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Abstract: Developing an informed lapse management strategy (LMS) is critical for life insurers to
improve profitability and gain insight into the risk of their global portfolio. Prior research in actuarial
science has shown that targeting policyholders by maximising their individual customer lifetime
value is more advantageous than targeting all those likely to lapse. However, most existing lapse
analyses do not leverage the variability of features and targets over time. We propose a longitudinal
LMS framework, utilising tree-based models for longitudinal data, such as left-truncated and right-
censored (LTRC) trees and forests, as well as mixed-effect tree-based models. Our methodology
provides time-informed insights, leading to increased precision in targeting. Our findings indicate
that the use of longitudinally structured data significantly enhances the precision of models in
predicting lapse behaviour, estimating customer lifetime value, and evaluating individual retention
gains. The implementation of mixed-effect random forests enables the production of time-varying
predictions that are highly relevant for decision-making. This paper contributes to the field of lapse
analysis for life insurers by demonstrating the importance of exploiting the complete past trajectory of
policyholders, which is often available in insurers’ information systems but has yet to be fully utilised.

Keywords: lapse management strategy; longitudinal; machine learning; life insurance; customer
lifetime value

1. Introduction

In this article, we present a novel methodology developed to address the retention
challenges faced by life insurers in a French insurance portfolio consisting of equity-linked
whole-life insurance policies (see [1] for an extensive review of such insurance products).
Lapse management refers to the strategies and processes employed by insurance companies
to mitigate the risk of policy lapses, which occur when policyholders stop paying their
premiums, leading to the termination of their insurance coverage. Understanding and
managing lapses are crucial for maintaining the financial stability of insurers and ensuring
continued protection for policyholders.

Several behaviours are leading to automatic lapses. First, if a policyholder fails to
pay their premium by the due date, the policy may enter a grace period. If payment is
not made during this period, the policy lapses, and coverage is terminated. Secondly, for
policies with automatic payment setups, insufficient funds in the policyholder’s account can
result in a missed payment and subsequent lapse. Eventually, some policies have specific
requirements, such as maintaining a certain health status or providing periodic updates,
non-compliance with these requirements can lead to a lapse. Apart from those behaviours,
the policyholder can also unilaterally decide to lapse their policy to access their face amount
and proceed to personal expenses. On those points, the respective obligations of the insured
and the insurer are clear: on the one hand, the policyholder is obligated to pay premiums
on time, maintain any conditions stipulated in the policy (e.g., health checks, notifications
of changes in risk), and promptly communicate any issues or changes that might affect
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the policy. On the other hand, the insurance company must provide clear communication
regarding premium due dates, grace periods, and consequences of non-payment. They
are also responsible for offering reminders and support to help policyholders avoid lapses,
such as flexible payment options or policy adjustments. Making these obligations clear
from the beginning helps both parties understand their responsibilities and the importance
of maintaining the policy. This proactive approach can significantly reduce the risk of
automatic lapses and ensure continuous coverage.

Whole-life insurance provides coverage for the entire lifetime of the insured individual
rather than a specified term, and when contracting such an insurance plan, policyholders
can choose how the outstanding face amount of their policy is invested between “euro
funds” and unit-linked funds. Understanding the fundamental differences between these
investment vehicles is essential to comprehending the dynamics of the whole-life insur-
ance market. For savings invested in euro funds, the coverage amount is determined
by deducting the policy costs from the total premiums paid, the financial risk associated
with these funds is borne by the insurance company itself. The underlying assets of euro
funds primarily consist of government and corporate bonds, limiting the potential returns,
and thus the performance of these funds is directly influenced by factors such as the
composition of the euro fund, fluctuations in government bond yields, and the insurance
company’s profit distribution policy. Additionally, early termination of the policy by the
policyholder incurs exit penalties, as determined by the insurance company. In contrast,
unit-linked insurance plans operate under a different framework. The coverage amount is
determined by the number of units of accounts held by the policyholder, and the financial
risk is assumed by the policyholders themselves. Unit-linked funds offer a wide range of
underlying assets, among all types of financial instruments, enabling potentially unlimited
performance based on the market performance of these assets. The investment strategy is
tailored to the specific investment objectives of the policyholder and while certain limita-
tions exist in terms of asset selection, policyholders generally face no exit penalties for their
underlying investments.

Lapse is a critical risk for whole-life insurance products (see [2] or [3]), thus, policyhold-
ers represent a critical asset for life insurers. Therefore, the ability to retain profitable ones
is a significant determinant of the insurer’s portfolio value (and more generally, a firm’s
value; see [4]). If some historical explanations for lapse are liquidity needs (see [5]) and rise
of interest rates, it also appears that individual characteristics are also insightful (see [6]
for a complete review). Consequently, policyholder retention is a strategic imperative, and
lapse prediction models are a crucial tool for data-driven policyholder lapse management
strategy in any company operating in a contractual setting such as a life insurer. In this
paper, we build an extension of the framework of [7], we recall that it originally defines an
LMS with the following necessary hypothesis:

Definition 1 (Lapse management strategy (LMS)). A lapse management strategy for a life
insurer is modelled by offering an incentive η = (η(1), . . . , η(N)) to policyholders (1, . . . N). Their
policies, at time t, yield a profitability ratio of pt = (p(1)t , . . . , p(N)

t ). The incentive is accepted with
probability γ = (γ(1), . . . , γ(N)), and contacting the targeted policyholder has a fixed cost c. A
targeted subject who accepts the incentive, or any subject that will be predicted as a non-lapser, will
be permanently considered as an “acceptant” who will never intend to lapse in the future, and their
probability of being active at year t ∈ [0, T] is denoted racceptant(t). Conversely, a subject who refuses
the incentive and prefers to lapse will be permanently considered as a “lapser”, and their probability
of being active at year t is denoted rlapser(t). The parameters (p, η, γ, c, T) uniquely define a lapse
management strategy, while racceptant(t) and rlapser(t) need to be estimated from the portfolio.

An advantage of this general framework is that it is designed with flexibility in mind,
allowing for adaptation to any specific cultural and regulatory context.

The goal is not only to model the lapse behaviour but also to select which policyholder
to target with a given retention strategy to generate an optimised profit for the insurer.
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Such a lapse management strategy requires estimating what can be considered as the future
profit generated by a given policyholder: the individual customer lifetime value or CLV
(see [8]). The individual CLV over horizon T, for the i-th subject aims at capturing the
expected profit or loss that will be generated in the next T years and is expressed as follows,
in the general time-continuous case:

CLV(i) =
∫ T

τ=0

p(i)(τ) · F(i)(τ) · r(i)(τ)
ed(τ)·τ dτ, (1)

with the profitability ratio p(i)(t) being represented as a proportion of the face amount,
F(i)(t), observed at time t. The conditional individual retention probability, r(i)(t), is the
i-th observation’s probability of still being active at time t. In practice, the individual CLV is
often discretised and computed as a sum of annual flows, thus with τ, the time in years is,

CLV(i)
(

p(i), F(i), r(i), d, T
)
=

T

∑
τ=0

p(i)τ · F(i)(τ) · r(i)(τ)
(1 + dτ)

τ . (2)

Equation (2) is primarily used in the marketing and actuarial literature (see [9] or [10]).
If we only consider the future T years of CLV, after time t, the sum becomes

FCLV(i)
(

t, p(i), F(i), r(i), d, T
)
=

T+t

∑
τ=t+1

p(i)τ · F(i)τ · r(i)(τ)
(1 + dτ)

τ−t . (3)

All the expected future financial flows are discounted, with dt representing the annual
discount rate at year t. In definitive, FCLV(i)(t, . . .) represents the future T years of profit
following observation at time t.

Given an LMS, a policyholder can either be likely to accept the offer of an incentive
and behave with an “acceptant” risk profile or they can be likely to reject the offer and thus
behave with a “lapser” risk profile. In this context, acceptants and lapsers will not generate
the same CLV as their respective retention probabilities differ. The CLV of an acceptant or a
lapser are estimated using, respectively, r(i)acceptant and r(i)lapser as retention probabilities. The
first way we contribute to this framework is by assuming that individuals with an active
policy do not behave with risk profiles that are either “100% acceptant" or “100% lapsers",
which was a simplifying assumption in the existing LMS frameworks. We assume here
that each policyholder generates a future lifetime value calculated as a weighted mean of
CLVs computed with “acceptant” and “lapser” risk profiles. The individual weights used to
nuance behaviours are discussed in Section 2.1.

The analysis of a lapse management strategy, as described in [10], then in [7], is a two-
step framework. The first step consists of using the insurer’s data to train survival models
and predict yearly retention probabilities for any subject in the portfolio: we will refer to
it as the survival step. The retention probabilities are used to compute an individual CLV-
based estimation of the profit generated from targeting any policyholder. This estimation is
eventually used as a response variable to fit a model predicting which kind of subject is
likely to generate profit for the insurer: we will refer to it as the regression step. As in [11]
or [12], the goal of such a CLV-based methodology is not only to model the lapse behaviour
but rather to select which policyholder is worth targeting with a given retention strategy to
generate an optimised profit for the insurer. This existing framework relies on the analysis
of the time-to-death and time-to-lapse that can be updated regularly with new information
from the policies. It is summarised in Figure 1.

At least three limitations of that framework can be addressed. First, it does not consider
that an acceptant can lapse in the future, which is at best a very optimistic assumption, and
at worst a great oversimplification. Secondly, it does not give any information on whether
the timing of the retention campaign is optimal or not. Thirdly, it does not allow tightening
the criteria on which the targeting of each policyholder is decided, depending on the risk
the insurer is willing to take on the uncertainty of the predictions. This work addresses
these limitations.
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Figure 1. General framework for lapse management strategy.

Throughout the lifetime of such insurance policies, a series of significant time-dependent
events shape the interactions between policyholders and insurers. Firstly, premium pay-
ments play a pivotal role in sustaining the policy: these payments are highly flexible,
allowing policyholders to choose their amount and frequency, thus they can be adjusted
according to the policyholder’s financial circumstances and preferences. Additionally,
policyholders may decide to reduce their coverage by withdrawing a portion of their policy.
We refer to these events as partial lapses: they involve a voluntary decrease in the face
amount of the policy, enabling policyholders to adjust their coverage to better align with
their changing needs. Such flexibility caters to policyholders’ evolving financial situations
and offers them greater control over their insurance plans. Over the policy’s lifetime, other
financial operations can occur, such as the payment of interest or profit sharing to the
policyholder, and the payment of fees to the insurer. Insurance companies’ information
systems are usually designed to keep track of those operations at the policy level, thus
actuaries and life insurers often have access to the complete history of their policyholders,
as the information system is updated in real-time.

In certain instances, a policyholder may choose to lapse their insurance policy en-
tirely. Complete policy lapse typically occurs when the policyholder decides to terminate
their policy and receives a surrender value, which represents the accumulated value of
the premiums paid, adjusted for fees, expenses, and potential surrender charges. More-
over, the occurrence of a policyholder’s death also terminates the policy and triggers
the payment of the policy’s value, often referred to as the death benefit or claim, to the
designated beneficiaries.

In the context of our research, a policy can only terminate with a complete lapse or
the death of the policyholder, which will be considered as competing risks in the following
developments. If none of these events have happened to a policy, it is still active. The
cumulated sum of all the financial flows occurring during one’s policy timeline, including
premiums, claims, fees, interests, profit-sharing, and lapses, is commonly known as the
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face amount of the policy. This face amount represents the total value of the policy over
its duration and serves as a measure of the policy’s coverage and financial benefits. By
comprehensively understanding and analysing these events and their impact on the face
amount of a life insurance policy, insurers can effectively develop lapse management
strategies that align with policyholders’ preferences and financial goals. Through our
research, we aim to shed light on these dynamics and provide insights to optimise the
design of such strategies, ultimately enhancing customer retention and overall portfolio
performance in the life insurance industry.

In practice, actuaries often have access to the complete trajectories of every policy
and it seems that not using them in models is ignoring a significant part of the available
information. A data structure where time-varying covariates are measured at different
time points is called longitudinal and individual policyholders’ timelines, which can
be illustrated as in Figure 2. The dynamical aspects of covariates have an impact on the
performance of lapse prediction models, and [13] concludes in favour of the development of
dynamic churn models. They showed how the predictive performance of different types of
churn prediction models in the insurance market decays quickly over time: this conclusion
arguably applies to life insurers and, in the case of lapse management strategy, we argue
that using the complete longitudinal trajectories of every individual is also justified. Firstly,
a change in financial behaviour—recent and frequent withdrawals for instance—can be
an informative lapse predictor. As an illustration of this point, we can imagine making
predictions for two individuals with the same characteristics at the time of study but
completely different past longitudinal trajectories: one is consistently paying premiums, for
instance, whereas the other stopped all payments for months and has been withdrawing
part of their face amount lately. A prediction model ignoring longitudinal information
would produce the same lapse prediction for both individuals. Conversely, an appropriate
model, trained on longitudinal data is likely to seize the differences between the individuals
over time and provide different predictions for the future. Secondly, a longitudinal lapse
management framework allows for dynamic predictions with new information. It proves
to be insightful in terms of decision-making for the insurer, as it shows how a change in the
policy induces a change in the lapse behaviour. Eventually, the existing lapse management
strategy approaches can only provide the insurer with information on whether targeting a
given individual now is expected to yield profit, not on whether the timing of targeting is
optimal. A longitudinal framework can help answer that last question.

Figure 2. Examples of policyholder timelines.

In this paper, our goal is to account for the time-varying aspect of this problem in both
steps of that framework. Firstly, we take advantage of the information contained in the
historical data from the portfolio and obtain more accurate predictions for r(i) and thus
FCLV(i): that is a gain of precision on the survival step. Secondly, we evaluate the expected
individual retention gains over time to derive the optimal timing to offer the incentive:
that is a gain of flexibility and expected profit on the regression step. For that purpose, we
introduce tree-based models, which are, to the best of our knowledge, yet to be explored in
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the actuarial literature. Those models, such as left-truncated and right-censored (LTRC)
survival trees and LTRC forests by [14,15] or mixed-effect tree-based regression models
(see [16–19]) are considered state-of-the-art and have yet to be exploited in the actuarial
literature. We propose an application of that framework with data-driven tree-based models
but other types of models exist and could fit in this framework (see Appendix A).

This extension is not trivial, as time-dependent features and time-dependent response
variables are difficult to implement in parametric or tree-based models. Indeed, conven-
tional statistical or machine learning models do not readily accommodate time-varying
features. This is the case for most tree-based models as they assume that records are inde-
pendently distributed. Of course, this is unrealistic as observations of any given individual
are highly correlated. Moreover, time-varying features can generate bias if not dealt with
carefully (see [20] for instance). The use of longitudinal data is already a well-studied
topic (see [21]), with rare examples within the actuarial literature (see [22] for instance) and,
to the best of our knowledge, only a few actuarial uses of time-varying survival trees or
mixed-effect tree-based models have been tried or suggested (see [23], [24] or [25]) and no
longitudinal lapse analysis framework based on CLV has been described.

In summary, this work presents a longitudinal lapse analysis framework with time-
varying covariates and target variables. This framework accepts competing risks and
relies on tree-based machine learning models. This work focuses on a lapse management
strategy and retention targeting for life insurers and extends the existing lapse management
framework proposed in [7,10]. It defers from the latter by taking advantage of time-varying
features, introducing different tree-based models to the lapse management literature, in-
cluding the possibility for an acceptant to lapse in the future, yielding insights regarding
individual targeting times, and adding the possibility to adjust the level of risk, which the
insurer is willing to take in a retention campaign. The rest of this paper is structured as
follows. We describe the specifics of longitudinal analysis and a new longitudinal and
time-dynamic lapse management framework, which is the main contribution of this work
in Section 2. This section also includes a brief description of models that can fit in this
framework. In Section 3, we show a concrete application of our framework on a real-world
life insurance portfolio with a discussion of our methodology and results. Eventually,
Section 4 concludes this paper.

Remark 1. While our primary focus is on the theoretical underpinnings, it is crucial to note that
the LMS is adaptable and can be operationalised and adapted in different cultural environments,
acknowledging the diversity of social factors that influence actuarial studies.

2. Longitudinal Framework
2.1. Preliminaries on Time-Varying Covariates and Longitudinal Notations

We aim to enrich the existing lapse management frameworks (see Definition 1) with
time-varying covariates. To do so, we decide to adapt LMS methods to longitudinal
analysis. To be clear on what we mean by time-varying covariates or longitudinal data, let
us introduce some notations. This section borrows notations from the existing literature,
including [26] or [15], for instance. Let us assume a very general setting where we want
to build a dataset D, encompassing the information of N individuals from which features
are repeatedly measured over time. These covariates may come in many forms, some of
them are time-varying, and others are time-invariant. We denote ptv, pti, the number of
covariates in those respective categories, with p = ptv + pti, the total number of covariates.
At time t, the covariates matrix is X(t) =

(
x1, x2, . . . , xpti , xpti+1(t), . . . , xp(t)

)
. In order to

simplify the notations, we write X(t) =
(

x1(t), x2(t), . . . , xp(t)
)

with xk(t) = xk, ∀t and
∀k ∈ [1, . . . , pti].

These covariates are available for the N individuals, or subjects, which are observed at
discrete time points. Subject i has been observed n(i) times, at t(i)j , j = 0, 1, . . . , n(i) − 1.
In our life insurance context, t(i)0 represents the first measurement of the covariates,
i.e., the subscription and times t(i)j , j = 1, 2, . . . , n(i) − 1 are the movement dates, i.e., times
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at which a change in the policy has been recorded. If t(i)0 ̸= 0, this means that the baseline
information at subscription is missing and the observation is left-truncated. A given subject
i, at time t(i)j has a vector of covariates denoted x(i)j =

(
x(i)j,1 , . . . , x(i)j,p

)
and generally, has a

matrix of covariates denoted

X(i) =


x(i)0,1 · · · x(i)0,p

...
. . .

...
x(i)

n(i)−1,1
· · · x(i)

n(i)−1,p

 (4)

As stated in Definition 1, the probability of still having an active policy at time t
depends on the policyholder’s risk profile. Acceptants are only at risk for death, whereas
lapsers are at risk for both lapse and death, and we consider the event of interest to be death
and the end of the policy (whatever the cause). Regardless of our outcome of interest, we
study the time to an event ending the policy, thus we use the classical survival notations:
subject i will eventually experience the event at time T(i)

∗ and they are no longer observed
after censoring time C(i). We let T(i) denote the observed event time for subject i, defined
as T(i) = t(i)

n(i) = min
(

T(i)
∗ , C(i)

)
.

The notations regarding the time dynamics of our data are now clear, so we can
structure this information in a longitudinal dataset. To do so, we assume that the time-
varying features take constant values between two consecutive observations, that is,

x(i)(t) = x(i)j , t ∈
[
t(i)j , t(i)j+1

)
, j = 0, 1, . . . , n(i) − 1.

This assumption is perfectly consistent in an actuarial context where time-varying
covariates, such as financial flows, are immediately updated. Any covariate update leads
to a new observation and all variables are constant between two consecutive observations.
The only limit of this assumption is that updating the insurer’s database usually takes some
time and proves to be unrealistic if a policy change has been reported but not yet processed
in the information system. An insurance policy at any time point is either active or ended.
Moreover, it can only end in two ways: the policyholder either lapses her policy or dies.
Thus, we define three event indicators. ∆(i) is the event indicator, defined at the subject
level; it denotes whether individual (i) has experienced an event (and which one) before
censoring time,

∆(i) =


0 if T(i)

∗ > C(i)

1 if T(i)
∗ ≤ C(i) and EVENT = lapse

2 if T(i)
∗ ≤ C(i) and EVENT = death.

(5)

We also introduce δ(i)(t), the event indicator defined at the observation level, it denotes
whether individual (i) has experienced an event (and which one) by time t:

δ(i)(t) = ∆(i) · I
{

t ≥ T(i)
}

. (6)

At the time t = T(i)
∗ , the true event has occurred and we define the ultimate event

indicator as

∆(i)
∗ =

{
1 if EVENT = lapse at time T(i)

∗

2 if EVENT = death at time T(i)
∗ .

(7)

It is constant over the observations for a given subject and represents the final value of
∆(i) when the subject’s policy eventually ends. It can be either equal to 1 or 2. For a subject
with an active policy at the censoring time, the value of ∆(i)

∗ is unknown.
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Eventually, let X (i)(t) denote the covariate individual information up to time t, and
we define π

(i)
∗ as the probability that the policy will eventually end with lapse (in this

framework, our suggestion to estimate π
(i)
∗ can be found in Appendix C), given all available

information at observation time T(i). Mathematically speaking, we have

π
(i)
∗ = P(∆(i)

∗ = 1|X (i)(T(i))). (8)

We can now build D, a longitudinal dataset encompassing the complete past infor-
mation of all N subjects. For a given subject i, covariates are stored in rows, one row

per observation window [t(i)j , t(i)j+1). Each row contains the unique
(

t(i)j , t(i)j+1, δ(i)(t(i)j ), x(i)j

)
element and is completed by the subject unique identifier i and their event indicator ∆(i):
each row is called an observation. It is critical to include all those elements in the lon-
gitudinal dataset as all columns are inputs of longitudinal models used for the survival
step. Any observation only corresponds to one subject and, conversely, any subject can
be linked to a set of n(i) observations. We build D as the collection of all observations
structured longitudinally:

D =

{(
i,
{

t(i)j , t(i)j+1, x(i)j , δ(i)(t(i)j )
}n(i)−1

j=0
, ∆(i)

)}N

i=1

,

or, if displayed in a table, as in Table 1.

Table 1. A longitudinal dataset, in all generality.

ID Time Window
Start

Time Window
End Covariate 1 . . . Covariate p Observation

Event Indicator
Subject Event

Indicator

1 t(1)0 t(1)1 x(1)0,1
. . . x(1)0,p δ(1)(t(1)0 ) ∆1

1 t(1)1 t(1)2 x(1)1,1
. . . x(1)1,p δ(1)(t(1)1 ) ∆1

1 t(1)2 t(1)3 x(1)2,1
. . . x(1)2,p δ(1)(t(1)2 ) ∆1

1 t(1)3 C(1) x(1)3,1
. . . x(1)3,p δ(1)(t(1)3 ) ∆1

2 t(2)0 t(2)1 x(2)0,1
. . . x(2)0,p δ(2)(t(2)0 ) ∆2

3 t(3)0 t(3)1 x(3)0,1
. . . x(3)0,p δ(3)(t(3)0 ) ∆3

3 t(3)1 t(3)2 x(3)1,1
. . . x(3)1,p δ(3)(t(3)1 ) ∆3

3 t(3)2 t(3)3 x(3)2,1
. . . x(3)2,p δ(3)(t(3)2 ) ∆3

. . . . . . . . . . . . . . . . . . . . . . . .

Table 1 precisely illustrates what we call a longitudinal dataset, and a real-world
example of such a dataset can be found in Section 3, Table 3. Adapting a lapse management
strategy framework to a longitudinal setting means we take such a dataset as input and
produce enriched predictions of the individual retention probabilities in the survival step,
but also of individual profit or loss estimated in the regression step.

As in the original source and for confidentiality reasons, the exact specificities of
the studied products, as well as the proportions between “Euro fund” and equity-linked
investments made by the policyholders will not be detailed, nor will their impact be
analysed within this article.

2.2. LMS Longitudinal Framework

We adopt [7]’s framework and suggest some modifications and improvements to
adapt it to longitudinally structured data. Instead of a top-down approach that consists of
estimating the individual contributions to the insurer’s profit from a global measure of the
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portfolio value, we suggest a bottom-up approach and directly evaluate the former and
then derive the latter. Thus, we define the control future value of the policy, FCV(i)(t, . . . ),
which represents the expected T-year individual profit or loss generated by the subject i,
after time t:

FCV(i)(t, p, η, γ, c, T) = FCLV(i)
(

t, p(i), F(i), r(i)acceptant, d, T
)
· (1− π

(i)
∗ )

+ FCLV(i)
(

t, p(i), F(i), r(i)lapser, d, T
)
· π(i)
∗ .

(9)

In other words, it simply represents an individual expected future CLV, if no lapse
management is carried out. It highly depends on the probability for the policyholder to be
a lapser.

Let us consider an LMS, let ⊚(i)(t) be the individual target vector indicator, designating
if subject i is to be targeted at any time t. Our framework aims to find the optimal list
of policyholders to target, T (t) = {i | ⊚(i)(t) = 1} that maximises the expected profit for
the insurer. To evaluate the profit or loss generated by an LMS, we must compare the
expected profit obtained if no LMS was applied, with the expected profit generated by the
lapse-managed portfolio. The former is given by Equation (9), and to obtain the latter, we
define the lapse-managed observation future value as

FLMV(i)(t, p, η, γ, c, T) =[
FCLV(i)

(
t,p(i) ,F(i) ,r(i)acceptant,d,T

)
·(1−π

(i)
∗ )+FCLV(i)

(
t,p(i) ,F(i) ,r(i)lapser,d,T

)
·π(i)
∗

]
·(1−⊚(i)(t))

+

[
FCLV(i)

(
t,p(i)−η(i) ,F(i) ,r(i)acceptant,d,T

)
·(1−π

(i)
∗ )+γ(i) · FCLV(i)

(
t,p(i)−η(i) ,F(i) ,r(i)acceptant,d,T

)
·π(i)
∗

+(1−γ(i))· FCLV(i)
(

t,p(i) ,F(i) ,r(i)lapser,d,T
)
·π(i)
∗ −c

]
·⊚(i)(t).

(10)

In simple terms, it is equal to the control future value of the policy (given by Equation (9))
when subject i is not targeted, otherwise, it depends on whether they intended to lapse in
the first place and, if so, if they accept the incentive η. If a policyholder that would not have
lapsed (with probability (1− π

(i)
∗ )) is targeted, they will rationally accept the incentive and

generate the future CLV of an acceptant with profitability p− η . Conversely, for a policy-
holder that would have ultimately lapsed, they either accept the incentive (with probability
γ(i)) and generate the future CLV of an acceptant with profitability p− η , or refuse (with

probability (1− γ(i))) and generate profitability p with the risk profile of a lapser .
It follows that the individual expected retention gain obtained by applying an LMS is

the difference between the expected individual CLVs with and without lapse management:

RG(i)(t, p, η, γ, c, T) = FLMV(i)(t, p(i), η(i), γ(i), c, T)− FCV(i)(t, p(i), η(i), γ(i), c, T). (11)

that can be simplified as

RG(i)(t, p, η, γ, c, T) =⊚(i) (t)·
[

π
(i)
∗ γ(i)

[
FCLV(i)

(
t, p(i) − η(i), F(i), r(i)acceptant , d, T

)
− FCLV(i)

(
t, p(i), F(i), r(i)lapser , d, T

)]
− (1− π

(i)
∗ ) · FCLV(i)

(
t, η(i), Fi, racceptant , d, T

)]
− c ·⊚(i)(t).

(12)
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An evaluation metric is finally derived to obtain the retention gain, at any observation
time, if the policyholder i is targeted. We define z(i)(t) as

z(i)(t) = RG(i)(t, p, η, γ, c, T|⊚(i) (t) = 1)

=

[
π
(i)
∗ γ(i)

[
FCLV(i)

(
t, p(i) − η(i), F(i), r(i)acceptant , d, T

)
− FCLV(i)

(
t, p(i), F(i), r(i)lapser , d, T

) ]
− (1− π

(i)
∗ ) · FCLV(i)

(
t, η(i), F(i), r(i)acceptant , d, T

) ]
− c.

(13)

In terms of intuition, it shows that if a policyholder that would have lapsed (with
probability π

(i)
∗ ) is targeted and accepts the incentive (with probability γ(i)), they generate

the future CLV of an acceptant with profitability p− η instead of their initial future CLV

with profitability p and the risk profile of a lapser . The gain generated by targeting this
policyholder is then the difference between the two. On the other hand, if the policyholder
is wrongfully targeted and would not have lapsed (with probability (1− π

(i)
∗ )), they ratio-

nally accept the incentive which is then lost for the insurer . In any case, the contact cost
of c is spent.

From a practical point of view, we can see that the value of z(i)(t) depends on param-
eters that are observed in the portfolio (F(i)), or assumed by the insurer (p(i), η(i), d, T),
and that only r(i)acceptant and r(i)lapser need to be estimated. This estimation is the survival step
mentioned in Section 1. We will show in Section 3.2.1 how to concretely estimate these
retention probabilities using time-varying covariates.

Assuming that z(i) has been estimated for every observation in the survival step, we
can move forward to the regression step and use z(i) as a target variable in a regression
model handling time-varying covariates to predict whether targeting any policyholder will
generate profit, given their previous observations if any. We will show in Section 3.3.1 how
to concretely obtain ẑ(i) with mixed-effect tree-based models.

With that in mind, we can update Definition 1 and its hypothesis and define our LLMS
as follows:

Definition 2 (Longitudinal lapse management strategy (LLMS)). A T-years lapse management
strategy is modelled by offering an incentive η(i) to subject i if they are targeted. The incentive
offered is expressed as a percentage of their face amount at the observation time and is accepted with
probability γ(i). Contacting the targeted policyholder has a fixed cost of c. Relying on previous
implementations of this framework, a targeted subject who accepts the incentive would be considered
an “acceptant” who should theoretically never lapse (and thus is only at risk for death), and their
probability of being active at year t ∈ [0, T], given the information available until then, is denoted
r(i)acceptant(t | X (i)(t)). Conversely, a subject who refuses the incentive and prefers to lapse (and
thus is at risk for death and lapse) would be considered a “lapser”, and their probability of being
active at year t, given the information available until then, is denoted r(i)lapser(t | X

(i)(t)). This
article assumes that all PH are not 100% lapsers nor 100% acceptants but rather that their true risk
profiles lie in between. Thus, the future profit or loss generated by any policyholder is computed
as a weighted sum of CLVs, respectively, calculated with the risk profiles of an “acceptant” and
a “lapser”.

Those probabilities are used to derive a dynamical profit-driven measure z(i)(t) based on CLV
(see Equation (13)). A regression model, allowing for longitudinal data is then used with z(i)(t) as a
target variable, which allows us to estimate ẑ(i)(t) for any new observations (new observations of
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known subjects or observations of new subjects). Denoting the standard error of such a model σz
and any confidence parameter α, we define the optimal longitudinal LMS at time t as

⊚(i)
∗ (t) = I

{
ẑ(i)(t) > α · σz

}
. (14)

This is an indicator variable representing whether it is worth targeting policyholder i at time t,
thus, the corresponding list of targeted policyholders is defined as

T (t) =
{

i | ⊚(i)
∗ (t) = 1

}
. (15)

For any targeted policyholder and any confidence parameter α desired by the insurer, there is a
unique future time t(i)∗ ≥ T(i) when offering the incentive is optimal, which yields a maximal profit
of ẑ(i)∗ . If all policyholders in T (t) are targeted at time t, the LLMS generates a profit of

RG(t, p, η, γ, c, T, α) = ∑
i∈T (t)

ẑ(i)(t). (16)

If all policyholders are targeted at the optimal time t(i)∗ ≥ t, the LLMS induces a gain for the
life insurer of

∗
RG (t, p, η, γ, c, T, α) = ∑

i∈T (t)

ẑ(i)∗(
1 + d

t(i)∗

)∆t , with ∆t = t(i)∗ − t. (17)

The addition of a confidence parameter α contrasts with previous approaches (see [7,10]).
Setting α = 0 means that the prediction ẑ(i)(t) is trusted with 100% confidence by the insurer,
whereas letting α take higher values ensures that ẑ(i)(t) is positive with a given confidence
interval. Another novelty here is the time dynamic of those results. Not only can we predict
whether it is worth targeting a given policyholder, but we can also predict whether there
will be some point in the future when targeting them will be more profitable. Predicting the
trajectory of z(i)(t) at future time points requires projecting the time-varying covariates at
those future time points. It can be done by either modelling such covariates individually
or setting assumptions. It is trivial for covariates such as age or year but more complex for
stochastic covariates such as the face amount. This framework does not aim to answer this
question, and we assume in our application that stochastic covariates remain constant and
equal to their last observed value. Regardless of the assumptions, the framework allows
adding a time dimension to the LMS optimisation and marketing decision-making. It is also
worth noting that our developed framework is consistent in the time-invariant case. By design,
it is also fully applicable with uncensored observations, or left-truncated ones. That shows
our two-step framework’s broad effectiveness and applicability regardless of right-censorship,
left-truncation, risk factor, time-varying covariates, or time-varying effects. In that sense, it is a
generalised framework for lapse management strategy in life insurance.

Remark 2. Following the proposed longitudinal methodology, a dynamic targeting decision process
is obtained. Nevertheless, no information about the future trajectories of longitudinal covariates
can be deduced directly from the framework. Indirectly, one could establish clusters of individuals
based on their lapse behaviour and assume that a policyholder in one cluster will behave as the other
policyholders in the cluster who have been observed longer. That specific approach is out of the scope
of this article and will be left as future work.

The proposed framework requires the projection of every term in the future with assumptions
and/or specific modelling approaches: periodical payments and profit sharing can be assumed to
remain unchanged, while spontaneous payments, partial lapses, or up-sells and cross-sells can be
either ignored or modelled.
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Eventually, a projection of every longitudinal covariate along with the response variable could
be considered with the use of joint modelling techniques (see [26] for further details), but again, such
considerations lie far beyond the scope of this work.

3. Application
3.1. Data

Our framework is inspired by a real-world life insurance dataset used in [7]. It initially
contains the most recent information from 248,737 unique policies contracted between 1997
and 2018 and 235,076 unique policyholders. A single row originally represented a unique
policy/policyholder pair, identified by a unique ID and denoted as a subject. Due to great
computation times, we restrain our application on a 10,000-subjects subset of this original
dataset, which preserves key characteristics of the entire population, such as mean seniority
(∼13 years), the proportion of policies owned by men (∼57%), and the proportions of
lapses and deaths observed in the portfolio (respectively 22% and 17%). More details about
the complete dataset, such as a demographic description of the subjects can be found in [7].

The 10,000 rows dataset containing the last available information for the 10,000 selected
subjects will be denoted Dlast. Table 2 shows a subset of Dlast for illustrative purposes.

Table 2. Dlast random subset.

ID EVENT PRODUCT SEX SENIORITY Fi CLAIM CNTRCTS AGE YEAR
25737 1 1 1 17 0.73 0 2 76 2015
117322 1 1 2 10 4.32 0 1 63 2012
1322 0 1 2 20 9.82 0 1 75 2019

37433 2 1 2 14 0.99 −50.49 1 88 2011
23902 0 1 1 20 32.66 −13.12 2 71 2019
219281 0 2 2 8 7.08 0 2 71 2019
160112 0 1 2 15 0.04 0 1 51 2019
53108 2 1 2 12 13.11 −661.92 1 92 2010
166078 1 2 2 5 9.02 0 1 64 2013
139644 0 1 1 16 5.65 −107.59 1 66 2019

Here, we were able to retrieve the longitudinal history of every subject present in
Dlast: this means that for every policy and policyholder, we observe every payment, lapse,
fee, profit sharing, or discount rate from the policy subscription to the most updated
information to date along with baseline covariates such as gender or age at subscription.
For operational reasons, the longitudinal data are measured and reported yearly and
organised as follows (but it is worth mentioning that covariates in actuarial datasets are
usually updated continuously. In that case, we could build a continuous longitudinal
dataset with one observation per policy change, and not one per year. The framework
detailed here still applies in the continuous case.):

Moreover, all the covariates describing financial flows are observed as cumulated
over the years. As an example, let us assume that a subject subscribed in the year 2000:
their payment variable for the year 2000 observation contains the sum of all payments
that occurred in that year, their payment variable for the year 2001 contains the sum of
all payments that occurred up to the year 2001 included (hence, 2000 and 2001), and
so on for the years after. This longitudinal dataset will be denoted Dlong. It contains
126,865 observations, in other words, almost 13 for each subject. Subsets of this specific
longitudinal dataset are studied in [27].

For privacy reasons, all the data, statistics, product names, and perimeters presented
in this paper have been either anonymised or modified. For instance, information about
the policyholders’ age and face amount were modified. All analyses, discussions, and
conclusions remain unchanged.
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Table 3. Dlong random subset.

ID EVENT START END PRODUCT SEX SENIORITY Fi CLAIM CNTRCTS AGE YEAR
46784 0 0 1 3 2 0 8.38 0 1 66 2013
46784 0 1 2 3 2 1 8.40 0 1 67 2014
46784 0 2 3 3 2 2 8.57 0 1 68 2015
46784 0 3 4 3 2 3 11.90 0 1 69 2016
46784 0 4 5 3 2 4 12.10 0 1 70 2017
46784 0 5 6 3 2 5 12.28 0 1 71 2018
46784 1 6 7 3 2 7 15.06 −15.06 1 72 2019
7825 0 0 1 2 2 0 3.02 0 1 81 2016
7825 0 1 2 2 2 1 3.05 0 1 82 2017
7825 0 2 3 2 2 2 3.10 0 1 83 2018
7825 0 3 5 2 2 5 3.15 0 1 84 2019

264309 0 0 1 3 2 0 2.61 0 1 66 2016
264309 0 1 2 3 2 1 2.64 0 1 67 2017
264309 0 2 3 3 2 2 2.67 0 1 68 2018
264309 0 3 5 3 2 5 3.48 0 1 69 2019

3.2. Application: Survival Step
3.2.1. Survival Analysis with Time-Varying Covariates

The survival step, described in Section 2 requires survival tree-based models that
can handle longitudinal time-varying covariates. Most survival tree-based models are
analogous to regular tree-based models: survival trees work similarly to regular decision
trees, creating partitions of the covariate space. What differentiates them is the splitting
criterion that splits by maximising the difference between two considered child nodes.
Typically, at each node and for each split considered, a log-rank test is used to test the null
hypothesis that there is no difference between the child nodes in the probability of an event
at any time. The split that minimises the p-value is then selected. By extension, a random
survival forest is a random forest of survival trees.

As regression and classification trees, most survival trees are unable to deal with
time-varying and longitudinal covariates. Indeed, let x1(t) be a numerical time-varying
covariate. For a single tree, the splitting rule should be able to split subjects into two child
nodes at each node. It would then be a rule of the form “x1 ≤ s”. A subject for which this
rule is true ∀t will go in one child node without any ambiguity. On the other hand, the
general case where the rule is true for some periods but false for anywhere else is unclear
and needs to be addressed. Note that the same reasoning can be applied to categorical
time-varying covariates as well. A simple idea is that the subject’s observations in periods
where the splitting rule is true would go to the left node, and the other would go to the right
node, thus dividing one subject into several pseudo-subjects. With a longitudinal dataset,
that method just implies considering all rows as independent, which creates correlated
right-censored and left-truncated (LTRC) observations that need special treatment. In
such models, any individual can be spread in many different tree leaves—even if, at any
fixed time, any individual will have a single observation that will fall into one unique leaf.
Ref. [14] proposed a model based on those ideas: they allowed subjects to be divided into
pseudo-subjects and adjusted the log-rank test in the splitting procedure to accommodate
for left truncation and ensure that the independence implicit assumption does not lead to
biased results (see [14] for details on that point.).

LTRC trees and forests yield an estimate of the survival function:

Ŝ
(

t | X (i)(t)
)
= P(T(i) > t | X (i)(t)),

that can directly be used to evaluate the conditional incidence functions for competing risks
(see Appendix D). Bagging models of such trees then emerged (see [15]), with the usual
prediction advantages and interpretability drawbacks of such bagging techniques (both
methods have been implemented in the R packages LTRCtrees v1.1.1 and LTRCforests,
and are considered state-of-the-art methods for tree-based survival analysis with time-
varying covariates). To evaluate the survival models’ performance, we chose to use the
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time-dependent Brier score (td-BS), integrated Brier score (td-IBS), Brier skill score (td-BSS),
and integrated Brier skill score (td-IBSS) for longitudinal data (as in [15]). More details
about these metrics can be found in Appendix D.3.

3.2.2. Comparison Settings

We propose here a comparison framework to measure the benefits of including the
historical data in Dlong, compared to using Dlast. The matrices rlapser and racceptant are
estimated with the algorithms LTRCRRF and LTRCCIF from the R package LTRCforests (In
the following sections, we consider LTRCRRF and LTRCCIF: LTRC forests, respectively,
based on regular CART and conditional inference survival tree algorithms. More insights
about those models can be found in the references detailed in Section 3.2.1.). To assess
the advantages of that longitudinal model, we compare its results with those obtained
with the gradient boosting survival model (GBSM) as it proved to be a high-performing
non-longitudinal model on that dataset (see [7]). With T(i), the “any event” time for subject
i (that is the censoring time for active policies and the termination time, whatever the cause,
for all others), rlapser and racceptant are estimated from the respective survival functions

Ŝlapser

(
t | X (i)(t)

)
= P(T(i) > t | X (i)(t)),

Ŝacceptant

(
t | X (i)(t)

)
= P(T(i) > t, EVENT = death | X (i)(t)),

with observations that ended with lapse considered as censored in the estimation
of Ŝacceptant.

We want to compare the performance of all models trained with and without longi-
tudinal data but also compare them on different tasks. Typically, predictions on Dlast and
Dlong do not answer the same questions. The former aims at predicting the last observation
of the target variable, and the latter aims at predicting its value at any given point in time.
Depending on whether the model has been trained on longitudinal data or only on the most
recent observation and with different prediction goals, this naturally designs the following
four settings that answer four prediction problems:

(a) Models are trained on Dlast
train and evaluated on predictions from Dlast

test ;

(b) Models are trained on Dlong
train and evaluated on predictions from Dlast

test ;

(c) Models are trained on Dlast
train and evaluated on predictions from Dlong

test ;

(d) Models are trained on Dlong
train and evaluated on predictions from Dlong

test .

Setting (a) is the classical setting, where any subject has only one measurement, and
the prediction task is also to predict a variable at one given time point. Conversely, setting
(d) represents the longitudinal setting, where models are trained with longitudinal time-
varying covariates and where the prediction task aims at retrieving the value of a target
variable at any given time point during a subject’s lifetime. Setting (c) is not insightful
as a model trained on aggregated data cannot retrieve longitudinal information and is
expected to perform poorly by design. Intermediate setting (b) is also insightful as it can be
used to highlight the added value of the information contained in longitudinal data when
training a model. The comparison is made on a time-varying survival evaluation metric:
the time-dependent Brier skill score (td-BSS) for longitudinal data (see Appendix D.3).

3.2.3. Results

First of all, to assess the superiority of longitudinal models in a longitudinal context,
we need to compare all our considered models in the classical aggregated setting: with
training and testing phases on subsets of Dlast. We can see that in this non-longitudinal
setting, GBSM and LTRC models (LTRCRRF and LTRCCIF) are close in terms of BSS.
Figure 3 displays the td-BSS on the y-axis, for which a value of 0 means that the score
for the predictions is merely as good as that of a naive prediction (in our application, the
empirical estimate of the survival function has been chosen as the naive prediction) and



Analytics 2024, 3 332

a value of 1 is the best score possible. BSSs are computed for every time point, meaning
that we can observe and compare the performance of models in estimating retention
probabilities for low-seniority policies or high-seniority ones independently.

td-BSS for racceptant td-BSS for rlapser

Figure 3. td-BSS (y-axis) as a function of seniority (x-axis) for models trained on Dlast
train and tested

on Dlast
test .

The IBSS, the mean of BSSs over all time points (see Appendix D.3), indicates that
LTRCRRF performs slightly better than LTRCCIF, hence we will drop LTRCCIF for the rest
of this application. In real-world scenarios, the inherent complexity of the true survival
distribution might include time-varying covariates and time-varying effects. The cross-
validated Brier scores and Brier score skills graphs (see the Monte-Carlo cross-validation
procedure described in Appendix B) can potentially lead decision makers to choose different
survival estimations at different time points and not a unique choice of method for all
time points.

In contrast, the difference between those models is evident and significant whenever
they are trained on longitudinal data. Figures 4 and 5 below show the difference in terms
of BSS over time in prediction settings (b) and (d).

racceptant rlapser

Figure 4. td-BSS (y-axis) as a function of seniority (x-axis) for models trained on Dlong
train and tested on

Dlast
test —Setting (b).

racceptant rlapser

Figure 5. td-BSS (y-axis) as a function of seniority (x-axis) for models trained on Dlong
train and tested on

Dlong
test —Setting (d).
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The conclusion regarding prediction richness contained in longitudinal data and
accuracy benefits from using dedicated longitudinal methods is clear. Longitudinal models
perform significantly better, and GBSM brings minor improvement over naive models.

In the end, we select LTRCRRF for estimating the retention probabilities in the survival
step as it shows to be the best model when trained on longitudinal data.

It is to be noted that the results of that modelling approach in terms of global retention
gain (Equation (16)) are not necessarily better than the results obtained without the use
of longitudinal data in the estimation of rlapser and racceptant. In other words, a better
performance of the model used in the survival step does not lead to an increase in the
insurer’s expected profit, for a given LMS but to a more realistic estimation of it as they
model the CLV more accurately.

With that, we determine rlapser and racceptant, the conditional retention probabilities
for every observation to derive the trajectory of the observed individual CLV, RG, and
eventually z(i)(t) (see Equation (13)). The latter can then be used as a longitudinal target
variable in a regression model: this constitutes the regression step, introduced in Section 1
and detailed within this application in the next Section.

Another advantage of using longitudinal data for survival analysis is that it helps
study how a given subject’s retention probabilities are updated with time. In Figure 6, we
take the example of a randomly selected subject and plot their retention probability at every
observation time. The further in time the observation is, the more transparent the survival
curve is. The individual retention curves are updated as new measurements are available.

racceptant (y-axis), as a function of seniority
(x-axis)

rlapser (y-axis), as a function of seniority
(x-axis)

Figure 6. Longitudinally updated retention trajectories for a random subject.

3.3. Application: Regression Step
3.3.1. Regression Analysis with Time-Varying Covariates

The regression step of the framework introduced in Section 2.2 requires using a regres-
sion model allowing for longitudinal data to produce an estimate of z(i)(t). We chose to
use mixed-effect tree-based models (METBM). First of all, a mixed-effect model is designed
to work on clustered data in general, including longitudinal data (see [28]). Refs. [16–19]
describe a procedure to fit a mixed effect model using tree-based models through an itera-
tive two-step process (the algorithms corresponding to their respective work are available
in the R packages REEMtree and LongituRF, the R function “REEMctree” and the Python
library MERF.). Mixed-effect tree-based algorithms are designed to take clustered data as
input. By considering subjects as clusters, they can grasp the dependence structure within
the different observations of a single subject and can be used for longitudinal analysis
(see [28]).

The underlying idea behind mixed-effect tree-based algorithms is to assume a mixed
model for the longitudinal outcome and estimate the random effect parameters with a
tree-based model. Such approaches estimate the random effects of a mixed model in the
first step and then construct a regression tree with the fixed-effect covariates on the original
outcome, excluding the estimated random effect. The idea is to repeat these two steps:
the model parameters and the random effects are estimated iteratively until convergence,
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similar to the two-step well-known EM optimisation procedure. Suppose that we have p f
covariates with a fixed effect and ps covariates with a random effect. Initially, a parametric
linear mixed-effect model is given by

z(i) = F(i)⊤β + S(i)⊤b(i) + ϵ(i). (18)

where z(i) is the n(i) × 1 longitudinal vector outcome of subject i, β is the p f × 1 vector of
the fixed effect coefficients and F(i) is the n(i) × p f design matrix of the covariates with a
fixed effect. The quantity b(i) is the ps × 1 vector of random effects, and S(i) is the n(i) × ps
design matrix of the covariates with a subject-specific effect. By construction, F(i) and S(i)

are subdivisions of the covariate space. The error term ϵ(i) is the n(i) × 1 vector of residuals,
assumed to come from a normal distribution with mean 0 and variance σ2, and we assume
b(i) ∼ N (0, D), ϵ(i) ∼ N (0, σ2 · In(i)). Eventually, D is the ps × ps variance–covariance
matrix for the random effects.

To model a longitudinal outcome with non-linear fixed effects, a tree-based model is
included in Equation (18), as follows:

z(i) = f (F(i)) + S(i)⊤b(i) + ϵ(i). (19)

Here, the linear structure of the fixed effect part of the model is generalised: the fixed
effects are described by a function of the fixed-effect covariates f , which is the part that
a tree-based model will estimate. In MERT (see [29]), the tree-based model is a single
regression tree, in MERF (see [17]), it is a random forest, whereas in RE-EM (see [16,18]), it
can be both. A general algorithm for such mixed-effect tree-based models can be described
in Algorithm 1.

Algorithm 1 Mixed-effect tree-based model pseudo-code.

1: Input: D, a longitudinal dataset with an outcome z(i), ∀i ∈ [1 . . . N]

2: Output: ẑ(i), f̂ , b̂(i), ϵ̂(i), σ̂(i)2
, D̂(i), ∀i ∈ [1 . . . N]

3:
4: Initialise: b̂← 0, σ̂2 ← 1, D̂ ← Ips

5: while GLL < some convergence threshold do
6: 1. z(i) ← z(i) − S(i)⊤bi
7: 2. Fit a tree-based model on z(i) and obtain f̂
8: 3. Infer the updated random effects parameters b̂(i)

9: 4. Compute ϵ̂(i) = z(i) − f̂ (F(i))− S(i)⊤b̂(i)

10: 5. Update σ̂(i)2
and D̂(i)

11: 6. Update GLL, the generalised log-likelihood criterion used to control for conver-
gence

12: end while

For further details about all of these elements—and notably, the update formulas for
σ̂(i)2

, D̂(i), and GLL (see Section 2 of [17] for details on how the between-subject standard
error can be estimated from METBM). Once fit, the mixed-effect tree-based model can be
used to predict the vector ẑ(i), the longitudinal predicted trajectory of an LMS-induced
profit for any subject. For subjects with past observations included in the training dataset,
the prediction includes the random effect correction:

ẑ(i) = f̂ (F(i)) + S(i)⊤b̂(i).

For a new subject, with a first observation in the testing set, the mixed-effect prediction
only includes the fixed effect:

ẑ(i) = f̂ (F(i)).
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Moreover, as such models are not informative about the dynamics of the longitudinal
covariates, making predictions with them at given times imposes that we know the value
of the longitudinal covariates at those times. This implies that to compute future values of
z(i)(t), future unknown values of the longitudinal covariates are needed. In other words, no
predictions for any subject are made beyond that subject’s last observation time value unless
we assume future values of the longitudinal covariates. This reduces the practical usefulness
of the model, as it requires assumptions about the future path of longitudinal covariates.
Concretely, predicting the future profit or loss generated by any PH requires assumptions
regarding future payments and partial lapses, thus necessitating either over-simplifying
hypotheses (no spontaneous payments, no partial lapses) or complex sub-models for the
evolution of those financial flows. This significant limitation could be addressed by using
models that jointly predict the future path of longitudinal covariates along the response
(see [26] for instance).

3.3.2. Results

This section contains the results of the regression step of our framework. To model
whether a policyholder is worth targeting or not, we fit a mixed-effect tree-based regression
model to our longitudinal dataset with z(i), the vector of n(i) observations as a longitudinal
target variable for every subject i. As z(i) can take any real value, the mean squared error
(MSE) in the tree-based part of the mixed-effect model is to be preferred. For a given LLMS,
the survival step allows us to compute z(i), the longitudinal variable representing the
expected trajectory of the profits or losses generated by subject i. Then, by estimating z(i)

on various LLMS with a mixed-effect tree-based model, we can hope to find an optimal
retention strategy in the sense that it will maximise the expected gain for the life insurer.
For this application, we make the hypothesis that parameters p, η, γ, and d are constant
over all policyholders and over time and fit a mixed-effect random forest (MERF). We
suggest testing five LLMSs:

• One that is an extremely bad strategy and would lead to a loss for the insurer, if
applied to a large number of subjects (LLMS n°1);

• One that is unrealistically good, with a small incentive largely accepted and would
lead to a sure profit for the insurer (LLMS n°2);

• Three realistic strategies, with various degrees of aggressivity (LLMS n°3, 4, and 5).

We train our targeting mixed-effect random forest model on all observations and their
respective retention probabilities up to 2020 and test it on all subjects with an observation
in 2021. We can note that in 2021, there are predictions on subjects with past observations
before 2021 but also predictions on new subjects not included in the training set. Overall,
the testing set contains “only” 4,472 unique policyholders, hence the order of magnitude of
the retention gains presented below. We also chose a very conservative risk parameter, that
greatly reduces the number of subjects targeted.

Here are the five strategies, and the corresponding expected profit or loss (as defined
in Definition 2) they include the following (see Table 4).

Table 4. Various LMS results with our framework.

LMS n° p η γ c d T RG # Targets Campaign Investment

1 1% 1% 90% 200 2.00% 10 0 0 0

2 5% 0.01% 80% 5 2.00% 20 134,347.54 141 705

3 3% 0.009% 40% 15 1.50% 20 3112.03 98 1470

4 2.5% 0.005% 15% 10 1.50% 20 2940.51 94 940

5 3% 0.001% 5% 5 1.50% 20 2962.68 122 610

The main feature proposed by this framework is that it allows the decision maker to
choose the best LLMS among realistic ones. In our application, we immediately see that in
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terms of profit for the insurer, strategy n°3 is optimal, compared to LLMS n°4 and 5. On
the other hand, other factors, such as the number of policyholders to target or the cost of
the campaign, are also displayed. They can prove to be critical elements of decisions in
a real-world context, as some life insurers could have a limited commercial workforce or
investment budget. For instance, an insurer that can only contact up to 95 policyholders
this year would choose LLMS n°4, and another that would be limited by a EUR 1,000
budget for retention would choose LLMS n°5. Moreover, the bad LMS n°1 demonstrates
that this framework allows us to detect whenever a strategy should not be carried out. In
that case, the conclusion of the targeting step is not to target any policyholder, thus limiting
the insurer’s loss to 0, which is arguably a desirable feature. Finally, the unrealistically
good LLMS n°2 shows that this framework cannot detect a “too good to be true” strategy
with an unrealistic pair of parameters (η, γ). This emphasises the fact that taking this
interdependency into account directly in the framework should prevent such unrealistic
scenarios and avoid the life insurer the task of selecting in advance a consistent set of
LLMS parameters.

Another novelty in this framework is the longitudinal structure of the results. In-
deed, we can easily retrieve the expected individual loss or profit at any future time. For
example, Figure 7 shows a plot of the expected profits generated by targeting randomly
selected policyholders.

Figure 7. Projections of targeted profits over time.

Most policyholders have a ẑ(i) with a decreasing future trajectory. It makes sense as
time is positively correlated with one’s policy probability to end: the more the insurer waits
to offer an incentive to a subject, the less profitable it becomes. Usually, if a policyholder
does not generate profit by being targeted now, it is even less relevant to target them later
in time. For specific profiles, the lapse risk grows faster than the death risk. It can then
become more profitable to offer an incentive as the lapse risk increases if the death risk
is insignificant.

In any case, we show graphically that depending on the level of risk α that the insurer
consents to take, the time at which it is optimal to apply an LLMS to a given policyholder
changes. The longitudinal trajectory being estimated with a linear model, the framework as
it stands should not be used to evaluate the time when offering an incentive is optimal. It
rather yields information about individual tendencies and answers strategical questions: is
it profitable to target a given policyholder now? If not now, is it likely to become profitable
in the future? And if it is, should the insurer decide quickly, or can it wait? The individual
intercepts and slopes of the future estimations of ẑ(i) answer those questions.
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This example of a time-dynamic application shows that including longitudinal data in
a lapse management strategy can benefit a life insurer in terms of prediction accuracy and
decision-making.

4. Conclusions, Limitations, and Future Work

In conclusion, this paper presents a novel longitudinal lapse management framework
tailored specifically for life insurers. The framework enhances the targeting stage of re-
tention campaigns by selectively applying it to policyholders who are likely to generate
long-term profits for the life insurer. Our key contribution is the adaptation of existing
methodologies to a longitudinal setting using tree-based models. The results of our appli-
cation demonstrate the advantages of approaching lapse management in a longitudinal
context. The use of longitudinally structured data significantly improves the precision of
the models in predicting lapse behaviour, estimating customer lifetime value, and evaluat-
ing individual retention gains. The implementation of mixed-effect random forests enables
the production of time-varying predictions that are highly relevant for decision-making.
The framework is designed to prevent the application of loss-inducing strategies and allows
the life insurer to select the most profitable LMS, under constraints.

To effectively apply our longitudinal LMS framework in practice, we recommend
discretising or aggregating the longitudinal data to an appropriate time grid to manage
computational complexity without compromising the precision of the models. We also
advise carefully considering realistic LMS scenarios to limit computationally intensive
tasks; this involves selecting practical time intervals and retention strategies that align
with the insurer’s operational capabilities. Eventually, we suggest, whenever possible, to
include macro-economic longitudinal covariates (such as interest rates and unemployment
rates), into the models. Although these features were not included in our application, they
can provide additional context and improve the accuracy of lapse predictions.

By following these recommendations, insurers can enhance the practical implementa-
tion of our framework and achieve better outcomes in lapse management.

However, our work has several limitations that must be acknowledged:
First, regarding the framework: the longitudinal lapse management strategy is de-

fined with fixed incentive, probability of acceptance, and cost of contact, regardless of the
time in the future. Moreover, the γ parameter is constant for a given policyholder, but
it could be seen as the realisation of a random variable following a chosen distribution.
Those points may restrict the framework’s practical effectiveness. Moreover, we did not
account for the interdependence between different LLMS parameters. In terms of inter-
pretation of the results, accounting for this interdependence would allow the detection of
unrealistic strategies. Additionally, the introduction of the confidence parameter α could
be discussed further as it could be linked with actuarial risk measures such as the value-
at-risk. Eventually, the article describes a discrete-time longitudinal methodology, but in
general, the insurer has access to the precise dates of any policy’s financial flows. Thus, a
continuous-time framework could also be implemented.

Second, regarding the application: a lot of assumptions have been formulated in
the application we propose, such as constant parameters, where the framework allows
them to vary across time and policyholders, or the use of MERF, where more complex
and completely non-linear models could be tried. It is also important to acknowledge that
the longitudinal dataset used for the application does not contain any macroeconomic
longitudinal covariate, which could lead to results that do not vary with the economic
context. This is not reflective of real-world conditions, and including such features would
enhance the results and allow the interpretation of the systemic effects of the economic
context on lapse behaviour. The inclusion of such exogenous time-varying features would
allow the merging of the economic-centred and micro-oriented literature and will be
deferred as future research.

Finally, regarding longitudinal tree-based models: the use of LTRC and MERF
requires the management of time-varying covariates with the pseudo-subject approach,
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which has practical limitations and prevents the longitudinal data from being predicted
alongside the target variable. The pseudo-subject approach, which spreads observations
across different leaves in the tree, does not produce a unique trajectory in the tree for a
given subject. This does not affect the results but makes the models less interpretable,
essentially turning them into black-box models. Improved interpretability would facilitate
better understanding and application of the results in decision-making processes. Future
works could address those remarks using joint models (see Appendix A for references) or
time-penalised trees (see [27]).

The limitations of the general framework should be discussed and tackled in forth-
coming research. Other use cases and applications, with sensitivity analysis over various
sets of parameters, models, and datasets, could constitute an engaging following work.
Pseudo-subject limitations are inherent in the current design of longitudinal tree-based
models. Future work will involve developing innovative algorithms to address these issues.
Overall, this article opens the field of lapse behaviour analysis to longitudinal models, and
our framework has the potential to improve retention campaigns and increase long-term
profitability for a life insurer.
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Appendix A. Note on Parametric Models

This work focuses on the ability of non-parametric tree-based approaches to perform
in both steps of our framework. For comparison’s sake, a semi-parametric survival model
was fitted in [7]; it is important to explain why we did not investigate such models here.
Time-varying Cox-like models also exist and can even take competing risks into account.
They can be compared and yield survival curves for any individual but only up to their
last observed time. Predicting survival probabilities at future time points is not possible.
A complete implementation of those techniques can be found in the R package timereg
by [30,31].

Moreover, other prediction biases can appear in the presence of endogenous longitudi-
nal covariates, with Cox-like models [32], which is typically our situation. This is why we
decided to leave such modelling approaches out of this paper.

It is to be noted that a statistical learning approach addressing research questions
involving the association structure between longitudinal data and an event time exists:
joint models. This type of modelling technique is primarily used in time-to-event contexts,
with censored data and can handle multiple exogenous and endogenous longitudinal
covariates with possibly multiple competing risks. Joint models outweigh time-dependent
Cox models in terms of prediction; by predicting both the longitudinal trajectories and the
survival probabilities simultaneously, it is possible to compute the conditional probability
of surviving later than the last observed time for which a longitudinal measurement was
available. They have been extensively studied and extended and have proved to yield
competitive predictive results for relatively small datasets. A complete overview of such
models can be found in [26], and their implementation is available in R packages JM,
JMBayes, and JMBayes2. Joint models are performant but computationally expensive for
large datasets and multiple longitudinal covariates or outcomes. We did not implement this
approach in this paper for those reasons and instead implemented tree-based models handling
time-varying covariates that we will compare to tree-based models with time-fixed covariates.
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Appendix B. Model Selection Methodology

Regardless of their size, Dlast and Dlong both relate to 10,000 subjects. To tune the
models detailed in the next Sections, we adopt a five-fold Monte-Carlo cross-validation
methodology. We randomly select 80% of subjects’ observations in Dlast and Dlong as
training sets, and the remaining 20% of subjects’ observations go in testing sets. Models
are trained on the training sets and tested on both training and testing sets to control for

over-fitting. We repeat this step five times such that we obtain 20 different datasets:
kDlast

train,
kDlast

test ,
k
Dlong

train and
k
Dlong

test for k ∈ [1, . . . , 5]. We can illustrate this as follows.

Figure A1. Monte-Carlo cross-validation.

In the following sections, this will be our methodology for studying the mean and
variance of all considered models’ performances. All presented conclusions are the results
of a five-fold Monte-Carlo cross-validation.

Appendix C. Estimation of π∗

Very intuitively, for policyholders linked to a non-active policy, the last observation
ended with either lapse or death and ∆(i) ̸= 0. For any observation related to a policyholder
that eventually lapsed π

(i)
∗ = 1. For any observation related to a policy that eventually

ended with the policyholder’s death, we have π
(i)
∗ = 0. Deriving π

(i)
∗ is more complex for

policyholders with an active policy where we have

π
(i)
∗ = P(∆(i)

∗ = 1|∆(i) = 0,X (i)(T(i))) =
P
(

∆(i)
∗ = 1, ∆(i) = 0 | X (i)(T(i))

)
P
(
∆(i) = 0 | X (i)(T(i))

) . (A1)

By treating the competing risks within the cause-specific framework, we have that the
probability of having an active policy, in other words having survived every cause of events,
is the product of the cause-specific probabilities (see [33]). Given the risk profiles that we
introduced in Section 1, we define r(i)lapser(t), the all-causes survival probability of subject i

at time t and r(i)acceptant(t) the death survival probability of subject i at time t. Moreover, in

practice, we only have access to a limited history Tmax = max(T(i)), corresponding to the
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longest time a policy was ever observed to last. In order to estimate π
(i)
∗ , we will consider

that the ultimate event time T(i)
∗ is bounded by T. Thus we have

π
(i)
∗ =

1− r(i)lapser(Tmax)/
r(i)acceptant(Tmax)

r(i)lapser(T
(i))/

r(i)acceptant(T
(i))

=
r(i)acceptant(T

(i))

r(i)lapser(T
(i))

·
(

1−
r(i)lapser(Tmax)

r(i)acceptant(Tmax)

)
. (A2)

Appendix D. Competing Risk Framework

In practice, survival analysis is not limited to a single event since subjects are likely to
be at risk from several events at the same time, in contrast to multi-state models (see [34])
where the transition between the different events is possible. When studying a cyclical
event of interest such as death, for example, the different causes are in competition (or
concurrence), and then when the subject dies from one cause such as cancer, they cannot
die from another. There are several regression models to estimate the global hazard and
the hazard of one risk in settings where competing risks are present: modelling the cause-
specific hazard and the subdistribution hazard function. They account for competing risks
differently, obtaining different hazard functions and thus distinct advantages, drawbacks,
and interpretations. Here, we will introduce those approaches’ theoretical and practical
implications and justify which one we will use in our modelling approaches.

Appendix D.1. Cause-Specific Approach

In cause-specific regression, each cause-specific hazard is estimated separately, in
our case, the cause-specific hazards of lapse and death, by considering all subjects that
experienced the competing event as censored. Here, t is the traditional time variable of a
survival model, with t = 0 being the beginning of a policy. It is not to be confused with the
use of t in Sections 2.2. We remind that JT = 0 corresponds to an active subject that did not
experience lapse JT = 1 or death JT = 2. The cause-specific hazard rates regarding the j-th
risk (j ∈ [1, . . . J]) are defined as

λT,j(t) = lim
dt→0

P(t ≤ T < t + dt, JT = j | T ≥ t)
dt

.

We can recover the global hazard rate as λT,1(t) + · · ·+ λT,J(t) = λT(t), and derive
the global survival distribution of T as

P(T > t) = 1− FT(t) = ST(t)

= exp
(
−
∫ t

0

(
λT,1(s) + · · ·+ λT,J(s)

)
ds
)

.

This approach aims at analysing the cause-specific “distribution” function: FT,j(t) =
P(T ≤ t, JT = j). In practice, it is called the Cumulative Incidence Function (CIF) for cause
j and not a distribution function since FT,j(t) → P(JT = j) ̸= 1 as t → +∞. By analogy

with the classical survival framework, the CIF can be characterised as FT,j(t) =
∫ t

0 fT,j(s)ds
(we suppose that T has a continuous distribution), where fT,j is the improper (because it is
derived from the CIF, an improper cumulative distribution function) density function for
cause j. It follows that

fT,j(s) = lim
dt→0

P(t ≤ T < t + dt, JT = j)
dt

= λT,j(t)ST(t).
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The equation above is self-explanatory: the probability of experiencing cause j at time
t is simply the product of surviving the previous time periods by the cause-specific hazard
at time t. We finally obtain the CIF for cause j as

FT,j(t) =
∫ t

0
λT,j(s) exp

(
−
∫ s

0
λT(u)du

)
ds.

There are several advantages to that approach. First of all, cause-specific hazard
models can easily be fit with any classical implementation of CPH by simply considering
as censored any subject that experienced the competing event. Then, the CIF is clearly
interpretable and summable P(T ≤ t) = FT,1(s) + · · ·+ FT,J(s) (unlike the function 1−
exp

(
−
∫ t

0 λT,j(u)du
)

, when the competing events are not independent). On the other hand,
the CIF estimation of one given cause depends on all other causes: it implies that the study
of a specific cause requires estimating the global hazard rate, and interpreting the effects
of covariates on this cause is difficult. Indeed, part of the effects of a specific cause comes
from the competing causes, but in our setting, we are only interested in the prediction of
the survival probabilities, not their interpretation as such.

Appendix D.2. Subdistribution Approach

We have introduced it at the beginning of this section; another approach is often
considered to analyse competing risks and derive a cause-specific CIF. This other approach
called the subdistribution hazard function of Fine and Gray regression, works by consider-
ing a new competing risk process τ. Without loss of generality, let us consider death as our
cause of interest,

τ = T ×⊮JT=2 + ∞×⊮JT ̸=2.

It has the same as T regarding the risk of death, P(τ ≤ t) = FT,2(t) and a mass point
at infinity 1− FT,2(∞), probability to observe other causes (JT ̸= 2) or not to observe any
failure. In other words, if the previous approach considered every subject that experi-
enced competing events as censored, this approach considers a new and artificial at-risk
population. This last consideration is made clear when deriving the hazard rate of τ,

λτ(t) = lim
dt→0

P(t ≤ T < t + dt, JT = 2 | {T ≥ t} ∪ {T ≤ t, JT ̸= 2})
dt

.

Finally, we obtain the CIF for the risk of death as

FT,2(t) = 1− exp
(
−
∫ t

0
λτ(s)ds

)
.

This subdistribution approach resolves the most important drawback to cause-specific
regression, as the coefficients resulting from it do have a direct relationship with the
cumulative incidence: estimating the CIF for a specific cause does not depend on the
other causes, which makes the interpretation of CIF easier. The subdistribution hazard
models can be fit in R by using the crr function in the cmprsk package or using the timereg
package. Still, to our knowledge, there is no implementation of a Fine and Gray model in
Lifelines or, more generally, Python. We can also note that these two approaches are linked,
ref. [35] and the link between λτ(t) and λT,j(t) is given by

λτ(t) = rj(t)λT,j(t), with rj(t) =
P(JT = 0)

J

∑
p ̸=j

P(JT = p)

.

In other words, if the probability of any competing risk is low, the two approaches
give very close results.
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Appendix D.3. Brier Score and Variations

The Brier Score (BS) (see [36]) is an extension of the mean squared error to right-
censored data, a global measure of prediction accuracy for survival models.

With a given dataset D and assuming that we are interested in the occurrence of only
one event, any survival model yields Ŝ(t), the predicted survival probability function at
any time t. Let Ĝ(t) = P[C > t] be the Kaplan–Meier (KM) estimate of the censoring
distribution and Ŵ(i)(t) the corresponding IPCW, the BS is given by:

B̂S(t, Ŝ;D) = 1
|D| ∑

i∈D
Ŵ(i)(t)

[
δ(i)(t)− Ŝ(t)

]2
.

With the notations introduced in Section 2.1, the IPCW are computed as follows

Ŵ(i)(t) =

(
1− δ(i)(t)

)
∆(i)

Ĝ
(
T(i)

) +
δ(i)(t)
Ĝ(t)

.

The obtained BS is a vector of scores computed at different time points. To obtain
a more concise evaluation metric, we can also define the integrated Brier Score (IBS),
defined as

ÎBS(Ŝ;D) = 1
|D| ∑

i∈D

1
T(i)

∫ T(i)

0
Ŵ(i)(t)

[
δ(i)(t)− Ŝ(t)

]2
dt.

The BS and IBS can be easily derived into the Brier skill score (BSS) and the integrated
Brier skill score (IBSS), respectively. There are modified versions of BS and IBS that contrast
the prediction accuracy of a model to a reference model. They are defined as

B̂SS(t, Ŝ;D) = 1− B̂S(t, Ŝ;D)
B̂S(t, Ŝre f ;D)

,

ÎBSS(Ŝ;D) = 1− ÎBS(Ŝ;D)
ÎBS(Ŝre f ;D)

.

BSS measures the BS improvement of the considered model over a reference one
(that yields a survival function Ŝre f ). We see that it takes positive (or negative) values
whenever the B̂S(t, Ŝ;D)—respectively ÎBS(Ŝ;D)—is inferior (or superior) to B̂S(t, Ŝre f ;D)—
respectively ÎBS(Ŝre f ;D). In definitive, the BSS and IBSS represent the improvement in
terms of the Brier score over the naive model: the higher, the better.
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