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Abstract

This article proposes a new decision tree algorithm that accounts for time-varying covari-
ates in the decision-making process. Traditional decision tree algorithms assume that the
covariates are static and do not change over time, which can lead to inaccurate predictions
in dynamic environments. Other existing methods suggest workaround solutions such as the
pseudo-subject approach, discussed in the article. The proposed algorithm utilizes a differ-
ent structure and a time-penalized splitting criterion that allow a recursive partitioning of
both the covariates space and time. Relevant historical trends are then inherently involved
in the construction of a tree, and are visible and interpretable once it is fit. This approach
allows for innovative and highly interpretable analysis in settings where the covariates are
subject to change over time. The effectiveness of the algorithm is demonstrated through
real-world data analysis, highlighting its potential applications in various fields, including
healthcare, finance, insurance, environmental monitoring, and data mining in general.

Key words: decision tree, time-varying covariate, data mining, longitudinal study, algo-
rithm

1 Introduction

Decision trees are a popular machine learning tool for data mining as well as classification
and regression predictions. Growing such a tree is a data-driven process based on a set of
input covariates and a target variable. The most famous decision tree algorithm is arguably
Classification and Regression Trees (CART), introduced by Breiman et al.[5]. CART constructs
a binary tree by recursively partitioning the feature space into smaller and smaller subsets,
based on a splitting criterion that maximizes the separation between the target variable’s
values in each subset. However, traditional decision tree algorithms like CART assume that
the input features or covariates are static and do not change over time. In many real-world
settings, this assumption is unrealistic, and the time-dynamic nature of the covariates is highly
informative and should be included in the tree construction. In such settings, not accounting
for dynamic features results in information loss, hence a loss of accuracy and richness of analysis.

Other data-driven approaches can already efficiently seize the time dimension of features
in prediction and data-mining settings. One can think of neural networks (see [29] or [44] for
instance). Yet conventional parametric statistical models or machine learning approaches such
as logistic regression or most tree-based models cannot handle time-varying covariates straight-
forwardly. They assume that individual observations are independently distributed. Because
of the longitudinal structure of a time-varying dataset (see Section 2.2 for more details), this
independence hypothesis cannot be met: different observations of a single subject are naturally
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strongly correlated. To address this limitation, some existing tree-based methods suggest
workarounds such as the pseudo-subject approach in survival trees ([16]), which create artificial
left-truncated and right-censored subjects by pooling observations over time, or the inclusion
of a mixed effect model structure around a tree-based core ([19, 39, 20]). Such computationally
intensive methods proved to yield competitive results in many prediction frameworks, yet
we argue in the following sections that they are not entirely satisfying in terms of interpretability.

In this article, we propose Time-penalized Tree (TpT), a new decision tree algorithm
that accounts for time-varying covariates in the decision-making process. Our algorithm
utilizes a different structure and a time-penalized splitting criterion that allows for recursive
partitioning of both time and the features space. We detail the algorithm and show simulated
real data-mining and visualization applications. However, it is crucial to underscore the inher-
ent limitations in the current scope of this study. Recognizing the need for further refinement,
this work primarily concentrates on introducing and demonstrating the applicability of TpT.
Nevertheless, two crucial aspects remain unaddressed: firstly, the imperative need for a compre-
hensive exploration into the statistical properties and theoretical foundations of this new tool;
and secondly, the essential comparative analysis of TpT results against existing longitudinal
techniques, trained on well-studied datasets and evaluated with consistent indicators. This
introduction sets the stage for future investigations, acknowledging the identified gaps and
emphasizing their significance in shaping the future trajectory of our research.

The rest of this paper is structured as follows. We recall the basics about classification
and regression trees as well as time-varying covariates analysis in Section 2, we also briefly
present existing approaches and frame their interpretability flaws. Then we detail the specifici-
ties of TpT in Section 3 and explain its benefits, which is the main contribution of this work.
In Section 4, we show a concrete application of our framework on a real-world life-insurance
dataset, with visuals and illustration work, demonstrating the interpretability properties of
TpT. Eventually, Section 5 concludes this paper and details future works.

2 Preliminaries

2.1 Classification and regression trees

In this section, we briefly describe the mechanisms of a simple yet powerful data-mining and
prediction model: decision trees, and more specifically, classification and regression trees or

CART [5]. Here, we assume that all covariates are time-independent. Let D = (x(i), y(i))
N

i=1 be

a dataset of N individuals with x(i) =
(
x
(i)
1 , . . . , x

(i)
p

)
, the vector of p covariates and y(i) the

target variable for the i-th subject. The covariates and target spaces are respectively denoted
X and Y. Decision trees create a recursive partitioning of X based on binary decision rules.
This partitioning can be visualized directly in the case where there are two covariates x1 and x2
(see Figure 1). In that case, individual observations are represented as dots that are eventually
clustered into nL distinct, non-overlapping regions of X denoted (L1, . . . , LnL).
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Figure 1: Decision tree recursive partitioning

More generally it can be visualized as a tree (see Figure 2), with yes/no questions within each
node and terminal nodes - or leaves - corresponding to the nL regions of the covariates space.
Because the regions defined by leaves are non-overlapping, every individual i belongs to a single
leaf, and a unique prediction is made for all individuals falling in a specific leaf. More generally,
let g be a node, at g, we define D(g) ⊆ D such as D(g) = {(x(i), y(i)) ⊆ D |x(i) ∈ g}, the set of
observations in the node g. The quantity N (g) = |D(g)| is then the number of individuals in
the node.

x1 ≤ d1 ?

x2 ≤ d2 ?

fT (L1) fT (L2)

Yes

x2 ≤ d3 ?

x1 ≤ d4 ?

fT (L3) fT (L4)

x1 ≤ d5 ?

...
...

fT (LnL−1) fT (LnL)

No

Figure 2: Decision tree example

In a classification context, the label given by the tree T for subject i, falling in leaf L is given
by

fT (x
(i)) = mode

(
{y(i),∀i | x(i) ∈ L}

)
= fT (L).

In a regression context, the label given by the tree T for subject i in leaf L is given by

fT (x
(i)) = mean

(
{y(i),∀i | x(i) ∈ L}

)
= fT (L).

In both cases, a decision tree yields a single constant label1 for an entire region: its mode or
mean. The accuracy of a tree is then based on its ability to minimize the error it commits when
assigning labels. Among all possible trees - thus, all possible partitions of X - the optimal one
should maximize a predetermined objective measure (such as the label assignment accuracy, for
instance). Such a tree theoretically exists but cannot generally be found in a computationally
reasonable time. Therefore algorithms like CART use a top-down greedy approach: they start
from an initial node - the root - containing all observations in D. Then they find the covariate
xj and the threshold d2 such that they optimize a splitting criterion. The root is then split into
those two child nodes for which the same splitting process is repeated until a stopping criterion
is triggered. Once grown, this tree is called maximal tree. From an algorithmic perspective,
growing a maximal CART can be summarized as such:

Such a tree overfits the data, and predictions made on observations that were not used to
grow the tree are usually inaccurate. That is why a last step is required: the maximal tree is
pruned to a subtree that has better generalization abilities. The pruning step is described in
Section 2.1.3. A decision tree is therefore defined by its splitting criterion, stopping rule(s), and
its pruning process.

1or prediction, in such contexts
2The set of classes for categorical covariates
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Algorithm 1 Growing a maximal CART

1: Input: Training dataset D
2: Output: Maximal CART Tmax

3: Initialize the root node g with the entire dataset D
4: Grow(g)
5:

6: Function Grow(g):
7: if Stopping criteria met (e.g., maximum depth, minimum samples) then
8: Let g be a leaf with the prediction fT (g).
9: else

10: For all possible covariates and thresholds find the pair (xk, d) that obtain the best splitting
criterion.

11: Split the node g along covariate xk at threshold d into two child nodes gr and gl.
12: Grow(gr)
13: Grow(gl)
14: end if

2.1.1 Splitting Criterion

Originally, CART produces, at every node, a split that minimizes the heterogeneity regarding
the target variable within each child node. Equivalently, the optimal split is to maximize the
loss of heterogeneity between the considered node and its child nodes: the so-called goodness-
on-split. Therefore, measures of heterogeneity are needed when the target variable is categorical
(for classification tasks) and when it is numerical (for regression tasks).

Classification: In a P -classes classification problem, let us define pl, l ∈ {1, . . . , P} as the
proportion of observations of class l in D. We extend this idea by defining pl(g) as the pro-
portion of observation of class l in D(g). An impurity function ϕ, is a function measuring the
heterogeneity, defined for pl, l ∈ {1, . . . , P}, with pl ≥ 0 and

∑
l pl = 1 such that:

• ϕ(p1, . . . , pP ) ≥ 0,

• The minimum of ϕ is reached whenever any of the pl = 1, then ϕ(p1, . . . , pP ) = 0,

• The maximum of ϕ is reached for ϕ( 1
P , . . . ,

1
P ),

• ϕ is symmetric with regard to its arguments.

For CART, usual classification impurities are Gini (ϕ(p1, . . . , pK) = −
∑

i pilog(pi)), the
entropy (ϕ(p1, . . . , pK) = 1

2

∑
i pi(1− pi)) or the twoing measure. For our purposes, no further

specificities are needed and in full generality, the impurity - or heterogeneity - of node g is
measured by I(g) = ϕ(p1(g), . . . pK(g)). At each node of a CART, the optimal split is chosen
as the split that reduces the impurity the most. That is to say, the split that maximizes the
following gain function by splitting the parent node gp into the two child nodes gl and gr is

G(gp; gl, gr) = I(gp)−
(
N (gl)

N (gp)
I(gl) +

N (gr)

N (gp)
I(gr)

)
. (1)

Of course, various other criteria and ideas for splitting exist. This paper does not aim to review
all of them but we refer the astute reader to such comparisons of splitting methods (see [30], [8],
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[4], [40] or [12] for instance). The efficacy of each splitting criterion has been discussed but no
definitive consensus over which one is the finest exists. All measures prove desirable properties
in particular scenarios while demonstrating drawbacks in others.

Regression: In a regression context, the best split can be chosen with the target variable
empirical variance or mean squared error, a natural choice of heterogeneity measure. We define
MSE(g) the mean squared error at node g, as

MSE(g) =
∑

{i|x(i)∈g}

(
ȳg − y(i)

)2
, (2)

with ȳg = 1
N (g)

∑
{i|x(i)∈g}

y(i).

Then, the gain function to maximize when splitting the parent node gp into the two child nodes
gl and gr is obviously

G(gp; gl, gr) =MSE(gp)−
(
N (gl)

N (gp)
MSE(gl) +

N (gr)

N (gp)
MSE(gr)

)
. (3)

Even if technically, MSE is not an impurity function, we clearly see that Equation 3 is the
perfect regression equivalent of Equation 1.
Thus in the following sections, we use the general notations of equation 1 with I(g) ≡MSE(g)
when the target variable is numerical.

2.1.2 Stopping rules

Stopping rules can be specified. In that case, the growing phase continues until one of them is
met. First of all, a node will not split any further if all observations it contains have the same
target variable value. Other commonly used stopping rules are: a minimum improvement in the
splitting criterion, a maximum depth of the tree (parameter: maxdepth), a minimum number
of observations in a node (parameter: minsplit), or a minimum number of observations in the
hypothetical child nodes that would result from a new split.

2.1.3 Tree pruning

The stopping rules affect the size of the maximal tree. No or weak stopping rules will generate
a high-variance/low-bias over-fitted tree whereas constraining ones will lead to smaller, more
interpretable low-variance/high-bias under-fitted trees. The idea of cost-complexity pruning
developed by Breiman emerged from the need to find a compromise between the two extremes.

The main idea behind cost-complexity pruning is to consider sub-trees of the maximal
tree and evaluate them with a cost function that increases as the error rate rises and decreases
as the number of leaves drops. When a tree is pruned at a node, the weighted summed error
of the leaves increases while the number of leaves reduces, thus a pruned sub-tree is selected
only if the error gain is counter-balanced by the complexity loss. The cost of a tree T is given by:

Cα(T ) = R(T ) + αψ(nL), α ≥ 0, (4)

where R(T ) is the sum of all errors or impurities of the leaves of T , weighted by the number
of individuals they represent. The function ψ is an increasing function of nL, it is originally
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set to ψ(nL) = nL in Breiman’s work [5], but as demonstrated relevant properties when set
to ψ(nL) =

√
nL in classification settings (see Appendix A.1 for more details and references).

The penalty α is the complexity parameter: the higher it is, the smaller the pruned tree. With
a reasonable choice of ψ, the interest of α is that for a fixed complexity parameter value, there
exists a unique smallest subtree T of the maximal tree Tmax that minimizes Cα(T ). Thus
by decreasing α, we can construct a sequence of pruned optimal subtrees [T1, T2, . . . , Tmax] of
different sizes. This tree sequence is such that T1 is the root node, T2 a sub-tree of T with
more leaves and accuracy than T1 and so on until Tmax, the unpruned maximal tree. With
Breiman’s notation, we have

Tmax ⊇ · · · ⊇ T2 ⊇ T1.

The optimal complexity parameter value, hence the best tree in the sequence is usually selected
using cross-validation.

2.2 Longitudinal notations

This paper aims to enrich the growing process of decision trees in the presence of time-varying
covariates. To do so, let us introduce some notations borrowed from the existing longitudinal
literature including works of Rizopoulos or Yao et al [35, 46]. Let us assume a very general
setting where we want to build a dataset Dlong, encompassing the time-varying features of N
subjects, which are repeatedly measured over time. In all generality, let us assume that among
the p covariates, pTV of them are time-varying and pTI others are time-invariant. At time t, the
set of covariates is given by x(t) = (x1, x2, . . . , xpTI , xpTI+1(t), . . . , xp(t)). In order to simplify
the notations, we consider all constant features as a special case of time-varying covariates, with
x(t) = (x1(t), x2(t), . . . , xp(t)) with xk(t) = xk, ∀t and ∀k ∈ [1, . . . , pTI ]. Let n

(i) be the number
of distinct times t

(i)
j , j = 0, 1, . . . , n(i) − 1 at which subject i has been observed. At time t

(i)
j ,

subject i has a vector of covariates denoted x
(i)
j =

(
x
(i)
j,1, . . . , x

(i)
j,p

)
.

Classical longitudinal setting: For a given subject i, covariates are stored in rows, one
row per observation window [t

(i)
j , t

(i)
j+1). Each row contains the unique

(
t
(i)
j , t

(i)
j+1,x

(i)
j , y

(i)
j

)
elements, with y

(i)
j the target variable observed at time t

(i)
j . They are completed by the subject

unique identifier i. Each row represents what we will now call an observation. We build Dlong

as the collection of all observations structured longitudinally :

Dlong =

{(
i,
{
t
(i)
j , t

(i)
j+1,x

(i)
j , y

(i)
j

}n(i)−1

j=0

)}N

i=1

Or, if displayed in a table:

2.3 Existing longitudinal tree-based algorithms

The problem when splitting time-varying covariates: Whether they are designed for
survival analysis or not, longitudinal tree-based models exist and propose various methods
to include time-varying covariates that cannot naturally fit in the tree-growing algorithm
described in Algorithm 1. As an illustrative example, let x1(t) be a numerical time-varying
covariate. At each node, a splitting rule of the form “x1(t) ≤ d”3 should be able to split
subjects into two child nodes. A subject for which this rule is true at all observed times

3Note that the same reasoning can be applied to categorical time-varying covariates as well.
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Table 1 A longitudinally structured dataset

ID Time window Start Time window End Covariate 1 ... Covariate p Target variable

1 t
(1)
0 t

(1)
1 x

(1)
0,1 ... x

(1)
0,p y

(1)
0

1 t
(1)
1 t

(1)
2 x

(1)
1,1 ... x

(1)
1,p y

(1)
1

1 t
(1)
2 t

(1)
3 x

(1)
2,1 ... x

(1)
2,p y

(1)
2

1 t
(1)
3 t

(1)
4 x

(1)
3,1 ... x

(1)
3,p y

(1)
3

2 t
(2)
0 t

(2)
1 x

(2)
0,1 ... x

(2)
0,p y

(2)
0

3 t
(3)
0 t

(3)
1 x

(3)
0,1 ... x

(3)
0,p y

(3)
0

3 t
(3)
1 t

(3)
2 x

(3)
1,1 ... x

(3)
1,p y

(3)
1

3 t
(3)
2 t

(3)
3 x

(3)
2,1 ... x

(3)
2,p y

(3)
2

. . . . . . . . . . . . . . . . . . . . .

will go in one child node without any ambiguity. On the other hand, the general case where
the rule is true for some periods but false for anywhere else is unclear and needs to be addressed.

The “eventually not longitudinal” methods: The most näıve model would be a regular
CART, trained on all observations in the longitudinal dataset without taking the correlation
between observations of the same subject into account. As stated by Segal [38], this would
simply ignore the capital aspect of dealing with longitudinal data: “The covariation induced
by making several observations of some continuous response on the same unit, as occurs
with repeated measures designs, cluster designs, and longitudinal studies, poses data analytic
problems. Analysis of such designs that ignore the covariance structure are known to produce
incorrect variance estimate.”. Other näıve attempts consist of summarising the longitudinal
trajectories of time-varying covariates with a small number of parameters. For instance, one
could think of only keeping the mean value of every trajectory, the median, its final slope, the
baseline value, or the most recent one, ignoring all the remaining information. This leads to a
loss of precious information. A similar idea is to regress every longitudinal covariate against
time and possibly other features, within-subjects to include the parameters of the regression -
intercept and slope - as baseline covariates. It can be argued that if the longitudinal covariates
are all strongly linearly associated with time, which is rarely the case in practice, this kind of
alternative solution can be relevant. Eo and Cho [13] proposed a model called mixed-effects
longitudinal tree (MELT) able to handle a longitudinal response by fitting a mixed-effect
model at each node of the tree. Subjects are then split based on the heterogeneity of their
slopes. Kundu [23] extended this idea of resuming information contained in the longitudinal
covariates by a combination of splits on baseline covariates and implemented it in the R package
LongCART. Other approaches (such as [34] and more recently [31]) designed longitudinal trees
that use lagged response values as potential predictors, but still do not treat either the outcome
or the covariates as inherently dynamic with time. Overall, in these methods, information is
lost during the process, and the number of measurements per subject in real datasets can be
too small to obtain consistent time-invariant surrogates to the time-varying covariates.

The “CART-extended” methods: Segal and De’Ath [38, 11] independently proposed the
first applications that clearly define an extension to the CART method and directly account
for correlation in the response variable. They both suffered limitations as they were designed
for a longitudinal response but time-fixed covariates where all the subjects were measured at
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the same observation times, with the same interval between them. On the one hand, Segal’s
regression tree consisted of imputing a covariance structure in the split procedure. This led
to many theoretical questions about defining that covariance structure as well as practical
ones regarding the complexity of the computations. On the other hand, De’Ath procedure
simply modified the CART algorithm by allowing it to consider an entire matrix containing
all the observations for one subject as a single observation. Allowing that was done by using
the gain of MSE as a splitting criterion, and replacing the 1-dimensional mean in the MSE
with a multi-dimensional mean modified with a covariance structure; the prediction given by
the tree would then be the multi-dimensional mean of the observation in the terminal nodes.
In both cases, those methods can be seen as fitting a model to the longitudinal outcome at
every node as part of the splitting criterion. More recent works by Larsen and Speckman [24]
as well as Hsiao et al. [22] followed and improved the idea of De’Ath, by redefining the node
impurity measure with the Mahalanobis distance and estimating the covariance matrix from
the whole data set. It is worth mentioning that other articles extended the idea of Segal,
to binary responses and classification trees (see [47]), in a clustering context using deviance
as a goodness-of-fit criterion for partitioning (see [1]) and then to every type of longitudinal
response - not only continuous or binary - using Generalized estimating equations (see the
works of Lee [25, 27, 26]). Such models show advantages in terms of predictive ability and
interpretability but do not handle time-varying covariates.

The “state-of-the-art” methods: In the work of Hajjem et al. [18], Sela et al. [39] and
their respective extensions (see [20, 10]4 and [15]), a general mixed-effect model is assumed for
the longitudinal outcome. The tree-based part only predicts fixed effects whereas individual
estimated parameters account for all the time-varying effects. Such approaches can estimate
longitudinal outcomes but the inclusion of time-varying covariates is handled via the pseudo-
subject workaround detailed in the next paragraph. It relies on the assumption that all the
dependency between several observations of the same subject is captured by the random effect
of the mixed model. In a survival setting, Du et al. [16] and its extensions (see [45]) proposed
a model based on those ideas: they allowed subjects to be divided into pseudo-subjects and
used an adjusted log-rank test in the splitting procedure to accommodate for left truncation
and ensure that the independence implicit assumption does not lead to biased results. We refer
the astute reader to the works mentioned in this paragraph as we consider they are the most
advantageous approaches today. The algorithms corresponding to their respective work are the
R packages REEMtree, LongituRF, LTRCtrees and LTRCforests, the R function REEMctree

and the Python library MERF.

Pseudo-subjects LTRC and mixed-effect tree-based models (at least their tree-based part)
consider the unmodified Dlong as an input and run through a CART-like growing process, finding
optimal binary decision rules at each node of the tree. Whenever a split produces an ambiguity
as described in Section 2.3, the periods

[
t
(i)
j , t

(i)
j+1

)
where their splitting rule “x1(t) ≤ d” is true

would go to the left node, and the other would go to the right node, thus dividing one subject into
several pseudo-subjects. It cleverly addresses the time-handling issue when the bias that comes
with correlated right-censored and left-truncated (LTRC) observations is neutralized otherwise.
In such models, any individual can be spread in many different tree leaves - even if, at any fixed
time, any individual will have a single observation that will fall into a unique one. Treating one
subject’s observations, not as an indivisible block of information but rather as multiple pseudo

4Louis Capitaine also worked on a promising generalization of decision trees and forests that must be acknowl-
edged. We refer to Appendix A.2 for further details.
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subject’s data leads to a loss of interpretability. In our opinion, none of these procedures can
inherently handle time-varying covariates, while maintaining CART’s interpretability. A unique
trajectory per subject would ensure a clear visualization of the data: the algorithm should be
designed to separate individuals whose features are significantly diverging regarding the target
variable rather than pseudo-subjects.

3 Time penalized trees

We present here the building blocks of a new way to think about decision trees in the presence
of time-varying covariates: time-penalized trees or TpT. Let Dlong be a longitudinal dataset,
and T = [0;max

i;j
(t

(i)
j )] be the continuous observation interval of time. We define D(t) as the

dataset containing, for every subject i, her unique observation with the maximal observation
time t

(i)
j such that t

(i)
j ≤ t and t

(i)

n(i)−1
≥ t, where x(i)(t) ∈ X (t) is the vector of covariates and

y(i)(t) ∈ Y(t) the target variable at time t. Eventually, N (t) = |D(t)| is the total number of
subjects under study at time t. Let g be a node, which is also identified with a subregion
of X ×○ T it represents. We thus define D(g), the set of observations in the node g and
N (g) = |D(g)| the number of subjects it contains.

The idea behind TpT is to build a tree that benefits from all the longitudinal informa-
tion available and where the concept of time is central: at each node, we chose to split along
covariates and time. As stated in Section 2.1, a tree-growing algorithm is defined by its
splitting criterion, stopping rule(s), and pruning process. This applies to TpT and the algorithm
we propose can be described as:

Algorithm 2 Growing a maximal TpT

1: Input: Training longitudinal dataset Dlong

2: Output: Maximal TpTmax

3: Initialize the root node gp with the entire dataset at time t = 0, Dlong(0)
4: Grow(gp, 0)
5:

6: Function Grow(gp, tp):
7: if Stopping criteria met (e.g., maximum depth, minimum samples) then
8: Let gp be a “terminal leaf”.
9: else

10: For all possible covariates xk, thresholds d and time points tc >= tp find the triplet
(xk, d, tc) such that a partitioning of Dlong(tc) along xk, at threshold d obtains the best
splitting criterion.

11: Split the node gp: all subjects with t
(i)

n(i)−1
< tc go to a “duration leaf” gt. All other

subjects - with t
(i)

n(i)−1
≥ tc - are split along covariate xk at threshold d into two child

nodes gr and gl.
12: Grow(gr, tc)
13: Grow(gl, tc)
14: end if
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In the end, a final Time-penalized Tree would look like that:

x1 ≤ d1
at t = t1 ?

x2 ≤ d2
at t = t6 ?

x1 ≤ d8
at t = t7 ?

ŷ(t7) ŷ(t7)

x3 ≤ d9
at t = t8 ?

...
...

Yes
x2 ≤ d3

at t = t2 ?

x3 ≤ d4
at t = t3 ?

ŷ(t3) ŷ(t3)

x1 ≤ d5
at t = t4 ?

x3 ≤ d6
at t = t7 ?

...
...

x3 ≤ d7
at t = t5 ?

...
...

No

Duration

< t1
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Figure 3: Illustration of a TpT

Let us detail how to understand the TpT depicted in Figure 3. The root node appears in blue,
and leaf nodes appear in green. The root node contains all subjects of D(t0) and is then split
into three nodes:

• a left child node containing all subjects from the root node for whom the covariate x1 is
inferior or equal to the threshold d1, at time t1,

• a right child node containing all subjects from the root node for whom the covariate x1 is
greater than d1, at time t1,

• a third node (depicted horizontally from the root node in Figure 3) containing all subjects
from the root node without any observation at time t1 or later. Without any information
about the value of x1 at time t1, such subjects cannot be spread into one of the child
nodes. As this third node cannot be split any further, constitutes a duration leaves.

The right and left child nodes, thus, each contain non-overlapping subsets of D(t1) and are
themselves split further, along optimal covariate, threshold, and at a time ≥ t1. The iterative
splitting process continues until a stopping criterion is met and the nodes cannot be partitioned
any further. The final nodes obtained at the very end of every branch constitute terminal leaves.
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Remark 1
The time points figuring along the vertical axis on the left of Figure 3 can be understood as
the time of all subjects arriving to the node: the last time that was used to split the subjects in
the previous node. Conversely, the time points mentioned inside the nodes indicate the decision
rule: the optimal times at which the node is split. For instance, all subjects from D(t0) arrive
to the root node (hence the “t0” on the left axis) and the root node is then split based on the
value of covariate x1, at time t1 ≥ t0 (hence the “t1” inside the root node).

Defining TpT stopping rules is exactly similar to CART (see Section 2.1.2). Its splitting criterion
to be optimized at each node, as well as its pruning process, meanwhile, are modified and
discussed in the sections below.

3.1 TpT splitting criterion

The split function for TpT is rather straightforward. We want to select the split on a covariate,
at a threshold and a time that will maximize a time-penalized split criterion. The division of a
node into two child nodes and a duration leaf has been detailed for the root node of Figure 3,
and in all generality, a single split of a parent node gp into the three nodes gl (the left child
node), gr (the right child node), and gt (the duration leaf), is illustrated in Figure 4.

gp
-

x1(tc) ≤ d1 ?

gl

Yes

gr

No

Duration leaf: gt
-

Duration < tc

Time

•

•

tp

tc

Figure 4: Single split of a TpT

To obtain such a split, we have to define a time-penalized split criterion, as

Gγ(gp; gl, gr, gt) =

[
I(gp)−

(
N (gl)

N (gp)
I(gl) +

N (gr)

N (gp)
I(gr) +

N (gt)

N (gp)
I(gt)

)]
· e−γ·(tc−tp), (5)

with γ ∈ R+, I(g) an impurity or MSE function as described in Section 2.1.1, tp and tc the
respective times of the parent node and child nodes and γ the penalty parameter. We can
immediately see that this is simply the classical CART splitting criterion with an additional
exponential penalty term, depending on how distant in time the considered split is. The
exponential penalty that we propose induces that the more time distance there is between a
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parent node and its potential child node, the more penalized the split. Without that penalty
term, a TpT would have early splits at advanced times, and much information contained in
early observations would be lost. It ensures that early observations are explored and exploited
and that distant splits are selected early in the tree if and only if they are greatly informative.
In other words, splits are chosen where covariates AND time points are informative about the
target variable; we first try to find close splits if they can detect heterogeneity but distant
splits will be considered if they are very informative. We can find examples of this type of
exponential consideration of time in time series analysis with exponential smoothing (see
[7, 21]), where exponential functions are used to assign exponentially decreasing weights over
time. As far as our knowledge extends, instances of tree-based modified splitting criteria where
exponential weights were introduced are very rare. A first reference can be found in Section
5.5 of Bremner’s PhD thesis [6] that used localized splitting criteria that are based on local
averaging in regression trees or local proportions in classification trees, weighted by exponential
weights. The weights have no link to time or a measure of distance from the previous node.
Goldstein [17] also suggested using exponential weights in tree-based algorithms to promote
splits on covariates that were already used in previous splits over others.

The partitioning procedure of TpT can also be visualized similarly to Figure 1, the only
difference is that the iterative splits occur on different versions of the longitudinal dataset.
Instead of partitioning the feature space alone, we need to illustrate how TpT partitions the
feature space at different times.

Consider two time-varying covariates x1(t) and x2(t) et let us assume that t0 = 0: at depth
0 and t = 0, the tree is only a root and D(0) is not partitioned (as it can be seen on the left
side of Figure 5). We can see that on the first iteration of the algorithm, a first split, at t = 0
creates a division of D(t1)

5 such as illustrated on the right side of Figure 5.

Figure 5: TpT 1-depth recursive partitioning

If we go on with the iterative partitioning, at depth 2 and t = t1, all subjects that have been

5Please refer to Remark 1 for more insights on why the split of subjects observed at a given time occurs at an
ulterior time
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observed up to t = t2 within each partition, are once again split into two subgroups. This
creates a division of D(t2) such as depicted in Figure 6.

Figure 6: TpT 2-depth recursive partitioning

Eventually, a few more steps of the iterative partitioning procedure can be visualized as in
Figure 7. It is the representation of a classical binary split procedure, with the inclusion of a
time dimension. The routes of all subjects can be displayed in that representation: the red,
blue and green paths in Figure 7 are examples of such individual trajectories.
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Figure 7: TpT recursive partitioning and individual trajectories

Remark 2
Several things need to be noted regarding the partitioning illustration depicted in Figure 7.

First, duration leaves are not represented here: the red trajectory for instance, does not split
after time t = t1 because the subject it represents has not been observed at time t2 or later. Its
course at time t2 being unknown, it stops in the region of D(t1), which is then a duration leaf
for similar subjects.

Secondly, this illustration shows that divisions of early steps transpose into continuous partitions
in further steps: this is not true in general. The two groups formed by the partition of D(t1)
may not be represented by a unique region of D(t2), split at a constant threshold over one
covariate.
To illustrate that point with a concrete example, let us assume that one of the covariates in D
is the subject’s salary. The set of all individuals with a salary ≤ 1, 000 at time t1 is composed
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of individuals without any observation at time t2, of subjects with a salary that increased by t2
and is > 1, 000 and of others still earning ≤ 1, 000. A set of subjects within a unique connected
region of the feature space at time t1 generally lies within disconnected subregions of the feature
space at time t2.

Eventually, it is also to be noted that not every disjoint region splits at every time step of
the partitioning. There are times when several splits occur, others where only one region is
partitioned, and others where none. All those points are not depicted in Figure 7 for simplicity’s
sake.

We can already foresee that higher values of γ ensure that the next optimal split is more likely to
be close in time to the previous node (a distant split is to be chosen only if it is very interesting).
The produced TpT will be close to a CART with all longitudinal covariates values blocked at
t = t0. And it can be easily proven that

TpT (Dlong) −→
γ→+∞

CART (Dlong(t0)). (6)

It allows a TpT to explore the covariates space but prevents it from exploring the time
dimension. On the contrary, lower values of γ are more likely to produce distant splits and the
constructed TpT will show similarities with a CART where all longitudinal covariates values
rapidly approach their final value. It allows a TpT to split along the time dimension quickly
but prevents it from exploring the covariates space at any given time.

Remark 3
Because the impurities of the parent and child nodes can be computed at different time points,
it can happen that Gγ < 0. Such cases imply that a specific stopping rule must be enforced for
TpT: Gγ must be positive for a node to split. Otherwise, it would allow ineffective splits.

3.2 TpT pruning process

For a TpT, the penalty parameter γ affects the tree’s dimensions (depth and number of leaves,
see Section 4 for an analysis on the matter). An optimal γ that minimizes the impurity of the
tree (the weighted sum of all leaves impurities) can be chosen but it is not a pruning process
comparable to cost-complexity pruning. For a given γ, a maximal TpT can be grown and may
overfit the data. To control for bias and overfitting, various pruning strategies can be considered.
First, Breiman’s cost-complexity pruning is still well-defined under the TpT framework, for a
given γ, and can be applied as long as all term nodes - denoted as gt in previous illustrations
and algorithm - are considered as leaves. We suggest a slightly different adaptation of this
pruning strategy to select both α and γ simultaneously. It consists of selecting the pair (α, γ)
that minimizes Cα(T ), the cost of the tree. Simpler pruning strategies such as Reduced Error
Pruning (see [33]) can also be used. Their advantages and flaws are notably discussed in
Esposito’s article [14] as well as their tendency to over/under-prune.

3.3 Time-to-event

Survival analysis can also be carried out directly under the TpT framework. Indeed, for data
mining purposes, subjects are distributed in the final tree considering their last observed time
T (i). Censorship and event occurrences are visible in the term nodes gt. Adapting TpT for
prediction tasks would require additional work to account for censorship (see [43]), but this
specific topic is not in the scope of our paper.
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4 Applications

Such a longitudinal data mining algorithm can prove useful in various fields (medicine, sports
analytics, taxonomy, biology), here we applied it to a life insurance customer segmentation
analysis. For that purpose, we use a real-world dataset of 983 policyholders (PHs), a subset of
the dataset used in [41], and we investigate the link between the PH’s characteristics through
time and the final outcome of their policies, a categorical response variable. Throughout the
lifetime of such insurance policies, a series of events can occur. Firstly, one policyholder’s
coverage can be increased with premium payments that are highly flexible, both in terms of
amount and frequency, and are adjusted according to the policyholder’s financial circumstances
and preferences. Additionally, policyholders may decide to reduce their coverage by withdrawing
a portion of their policy. We refer to these events as partial lapses, enabling PHs to adjust their
coverage to better align with their changing needs. Other financial operations can occur, such
as the payment of interest or profit sharing from the insurer to the PH, and the payment of fees
from the PH to the insurer. Insurance companies’ information systems are usually designed to
keep track of those operations at the policy level, thus actuaries and life insurers often have
access to the complete history of their policyholders as the information system is updated in
real-time. Eventually, one’s insurance plan ends whenever the PH dies or decides to terminate
it by lapsing. In the end, the timeline of such insurance policies can be illustrated below:6

Figure 8: Example of policyholders timelines

At any given time a policy is either active, has been lapsed by the policyholder, or has ended
because of her death. Among all insurance plans subscribed between 1998 and 2019, in our
dataset, 57.4% are active, 22.8% ended with the death of the policyholders, and 19.8% lapsed.
We only consider uncensored observations here, we thus have 46% of churned policies and 54%
that ended with death. For this application, our data mining goal is to gain insights into the
PH’s pathways that lead to these different outcomes. We want to find time-dependent clusters of
individuals with similar timelines and outcomes at a given time. This is thus a time-dependent
classification problem, where the target variable is the final outcome of the policies, the tree
grows with the survival time and splits on potentially time-varying covariates such as age, rate,
Customer Lifetime Value (CLV), face amount (FA) or gender. More detailed descriptions of
the dataset used can be found in Valla et al. and in Valla’s works [42, 41]. In all visualizations
of the following sections, all leaves or regions that contain a majority of policies that ended

6Illustration taken from [41]



4 Applications 17

with the PH’s death are labeled “D”, and all those that contain a majority of policies that
ended with lapse (or churn) are labeled “C”. In terms of colors, the proportion of each class
is represented by a nuance between (for a 100% proportion of “D”) and (for
a 100% proportion of “C”). For example, a leaf or region with 50% of churners is represented
by the color . Since we only consider PHs that were observed until the termination of
their policy, there are no censored observations to consider.

4.1 Properties of TpT for the maximal tree

First of all, Table 3 in Appendix A.3 displays the results obtained by TpT with various choices
for the time penalty parameter γ. It shows the dimensions of TpTs (depth and number of
leaves), their global impurities and costs, the highest time point when a split occurred, and
the average time at which any subject is split. Graphs of those results can be found in
Figure 17. Here we considered unpruned trees using the time-penalized version of the Gini
impurity measure as a splitting rule (Equation 5) and without any stopping criterion. For
this application, we computed the cost of the tree with a choice of α =

√
3 log 2
2N , suggested by

Scott [36]. The pruning process then only consist of selecting γ as the solution of argmin
γ

Cα(T ).

We can observe that the depth and number of leaves grow with γ. This was to be expected,
as a TpT that does not penalize time-distant splits will quickly find high impurity-gain splits
at distant times thus preventing the exploration of less distant time periods. Conversely, the
same phenomenon explains that the average time when splits occur is a decreasing function of
γ. As the penalty parameters get high values, any future split is heavily penalized and can not
compete with splits at time t0, regardless of their potential unpenalized gain. Eventually and
very interestingly, we observe that the unpenalized TpT, as well as the heavily penalized one,
are not optimal in terms of global impurity. There exists an optimal choice of γ that generates
a TpT minimizing the sum of its leaves impurities. This tree has a penalty parameter of 0.2725,
a depth of 17 and a number of leaves of 190 - 173 terminal leaves and 17 duration leaves -
and is displayed in Appendix A.3 as long with more results and graphs obtained with diverse
settings, with various impurity measures.

Such trees, without stopping criterion and post-pruning are useful to discuss the proper-
ties of TpTs but do not yield immediate insights on our dataset. Nevertheless, there is one
statistic that proves to be insightful: the distribution of times when splits occur. Obviously,
with an exponentially penalized splitting criterion, the more distant from its parent time
tp a split time tc is, the more penalized it is and the less likely it is to be selected. The a
priori probability for time to be selected as a split time is ∝ e−γ·(tp−tc) Thus, by weighting
the frequency of times when splits occur with an exponential factor, we balance this bias and
retrieve the importance of the time periods. In the optimal unpruned and unstopped tree, the
splitting time points are distributed as such:
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Figure 9: Split times distribution for the optimal unstopped and unpruned TpT

In the weighted histogram, we can clearly see that some periods seem to be critical split
points that differentiate active policies from lapsers or policies that are likely to end with the
policyholder’s death. Interestingly, we see that t = 0 and t = 8 are particularly important
in terms of differentiation between policies’ outcomes. For t = 0, the insight is clear: most
of the information that separates the churners from policies that end with the PH’s death
can be retrieved from the baseline covariates: for instance, it can be seen in the early splits
of Figure 10 that the age at subscription seems to be very informative - older PHs are more
exposed to the mortality risk - and thus is selected at baseline. Regarding the important splits
at t = 8, we see in Figure 10 that they correspond to splits on age, CLV, or FA. CLV is highly
dependent on both age and FA, thus we could argue that age and FA are the most informative
covariates at t = 8. By law, French life insurance plans ensure that when a given policy is at
least eight years old, the policyholder can lapse without any surrender penalty. This is a clear
incentive not to churn before one’s policy reaches 8 years of seniority. It seems consistent to
observe that this threshold is pointed out in our analysis. The third year of seniority comes
right after t = 0 and t = 8 in terms of temporal importance, which does not have any obvious
business justification. However, every split at t = 3 (see Figure 10) is either a split on CLV or
the FA of the policy, thus we can argue that the final outcome of a policy seems dependent
on its FA 3 years after subscription. Similarly, the unpenalized suboptimal TpT with γ = 0,
depicted in Figure 12 only splits at times t = 0, t = 3 or t ≥ 8, with respectively 1, 1 and 24
splits.

This application has also been tried on a larger longitudinal dataset, containing 119,431 obser-
vations of 9,873 PHs. Characteristics of TpTs grown with various γ are described in Figure 10
It gives the split times distribution in Figure 11. Due to the heavy computation time, all other
analyses are carried out on the smaller dataset.
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Figure 10: Characteritics of unstopped and un-
pruned TpT, trained on 9,873 PHs with
various time penalties

Figure 11: Split times distribution for the optimal
unstopped and unpruned TpT, trained
on 9,873 PHs
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Figure 12: Overfitted unpenalized, unstopped and unpruned TpT

4.2 Use-case with minsplit

A clear strength of decision trees is their interpretability. Obviously, trees with hundreds of
leaves each containing a handful of subjects can not be interpreted. Here we decided to inves-
tigate the results obtained by TpTs with various γ, using the time-penalized version of the Gini
impurity measure as a splitting rule and including a stopping criterion: any leaf must contain
at least 50 individuals otherwise it does not split. This choice of stopping rule is not really close
to the default value for the minsplit parameter in most CART implementations, but it will
generate shorter, less overfitted TpTs, better suited for direct interpretability and data analysis.
Here are the results for TpT on our longitudinal dataset, with minsplit= 50. Graphs of those
results can be found in Figure 13.

Table 2 Characteritics of TpT (minsplit: 50) depending on the time penalty

Time penalty γ Runtime Depth # of terminal leaves # of duration leaves Total # of leaves Tree cost Max of split times Mean of split times

0.0000 587.03 4 9 7 16 0.319 15.0 4.309
0.0025 736.31 6 11 6 17 0.306 15.0 2.134
0.0075 730.35 6 11 5 16 0.306 15.0 2.102
0.0200 726.84 6 11 4 15 0.306 15.0 1.97
0.0275 789.2 6 13 6 19 0.300 8.0 2.203
0.0325 784.67 6 13 5 18 0.300 8.0 2.131
0.0350 817.64 6 14 4 18 0.296 9.0 1.762
0.0650 840.38 7 15 3 18 0.297 9.0 1.129
0.0925 841.11 7 15 2 17 0.299 8.0 0.88
0.1100 850.24 7 15 1 16 0.300 8.0 0.564
0.1250 873.15 7 16 1 17 0.298 5.0 0.423
0.1375 873.64 6 15 2 17 0.297 5.0 0.303
0.1900 899.41 6 15 1 16 0.297 3.0 0.157
0.2050 886.07 6 15 1 16 0.298 3.0 0.125
0.7000 752.84 6 15 0 15 0.299 1.0 0.032
0.8000 743.89 6 15 0 15 0.300 0.0 0.0

Figure 13: Characteritics of TpT (minsplit: 50) depending on the time penalty

Among all the different TpTs in table 2, we can discuss which one minimizes the tree cost. First
of all, we see here that the trees with γ = 0 and γ → ∞ are not the best in terms of global
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cost. This is a critical result: γ = 0 is the case where the last observed observation points are
quickly considered whereas early periods are not really considered, and high γ represents the
case where a tree is grown only on the baseline values of all time-varying covariates. Thus, TpT
shows that considering time in the splitting process improves the global purity of the tree, it
better differentiates between individuals with different outcomes and trajectories. In terms of
interpretability, Figure 14 shows that the optimal TpT is a compromise between small TpTs with
time-distant splits and a large baseline tree without any temporal information. Whole-page
versions of those trees can be found in Appendix A.3.3.

Figure 14: TpTs with γ = 0, γ = 0.035 and γ → ∞, respectively

An important temporal dependence that can be learnt from the tree is the fact that there exists
an incentive not to lapse before eight years of seniority. It is clearly depicted in the optimal
TpT - γ = 0.035 - as the duration leaves generated by splits occurring at times ≥ 8 contain
a majority of policyholders that did not lapse. It means that regardless of their age, subjects
with a seniority ≤ 8 years do not lapse. The TpT with no time penalty - γ = 0 - can capture
the same temporal dependence for splits that occur immediately after 8 years for older PH but
fails to do so for younger ones. This is explained by the fact that for the latter, the unpenalized
TpT quickly finds an excellent split at time t = 15, which prevents splits around 8 years from
being found. This is a compelling argument in favor of a time penalty. Furthermore, the TpT

with a very high time penalty produces a tree that only splits at time t = 0, thus no temporal
insights can be found with it. If we were to conclude from such a tree, we could say that Age is
the most important covariate, and allow for a good partitionning of D but we cannot have any
temporal analysis. This is an argument in favor of TpT and the suggested γ selection process.

4.3 Pathways vizualizations

In terms of data mining and clustering, let us focus on the optimal TpT obtained in the previous
section and depicted in Figure 15. In the same way a decision tree is a representation of all
observations in a cross-sectional dataset, a TpT is a complete representation of a longitudinal
one and we can highlight the pathway of any given policyholder in the tree. Unlike any other
longitudinal tree-based model, any individual has a unique continuous trajectory in the tree.
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The pathways of five policyholders selected at random from our dataset are represented in the
following TpT.

Figure 15: Individual longitudinal trajectories in the optimal TpT (minsplit = 50)
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Thus, the longitudinal dataset and all individual timelines can be easily represented as a parti-
tioning. All PH are represented on the y-axis and the region of the covariate space where they
belong changes as a function of time, on the x-axis. In this example, the 18 leaves of Figure 15
correspond to the 18 final regions of Figure 16, as t→ ∞.

Figure 16: Global timeline and individual longitudinal trajectories

The numbers in each region of Figure 16, as well as their heights, are the number of PH they
contain, and the five individual trajectories represented as pathways in the tree correspond to
the five horizontal lines within the global timeline. Let us take a few examples to understand
this Figure. In the TpT displayed in Figure 15, there are 520 policyholders that are older than
62.5 years old, at subscription, they all go from the root to the first right node of the tree. At
that point, we see the trajectories of three policyholders (depicted in light blue, red and brown
dashed lines) taking that path to the right. Their trajectories spread after the next split at
t = 1. Similarly, those 520 PHs can be found in the lower region of Figure 16, with t ∈ [0, 1]
on the y-axis. The light blue, red, and brown dashed paths can be found in that region. After
that, when t > 1, these PHs’ trajectories are never in the same region again, the same way they
can never be found in the same node of the corresponding TpT. This type of visualization allows
to better interpret the periods where changes in the outcome can occur.

5 Conclusion, limitations and future work

5.1 Conclusion

This paper exhibits TpT, a new tree-based data-mining algorithm that accounts for time-varying
covariates through time-penalized splitting criteria. Our methods handle time-varying covari-
ates as well as longitudinal target variables inherently. Contrary to existing approaches, it
does not need workaround strategies such as the pseudo-subject method and provides a tree
that separates ”complete individuals”, as each subject covariates trajectory corresponds to a
single unique trajectory in the final tree. Pruning strategies were proposed and tested with real
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datasets and illustrative examples. The algorithm proves to have appealing data-mining and
visualization potential in various fields that could be explored more deeply in the future.

5.2 Limitations and future work

Right away, it is crucial to acknowledge the general limitations of this work, before going into
more technical details. First of all, the need for a thorough investigation into the statistical
properties and theoretical underpinnings of the developed tools is evident to ensure their
reliability and robustness. Such theoretical work is critical and constitutes forthcoming
research. Secondly, conducting comprehensive comparisons of TpT with existing longitudinal
techniques, employing well-studied datasets and consistent indicators is pivotal for a more
rigorous evaluation of the proposed methods. These identified gaps in the current work
underscore the necessity for subsequent research on TpT.

Besides those points, and with the algorithm as it is defined for data-mining purposes, many
improvement paths can be considered.

Firstly, the introduction of a penalized splitting criterion, and thus a penalty parameter
could be discussed more thoroughly. The current multiplicative exponential form of penaliza-
tion has been duely justified but one could explore the effects of different approaches. Other
distributions of the future time cut-off penalties such as Gamma (with parameters α < 1, β ≥ 1
or α = 1, β > 2), Pareto, Weibull (with parameter k < 1) or Log-logistic (β ≤ 1) could be
justified on concrete examples. Moreover, in the algorithm as it stands, every point in time can
be considered for a potential cut-off; some time-horizon limit where distant splits would simply
be ignored would have an impact on the shape of the final tree. Eventually, the possibility
of a penalty parameter that changes along the growth of the tree is yet to be explored. In
all those scenarios, the penalty parameter affects the width and length of the final tree and
can even be interpreted as a pre-pruning parameter. The properties of that pre-pruning as
well as the choice of an optimal γ are yet to be discussed. On a final note, we do not know if
any technical properties (see [4, 8]) of the penalized splitting criterion still hold. That knowl-
edge will certainly not affect the concrete applications of TpT but is more of a theoretical interest.

Secondly, we showed in illustrative applications that time-outliers can be easily miscate-
gorized as the TpT can send them early in one direction of the tree from which they will not
escape. In addition to that, those observations are likely to end up being isolated in a leaf if the
stopping rules allow it. On the one hand, it forces observation into an early path that may not
be consistent with later observations. On the other hand, this behavior is linked to an abrupt
change of the covariates and target variable trajectories in time, which is a discriminating
feature that can justify that such subjects end up in a specific leaf. We see two ways to handle
this specific property:

• A first idea would be to modify the TpT algorithm to make it less greedy. Instead of
choosing the best split at each node, we could consider finding the best sequence of sev-
eral consecutive splits. This multi-step ahead strategy would ensure that abrupt changes
in covariates in the future are anticipated in early splits. In cases where the penalty
parameter is low, this approach also ensures that the TpT does not grow too fast with
time.

• Another innovative solution is to introduce the possibility for an outlier in a node to
teleport into another one, at a similar depth/split time in the tree. For instance, if it so
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happens that a subject trajectory suddenly becomes significantly different from the other
ones in the same node, it can be clever to acknowledge that it is no longer consistent to keep
it in the said node. This solution has drawbacks: it requires testing for outliers in every
node, at every step. If one is found, it can only be teleported if another node within which
the subject would not be an outlier is found. Moreover, it is a straightforward solution for
data mining but other adaptations are necessary if TpT is to be used for predictive tasks.
Despite this, it would still ensure individual trajectories for every subject in the tree and
it would consolidate the global within-node homogeneity.

Then, our last point raises another capital question: the applications shown in Section 4 only
exhibit the potential of TpT for clustering tasks; can it be adapted to prediction ones? In our
context, a prediction is an estimation of a subject’s target variable y(i) at a time t, given its
covariate history up to t. An obvious research path in that direction is to mimic the example
of CART. For a subject in node g, predicting the mean of the target variable at time t of all
subjects emerging from node g is to be tried. If the target variable is a time-to-event and the
observations are censored, it could be weighted by the inverse probabilities of censoring weights
(IPCW). It perfectly translates in terms of interpretability: the prediction of an outcome at
time t for individual i is the mean of the outcomes at time t of all subjects taking the same
trajectory in the tree. There are several obvious drawbacks to this approach: there needs to
exist observations of other subjects at time t. And even if some exist, the variance of the
prediction is directly linked to the number of such subjects. Exploring the properties and pre-
dictive performance of this approach is left as future work and other methods such as fitting a
longitudinal model7 at every node, not for splitting but for prediction purposes are also studied.

Eventually, if prediction is made possible in the future, exploring the performance of en-
semble methods for TpT looks like a reasonable next step. Such approaches are in contradiction
with the research of interpretability that motivated TpT, but competitive predictive performance
could justify them.

In conclusion, we are sincerely aware of all limitations and future theoretical and ap-
plied work to be done on the subject and simply wanted to rigorously lay the foundations of
TpT to allow forthcoming studies to start from an existing base. This paper can also prove
to be useful if any collaboration and improvements on the subject - whether is it on a more
efficient implementation, different applied examples, or new theoretical insights - are to result
from it.
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[10] L. Capitaine, R. Genuer, and R. Thiébaut. Random forests for high-dimensional longitudinal data.
Statistical Methods in Medical Research, 30(1):166–184, 2021. doi: 10.1177/0962280220946080.
PMID: 32772626.

[11] G. De’Ath. Multivariate regression trees: a new technique for modeling species-environment rela-
tionships. Ecology, 83:1105–1117, 2002.

[12] C. Drummond and R.C. Holte. Exploiting the cost (in) sensitivity of decision tree splitting criteria.
In ICML, pages 239–246, 2000.

[13] S.H. Eo and H.J. Cho. Tree-structured mixed-effects regression modeling for longitudinal data.
Journal of Computational and Graphical Statistics, 23(3):740–760, 2014. doi: 10.1080/10618600.
2013.794732.

[14] F. Esposito, D. Malerba, G. Semeraro, and J. Kay. A comparative analysis of methods for pruning
decision trees. IEEE Transactions on Pattern Analysis and Machine Intelligence, 19(5):476–491,
1997. doi: 10.1109/34.589207.

[15] W. Fu and J.S. Simonoff. Unbiased regression trees for longitudinal and clustered data. Com-
putational Statistics & Data Analysis, 88:53–74, 2015. ISSN 0167-9473. doi: https://doi.
org/10.1016/j.csda.2015.02.004. URL https://www.sciencedirect.com/science/article/pii/

S0167947315000432.

[16] W. Fu and J.S. Simonoff. Survival trees for left-truncated and right-censored data, with application
to time-varying covariate data. Biostatistics, 18(2):352–369, 12 2016. ISSN 1465-4644. doi: 10.
1093/biostatistics/kxw047. URL https://doi.org/10.1093/biostatistics/kxw047.

[17] A.L. Goldstein. Topics in Tree-Based Methods. Doctoral dissertation, University of Pennsylvania,
2014. URL https://repository.upenn.edu/dissertations/AAI3622048/.

[18] A. Hajjem, F. Bellavance, and D. Larocque. Mixed effects regression trees for clustered
data. Statistics & Probability Letters, 81(4):451–459, 2011. ISSN 0167-7152. doi: https:
//doi.org/10.1016/j.spl.2010.12.003. URL https://www.sciencedirect.com/science/article/

pii/S0167715210003433.

[19] A. Hajjem, F. Bellavance, and D. Larocque. Mixed effects regression trees for clustered
data. Statistics & Probability Letters, 81(4):451–459, 2011. ISSN 0167-7152. doi: https:
//doi.org/10.1016/j.spl.2010.12.003. URL https://www.sciencedirect.com/science/article/

pii/S0167715210003433.

[20] A. Hajjem, F. Bellavance, and D. Larocque. Mixed-effects random forest for clustered data. Journal
of Statistical Computation and Simulation, 84(6):1313–1328, 2014. doi: 10.1080/00949655.2012.
741599.

https://doi.org/10.1007/978-94-011-3222-0_42
https://books.google.fr/books?id=JwQx-WOmSyQC
https://books.google.fr/books?id=Eo_rMgEACAAJ
https://books.google.fr/books?id=Eo_rMgEACAAJ
https://www.sciencedirect.com/science/article/pii/S0167947315000432
https://www.sciencedirect.com/science/article/pii/S0167947315000432
https://doi.org/10.1093/biostatistics/kxw047
https://repository.upenn.edu/dissertations/AAI3622048/
https://www.sciencedirect.com/science/article/pii/S0167715210003433
https://www.sciencedirect.com/science/article/pii/S0167715210003433
https://www.sciencedirect.com/science/article/pii/S0167715210003433
https://www.sciencedirect.com/science/article/pii/S0167715210003433


References 27

[21] C.C. Holt. Forecasting seasonals and trends by exponentially weighted moving averages. Inter-
national Journal of Forecasting, 20(1):5–10, 2004. URL https://EconPapers.repec.org/RePEc:

eee:intfor:v:20:y:2004:i:1:p:5-10.

[22] W.C. Hsiao and Y.S. Shih. Splitting variable selection for multivariate regression trees. Statistics
and Probability Letters, 77:265–271, 2007.

[23] M.G. Kundu and J. Harezlak. Regression trees for longitudinal data with baseline covariates.
Biostatistics & Epidemiology, 3(1):1–22, 2019. doi: 10.1080/24709360.2018.1557797.

[24] D.R. Larsen and P.L. Speckman. Multivariate regression trees for analysis of abundance data.
Biometrics, 60:543–549, 2004.

[25] S.K. Lee. On generalized multivariate decision tree by using gee. Computational Statistics & Data
Analysis, 49:1105–1119, 2005.

[26] S.K. Lee. On classification and regression trees for multiple responses and its application. Journal
of Classification, 23:123–141, 2006.

[27] S.K. Lee, H.C. Kang, S.T. Han, and K.H. Kim. Using generalized estimating equations to learn
decision trees with multivariate responses. Data Mining and Knowledge Discovery, 11:273–293,
2005.

[28] Y. Mansour and D. McAllester. Generalization bounds for decision trees. In Proc. 13th Annu.
Conference on Comput. Learning Theory, pages 69–80. Morgan Kaufmann, San Francisco, 2000.

[29] G. Mena, K. Coussement, K.W. de Bock, A. de Caigny, and S. Lessmann. Exploiting time-varying
RFM measures for customer churn prediction with deep neural networks. Annals of Operations
Research, 2023. URL https://hal.science/hal-04027550.

[30] J. Mingers. An empirical comparison of selection measures for decision-tree induction. Machine
learning, 3(4):319–342, 1989.

[31] H. Moradian, W. Yao, D. Larocque, J.S. Simonoff, and H. Frydman. Dynamic estimation with
random forests for discrete-time survival data. Canadian Journal of Statistics, 2021.

[32] A.B. Nobel. Analysis of a complexity-based pruning scheme for classification trees. IEEE Transac-
tions on Information Theory, 48(8):2362–2368, 2002. doi: 10.1109/TIT.2002.800482.

[33] J.R. Quinlan. Simplifying decision trees. Int. J. Man Mach. Stud., 27:221–234, 1987.

[34] G. Ritschard and M. Oris. Life course data in demography and social sciences: statistical and
data mining approaches. In R. Levy, P. Ghisletta, J.-M.Le Goff, D. Spini, and E. Widmer, editors,
Towards an interdisciplinary perspective on the life course, advances in life course research, page
289–320. Elsevier, Amsterdam, 2005.

[35] D. Rizopoulos. Joint Models for Longitudinal and Time-to-Event Data, with Applications in R.
Chapman & Hall/CRC, Boca Raton, 2012.

[36] C. Scott and R.D. Nowak. Minimax-optimal classification with dyadic decision trees. IEEE Trans-
actions on Information Theory, 52(4):1335–1353, 2006. doi: 10.1109/TIT.2006.871056.

[37] C.D. Scott and R.D. Nowak. Dyadic classification trees via structural risk minimization. In NIPS,
2002. URL https://api.semanticscholar.org/CorpusID:14846592.

[38] M.R. Segal. Tree-structured models for longitudinal data. Journal of the American Statistical
Association, 87:407–418, 1992.

[39] R. Sela and J.S. Simonoff. Re-em trees: A data mining approach for longitudinal and clustered
data. Machine Learning, 86:169–207, 02 2012. doi: 10.1007/s10994-011-5258-3.

[40] Y.S. Shih. Families of splitting criteria for classification trees. Statistics and Computing, 9(4):
309–315, 1999.

[41] M. Valla. A longitudinal framework for lapse management in life insurance. working paper or
preprint, July 2023. URL https://hal.science/hal-04178278.

[42] M. Valla, X. Milhaud, and A.A. Olympio. Including individual Customer Lifetime Value and com-
peting risks in tree-based lapse management strategies. European Actuarial Journal, September
2023. doi: 10.1007/s13385-023-00358-0. URL https://hal.science/hal-03903047.

[43] D.M. Vock, J. Wolfson, S. Bandyopadhyay, G. Adomavicius, P.E. Johnson, G. Vazquez-Benitez, and
P.J. O’Connor. Adapting machine learning techniques to censored time-to-event health record data:
A general-purpose approach using inverse probability of censoring weighting. Journal of Biomedical
Informatics, 61:119–131, 2016. ISSN 1532-0464. doi: https://doi.org/10.1016/j.jbi.2016.03.009.
URL https://www.sciencedirect.com/science/article/pii/S1532046416000496.

[44] S.Y.K. Wong, J.S.K. Chan, L. Azizi, and R.Y.D. Xu. Time-varying neural network for stock return

https://EconPapers.repec.org/RePEc:eee:intfor:v:20:y:2004:i:1:p:5-10
https://EconPapers.repec.org/RePEc:eee:intfor:v:20:y:2004:i:1:p:5-10
https://hal.science/hal-04027550
https://api.semanticscholar.org/CorpusID:14846592
https://hal.science/hal-04178278
https://hal.science/hal-03903047
https://www.sciencedirect.com/science/article/pii/S1532046416000496


References 28

prediction. Intelligent Systems in Accounting, Finance and Management, 29(1):3–18, 2022. doi:
https://doi.org/10.1002/isaf.1507. URL https://onlinelibrary.wiley.com/doi/abs/10.1002/

isaf.1507.

[45] W. Yao, H. Frydman, D. Larocque, and J.S. Simonoff. Ensemble methods for survival function
estimation with time-varying covariates, 2020. URL https://arxiv.org/abs/2006.00567.

[46] W. Yao, H. Frydman, D. Larocque, and J.S. Simonoff. Ensemble methods for survival function
estimation with time-varying covariates. Statistical Methods in Medical Research, 31(11):2217–2236,
2022. doi: 10.1177/09622802221111549. PMID: 35895510.

[47] H. Zhang. Classification trees for multiple binary responses. Journal of the American Statistical
Association, 93:180–193, 1998.

https://onlinelibrary.wiley.com/doi/abs/10.1002/isaf.1507
https://onlinelibrary.wiley.com/doi/abs/10.1002/isaf.1507
https://arxiv.org/abs/2006.00567


A Appendix 29

A Appendix

A.1 About cost-complexity pruning

Even thougt the original cost function of the CART algorithm described by [5] is penalized
proportionnaly to its number of leaves nL, several works on the matter suggest other types of
penalty. [2] shows that applying risk bounds to CART imply a penalty with ψ(nL) =

√
nL. In

later works, [28], [32], then [37] also showed that risk bounds with a penalty using ψ(nL) =
√
nL

can be derived for classification trees whereas penalties proportionnal to nL can only be derived
in specific cases discusse by [3]. In summary, square-root penalties appear to have a much
stronger theoretical foundation than nL proportionnal ones in various context, notably for
classification tasks.

A.2 Frechet trees

Another very interesting and general approach is Fréchet trees - and Fréchet forest - by [9]. It is
a tree-building procedure that allow handling data for which input covariates and the outcome
take values in general metric spaces. Concretely, it is designed to handle covariates and
outcomes that can be any functions and can be, in particular, functions of time. In this article,
they illustrate the prediction ability of Fréchet forests on longitudinal data and the robustness
of their method to missing data and time shifts. Several limitations can be pointed out: firstly
the mathematical assumption of the existence of the Fréchet mean in the output space must
be verified and that mean must be approximated as precisely as possible. Another limitation
is the interpretability, as it is always the case with bagging techniques, but here it is also
true for individual Fréchet trees: if covariates’ importance can be analyzed, relevant threshold
and time points can not be easily observed. Eventually, the computational burden of this
algorithm is also important. This method has been implemented in the R package FrechForest.

A.3 More results

A.3.1 Results without stopping criterion

The maximal unpruned and unstopped TpT, obtained with the time-penalized Gini split-
ting criterion and an optimal time penalty achieves a depth of 17, has 190 leaves - 173
terminal leaves, 17 duration leaves - and is too large to be fully displayed as a tree here.
However, we can still represent it as a list of decisions describing how the dataset is partitionned:

The maximum depth achieved is 17
The number of leaves is 190
173 terminal leaves and 17 duration leaves
The tree impurity is : 0.06270710057403012
The penalized tree impurity is : 0.3556124586066797
The maximum time where a split occured is 10.0
The average split time is 0.9805922147055561

The tree is :
depth = 0 if Age <= 65.5 at t = 0.0, samples: 983

and no duration leaf
then depth = 1 if Age <= 42.5 at t = 0.0, samples: 463
and no duration leaf

then depth = 2 if GENDER <= 1.5 at t = 0.0, samples: 110
and no duration leaf

then depth = 3 if Age <= 30.5 at t = 0.0, samples: 58
and no duration leaf

then depth = 4{value: CHURNED, samples: 29}
else depth = 4 if CLV <= 9.16 at t = 0.0, samples: 29
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and no duration leaf
then depth = 5{value: CHURNED, samples: 9}
else depth = 5 if FACE AMOUNT <= 7197.19 at t = 2.0, samples: 20
and no duration leaf

then depth = 6 if FACE AMOUNT <= 3654.22 at t = 2.0, samples: 9
and no duration leaf

then depth = 7 if Age <= 39.5 at t = 2.0, samples: 5
and no duration leaf

then depth = 8{value: CHURNED, samples: 3}
else depth = 8{value: CHURNED 0.5, samples: 2}

else depth = 7{value: DEATH, samples: 4}
else depth = 6{value: CHURNED, samples: 11}

else depth = 3{value: CHURNED, samples: 52}
else depth = 2 if GENDER <= 1.5 at t = 0.0, samples: 353
and no duration leaf

then depth = 3 if Age <= 53.5 at t = 0.0, samples: 154
and no duration leaf

then depth = 4 if Age <= 52.5 at t = 0.0, samples: 53
and no duration leaf

then depth = 5 if CLV <= 13.11 at t = 0.0, samples: 47
and no duration leaf

then depth = 6 if FACE AMOUNT <= 3196.44 at t = 3.0, samples: 10
and duration leaf has 1 samples. Label is : CHURNED 1.0

then depth = 7{value: CHURNED, samples: 7}
else depth = 7{value: CHURNED 0.5, samples: 2}

else depth = 6 if CLV <= 88.4 at t = 0.0, samples: 37
and no duration leaf

then depth = 7 if Nb Contrats <= 1.5 at t = 0.0, samples: 14
and no duration leaf

then depth = 8 if CLV <= 40.05 at t = 0.0, samples: 12
and no duration leaf

then depth = 9 if Age <= 45.5 at t = 0.0, samples: 8
and no duration leaf

then depth = 10{value: DEATH, samples: 3}
else depth = 10 if CLV <= 17.03 at t = 0.0, samples: 5
and no duration leaf

then depth = 11{value: DEATH, samples: 2}
else depth = 11{value: CHURNED, samples: 3}

else depth = 9{value: DEATH, samples: 4}
else depth = 8{value: CHURNED, samples: 2}

else depth = 7 if CLV <= 591.46 at t = 0.0, samples: 23
and no duration leaf

then depth = 8 if CLV <= 352.28 at t = 0.0, samples: 18
and no duration leaf

then depth = 9 if CLV <= 155.3 at t = 0.0, samples: 16
and no duration leaf

then depth = 10 if CLV <= 190.4 at t = 1.0, samples: 9
and no duration leaf

then depth = 11{value: CHURNED 0.5, samples: 2}
else depth = 11{value: CHURNED, samples: 7}

else depth = 10 if CLV <= 178.0 at t = 0.0, samples: 7
and no duration leaf

then depth = 11{value: DEATH, samples: 2}
else depth = 11 if CLV <= 259.66 at t = 0.0, samples: 5
and no duration leaf

then depth = 12{value: CHURNED, samples: 3}
else depth = 12{value: CHURNED 0.5, samples: 2}

else depth = 9{value: DEATH, samples: 2}
else depth = 8{value: CHURNED, samples: 5}

else depth = 5{value: CHURNED, samples: 6}
else depth = 4 if CDI NOM PRODUIT <= 1.5 at t = 0.0, samples: 101
and no duration leaf

then depth = 5 if FACE AMOUNT <= 10325.88 at t = 4.0, samples: 83
and duration leaf has 3 samples. Label is : DEATH 1.0

then depth = 6 if CLV <= 16.28 at t = 4.0, samples: 41
and no duration leaf

then depth = 7 if Age <= 60.5 at t = 6.0, samples: 8
and duration leaf has 1 samples. Label is : CHURNED 1.0

then depth = 8{value: CHURNED 0.5, samples: 2}
else depth = 8{value: DEATH, samples: 5}

else depth = 7 if CLV <= 89.04 at t = 4.0, samples: 33
and no duration leaf

then depth = 8{value: CHURNED, samples: 8}
else depth = 8 if CLV <= 100.4 at t = 4.0, samples: 25
and no duration leaf

then depth = 9{value: DEATH, samples: 2}
else depth = 9 if CLV <= 181.96 at t = 4.0, samples: 23
and no duration leaf

then depth = 10{value: CHURNED, samples: 5}
else depth = 10 if CLV <= 310.27 at t = 5.0, samples: 18
and no duration leaf

then depth = 11{value: DEATH, samples: 3}
else depth = 11 if Age <= 68.5 at t = 5.0, samples: 15
and no duration leaf

then depth = 12 if FACE AMOUNT <= 3972.54 at t = 5.0, samples: 11
and no duration leaf

then depth = 13{value: DEATH, samples: 3}
else depth = 13 if CLV <= 748.3 at t = 6.0, samples: 8
and no duration leaf

then depth = 14{value: CHURNED, samples: 4}
else depth = 14 if CLV <= 917.37 at t = 6.0, samples: 4
and no duration leaf

then depth = 15{value: DEATH, samples: 2}
else depth = 15{value: CHURNED, samples: 2}

else depth = 12{value: CHURNED, samples: 4}
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else depth = 6 if FACE AMOUNT <= 17894.43 at t = 4.0, samples: 39
and no duration leaf

then depth = 7{value: DEATH, samples: 8}
else depth = 7 if Age <= 65.5 at t = 5.0, samples: 31
and no duration leaf

then depth = 8 if CLV <= 1745.92 at t = 5.0, samples: 17
and no duration leaf

then depth = 9 if FACE AMOUNT <= 21616.0 at t = 5.0, samples: 5
and no duration leaf

then depth = 10{value: DEATH, samples: 3}
else depth = 10{value: CHURNED, samples: 2}

else depth = 9 if CLV <= 3172.41 at t = 5.0, samples: 12
and no duration leaf

then depth = 10{value: CHURNED, samples: 6}
else depth = 10 if FACE AMOUNT <= 64766.89 at t = 6.0, samples: 6
and no duration leaf

then depth = 11{value: DEATH, samples: 3}
else depth = 11{value: CHURNED, samples: 3}

else depth = 8 if FACE AMOUNT <= 20931.16 at t = 6.0, samples: 14
and duration leaf has 1 samples. Label is : DEATH 1.0

then depth = 9{value: CHURNED, samples: 2}
else depth = 9 if CLV <= 10948.21 at t = 9.0, samples: 11
and duration leaf has 4 samples. Label is : DEATH 1.0

then depth = 10 if CLV <= 5539.86 at t = 9.0, samples: 4
and no duration leaf

then depth = 11{value: DEATH, samples: 2}
else depth = 11{value: CHURNED, samples: 2}

else depth = 10{value: DEATH, samples: 3}
else depth = 5 if CLV <= 3.37 at t = 0.0, samples: 18
and no duration leaf

then depth = 6{value: CHURNED 0.5, samples: 2}
else depth = 6 if CLV <= 21.3 at t = 0.0, samples: 16
and no duration leaf

then depth = 7{value: CHURNED, samples: 6}
else depth = 7 if CLV <= 363.44 at t = 0.0, samples: 10
and no duration leaf

then depth = 8{value: CHURNED 0.5, samples: 4}
else depth = 8 if CLV <= 2068.21 at t = 0.0, samples: 6
and no duration leaf

then depth = 9{value: CHURNED, samples: 4}
else depth = 9{value: CHURNED 0.5, samples: 2}

else depth = 3 if CDI NOM PRODUIT <= 1.5 at t = 0.0, samples: 199
and no duration leaf

then depth = 4 if Age <= 60.5 at t = 0.0, samples: 167
and no duration leaf

then depth = 5 if Age <= 43.5 at t = 0.0, samples: 115
and no duration leaf

then depth = 6 if CLV <= 82.12 at t = 0.0, samples: 4
and no duration leaf

then depth = 7{value: DEATH, samples: 2}
else depth = 7{value: CHURNED 0.5, samples: 2}

else depth = 6 if CLV <= 2145.92 at t = 3.0, samples: 111
and duration leaf has 1 samples. Label is : DEATH 1.0

then depth = 7 if FACE AMOUNT <= 28288.52 at t = 3.0, samples: 94
and no duration leaf

then depth = 8 if CLV <= 910.67 at t = 3.0, samples: 92
and no duration leaf

then depth = 9 if CLV <= 840.53 at t = 3.0, samples: 80
and no duration leaf

then depth = 10 if FACE AMOUNT <= 12512.22 at t = 6.0, samples: 78
and no duration leaf

then depth = 11 if CLV <= 217.81 at t = 8.0, samples: 65
and duration leaf has 4 samples. Label is : CHURNED 0.5

then depth = 12 if Age <= 66.5 at t = 8.0, samples: 24
and no duration leaf

then depth = 13 if Age <= 54.5 at t = 8.0, samples: 20
and no duration leaf

then depth = 14 if Age <= 55.5 at t = 10.0, samples: 7
and duration leaf has 1 samples. Label is : CHURNED 1.0

then depth = 15{value: CHURNED, samples: 3}
else depth = 15{value: DEATH, samples: 3}

else depth = 14 if CLV <= 74.87 at t = 8.0, samples: 13
and no duration leaf

then depth = 15{value: CHURNED, samples: 10}
else depth = 15{value: CHURNED 0.67, samples: 3}

else depth = 13 if Age <= 67.5 at t = 8.0, samples: 4
and no duration leaf

then depth = 14{value: DEATH, samples: 2}
else depth = 14{value: CHURNED 0.5, samples: 2}

else depth = 12 if Age <= 53.0 at t = 8.0, samples: 37
and no duration leaf

then depth = 13{value: CHURNED 0.5, samples: 2}
else depth = 13 if FACE AMOUNT <= 3848.48 at t = 10.0, samples: 35
and duration leaf has 5 samples. Label is : CHURNED 0.8

then depth = 14 if FACE AMOUNT <= 3086.41 at t = 10.0, samples: 8
and no duration leaf

then depth = 15{value: CHURNED, samples: 6}
else depth = 15{value: CHURNED 0.5, samples: 2}

else depth = 14{value: CHURNED, samples: 22}
else depth = 11 if Age <= 60.5 at t = 7.0, samples: 13
and duration leaf has 1 samples. Label is : DEATH 1.0

then depth = 12 if FACE AMOUNT <= 16037.28 at t = 8.0, samples: 8
and no duration leaf

then depth = 13{value: DEATH, samples: 3}
else depth = 13 if Age <= 57.5 at t = 8.0, samples: 5
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and no duration leaf
then depth = 14{value: DEATH 0.67, samples: 3}
else depth = 14{value: CHURNED, samples: 2}

else depth = 12{value: CHURNED, samples: 4}
else depth = 10{value: DEATH, samples: 2}

else depth = 9{value: CHURNED, samples: 12}
else depth = 8{value: DEATH, samples: 2}

else depth = 7{value: CHURNED, samples: 16}
else depth = 5 if Age <= 64.5 at t = 0.0, samples: 52
and no duration leaf

then depth = 6 if CLV <= 251.48 at t = 0.0, samples: 43
and no duration leaf

then depth = 7 if FACE AMOUNT <= 73.34 at t = 3.0, samples: 29
and no duration leaf

then depth = 8{value: DEATH, samples: 3}
else depth = 8 if CLV <= 119.45 at t = 3.0, samples: 26
and no duration leaf

then depth = 9 if CLV <= 54.46 at t = 4.0, samples: 11
and no duration leaf

then depth = 10{value: CHURNED 0.67, samples: 3}
else depth = 10{value: CHURNED, samples: 8}

else depth = 9 if FACE AMOUNT <= 3331.54 at t = 3.0, samples: 15
and no duration leaf

then depth = 10{value: DEATH, samples: 2}
else depth = 10 if CLV <= 445.55 at t = 3.0, samples: 13
and no duration leaf

then depth = 11{value: CHURNED, samples: 3}
else depth = 11 if CLV <= 709.34 at t = 3.0, samples: 10
and no duration leaf

then depth = 12 if CLV <= 622.04 at t = 3.0, samples: 4
and no duration leaf

then depth = 13{value: CHURNED 0.5, samples: 2}
else depth = 13{value: DEATH, samples: 2}

else depth = 12 if FACE AMOUNT <= 16863.76 at t = 3.0, samples: 6
and no duration leaf

then depth = 13{value: CHURNED, samples: 3}
else depth = 13{value: DEATH 0.67, samples: 3}

else depth = 7 if Nb Contrats <= 1.5 at t = 0.0, samples: 14
and no duration leaf

then depth = 8 if FACE AMOUNT <= 22229.94 at t = 1.0, samples: 11
and no duration leaf

then depth = 9{value: DEATH 0.67, samples: 3}
else depth = 9{value: DEATH, samples: 8}

else depth = 8{value: CHURNED, samples: 3}
else depth = 6 if CLV <= 633.18 at t = 0.0, samples: 9
and no duration leaf

then depth = 7{value: CHURNED, samples: 7}
else depth = 7{value: CHURNED 0.5, samples: 2}

else depth = 4 if CLV <= 2081.39 at t = 0.0, samples: 32
and no duration leaf

then depth = 5 if Age <= 63.5 at t = 0.0, samples: 30
and no duration leaf

then depth = 6 if FACE AMOUNT <= 37433.94 at t = 3.0, samples: 26
and duration leaf has 2 samples. Label is : CHURNED 1.0

then depth = 7{value: CHURNED, samples: 21}
else depth = 7{value: CHURNED 0.67, samples: 3}

else depth = 6 if Age <= 64.5 at t = 0.0, samples: 4
and no duration leaf

then depth = 7{value: CHURNED 0.5, samples: 2}
else depth = 7{value: CHURNED, samples: 2}

else depth = 5{value: CHURNED 0.5, samples: 2}
else depth = 1 if Age <= 72.5 at t = 0.0, samples: 520
and no duration leaf

then depth = 2 if CLV <= 2.73 at t = 0.0, samples: 180
and no duration leaf

then depth = 3 if CLV <= 99.7 at t = 2.0, samples: 13
and no duration leaf

then depth = 4 if CLV <= 11.97 at t = 3.0, samples: 11
and no duration leaf

then depth = 5{value: CHURNED, samples: 9}
else depth = 5{value: CHURNED 0.5, samples: 2}

else depth = 4{value: DEATH, samples: 2}
else depth = 3 if CLV <= 2982.24 at t = 0.0, samples: 167
and no duration leaf

then depth = 4 if Nb Contrats <= 2.5 at t = 0.0, samples: 165
and no duration leaf

then depth = 5 if CDI NOM PRODUIT <= 1.5 at t = 0.0, samples: 159
and no duration leaf

then depth = 6 if CLV <= 153.51 at t = 0.0, samples: 146
and no duration leaf

then depth = 7 if Nb Contrats <= 1.5 at t = 1.0, samples: 61
and no duration leaf

then depth = 8 if Age <= 70.5 at t = 1.0, samples: 58
and no duration leaf

then depth = 9 if GENDER <= 1.5 at t = 1.0, samples: 30
and no duration leaf

then depth = 10 if CLV <= 152.49 at t = 1.0, samples: 17
and no duration leaf

then depth = 11{value: DEATH, samples: 10}
else depth = 11 if CLV <= 212.33 at t = 1.0, samples: 7
and no duration leaf

then depth = 12{value: CHURNED 0.5, samples: 2}
else depth = 12{value: DEATH, samples: 5}

else depth = 10 if FACE AMOUNT <= 3475.12 at t = 1.0, samples: 13
and no duration leaf
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then depth = 11 if FACE AMOUNT <= 1499.92 at t = 1.0, samples: 7
and no duration leaf

then depth = 12{value: DEATH, samples: 2}
else depth = 12 if Age <= 69.5 at t = 1.0, samples: 5
and no duration leaf

then depth = 13{value: CHURNED, samples: 3}
else depth = 13{value: CHURNED 0.5, samples: 2}

else depth = 11 if CLV <= 195.51 at t = 1.0, samples: 6
and no duration leaf

then depth = 12{value: DEATH, samples: 4}
else depth = 12{value: CHURNED 0.5, samples: 2}

else depth = 9 if FACE AMOUNT <= 2307.93 at t = 1.0, samples: 28
and no duration leaf

then depth = 10 if CLV <= 35.73 at t = 1.0, samples: 6
and no duration leaf

then depth = 11{value: DEATH, samples: 4}
else depth = 11{value: CHURNED 0.5, samples: 2}

else depth = 10{value: DEATH, samples: 22}
else depth = 8{value: CHURNED 0.67, samples: 3}

else depth = 7 if CLV <= 161.62 at t = 0.0, samples: 85
and no duration leaf

then depth = 8{value: CHURNED, samples: 2}
else depth = 8 if CLV <= 1185.78 at t = 0.0, samples: 83
and no duration leaf

then depth = 9 if CLV <= 1072.6 at t = 0.0, samples: 69
and no duration leaf

then depth = 10 if Nb Contrats <= 1.5 at t = 0.0, samples: 67
and no duration leaf

then depth = 11 if CLV <= 296.66 at t = 0.0, samples: 61
and no duration leaf

then depth = 12 if CLV <= 240.56 at t = 0.0, samples: 22
and no duration leaf

then depth = 13 if CLV <= 396.72 at t = 1.0, samples: 14
and no duration leaf

then depth = 14 if CLV <= 342.37 at t = 1.0, samples: 7
and no duration leaf

then depth = 15{value: CHURNED 0.5, samples: 2}
else depth = 15{value: DEATH, samples: 5}

else depth = 14 if CLV <= 428.3 at t = 1.0, samples: 7
and no duration leaf

then depth = 15{value: CHURNED, samples: 3}
else depth = 15 if GENDER <= 1.5 at t = 1.0, samples: 4
and no duration leaf

then depth = 16{value: DEATH, samples: 2}
else depth = 16{value: CHURNED 0.5, samples: 2}

else depth = 13{value: DEATH, samples: 8}
else depth = 12 if CLV <= 522.24 at t = 0.0, samples: 39
and no duration leaf

then depth = 13 if CLV <= 388.65 at t = 0.0, samples: 24
and no duration leaf

then depth = 14 if Age <= 70.5 at t = 0.0, samples: 12
and no duration leaf

then depth = 15 if CLV <= 308.23 at t = 0.0, samples: 8
and no duration leaf

then depth = 16{value: CHURNED 0.5, samples: 2}
else depth = 16{value: DEATH, samples: 6}

else depth = 15 if CLV <= 320.33 at t = 0.0, samples: 4
and no duration leaf

then depth = 16{value: CHURNED, samples: 2}
else depth = 16{value: CHURNED 0.5, samples: 2}

else depth = 14 if CLV <= 427.18 at t = 0.0, samples: 12
and no duration leaf

then depth = 15{value: CHURNED, samples: 4}
else depth = 15 if CLV <= 507.19 at t = 0.0, samples: 8
and no duration leaf

then depth = 16 if GENDER <= 1.5 at t = 0.0, samples: 6
and no duration leaf

then depth = 17{value: DEATH, samples: 3}
else depth = 17{value: CHURNED 0.67, samples: 3}

else depth = 16{value: CHURNED, samples: 2}
else depth = 13 if CLV <= 735.13 at t = 0.0, samples: 15
and no duration leaf

then depth = 14{value: DEATH, samples: 8}
else depth = 14 if CLV <= 767.92 at t = 0.0, samples: 7
and no duration leaf

then depth = 15{value: CHURNED, samples: 2}
else depth = 15 if FACE AMOUNT <= 47527.88 at t = 1.0, samples: 5
and no duration leaf

then depth = 16{value: DEATH, samples: 3}
else depth = 16{value: CHURNED 0.5, samples: 2}

else depth = 11{value: DEATH, samples: 6}
else depth = 10{value: CHURNED, samples: 2}

else depth = 9 if Age <= 71.0 at t = 0.0, samples: 14
and no duration leaf

then depth = 10{value: DEATH, samples: 11}
else depth = 10{value: DEATH 0.67, samples: 3}

else depth = 6 if FACE AMOUNT <= 7905.44 at t = 2.0, samples: 13
and no duration leaf

then depth = 7 if FACE AMOUNT <= 1385.41 at t = 3.0, samples: 8
and duration leaf has 2 samples. Label is : CHURNED 1.0

then depth = 8{value: DEATH, samples: 2}
else depth = 8{value: CHURNED, samples: 4}

else depth = 7{value: DEATH, samples: 5}
else depth = 5 if Nb Contrats <= 4.5 at t = 1.0, samples: 6
and no duration leaf
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then depth = 6{value: CHURNED, samples: 4}
else depth = 6{value: DEATH, samples: 2}

else depth = 4{value: CHURNED, samples: 2}
else depth = 2 if CLV <= 24.19 at t = 0.0, samples: 340
and no duration leaf

then depth = 3 if CLV <= 23.77 at t = 0.0, samples: 70
and no duration leaf

then depth = 4 if Age <= 81.5 at t = 0.0, samples: 68
and no duration leaf

then depth = 5 if Age <= 76.5 at t = 0.0, samples: 53
and no duration leaf

then depth = 6 if CDI NOM PRODUIT <= 1.5 at t = 0.0, samples: 32
and no duration leaf

then depth = 7 if CLV <= 1.72 at t = 0.0, samples: 24
and no duration leaf

then depth = 8 if CLV <= 2.86 at t = 1.0, samples: 7
and no duration leaf

then depth = 9{value: DEATH, samples: 3}
else depth = 9{value: CHURNED 0.5, samples: 4}

else depth = 8{value: DEATH, samples: 17}
else depth = 7 if GENDER <= 1.5 at t = 4.0, samples: 8
and duration leaf has 2 samples. Label is : CHURNED 0.5

then depth = 8{value: CHURNED, samples: 2}
else depth = 8 if CLV <= 56.71 at t = 4.0, samples: 4
and no duration leaf

then depth = 9{value: CHURNED 0.5, samples: 2}
else depth = 9{value: DEATH, samples: 2}

else depth = 6 if CLV <= 1.5 at t = 0.0, samples: 21
and no duration leaf

then depth = 7{value: CHURNED, samples: 3}
else depth = 7 if CLV <= 101.49 at t = 3.0, samples: 18
and duration leaf has 1 samples. Label is : DEATH 1.0

then depth = 8 if Age <= 79.5 at t = 3.0, samples: 13
and no duration leaf

then depth = 9{value: CHURNED, samples: 2}
else depth = 9 if GENDER <= 1.5 at t = 3.0, samples: 11
and no duration leaf

then depth = 10 if CLV <= 24.93 at t = 3.0, samples: 4
and no duration leaf

then depth = 11{value: DEATH, samples: 2}
else depth = 11{value: CHURNED, samples: 2}

else depth = 10 if Age <= 80.5 at t = 3.0, samples: 7
and no duration leaf

then depth = 11{value: DEATH 0.67, samples: 3}
else depth = 11{value: DEATH, samples: 4}

else depth = 8{value: CHURNED, samples: 4}
else depth = 5{value: DEATH, samples: 15}

else depth = 4{value: CHURNED, samples: 2}
else depth = 3 if CDI NOM PRODUIT <= 1.5 at t = 0.0, samples: 270
and no duration leaf

then depth = 4 if Age <= 74.5 at t = 0.0, samples: 240
and no duration leaf

then depth = 5 if CLV <= 303.99 at t = 0.0, samples: 41
and no duration leaf

then depth = 6 if Age <= 73.5 at t = 0.0, samples: 23
and no duration leaf

then depth = 7 if CLV <= 391.43 at t = 2.0, samples: 6
and no duration leaf

then depth = 8{value: CHURNED 0.5, samples: 2}
else depth = 8{value: DEATH, samples: 4}

else depth = 7{value: DEATH, samples: 17}
else depth = 6 if CLV <= 334.97 at t = 0.0, samples: 18
and no duration leaf

then depth = 7{value: CHURNED, samples: 3}
else depth = 7 if CLV <= 1380.47 at t = 0.0, samples: 15
and no duration leaf

then depth = 8{value: DEATH, samples: 13}
else depth = 8{value: CHURNED 0.5, samples: 2}

else depth = 5 if Age <= 89.5 at t = 0.0, samples: 199
and no duration leaf

then depth = 6 if FACE AMOUNT <= 65229.84 at t = 3.0, samples: 192
and duration leaf has 2 samples. Label is : DEATH 1.0

then depth = 7 if FACE AMOUNT <= 5858.16 at t = 3.0, samples: 160
and no duration leaf

then depth = 8 if FACE AMOUNT <= 5693.4 at t = 4.0, samples: 27
and duration leaf has 3 samples. Label is : DEATH 1.0

then depth = 9{value: DEATH, samples: 22}
else depth = 9{value: CHURNED, samples: 2}

else depth = 8 if Age <= 78.5 at t = 3.0, samples: 133
and no duration leaf

then depth = 9 if FACE AMOUNT <= 14620.96 at t = 3.0, samples: 13
and no duration leaf

then depth = 10 if CLV <= 743.21 at t = 3.0, samples: 5
and no duration leaf

then depth = 11{value: DEATH, samples: 3}
else depth = 11{value: CHURNED 0.5, samples: 2}

else depth = 10{value: DEATH, samples: 8}
else depth = 9 if Age <= 81.5 at t = 3.0, samples: 120
and no duration leaf

then depth = 10 if Age <= 80.5 at t = 3.0, samples: 49
and no duration leaf

then depth = 11{value: DEATH, samples: 33}
else depth = 11 if CLV <= 1337.19 at t = 3.0, samples: 16
and no duration leaf

then depth = 12 if CLV <= 1236.12 at t = 3.0, samples: 7
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and no duration leaf
then depth = 13{value: DEATH, samples: 5}
else depth = 13{value: CHURNED 0.5, samples: 2}

else depth = 12{value: DEATH, samples: 9}
else depth = 10{value: DEATH, samples: 71}

else depth = 7 if Age <= 79.5 at t = 3.0, samples: 30
and no duration leaf

then depth = 8 if CLV <= 6469.44 at t = 3.0, samples: 6
and no duration leaf

then depth = 9{value: CHURNED, samples: 2}
else depth = 9{value: DEATH, samples: 4}

else depth = 8 if CLV <= 4697.78 at t = 4.0, samples: 24
and duration leaf has 2 samples. Label is : DEATH 1.0

then depth = 9{value: CHURNED 0.5, samples: 2}
else depth = 9{value: DEATH, samples: 20}

else depth = 6 if GENDER <= 1.5 at t = 0.0, samples: 7
and no duration leaf

then depth = 7{value: CHURNED 0.5, samples: 2}
else depth = 7{value: DEATH, samples: 5}

else depth = 4 if Age <= 80.5 at t = 0.0, samples: 30
and no duration leaf

then depth = 5 if GENDER <= 1.5 at t = 0.0, samples: 11
and no duration leaf

then depth = 6 if Age <= 75.5 at t = 0.0, samples: 4
and no duration leaf

then depth = 7{value: CHURNED 0.5, samples: 2}
else depth = 7{value: DEATH, samples: 2}

else depth = 6 if Age <= 79.5 at t = 0.0, samples: 7
and no duration leaf

then depth = 7{value: CHURNED, samples: 4}
else depth = 7{value: CHURNED 0.67, samples: 3}

else depth = 5{value: DEATH, samples: 19}

The unstopped and unpruned TpTs, obtained with the time-penalized gini splitting criterion,
and various time penalties yields the following results:
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Table 3 Characteritics of TpT depending on the time penalty

Time penalty γ Runtime Depth # of terminal leaves # of duration leaves Total # of leaves Tree cost Max of split times Mean of split times

0.0000 719.07 7 27 17 44 0.412 20.0 5.768
0.0025 733.95 7 27 16 43 0.411 20.0 5.276
0.0050 732.73 7 27 15 42 0.408 20.0 5.192
0.0100 725.95 9 30 15 45 0.410 20.0 5.429
0.0125 795.26 10 35 19 54 0.416 20.0 4.832
0.0175 862.99 11 35 21 56 0.416 20.0 3.81
0.0200 883.2 11 35 20 55 0.414 20.0 3.599
0.0300 868.98 11 35 20 55 0.415 20.0 3.601
0.0325 1007.65 11 55 33 88 0.413 20.0 4.315
0.0350 970.33 11 53 27 80 0.421 20.0 3.977
0.0450 1046.33 10 61 30 91 0.421 20.0 3.763
0.0500 1062.24 10 71 36 107 0.424 20.0 4.175
0.0625 1069.06 10 69 36 105 0.422 20.0 4.209
0.0650 1141.95 11 79 47 126 0.425 18.0 4.277
0.0700 1137.4 11 81 49 130 0.426 18.0 4.282
0.0775 1117.22 11 83 44 127 0.417 18.0 4.272
0.0800 1122.76 11 87 46 133 0.417 18.0 4.26
0.0825 1133.39 11 87 45 132 0.416 18.0 4.238
0.0850 1165.53 11 89 46 135 0.416 18.0 3.947
0.0900 1287.23 15 98 49 147 0.408 18.0 3.579
0.0950 1350.29 15 105 51 156 0.390 18.0 3.085
0.1025 1340.77 15 106 50 156 0.389 18.0 3.083
0.1050 1346.53 15 104 44 148 0.378 18.0 2.906
0.1075 1349.57 15 104 44 148 0.379 18.0 2.898
0.1125 1351.12 15 105 44 149 0.380 18.0 2.888
0.1200 1347.56 15 105 43 148 0.375 18.0 2.929
0.1300 1378.96 15 112 41 153 0.374 16.0 2.929
0.1400 1561.86 15 118 48 166 0.385 16.0 2.645
0.1425 1559.3 15 122 44 166 0.381 16.0 2.416
0.1475 1685.14 17 124 43 167 0.377 16.0 2.129
0.1500 1712.25 15 128 40 168 0.375 15.0 1.778
0.1525 1677.49 16 130 39 169 0.377 15.0 1.76
0.1550 1709.18 16 131 39 170 0.378 15.0 1.749
0.1575 1692.19 16 137 38 175 0.371 14.0 1.773
0.1700 1686.58 16 137 36 173 0.370 14.0 1.762
0.1775 1687.16 16 140 35 175 0.370 13.0 1.663
0.1850 1695.6 15 143 33 176 0.369 13.0 1.647
0.1925 1687.49 15 144 33 177 0.370 13.0 1.64
0.1950 1704.68 15 146 33 179 0.367 13.0 1.608
0.1975 1704.85 15 146 33 179 0.363 13.0 1.618
0.2075 1679.89 15 149 33 182 0.364 12.0 1.617
0.2100 1721.42 15 150 32 182 0.366 12.0 1.521
0.2125 1741.25 15 152 31 183 0.366 12.0 1.519
0.2150 1740.3 15 155 29 184 0.367 12.0 1.502
0.2175 1746.67 15 157 29 186 0.368 12.0 1.492
0.2275 1730.43 15 158 28 186 0.365 12.0 1.465
0.2350 1717.29 15 160 28 188 0.366 12.0 1.457
0.2375 1724.14 15 161 27 188 0.366 12.0 1.455
0.2500 1796.99 15 165 25 190 0.359 14.0 1.184
0.2525 1809.4 15 168 23 191 0.359 13.0 1.158
0.2550 1810.04 15 169 22 191 0.359 13.0 1.143
0.2575 1832.64 15 169 21 190 0.357 13.0 1.142
0.2675 1854.5 19 169 23 192 0.360 11.0 1.198
0.2725 1850.47 17 173 17 190 0.356 10.0 0.981
0.2775 1857.1 17 174 16 190 0.356 10.0 0.965
0.2875 2025.16 17 173 11 184 0.358 10.0 0.645
0.2900 2045.07 17 174 10 184 0.358 10.0 0.648
0.3050 1976.4 17 175 10 185 0.359 10.0 0.639
0.3125 1969.5 17 176 9 185 0.361 10.0 0.635
0.3250 1960.95 17 176 10 186 0.362 10.0 0.64
0.3300 1949.79 17 176 10 186 0.360 10.0 0.606
0.3325 1976.88 17 177 9 186 0.359 10.0 0.604
0.3375 1965.69 17 176 9 185 0.357 11.0 0.534
0.3425 1953.18 17 179 5 184 0.358 6.0 0.267
0.3475 1947.54 18 181 4 185 0.358 5.0 0.265
0.3650 1962.15 18 181 4 185 0.359 5.0 0.236
0.3900 1918.64 18 183 4 187 0.360 5.0 0.226
0.4325 1809.19 18 183 4 187 0.361 5.0 0.223
0.4625 1683.22 18 185 3 188 0.362 5.0 0.216
0.4725 1651.89 18 187 3 190 0.364 5.0 0.213
0.4950 1620.57 18 188 3 191 0.363 5.0 0.199
0.5000 1626.91 18 189 2 191 0.365 5.0 0.111
0.5500 1636.21 18 193 1 194 0.374 5.0 0.057
0.6000 1629.73 18 193 1 194 0.375 5.0 0.055
0.7000 1572.03 18 194 1 195 0.377 5.0 0.021
0.8000 1566.33 18 194 0 194 0.378 5.0 0.016
0.9000 1571.42 18 197 0 197 0.382 5.0 0.007
1.0000 1575.33 18 198 0 198 0.383 5.0 0.006
1.1000 1549.67 18 199 0 199 0.384 5.0 0.005
1.3000 1509.43 18 200 0 200 0.384 5.0 0.004
1.4000 1511.22 18 201 0 201 0.385 5.0 0.003
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Figure 17: Characteritics of unstopped and unpruned TpT depending on the time penalty

The unstopped and unpruned TpTs, obtained with the time-penalized entropy splitting criterion,
and various time penalties yield the following results:
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Table 4 Characteritics of unstopped and unpruned entropy TpTs depending on the time penalty

Time penalty γ Runtime Depth # of terminal leaves # of duration leaves Total # of leaves Tree cost Max of split times Mean of split times

0.0000 671.79 7 26 16 42 0.743 20.0 5.689
0.0025 703.08 7 27 15 42 0.740 20.0 5.306
0.0050 796.89 8 30 17 47 0.721 20.0 4.366
0.0100 939.1 10 40 23 63 0.704 20.0 3.835
0.0125 937.04 10 40 24 64 0.704 20.0 3.837
0.0250 940.39 10 41 24 65 0.702 20.0 3.933
0.0275 944.95 10 43 25 68 0.692 20.0 4.277
0.0300 1034.06 10 53 31 84 0.680 20.0 3.933
0.0425 1054.6 10 54 32 86 0.677 20.0 3.875
0.0450 1058.25 10 55 32 87 0.675 20.0 3.845
0.0475 1056.82 10 59 34 93 0.674 20.0 3.84
0.0500 1246.9 14 73 45 118 0.620 19.0 3.613
0.0525 1354.92 14 69 40 109 0.620 20.0 2.419
0.0575 1383.59 14 77 41 118 0.598 20.0 2.484
0.0600 1389.81 14 82 44 126 0.587 19.0 2.666
0.0650 1383.68 14 82 43 125 0.583 19.0 2.639
0.0700 1379.63 14 83 43 126 0.574 19.0 2.605
0.0750 1427.5 15 86 44 130 0.569 19.0 2.581
0.0775 1427.62 15 87 42 129 0.566 19.0 2.606
0.0950 1421.46 15 91 42 133 0.561 19.0 2.591
0.0975 1421.71 15 92 42 134 0.560 19.0 2.606
0.1000 1420.78 15 93 42 135 0.557 19.0 2.549
0.1075 1447.24 15 95 41 136 0.551 19.0 2.712
0.1150 1438.93 15 97 40 137 0.545 19.0 2.688
0.1175 1447.51 15 97 37 134 0.549 19.0 2.657
0.1200 1458.82 15 98 38 136 0.547 19.0 2.674
0.1250 1502.87 15 114 45 159 0.506 18.0 2.643
0.1300 1504.6 15 115 45 160 0.506 18.0 2.628
0.1375 1504.56 17 119 45 164 0.494 15.0 2.647
0.1400 1647.49 17 121 46 167 0.488 15.0 2.672
0.1425 1724.77 17 124 43 167 0.468 15.0 2.119
0.1475 1750.56 17 125 44 169 0.467 17.0 1.787
0.1500 1756.44 17 132 44 176 0.464 17.0 1.78
0.1525 1766.5 17 135 44 179 0.455 15.0 1.63
0.1550 1791.99 18 135 37 172 0.452 15.0 1.633
0.1575 1798.21 18 136 35 171 0.449 15.0 1.638
0.1600 1800.5 18 136 34 170 0.450 15.0 1.636
0.1625 1844.87 18 143 28 171 0.438 15.0 1.415
0.1650 1825.93 18 143 29 172 0.436 15.0 1.416
0.1675 1884.66 18 154 23 177 0.412 11.0 1.187
0.1750 1889.17 18 155 22 177 0.407 11.0 1.158
0.1775 1910.45 19 156 18 174 0.394 11.0 1.003
0.1825 1901.92 19 157 17 174 0.395 11.0 1.003
0.1875 1940.97 19 164 13 177 0.390 11.0 0.865
0.1950 1938.27 19 166 13 179 0.398 11.0 0.846
0.1975 1909.02 19 166 13 179 0.401 11.0 0.843
0.2050 1931.62 19 165 12 177 0.398 11.0 0.809
0.2100 1921.77 19 165 11 176 0.399 11.0 0.807
0.2175 1938.66 21 165 9 174 0.395 12.0 0.844
0.2200 1940.89 21 166 9 175 0.401 12.0 0.828
0.2250 1946.0 21 166 8 174 0.400 12.0 0.818
0.2375 1941.67 21 167 9 176 0.402 12.0 0.819
0.2450 1939.31 21 160 16 176 0.428 14.0 1.059
0.2475 1917.16 21 161 16 177 0.430 14.0 1.05
0.2575 1920.18 19 162 18 180 0.435 14.0 1.013
0.2600 1916.36 19 163 17 180 0.437 14.0 1.007
0.2625 1968.98 19 172 10 182 0.408 11.0 0.771
0.2650 1965.17 20 172 17 189 0.422 13.0 0.849
0.2675 1969.52 21 173 16 189 0.423 13.0 0.85
0.2700 1960.23 21 174 14 188 0.421 13.0 0.85
0.2725 1997.83 21 175 14 189 0.424 13.0 0.817
0.2775 1977.08 21 176 13 189 0.420 13.0 0.816
0.2800 2194.84 24 182 11 193 0.419 13.0 0.791
0.2850 2167.05 24 179 6 185 0.410 7.0 0.649
0.2925 2138.61 24 179 6 185 0.411 7.0 0.647
0.3125 2115.89 24 179 5 184 0.411 7.0 0.641
0.3225 2088.42 24 178 5 183 0.410 7.0 0.626
0.3300 2076.5 24 178 5 183 0.413 7.0 0.612
0.3650 2027.6 24 180 4 184 0.412 7.0 0.596
0.3750 2051.34 24 180 4 184 0.413 7.0 0.584
0.4000 2079.19 24 181 4 185 0.413 7.0 0.56
0.4025 2015.83 24 186 5 191 0.419 7.0 0.444
0.4325 1864.67 24 187 5 192 0.420 7.0 0.431
0.4475 1757.62 19 182 5 187 0.420 7.0 0.095
0.4575 1731.83 19 183 3 186 0.420 4.0 0.092
0.4800 1577.62 19 187 3 190 0.420 4.0 0.057
0.5500 1577.43 19 188 3 191 0.420 4.0 0.053
0.6500 1577.71 19 189 3 192 0.425 4.0 0.048
0.7000 1573.9 19 190 2 192 0.427 4.0 0.045
0.8000 1578.4 19 193 1 194 0.433 4.0 0.04
0.9000 1589.0 19 192 0 192 0.447 3.0 0.032
1.0000 1592.38 19 195 0 195 0.445 3.0 0.022
1.1000 1576.86 19 195 0 195 0.447 2.0 0.02
1.3000 1576.14 19 196 0 196 0.446 2.0 0.015
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A.3.2 Results with minsplit = 25

The maximal unpruned and unstopped TpTs, obtained with the time-penalized entropy splitting
criterion, minsplit= 25, and various time penalties yields the following results:

Table 5 Characteritics of Entropy TpTs (minsplit=25) depending on the time penalty

Time penalty γ Runtime Depth # of terminal leaves # of duration leaves Total # of leaves Tree cost Max of split times Mean of split times

0.0000 668.38 5 14 8 22 0.664 15.0 5.722
0.0025 690.38 5 14 7 21 0.664 15.0 5.172
0.0050 782.22 6 17 8 25 0.638 15.0 4.346
0.0100 840.15 7 16 8 24 0.646 15.0 3.552
0.0150 914.61 8 17 8 25 0.637 15.0 3.301
0.0250 912.15 8 18 9 27 0.636 15.0 3.307
0.0275 917.44 8 18 7 25 0.640 15.0 3.033
0.0300 978.72 8 18 8 26 0.637 15.0 2.347
0.0400 1085.14 8 25 10 35 0.618 15.0 1.953
0.0475 1102.22 8 27 12 39 0.613 15.0 1.959
0.0500 1216.25 8 31 14 45 0.586 9.0 1.578
0.0575 1213.44 8 31 15 46 0.584 9.0 1.568
0.0675 1213.17 8 31 13 44 0.585 9.0 1.5
0.0850 1205.48 9 31 15 46 0.581 10.0 1.52
0.1000 1196.86 9 32 14 46 0.571 10.0 1.434
0.1125 1194.82 9 32 13 45 0.569 10.0 1.418
0.1175 1195.85 8 30 11 41 0.581 11.0 1.244
0.1200 1253.33 11 33 9 42 0.562 9.0 0.823
0.1350 1242.11 11 33 9 42 0.561 9.0 0.807
0.1625 1345.51 11 34 9 43 0.562 9.0 0.714
0.1700 1321.99 11 34 8 42 0.562 9.0 0.708
0.1925 1288.5 11 34 9 43 0.563 9.0 0.689
0.1950 1279.26 11 34 8 42 0.567 9.0 0.651
0.2000 1304.58 11 34 5 39 0.565 9.0 0.38
0.2050 1323.32 11 34 4 38 0.563 8.0 0.316
0.2400 1333.81 11 34 3 37 0.567 6.0 0.275
0.2525 1340.74 11 33 3 36 0.568 6.0 0.242
0.3150 1358.63 11 32 1 33 0.570 3.0 0.173
0.3725 1310.12 11 32 0 32 0.574 2.0 0.045
0.3750 1350.37 11 32 0 32 0.575 2.0 0.014
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Figure 18: Characteritics of Entropy TpTs (minsplit=25) depending on the time penalty
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A.3.3 Results with minsplit = 50

Figure 19: Gini TpT (minsplit=50) with γ = 0
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Figure 20: Gini TpT (minsplit=50) with the optimal time penalty
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Figure 21: Gini TpT (minsplit=50) with γ → ∞
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