{value: DEATH, samples: 15}

else depth = 4{value: CHURNED, samples: 2}
else depth = 3 if CDI_NOM_PRODUIT <= 1.5 at t = 0.0, samples: 270
and no duration leaf

then depth = 4 if Age <= 74.5 at t = 0.0, samples: 240
and no duration leaf

then depth = 5 if CLV <= 303.99 at t = 0.0, samples: 41
and no duration leaf

then depth = 6 if Age <= 73.5 at t = 0.0, samples: 23
and no duration leaf
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then depth = 7 if CLV <= 391.43 at t = 2.0, samples: 6
and no duration leaf

then depth = 8{value: CHURNED 0.5, samples: 2}
else depth = 8{value: DEATH, samples: 4}

else depth = 7{value: DEATH, samples: 17}
else depth = 6 if CLV <= 334.97 at t = 0.0, samples: 18
and no duration leaf

then depth = 7{value: CHURNED, samples: 3}
else depth = 7 if CLV <= 1380.47 at t = 0.0, samples: 15
and no duration leaf

then depth = 8{value: DEATH, samples: 13}
else depth = 8{value: CHURNED 0.5, samples: 2}

else depth = 5 if Age <= 89.5 at t = 0.0, samples: 199
and no duration leaf

then depth = 6 if FACE_AMOUNT <= 65229.84 at t = 3.0, samples: 192
and duration leaf has 2 samples. Label is: DEATH 1.0

then depth = 7 if FACE_AMOUNT <= 5858.16 at t = 3.0, samples: 160
and no duration leaf

then depth = 8 if FACE_AMOUNT <= 5693.4 at t = 4.0, samples: 27
and duration leaf has 3 samples. Label is: DEATH 1.0

then depth = 9{value: DEATH, samples: 22}
else depth = 9{value: CHURNED, samples: 2}

else depth = 8 if Age <= 78.5 at t = 3.0, samples: 133
and no duration leaf

then depth = 9 if FACE_AMOUNT <= 14620.96 at t = 3.0, samples: 13
and no duration leaf

then depth = 10 if CLV <= 743.21 at t = 3.0, samples: 5
and no duration leaf

then depth = 11{value: DEATH, samples: 3}
else depth = 11{value: CHURNED 0.5, samples: 2}

else depth = 10{value: DEATH, samples: 8}
else depth = 9 if Age <= 81.5 at t = 3.0, samples: 120
and no duration leaf

then depth = 10 if Age <= 80.5 at t = 3.0, samples: 49
and no duration leaf

then depth = 11{value: DEATH, samples: 33}
else depth = 11 if CLV <= 1337.19 at t = 3.0, samples: 16
and no duration leaf

then depth = 12 if CLV <= 1236.12 at t = 3.0, samples: 7
and no duration leaf

then depth = 13{value: DEATH, samples: 5}
else depth = 13{value: CHURNED 0.5, samples: 2}

else depth = 12{value: DEATH, samples: 9}
else depth = 10{value: DEATH, samples: 71}

else depth = 7 if Age <= 79.5 at t = 3.0, samples: 30
and no duration leaf

then depth = 8 if CLV <= 6469.44 at t = 3.0, samples: 6
and no duration leaf

then depth = 9{value: CHURNED, samples: 2}
else depth = 9{value: DEATH, samples: 4}

else depth = 8 if CLV <= 4697.78 at t = 4.0, samples: 24
and duration leaf has 2 samples. Label is: DEATH 1.0

then depth = 9{value: CHURNED 0.5, samples: 2}
else depth = 9{value: DEATH, samples: 20}

else depth = 6 if GENDER <= 1.5 at t = 0.0, samples: 7
and no duration leaf

then depth = 7{value: CHURNED 0.5, samples: 2}
else depth = 7{value: DEATH, samples: 5}

else depth = 4 if Age <= 80.5 at t = 0.0, samples: 30
and no duration leaf

then depth = 5 if GENDER <= 1.5 at t = 0.0, samples: 11
and no duration leaf

then depth = 6 if Age <= 75.5 at t = 0.0, samples: 4
and no duration leaf

then depth = 7{value: CHURNED 0.5, samples: 2}
else depth = 7{value: DEATH, samples: 2}

else depth = 6 if Age <= 79.5 at t = 0.0, samples: 7
and no duration leaf

then depth = 7{value: CHURNED, samples: 4}
else depth = 7{value: CHURNED 0.67, samples: 3}

else depth = 5{value: DEATH, samples: 19}

The unstopped and unpruned TpTs, obtained with the time-penalized gini splitting crite-
rion, and various time penalties yields the following results:
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M. Valla

Fig. 18 Characteristics of unstopped and unpruned TpT depending on the time penalty
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Time-penalized trees...

The unstopped and unpruned TpTs, obtained with the time-penalised entropy splitting
criterion, and various time penalties yield the following results:

Results with minsplit = 25

The maximal unpruned and unstopped TpTs, obtained with the time-penalized entropy split-
ting criterion, minsplit= 25, and various time penalties yields the following results:
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M. Valla

Fig. 19 Characteristics of entropy TpTs (minsplit=25) depending on the time penalty

123



Time-penalized trees...

Results with minsplit = 50

Fig. 20 Gini TpT (minsplit=50) with γ = 0
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M. Valla

Fig. 21 Gini TpT (minsplit=50) with the optimal time penalty
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Time-penalized trees...

Fig. 22 Gini TpT (minsplit=50) with γ → ∞
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