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Abstract

Developing an informed lapse management strategy (LMS) is critical for life insurers to
improve their profitability, and gain insight into the risk of their global portfolio. When
designing a retention campaign, prior research in actuarial science (see Loisel et al. (2021);
Valla et al. (2023)) has shown that targeting policyholders by maximizing their individual
Customer Lifetime Value is more advantageous and informative for the insurer than targeting
all those who are likely to lapse. However, most existing lapse analyses are not taking
advantage of the fact that features and targets may vary over time. We propose to define
a longitudinal LMS framework, that provides time-informed insights and leads to increased
precision in targeting. The strengths and flaws of this new methodology are discussed in
various settings. This paper contributes to the field of lapse analysis for life insurers and
highlights the importance of using the complete past trajectory of policyholders, which is
often available in insurers’ information systems but has yet to be exploited.

Key words: Lapse management strategy, longitudinal, Machine learning, life insurance,
Customer lifetime value

1 Introduction

In this article, we present a novel methodology developed to address the retention challenges
faced by life insurers in a French insurance portfolio consisting of equity-linked whole-life
insurance policies (see Hardy (2003) for an extensive review on the subject). Whole-life
insurance provides coverage for the entire lifetime of the insured individual, rather than a
specified term and when contracting such an insurance plan, policyholders can choose how the
outstanding face amount of their policy is invested between “euro funds” and unit-linked funds.
Understanding the fundamental differences between these investment vehicles is essential to
comprehending the dynamics of the whole-life insurance market. For savings invested in euro
funds, the coverage amount is determined by deducting the policy costs from the total premiums
paid, the financial risk associated with these funds is borne by the insurance company itself.
The underlying assets of euro funds primarily consist of government and corporate bonds,
limiting the potential returns, thus the performance of these funds is directly influenced by
factors such as the composition of the euro fund, fluctuations in government bond yields, and
the insurance company’s profit distribution policy. Additionally, early termination of the policy
by the policyholder incurs exit penalties, as determined by the insurance company. In contrast,
unit-linked insurance plans operate under a different framework. The coverage amount is
determined by the number of units of accounts held by the policyholder, and the financial risk
is assumed by the policyholders themselves. Unit-linked funds offer a wide range of underlying
assets, among all types of financial instruments, enabling potentially unlimited performance
based on the market performance of these assets. The investment strategy is tailored to the
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specific investment objectives of the policyholder and while certain limitations exist in terms
of asset selection, policyholders generally face no exit penalties for their underlying investments.

Lapse is an important risk for such insurance products (see Bacinello (2005) or MacKay
et al. (2017)), thus, policyholders represent a critical asset for life insurers, and the ability to
retain profitable ones is a significant determinant of the insurer’s portfolio value (and more
generally a firm’s value, see Gupta et al. (2004)). If some historical explanations for lapse are
liquidity needs (Outreville (1990)) and rise of interest rates, it also appears that individual
characteristics are also insightful (see Eling and Kochanski (2013) for a complete review).
Consequently, policyholder retention is a strategic imperative, and lapse prediction models are
a crucial tool for data-driven policyholder lapse management strategy (LMS) in any company
operating in a contractual setting such as a life insurer. We define an LMS as in Valla et al.
(2023):

Definition 1 (Lapse management strategy (LMS))
A lapse management strategy for a life insurer is modeled by offering an incentive η to

policyholders with a high lapse-risk profile. Their policies yield a profitability ratio of p. The
incentive is accepted with probability γ. and contacting the targeted policyholder has a fixed
cost c. A targeted subject who accepts the incentive will be considered as an “acceptant” who
will never lapse, and her probability of being active at year t ∈ [0, T ] is denoted racceptant(t).
Conversely, a subject who refuses the incentive and prefers to lapse will be considered as a
“lapser”, and her probability of being active at year t is denoted rlapser(t). The parameters
(p,η,γ, c, T ) uniquely define a lapse management strategy, while racceptant(t) and rlapser(t) need
to be estimated from the portfolio.

Our goal is not only to model the lapse behavior but to select which policyholder to target
with a given retention strategy to generate an optimized profit for the insurer. Such a lapse
management strategy requires estimating what can be considered as the future profit generated
by a given policyholder: the individual customer lifetime value or CLV (see Donkers et al.
(2007)). The individual CLV at horizon T , for the i-th subject aims at capturing the expected
profit or loss that will be generated in the next T years and is expressed as follows, in the
general time-continuous case:

CLV (i) =

∫ T

τ=0

p(i)(τ) · F (i)(τ) · r(i)(τ)
ed(τ)·τ

dτ. (1)

In practice, the individual CLV is often discretized and computed as a sum of annual flows,
thus with t, the time in years,

CLV (i)
(
p(i),F (i), r(i),d, T

)
=

T∑
τ=0

p
(i)
τ · F (i)

τ · r(i)τ

(1 + dτ )
τ . (2)

Equation 2 is primarily used in the marketing and actuarial literature (see Berger and Nasr
(1998) or Loisel et al. (2021)). And if we only consider the future T years of CLV, after time t,
the sum becomes

FCLV (i)
(
t,p(i),F (i), r(i),d, T

)
=

T+t∑
τ=t+1

p
(i)
τ · F (i)

τ · r(i)τ

(1 + dτ )
τ . (3)

The profitability ratio p
(i)
t is represented as a proportion of the face amount, F

(i)
t , observed

at time t. The conditional individual retention probability, r
(i)
t , is the i-th observation’s
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probability of still being active at time t. Given an LMS, a policyholder can either be likely to
accept the offer of an incentive and behave with an “acceptant” risk profile or she can be likely
to reject the offer and thus behave with a “lapser” risk profile. In this context, acceptants
and lapsers will not generate the same CLV as their respective retention probabilities differ.
The CLV of an acceptant or a lapser are estimated using respectively r

(i)
acceptant and r

(i)
lapser

as retention probabilities. All the expected future financial flows are discounted, with dt
representing the annual discount rate at year t. In definitive, FCLV (i)(t, ...) represents the
future T years of profit following observation at time t.

The analysis of a lapse management strategy, as described in Loisel et al. (2021), then
in Valla et al. (2023), is a two-step framework. The first step consists of using the insurer’s
data to compute yearly retention probabilities for every subject in the portfolio: we will
refer to it as the survival step. The retention probabilities are used to compute an individual
CLV-based estimation of the profit generated from targetting any policyholder. This estimation
is eventually used as a response variable to fit a model predicting which kind of subject is
likely to generate profit for the insurer: we will refer to it as the regression step. As in Ascarza
et al. (2018) or Guelman et al. (2012), the goal of such a CLV-based methodology is not only
to model the lapse behavior but rather to select which policyholder is worth targetting with a
given retention strategy in order to generate an optimized profit for the insurer. This existing
framework is time-dynamic in the sense that projecting FCLV (i) is based on survival analysis
and is highly time-dependent and can be illustrated as follows:

Figure 1: General framework for lapse management strategy
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Throughout the lifetime of such insurance policies, a series of significant events shape the
interactions between policyholders and insurers. Firstly, premium payments play a pivotal
role in sustaining the policy: these payments are highly flexible, allowing policyholders to
choose their amount and frequency, thus they can be adjusted according to the policyholder’s
financial circumstances and preferences. Additionally, policyholders may decide to reduce their
coverage by withdrawing a portion of their policy. We refer to these events as partial lapses:
they involve a voluntary decrease in the face amount of the policy, enabling policyholders
to adjust their coverage to better align with their changing needs. Such flexibility caters to
policyholders’ evolving financial situations and offers them greater control over their insurance
plans. Over the policy’s lifetime, other financial operations can occur, such as the payment of
interest or profit sharing to the policyholder, and the payment of fees to the insurer. Insurance
companies’ information systems are usually designed to keep track of those operations at the
policy-level, thus actuaries and life insurers often have access to the complete history of their
policyholders as the information system is updated in real-time.

In certain instances, a policyholder may choose to lapse their insurance policy entirely.
Complete policy lapse typically occurs when the policyholder decides to terminate her policy
and receives a surrender value, which represents the accumulated value of the premiums paid,
adjusted for fees, expenses, and potential surrender charges. Besides, the occurrence of a
policyholder’s death also terminates the policy and triggers the payment of the policy’s value,
often referred to as the death benefit or claim, to the designated beneficiaries.

Figure 2: Example of policyholders timelines

In the context of our research, a policy can only terminate with a complete lapse or the death
of the policyholder, which will be considered as competing risks in the following developments.
If none of these events has happened to a policy, it is still active. The cumulated sum of
all these operations, including premiums, claims, fees, interests, profit-sharing, and lapses, is
commonly known as the face amount of the policy. This face amount represents the total value
of the policy over its duration and serves as a measure of the policy’s coverage and financial
benefits. By comprehensively understanding and analyzing these events and their impact on
the face amount of a life insurance policy, insurers can effectively develop lapse management
strategies that align with policyholders’ preferences and financial goals. Through our research,
we aim to shed light on these dynamics and provide insights to optimize the design of such
strategies, ultimately enhancing customer retention and overall portfolio performance in the
life insurance industry.
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In practice, actuaries often have access to the complete trajectories of every policy and
it seems that not using them in models is ignoring a significant part of the available informa-
tion. A data structure where time-varying covariates are measured at different time points is
called longitudinal and individual policyholders’ timelines can be illustrated as in Figure 2.
The dynamical aspects of covariates have an impact on the performance of lapse prediction
models and Risselada et al. (2010) concludes in favor of the development of dynamic churn
models. They showed how the predictive performance of different types of churn prediction
models in the insurance market decays quickly over time: this conclusion arguably applies to
life insurers and in the case of lapse management strategy, we argue that using the complete
longitudinal trajectories of every individual is also justified. Firstly, a change in financial
behaviour - recent and frequent withdrawals for instance - can be informative lapse predictors.
As an illustration of this point, we can imagine making predictions for two individuals with
the exact same characteristics at the time of study but completely different past longitudinal
trajectories: one is consistently paying premiums for instance, whereas the other stopped all
payments for months and has been withdrawing part of her face amount lately. A prediction
model ignoring longitudinal information would produce the exact same lapse prediction for
both individuals. Conversely, an appropriate model, trained on longitudinal data is likely to
seize the differences between the individuals over time and provide different predictions for the
future. Secondly, a longitudinal lapse management framework allows for dynamic predictions
with new information. It proves to be insightful in terms of decision-making for the insurer,
as it shows how a change in the policy induces a change in the lapse behavior. Eventually,
existing lapse management strategy approaches can only provide the insurer with information
on whether targetting a given individual now is expected to yield profit, not on whether
the timing of targeting is optimal. A longitudinal framework is required to do so. From an
actuarial point of view, it is rarely exploited in practice. In this paper, we want to account for
the time-varying aspect of this problem in both steps of that framework. Firstly, we want to
take advantage of the information they contain and obtain more accurate predictions for r(i)

and thus FCLV (i): that is a gain of precision on the first step. Secondly, we want to evaluate
the expected individual retention gains over time to derive the optimal timing to offer the
incentive: that is a gain of flexibility and expected profit on the second step. For that purpose,
we introduce complex tree-based models which are, to the best of our knowledge, yet to be
explored in the actuarial literature. Those models, such as left-truncated and right-censored
(LTRC) survival trees and LTRC forests by Fu and Simonoff (2016b) and Yao et al. (2020),
or mixed-effect tree-based regression models (Sela and Simonoff (2012), Hajjem et al. (2014),
Fu and Simonoff (2015), Capitaine et al. (2021)) are considered state-of-the-art and have
yet to be exploited in the actuarial literature. We propose an application of that framework
with data-driven tree-based models only but other types of models exist and could fit in this
framework (see Appendix A.1)

This extension is not trivial, as time-dependent features and time-dependent response
variables are difficult to implement in parametric or tree-based models. Indeed, conventional
statistical or Machine Learning models do not readily accommodate time-varying features.
This is the case for most tree-based models as they assume that observations are independently
and identically distributed. Of course, this is unrealistic as observations of any given individual
are highly correlated. Moreover, time-varying features can generate bias if not dealt with
carefully (see Fisher and Lin (1999) for instance). The use of longitudinal data is already
a well-studied topic (see Molenberghs and Verbeke (2006)), with rare examples within the
actuarial literature (see Frees et al. (2021) for instance) and, to the best of our knowledge, only
a few actuarial uses of time-varying survival trees or mixed-effect tree-based models have been
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tried or suggested (Dal Pont (2020), Campo and Antonio (2022) or Moradian et al. (2022))
and no longitudinal lapse analysis framework based on CLV has been described.

In summary, this work presents a longitudinal lapse analysis framework with time-varying
covariates and target variables. This framework accommodates for competing risks and relies
on tree-based machine learning models. This work extends the existing lapse management
framework proposed in Loisel et al. (2021) and Valla et al. (2023), which focuses on a lapse
management strategy and retention targeting for life insurers. The rest of this paper is
structured as follows. We describe the specifics of longitudinal analysis and a new longitudinal
and time-dynamic lapse management framework which is the main contribution of this work in
Section 2. This section also includes a brief description of models that can fit in this framework.
In Section 3, we show a concrete application of our framework on a real-world life insurance
portfolio with a discussion of our methodology and results. Eventually, Section 4 concludes
this paper.
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2 Longitudinal framework

2.1 Preliminaries on time-varying covariates and longitudinal notations

Our aim is to enrich an existing framework with time-varying covariates. To do so, we decide
to adapt LMS methods to longitudinal analysis. In order to be perfectly clear on what we
mean by time-varying covariates or longitudinal data, let us introduce some notations. This
section borrows notations from the existing literature including Rizopoulos (2012) or Yao et al.
(2022) for instance. Let us assume a very general setting where we want to build a dataset D,
encompassing the information of N individuals from which features are repeatedly measured
over time. These covariates may come in many forms, some of them are time-varying (TV), and
others are time-invariant (TI). We denote ptv, pti the number of covariates in those respective
categories, with p = ptv + pti, the total number of covariates. At time t, the covariates matrix
is X(t) = (x1, x2, . . . , xpti , xpti+1(t), . . . , xp(t)). In order to simplify the notations, we write
X(t) = (x1(t), x2(t), . . . , xp(t)) with xk(t) = xk, ∀t and ∀k ∈ [1, . . . , pti].

These covariates are available for the N individuals, or subjects which are observed at
discrete time points. Subject i has been observed n(i) times, at t

(i)
j , j = 0, 1, . . . , n(i) − 1. In our

life insurance context t
(i)
0 represents the first measurement of the covariates, i.e the subscription

and times t
(i)
j , j = 1, 2, . . . , n(i) − 1 are the movement dates, i.e times at which a change in the

policy has been recorded. If t
(i)
0 ̸= 0, this means that the baseline information at subscription

is missing and the observation is left-truncated. A given subject i, at time t
(i)
j has a vector of

covariates denoted x
(i)
j =

(
x
(i)
j,1, . . . , x

(i)
j,p

)
and generally, has a matrix of covariates denoted

X(i) =
(
x
(i)
0 , . . . ,x

(i)

n(i)−1

)
. (4)

As stated in Definition 1, the probability of still having an active policy at time t depends on
the policyholder’s risk profile. Acceptants are only at risk for death whereas lapsers are at risk
for both lapse and death and we consider as the event of interest respectively death and the end
of the policy (whatever the cause). Regardless of our outcome of interest, we study the time to
an event ending the policy, thus we use the classical survival notations: subject i will eventually
experience the event at time T

(i)
∗ and she is no longer observed after censoring time C(i). We

let T (i) denote the observed event time for subject i, defined as t
(i)

n(i) = T (i) = min
(
T
(i)
∗ , C(i)

)
.

The notations regarding the time dynamics of our data are now clear, we decide to
structure this information in a longitudinal dataset. In order to do so, we assume that the
time-varying covariates are constant between the observed time points, that is,

x(i)(t) = x
(i)
j , t ∈

[
t
(i)
j , t

(i)
j+1

)
, j = 0, 1, . . . , n(i) − 1.

This assumption is perfectly consistent in an actuarial context where time-varying covariates
such as financial flows are immediately updated. Any covariate update leads to a new
observation and all variables are in fact constant between two consecutive observations. The
only limit of this assumption is that updating the insurer’s database usually takes some time.
This proves to be unrealistic if a policy change has been reported but not yet processed in the
information system.

An insurance policy at any time point is either active or ended. Moreover, it can only
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end in two ways: the policyholder either lapse her policy or die. Thus we define

∆(i) =


0 if T

(i)
∗ ≤ C(i)

1 if T
(i)
∗ > C(i) and EVENT = lapse

2 if T
(i)
∗ > C(i) and EVENT = death,

(5)

δ(i)(t) = ∆(i) · I
{
t = T (i)

}
. (6)

At time t = T
(i)
∗ , the true event has occurred and we define the ultimate event indicator as

∆
(i)
∗ =

{
1 if EVENT = lapse at time T

(i)
∗

2 if EVENT = death at time T
(i)
∗ .

(7)

It is constant over the observations for a given subject and represents the final value of ∆(i)

when the subject’s policy eventually ends. It can be either equal to 1 or 2. For a subject with
an active policy at the censoring time, the value of ∆

(i)
∗ is unknown.

Eventually, let X (i)(t) denote the covariate individual information up to time t, and we
define π

(i)
∗ as the estimated probability that the policy will eventually end with lapse, given all

available information at observation time t. Mathematically speaking, we have

π
(i)
∗ = P (∆

(i)
∗ = 1|X (i)(T (i))). (8)

We can now build D, a longitudinal dataset encompassing the complete past information of
all N subjects. For a given subject i, covariates are stored in rows, one row per observation
window [t

(i)
j , t

(i)
j+1). Each row contains the unique

(
t
(i)
j , t

(i)
j+1, δ

(i)(t
(i)
j ),x

(i)
j

)
element and is

completed by the subject unique identifier i and her event indicator ∆(i): each row is called
an observation. Any observation only corresponds to one subject and conversely, any subject
can be linked to a set of n(i) observations. We build D as the collection of all observations
structured longitudinally :

D =

{(
i,
{
t
(i)
j , t

(i)
j+1,x

(i)
j , δ(i)(t

(i)
j )
}n(i)−1

j=0
,∆(i)

)}N

i=1

.

Or, if displayed in a table:

ID Time window Start Time window End Covariate 1 ... Covariate p Observation event indicator Subject event indicator

1 t
(1)
0 t

(1)
1 x

(1)
0,1 ... x

(1)
0,p δ(1)(t

(1)
0 ) ∆1

1 t
(1)
1 t

(1)
2 x

(1)
1,1 ... x

(1)
1,p δ(1)t

(1)
1 ∆1

1 t
(1)
2 t

(1)
3 x

(1)
2,1 ... x

(1)
2,p δ(1)t

(1)
2 ∆1

1 t
(1)
3 C(1) x

(1)
3,1 ... x

(1)
3,p δ(1)(t

(1)
2 ) ∆1

2 t
(2)
0 t

(2)
1 x

(2)
0,1 ... x

(2)
0,p δ(2)(t

(2)
0 ) ∆2

3 t
(3)
0 t

(3)
1 x

(3)
0,1 ... x

(3)
0,p δ(3)(t

(3)
0 ) ∆3

3 t
(3)
1 t

(3)
2 x

(3)
1,1 ... x

(3)
1,p δ(3)(t

(3)
1 ) ∆3

3 t
(3)
2 t

(3)
3 x

(3)
2,1 ... x

(3)
2,p δ(3)t

(3)
2 ∆3

. . . . . . . . . . . . . . . . . . . . . . . .

Table 1: A longitudinal dataset, in all generality
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Table 1 precisely illustrates what we call a longitudinal dataset, and a real-world example
of such a dataset can be found in Section 3, Table 3. Adapting a lapse management strategy
framework to a longitudinal setting means we take such a dataset as input and produce enriched
predictions.

2.2 LMS longitudinal framework

We adopt Valla et al. (2023)’s framework and suggest some modifications and improvements
to accommodate for longitudinally structured data. Instead of a top-down approach that
consisted of estimating the individual contributions to the insurer’s profit from a global measure
of the portfolio value, we suggest a bottom-up approach and directly evaluate the former and
then derive the latter. Thus, we define the control future value of the policy, FCV (i)(t, . . . ),
which represents the expected T-year individual profit or loss generated by subject i, after time t:

FCV (i)(t,p,η,γ, c, T ) = FCLV (i)
(
t,p(i),F (i), r

(i)
acceptant,d, T

)
· (1− π

(i)
∗ )

+ FCLV (i)
(
t,p(i),F (i), r

(i)
lapser,d, T

)
· π(i)

∗ .
(9)

In other words, it simply represents an individual expected future CLV depending on the
probability for the policyholder to be a lapser. This value does not consider any LMS.

Let ⊚(i)(t) be the individual target vector indicator, designating if subject i is to be
targetted at time t. Our framework aims to find the optimal list of policyholders to target,
T (t) = {i | ⊚(i)(t) = 1} that maximizes the expected profit for the insurer, at any given time.
We define the lapse managed observation future value by

FLMV (i)(t,p,η,γ, c, T ) =[
FCLV (i)

(
t,p(i),F (i),r

(i)
acceptant,d,T

)
·(1−π

(i)
∗ )+FCLV (i)

(
t,p(i),F (i),r

(i)
lapser,d,T

)
·π(i)

∗

]
·(1−⊚(i)(t))

+

[
FCLV (i)

(
t,p(i)−η(i),F (i),r

(i)
acceptant,d,T

)
·(1−π

(i)
∗ )+γ(i)·FCLV (i)

(
t,p(i)−η(i),F (i),r

(i)
acceptant,d,T

)
·π(i)

∗

+(1−γ(i))·FCLV (i)
(
t,p(i),F (i),r

(i)
lapser,d,T

)
·π(i)

∗ −c

]
·⊚(i)(t).

(10)

In simple terms, it is equal to the control future value of the policy when subject i is not
targetted, otherwise, it depends on whether she intended to lapse in the first place and if so,
if she accepts the incentive η. It follows that the individual expected retention gain obtained
by applying an LMS is the difference between the expected individual CLVs with and without
lapse management:

RG(i)(t,p,η,γ, c, T ) = FLMV(i)(t,p(i),η(i),γ(i), c, T )− FCV (i)(t,p(i),η(i),γ(i), c, T ). (11)

that can be simplified as
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RG(i)(t,p,η,γ, c, T ) =⊚(i) (t)·

[
π
(i)
∗ γ(i)

[
FCLV (i)

(
t,p(i) − η(i),F (i), r

(i)
acceptant ,d, T

)
− FCLV (i)

(
t,p(i),F (i), r

(i)
lapser ,d, T

) ]
− (1− π

(i)
∗ ) · FCLV (i)

(
t,η(i),Fi, racceptant ,d, T

)]
− c ·⊚(i)(t).

(12)

An evaluation metric is finally derived to obtain the retention gain, at any observation time, if
the policyholder i is targetted. We define z(i)(t) as

z(i)(t) = RG(i)(t,p,η,γ, c, T |⊚(i) (t) = 1)

=

[
π
(i)
∗ γ(i)

[
FCLV (i)

(
t,p(i) − η(i),F (i), r

(i)
acceptant ,d, T

)
− FCLV (i)

(
t,p(i),F (i), r

(i)
lapser ,d, T

) ]
− (1− π

(i)
∗ ) · FCLV (i)

(
t,η(i),F (i), r

(i)
acceptant ,d, T

) ]
− c.

(13)

In terms of intuition, it shows that if a policyholder that would have lapsed
(with probability π

(i)
∗ ) is targetted and accepts the incentive (with probability

γ(i)), she generates the future CLV of an acceptant with profitability p− η instead of

her initial future CLV with profitability p and the risk profile of a lapser . The gain generated
by targeting this policyholder is then the difference between the two. On the other hand, if the
policyholder is wrongfully targetted and would not have lapsed (with probability (1− π

(i)
∗ )),

she rationally accepts the incentive which is then lost for the insurer . In any case, the contact
cost of c is spent.

2.2.1 Dynamic modeling of ẑ(i)

We showed in Section 3.2.1 how to estimate the retention probabilities of any observation
using time-varying covariates. With that vision of the risk at every observation time, we can
use mixed-effect tree-based models to predict whether a policyholder will generate profit given
her previous observations. The mixed-effect tree-based models being essentially parametric,
confidence intervals can be derived for all predictions. With the estimate of the standard error
of the sample mean denoted σz and any confidence level α, the optimal longitudinal LMS at
time t is the target indicator ⊚(i)

∗ (t) defined as

⊚(i)
∗ (t) = I

{
ẑ(i)(t) > α · σz

}
. (14)

This is an indicator variable representing whether it is worth targeting policyholder i at time t,
thus, the corresponding list of targetted policyholders is

T (t) =
{
i | ⊚(i)

∗ (t) = 1
}
. (15)
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In this longitudinal setting, we compute the individual CLV for every subject and at any ob-
servation time. This allows us to build a complete CLV trajectory for every policyholder and
derive a longitudinal lapse management strategy (LLMS) evaluation measure based on CLV. In
this context we can derive a precise definition of LLMS from Definition 1:

Definition 2 (Longitudinal lapse management strategy (LLMS))
A T-years lapse management strategy is modeled by offering an incentive η(i) to subject

i if she is targeted. The incentive offered is expressed as a percentage of her face amount at
the observation time and is accepted with probability γ(i). Contacting the targeted policyholder
has a fixed cost of c. A targeted subject who accepts the incentive will be considered an
“acceptant” who will never lapse, and her probability of being active at year t ∈ [0, T ], given
the information available until then, is denoted r

(i)
acceptant(t | X (i)(t)). Conversely, a subject who

refuses the incentive and prefers to lapse will be considered a “lapser”, and her probability
of being active at year t, given the information available until then, is denoted r

(i)
lapser(t | X

(i)(t)).

Those probabilities are used to derive a dynamical profit-driven measure z(i)(t) based on
CLV. For any targeted policyholder and any confidence level α desired by the insurer, there is
a unique future time t

(i)
∗ ≥ T (i) when offering the incentive is optimal, which yields a maximal

profit of ẑ
(i)
∗ . If all policyholders in T (t) are targetted at time t, the LLMS generates a profit of

RG(t,p,η,γ, c, T, α) =
∑

i∈T (t)

ẑ(i)(t). (16)

If all policyholders are targetted at the optimal time t
(i)
∗ ≥ t, the LLMS induces a gain for the

life insurer of

∗
RG (t,p,η,γ, c, T, α) =

∑
i∈T (t)

ẑ
(i)
∗(

1 + d
t
(i)
∗

)∆t
, with ∆t = t

(i)
∗ − t. (17)

By contrast with previous approaches ((see Loisel et al. (2021); Valla et al. (2023)), we chose
to add a confidence level α to this indicator. Setting α = 0 means that the prediction ẑ(i)(t) is
trusted with 100% confidence by the insurer, whereas letting α take higher values ensures that
ẑ(i)(t) is positive with a given confidence interval.

Another novelty here is the time dynamic of those results. Not only can we predict
whether it is worth targeting a given policyholder, but we can also predict whether there
will be some point in the future when targeting her will be more profitable. Predicting the
trajectory of z(i)(t) at future time points requires projecting the time-varying covariates at
those future time points. It can be done by either modeling such covariates individually or
setting assumptions. It is trivial for covariates such as age or year but more complex for
stochastic covariates such as the face amount. This framework does not aim to answer this
question, and we assume in our application that stochastic covariates remain constant and
equal to their last observed value. Regardless of the assumptions, the framework allows adding
a time dimension to the LMS optimization and marketing decision-making. It is also worth
noting that our developed framework is consistent in the time-invariant case. By design,
it is also fully applicable with uncensored observations, or left-truncated ones. That shows
our two-step framework’s broad effectiveness and applicability regardless of right-censorship,
left-truncation, risk factor, time-varying covariates or time-varying effects. In that sense, it is
a generalized framework for lapse management strategy in life insurance.
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3 Application

3.1 Data

Our framework is inspired by a real-world life insurance dataset used in Valla et al. (2023). It
initially contains the most recent information from 248 737 unique policies contracted between
1997 and 2018 and 235 076 unique policyholders. A single row originally represented a unique
pair policy/policyholder, identified by a unique ID and denoted as a subject. For practical
reasons, we restain our application on a 10,000-subjects subset of this original dataset, but the
astute reader will find more information about the complete one in the original article. The
10,000 rows dataset containing the last available information for the 10,000 selected subjects
will be denoted Dlast, here is a subset for illustrative purposes:

ID EVENT PRODUCT SEX SENIORITY Fi CLAIM CNTRCTS AGE YEAR

25737 1 1 1 17 0,73 0 2 76 2015
117322 1 1 2 10 4,32 0 1 63 2012
1322 0 1 2 20 9,82 0 1 75 2019
37433 2 1 2 14 0,99 -50,49 1 88 2011
23902 0 1 1 20 32,66 -13,12 2 71 2019
219281 0 2 2 8 7,08 0 2 71 2019
160112 0 1 2 15 0,04 0 1 51 2019
53108 2 1 2 12 13,11 0 1 92 2010
166078 1 2 2 5 9,02 0 1 64 2013
139644 0 1 1 16 5,65 -107,59 1 66 2019

Table 2: Dlast random subset

Here, we were able to retrieve the longitudinal history of every subject present in Dlast: this
means that for every policy and policyholder, we observe every payment, lapse, fee, profit
sharing or discount rate from the policy subscription to the most updated information to date
along with baseline covariates such as gender or age at subscription. For operational reasons,
the longitudinal data are here measured and reported yearly and organized as follows1:

ID EVENT START END PRODUCT SEX SENIORITY Fi CLAIM CNTRCTS AGE YEAR

46784 0 0 1 3 2 0 8,38 0 1 66 2013
46784 0 1 2 3 2 1 8,40 0 1 67 2014
46784 0 2 3 3 2 2 8,57 0 1 68 2015
46784 0 3 4 3 2 3 11,90 0 1 69 2016
46784 0 4 5 3 2 4 12,10 0 1 70 2017
46784 0 5 6 3 2 5 12,28 0 1 71 2018
46784 1 6 7 3 2 7 15,06 -15,06 1 72 2019

7825 0 0 1 2 2 0 3,02 0 1 81 2016
7825 0 1 2 2 2 1 3,05 0 1 82 2017
7825 0 2 3 2 2 2 3,10 0 1 83 2018
7825 0 3 5 2 2 5 3,15 0 1 84 2019

264309 0 0 1 3 2 0 2,61 0 1 66 2016
264309 0 1 2 3 2 1 2,64 0 1 67 2017
264309 0 2 3 3 2 2 2,67 0 1 68 2018
264309 0 3 5 3 2 5 3,48 0 1 69 2019

Table 3: Dlong random subset

Moreover, all the covariates describing financial flows are observed as cumulated over the years.
For a subject that subscribed in year N: its payment variable for year N observation contains

1But it is worth mentioning that covariates in actuarial datasets are usually updated in real-time. In that case,
the framework detailed here still applies.
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the sum of all payments that occurred in year N, its payment variable for year N+1 contains
the sum of all payments that occurred up to year N+1, included, and so on for the years after.
This longitudinal dataset will be denoted Dlong. It contains 126,865 observations, in other
words, almost 13 for each subject.

For privacy reasons, all the data, statistics, product names and perimeters presented in
this paper have been either anonymized or modified. All analyses, discussions, and conclusions
remain unchanged.

3.2 Application: survival step

3.2.1 Survival analysis with time-varying covariates

The survival step, described in Section 2 requires survival tree-based models that can handle
longitudinal time-varying covariates. Most survival tree-based models are analogous to regular
tree-based models: survival trees work similarly to regular decision trees, creating partitions of
the covariate space. What differentiates them is the splitting criterion that splits by maximizing
the difference between two considered child nodes. Typically, at each node and for each split
considered, a log-rank test is used to test the null hypothesis that there is no difference between
the child nodes in the probability of an event at any time. The split that minimizes the p-
value is then selected. By extension, a random survival forest is a random forest of survival trees.

Many survival trees also inherit the inability to deal with time-varying and longitudinal
covariates. Indeed, let x1(t) be a numerical time-varying covariate. For a single tree, the
splitting rule should be able to split subjects into two child nodes at each node. It would
then be a rule of the form “x1 ≤ s”. A subject for which this rule is true ∀t will go in one
child node without any ambiguity. On the other hand, the general case where the rule is true
for some periods but false for anywhere else is unclear and needs to be addressed. Note that
the same reasoning can be applied to categorical time-varying covariates as well. A simple
idea is that the subject’s observations in periods where the splitting rule is true would go
to the left node, and the other would go to the right node, thus dividing one subject into
several pseudo-subjects. With a longitudinal dataset, that method just implies considering
all rows as independent: it cleverly addresses the time-handling issue but creates correlated
right-censored and left-truncated (LTRC) observations that need special treatment. In such
models, any individual can be spread in many different tree leaves - even if, at any fixed time,
any individual will have a single observation that will fall into one unique leaf. Fu and Simonoff
(2016a) proposed a model based on those ideas: they allowed subjects to be divided into
pseudo-subjects and adjusted the log-rank test in the splitting procedure to accommodate for
left truncation and ensure that the independence implicit assumption does not lead to biased
results2.

LTRC trees and forests yield an estimate of the survival function:

Ŝ
(
t | X (i)(t)

)
= P (T (i) > t | X (i)(t)).

Bagging models of such trees then emerged (Yao et al. (2020)), with the usual prediction
advantages and interpretability drawbacks of such bagging techniques3. In order to evaluate

2See Fu and Simonoff (2016a) for details on that point.
3Both methods have been implemented in the R packages LTRCtrees and LTRCforests, and are considered
state-of-the-art methods for tree-based survival analysis with time-varying covariates.



3 Application 14

the survival models’ performance, we chose to use the time-dependent Brier score (td-BS),
integrated Brier score (td-IBS), Brier skill score (td-BSS) and integrated Brier skill score (td-
IBSS) for longitudinal data (as in Yao et al. (2020)). More details about these metrics can be
found in Appendix A.3.

3.2.2 Comparison settings

We propose here a comparison framework between the different models. We want to compare
each model performance trained with and without longitudinal data but also compare them
on different tasks. Typically, predictions on Dlast and Dlong do not answer the same questions.
The former aims at predicting the last observation of the target variable, and the latter aims at
predicting its value at any given point in time. Graphically, depending on whether or not the
model has been trained on longitudinal data or only on the most recent observation and with
the different prediction goals described, this naturally designs the following four prediction
problems:

(a) Trained on Dlast
train / Predicting on Dlast

test (b) Trained on Dlong
train / Predicting on Dlast

test

(c) Trained on Dlast
train / Predicting on Dlong

test (d) Trained on Dlong
train / Predicting on Dlong

test

Figure 3: Different types of longitudinal prediction settings

Every trajectory represents the evolving information contained in the longitudinal covariates
of a single subject. The ends of those trajectories are the last observations of every subject (at
a time point being the minimum between the true survival time and censoring time). Setting
(a) is the classical setting, where any subject has only one measurement, and the prediction
task is also to predict a variable at one given time point. Conversely, setting (d) represents the
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longitudinal setting, where models are trained with longitudinal time-varying covariates and
where the prediction task aims at retrieving the value of a target variable at any given time
point during a subject’s lifetime. Setting (c) is uninsightful as a model trained on aggregated
data cannot retrieve longitudinal information and is expected to perform poorly by design.
Intermediate setting (b) is also insightful as it can be used to highlight the added value of the
information contained in longitudinal data when training a model.

The matrices rlapser and racceptant are estimated with the algorithms LTRCRRF and
LTRCCIF4 from the R package LTRCforests, described in Section 3.2.1. In order to assess the
advantages of that longitudinal model, we compare its results with those obtained with Gra-
dient Boosting Survival Model (GBSM) as it proved to be a high-performing non-longitudinal
model on that dataset (See Valla et al. (2023)). The comparison is made on a time-varying
survival evaluation metric: the time-dependent Brier Skill Score for longitudinal data (See
Appendix A.3).

3.2.3 Results

First of all, in order to assess the superiority of longitudinal models in a longitudinal context,
we need to compare all our considered models in the classical aggregated setting: with training
and testing phases on subsets of Dlast. We can see that in this non-longitudinal setting, GBSM
and LTRC models (LTRCRRF and LTRCCIF) are close in terms of BSS:

racceptant rlapser

Figure 4: td-BSS of models trained on Dlast
train and tested on Dlast

test

The IBSS indicates that LTRCRRF performs slightly better than LTRCCIF, hence we will
drop LTRCCIF for the rest of this application. In practice, the underlying true survival
distribution may possess a complex structure with time-varying covariates and time-varying
effects. The cross-validated Brier scores and Brier Score Skills graphs can potentially lead
decision makers to choose different survival estimations at different time points and not a
unique choice of method for all time points.

On the other hand, the difference between those models is evident and significant when-
ever they are trained on longitudinal data. The graphs below show the difference in terms of
BSS over time in prediction settings (b) and (d):

4In the following sections, we consider LTRCRRF and LTRCCIF: LTRC forests respectively based on regular
CART and conditional inference survival tree algorithms. More insights about those models can be found in
the references detailed in section 3.2.1
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racceptant rlapser

Figure 5: td-BSS of models trained on Dlong
train and tested on Dlast

test - Setting (b)

racceptant rlapser

Figure 6: td-BSS of models trained on Dlong
train and tested on Dlong

test - Setting (d)

The conclusion regarding prediction richness contained in longitudinal data and accuracy
benefits from using dedicated longitudinal methods is clear. Longitudinal models perform
significantly better, and GBSM brings minor improvement over näıve models.
In the end, we select LTRCRRF as it shows to be the best model when trained on longitudinal
data. Estimating the retention probabilities constitutes the first part of our framework. It
is to be noted that the results of that modeling approach in terms of retention gain are
not necessarily better than the results obtained without the use of longitudinal data in the
estimation of rlapser and racceptant. Those results are more precise as they model the CLV
more accurately, but that does not indicate a priori that they will lead to higher profits for the
insurer. They only describe a more accurate vision of the expected profit or loss with a given
LLMS.

With that, we determine the conditional retention probabilities for every observation to
derive the trajectory of the observed individual CLV and RG. We can retrieve how a given
subject’s retention probabilities are updated with time. We take the example of a randomly
selected subject and plot her retention probability at every observation time:



3 Application 17

racceptant rlapser

Figure 7: Longitudinally updated retention trajectories for a random subject

The further in time the observation is, the more pellucid the survival curve is. The individual
retention curves are updated as new measurements are available.

3.3 Application: regression step

3.3.1 Regression analysis with time-varying covariates

The framework introduced in Section 2.2 requires using a regression model allowing for longitu-
dinal data. We chose to use mixed-effect tree-based models. First of all, a mixed-effect model
is designed to work on clustered data in general, including longitudinal data (see Verbeke et al.
(1997)). Sela and Simonoff (2012), Capitaine et al. (2021), Fu and Simonoff (2015) and Hajjem
et al. (2014) describe a procedure to fit a mixed effect model using tree-based models through
an iterative two-step process5. Mixed effect tree-based algorithms are designed to take clustered
data as input. By considering subjects as clusters, they can grasp the dependence structure
within the different observations of a single subject and can be used for longitudinal analysis
(see Verbeke et al. (1997)). The underlying idea behind Mixed effect tree-based algorithms is to
assume a mixed model for the longitudinal outcome and estimate the random effect parameters
with a tree-based model. They estimate the random effects of a mixed model in the first step,
then construct a regression tree with the fixed-effect covariates on the original outcome, exclud-
ing the estimated random effect. The idea is to repeat these two steps: the model parameters
and the random effects are estimated iteratively until convergence, similar to the two-step well-
known EM optimization procedure. Suppose that we have pf covariates with a fixed effect and
ps covariates with a random effect. Initially, a parametric linear mixed-effect model is given by

z(i) = F (i)⊤β + S(i)⊤b(i) + ϵ(i). (18)

where z(i) is the n(i) × 1 longitudinal vector outcome of subject i, β is the pf × 1 vector of
the fixed effect coefficients and F (i) is the n(i) × pf design matrix of the covariates with a
fixed effect. The quantity b(i) is the ps × 1 vector of random effects and S(i) is the n(i) × ps
design matrix of the covariates with a subject-specific effect. By construction, F (i) and S(i)

are subdivisions of the covariate space. The error term ϵ(i) is the n(i) × 1 vector of residuals,
assumed to come from a normal distribution with mean 0 and variance σ2, and we assume
b(i) ∼ N (0, D), ϵ(i) ∼ N (0, σ2 · In(i)). Eventually, D is the ps × ps variance-covariance matrix
for the random effects.

5The algorithms corresponding to their respective work are available in the R packages REEMtree and LongituRF,
the R function “REEMctree” and the Python library MERF.
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In order to model a longitudinal outcome, a mixed model effect is assumed:

z(i) = f(F (i)) + S(i)⊤b(i) + ϵ(i). (19)

Here the linear structure of the fixed effect part of the model is generalized: the fixed effects are
described by a function of the fixed-effect covariates f , which is the part that a tree-based model
will estimate. In MERT (Hajjem et al. (2011)), the tree-based model is a single regression tree,
in MERF (Hajjem et al. (2014)), it is a random forest, whereas in RE-EM (Sela and Simonoff
(2012); Fu and Simonoff (2015)) it can be both. A general algorithm for such mixed effect
tree-based models can be described as follows:

Algorithm 1: Mixed effect tree-based model pseudo-code

Data: D, a longitudinal dataset with an outcome z(i), ∀i ∈ [1 . . . N ]

Result: ẑ(i), f̂ , b̂(i), ϵ̂(i), σ̂(i)2 , D̂(i), ∀i ∈ [1 . . . N ]

Initialize: b̂← 0, σ̂2 ← 1, D̂ ← Ips ;
repeat

1. z(i) ← z(i) − S(i)⊤bi;

2. Fit a tree-based model on z(i) and obtain f̂ ;

3. Infer the updated random effects parameters b̂(i);

4. Compute ϵ̂(i) = z(i) − f̂(F (i))− S(i)⊤b̂(i);

5. Update σ̂(i)2 and D̂(i);
6. Update GLL, the generalized log-likelihood criterion used to control for convergence;

until GLL < some convergence threshold ;

For further details about all these elements - and notably, the update formulas for σ̂(i)2 , D̂(i) and
GLL - we refer the astute reader to the work of Hajjem et al. (2014). Once fit, the mixed-effect
tree-based model can be used to predict the vector ẑ(i), the longitudinal predicted trajectory
of an LMS-induced profit for any subject. For subjects with past observations included in the
training dataset, the prediction includes the random effect correction:

ẑ(i) = f̂(F (i)) + S(i)⊤b̂(i).

For a new subject, with a first observation in the testing set, the mixed-effect prediction only
includes the fixed effect:

ẑ(i) = f̂(F (i)).

Moreover, making predictions with such models at given times imposes that we know the value
of the longitudinal covariates at those times. This implies that to compute future values of
z(i)(t), future unknown values of the longitudinal covariates are needed. In other words, no
predictions for any subject are made beyond that subject’s last observation time value unless
we assume future values of the longitudinal covariates.

3.3.2 Results

This section contains the results of the regression step of our framework in light of the various
settings illustrated in Figure 3. In order to model whether a policyholder is worth targeting or
not, we fit a mixed-effect tree-based regression model to our longitudinal dataset with z(i), the
vector of n(i) observations as a longitudinal target variable for every subject i. As z(i) can take
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any real value, the mean squared error (MSE) in the tree-based part of the Mixed-effect model is
to be preferred. For a given LLMS, the survival step allows us to compute z(i), the longitudinal
variable representing the expected trajectory of the profits or losses generated by subject i.
Then, by estimating z(i) on various LLMS with a mixed effect tree-based model, we can hope
to find an optimal retention strategy in the sense that it will maximize the expected gain for
the life insurer. For this application, we assume parameters p, η, γ, and d to be constant over
all policyholders and over time and we fit a Mixed effect Random forest (MERF). We suggest
testing five LLMS:

• one that is obviously and extremely bad and would lead to a loss for the insurer, if applied
to a large number of subjects (LLMS n°1)

• one that is unrealistically good, with a small incentive largely accepted and would lead to
a sure profit for the insurer (LLMS n°2)

• three realistic strategies, with various degrees of aggressivity (LLMS n°3, 4 and 5)

We train our targeting mixed-effect random forest model on all observations and their respective
retention probabilities up to 2020 and test it on all subjects with an observation in 2021. We
can note that in 2021, there are predictions on subjects with past observations prior to 2021
but also predictions on new subjects not included in the training set. Overall, the testing set
contains “only” 4,472 unique policyholders, hence the order of magnitude of the retention gains
presented below. We also chose a very conservative risk parameter, that greatly reduces the
number of subjects targetted.

Here are the five strategies, and the corresponding expected profit or loss6 they induce:

LMS n° p η γ c d T RG # targets Campain investement

1 1% 1% 90% 200 2.00% 10 0 0 0

2 5% 0.01% 80% 5 2.00% 20 134,347.54 141 705

3 3% 0.009% 40% 15 1.50% 20 3,112.03 98 1470

4 2.5% 0.005% 15% 10 1.50% 20 2,940.51 94 940

5 3% 0.001% 5% 5 1.50% 20 2,962.68 122 610

Table 4: Various LMS results with our framework

Evidently, the main feature proposed by this framework is that it allows the decision maker
to choose the best LLMS among realistic ones. In our application, we immediately see that
in terms of profit for the insurer, strategy n°3 is optimal, compared to LLMS n°4 and 5. On
the other hand, other factors, such as the number of policyholders to target or the cost of the
campaign, are also displayed. they can prove to be critical elements of decisions in a real-world
context, as some life insurers could have a limited commercial workforce or investment budget.
For instance, an insurer that can only contact up to 95 policyholders this year would choose
LLMS n°4, and another that would be limited by a 1,000€ budget for retention would choose
LLMS n°5. Moreover, the bad LMS n°1 demonstrates that this framework allows us to detect
whenever a strategy should not be carried out. In that case, the conclusion of the targeting

6As defined in Definition 2
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step is not to target any policyholder, thus limiting the insurer’s loss to 0, which is arguably a
desirable feature. Finally, the unrealistically good LLMS n°2 shows that this framework cannot
detect a “too good to be true” strategy with an unrealistic pair of parameters (η, γ). This
emphasizes the fact that taking this interdependency into account directly in the framework
should prevent such unrealistic scenarios and avoid the life insurer the task of selecting in
advance a consistent set of LLMS parameters. Another novelty in this framework is the
longitudinal structure of the results. Indeed, we can easily retrieve the expected individual loss
or profit at any time. For example, here is a plot of the expected profits generated by targeting
randomly selected policyholders:

Projections of targetted profits over time

Most policyholders have a ẑi with a decreasing future trajectory. It makes sense as time is
positively correlated with one’s policy probability to end: the more the insurer waits to offer
an incentive to a subject, the less profitable it becomes. Usually, if a policyholder does not
generate profit by being targeted now, it is even less relevant to target her later in time. For
specific profiles, the lapse risk grows faster than the death risk. It can then become more
profitable to offer an incentive as the lapse risk increases if the death risk is insignificant.

In any case, we show graphically that depending on the level of risk α that the insurer
consent to take, the time at which it is optimal to apply an LLMS to a given policyholder
changes. The longitudinal trajectory being estimated with a linear model, the framework as
it stands should not be used to evaluate the time when offering an incentive is optimal. It
rather yields information about individual tendencies and answers strategical questions: is it
profitable to target a given policyholder now? If not now, is it likely to become profitable
in the future? And if it is, should the insurer decide quickly or can it wait? The individual
intercepts and slopes of the future estimations of ẑ(i) answer those questions.

This example of a time-dynamic application shows that including longitudinal data in a
lapse management strategy can benefit a life insurer in terms of prediction accuracy and
decision-making.
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4 Conclusion, limitations and future work

In conclusion, this paper presents a novel longitudinal lapse management framework that is
tailored specifically for life insurers. The framework enhances the targeting stage of retention
campaigns by selectively applying it to policyholders who are likely to generate long-term
profits for the life insurer. Our key contribution is the adaptation of existing methodologies
to a longitudinal setting through the use of tree-based models. The results of our application
demonstrate the advantages of approaching lapse management in a longitudinal context.
The use of longitudinally structured data significantly improves the precision of the models
in predicting lapse behavior, estimating customer lifetime value, and evaluating individual
retention gains. The implementation of mixed-effect random forests enables the production
of time-varying predictions that are highly relevant for decision-making. The framework is
designed to prevent the application of loss-inducing strategies and allows the life insurer to
select the most profitable LMS, under constraints.

However, our work has several limitations that must be acknowledged:
Firstly regarding the framework: the longitudinal lapse management strategy is defined
with fixed incentive, probability of acceptance and cost of contact, regardless of the time in the
future. Moreover, the γ parameter is constant for a given policyholder, but it could be seen as
the realization of a random variable following a chosen distribution. Those points may restrict
the framework’s practical effectiveness. Moreover, we did not account for the interdependence
between different LLMS parameters, which could lead to the implementation of unrealistic
strategies. Additionally, the introduction of the confidence level α could be discussed further
as it could be linked with actuarial risk measures such as the Value-at-Risk. Eventually, the
article describes a discrete-time longitudinal methodology, but in general, the insurer has
access to the precise dates of any policy’s financial flows. Thus, a continuous-time framework
could also be implemented.
Secondly regarding the application: a lot of assumptions have been formulated in the
application we propose such as constant parameters where the framework allows them to
vary across time and policyholders, or the use of MERF where more complex and completely
non-linear models could be tried.
Finally regarding longitudinal tree-based models: the use of LTRC and MERF requires
the management of time-varying covariates with the pseudo-subject approach, which has prac-
tical limitations and prevents the longitudinal data from being predicted alongside the target
variable. Future works could address the latter remark using joint models (see Appendix A.1
for references).

The limitations of the general framework should be discussed and tackled in forthcom-
ing research. Other use-case and applications, with sensitivity analysis over various sets of
parameters, models and datasets could constitute an engaging following work. Pseudo-subjects
limitations are inherent in the current design of longitudinal tree-based models. Future work
will involve developing innovative algorithms to address these issues. Overall, this article
contributes to the field of lapse analysis, and our framework has the potential to improve
retention campaigns and increase long-term profitability for a life insurer.
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A Appendix

A.1 Note on parametric models

This work will focus on the ability of non-parametric tree-based approaches to perform in both
steps of our framework. For comparison’s sake, a semi-parametric survival model had been
fitted in Valla et al. (2023); it is important to explain why we will not investigate such models
here.
Time-varying Cox-like models also exist and can even take competing risks into account. They
can be compared and yield survival curves for any individual up to their last observed time.
A complete implementation of those techniques can be found in the R package timereg by
Scheike and Martinussen (2006); Scheike and Zhang (2011).
Moreover, other prediction biases can appear in the presence of endogenous longitudinal
covariates, with Cox-like models Austin et al. (2019), which is typically our situation. This is
why we decided to leave such modeling approaches out of this paper.

It is to be noted that a statistical learning approach addressing research questions in-
volving the association structure between longitudinal data and an event time exists: joint
models. This type of modeling technique is primarily used in time-to-event contexts, with
censored data and can handle multiple exogenous and endogenous longitudinal covariates with
possibly multiple competing risks. Joint models outweigh time-dependent Cox models in terms
of prediction; by predicting both the longitudinal trajectories and the survival probabilities
simultaneously, it is possible to compute the conditional probability of surviving later than
the last observed time for which a longitudinal measurement was available. They have been
extensively studied and extended and have proved to yield competitive predictive results for
relatively small datasets. A complete overview of such models can be found in Rizopoulos
(2012), and their implementation is available in R packages JM, JMBayes and JMBayes2.
Joint models are performant but computationally expensive for large datasets and multiple
longitudinal covariates or outcomes. We do not implement this approach in this paper for
those reasons and instead implement tree-based models handling time-varying covariates that
we will compare to tree-based models with time-fixed covariates.

A.2 Model selection methodology

Regardless of their size, Dlast and Dlong both relate to 10,000 subjects. In order to tune the
models detailed in the next Sections, we adopt a 5-fold Monte-Carlo cross-validation method-
ology. We randomly select 80% of subjects’ observations in Dlast and Dlong as training sets,
and the remaining 20% of subjects’ observations go in testing sets. Models are trained on the
training sets and tested on both training and testing sets to control for overfitting. We repeat

this step 5 times such that we obtain 20 different datasets:
kDlast

train,
kDlast

test ,
k
Dlong

train and
k
Dlong

test

for k ∈ [1, ..., 5]. We can illustrate this as follows:
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In the following Sections, this will be our methodology for studying the mean and variance
of all considered models’ performances. All presented conclusions are the results of a 5-fold
Monte-Carlo cross-validation.

A.3 Brier scores and Brier skill scores

A.3.1 BS

Let D be a longitudinal life insurance dataset and let us assume that only one event can occur.
Survival models yield Ŝ(t|X (i)(t)) the predicted probability of staying active up to time t given

all past observations x(i), Ĝ the Kaplan-Meier estimate of the censoring distribution and Ŵ (i)(t)
the corresponding inverse probability of censoring weights (IPCW), the time-dependent Brier
Score is given by:

B̂S(t, Ŝ;D) = 1

|D|
∑
i∈D

Ŵ (i)(t)
[
δ(i)(t)− Ŝ

(
t | X (i)(t)

)]2
.

With the notations introduced in Section 2.1, the IPCW are being computed as follows:

Ŵ (i)(t) =

(
1− δ(i)(t)

)
∆(i)

Ĝ
(
T (i)

) +
δ(i)(t)

Ĝ(t)
.

The td-BS yields a vector of scores, each evaluated at different time points. In order to get a
unidimensional evaluation metric, we also compute the time-dependent integrated Brier Score
(td-IBS), defined as :

ÎBS(Ŝ;D) = 1

|D|
∑
i∈D

1

T (i)

∫ T (i)

0
Ŵ (i)(t)

[
δ(i)(t)− Ŝ

(
t | X (i)(t)

)]2
dt.
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A.3.2 BSS

The td-BS and td-IBS are consistent with our framework but have some drawbacks as they do
not give insights regarding the models’ performance compared to näıve approaches. In order
to do so, we use the Brier Skill Score (BSS) and integrated Brier Skill Score (IBSS), defined as
follows:

B̂SS(t, Ŝ;D) = 1− B̂S(t, Ŝ;D)
B̂S(t, Ŝref ;D)

ÎBSS(Ŝ;D) = 1− ÎBS(Ŝ;D)
ÎBS(Ŝref ;D)

.

BSS measures the BS improvement over some reference metric. We see that it takes positive
(or negative) values whenever the B̂S(t, Ŝ;D) -respectively ÎBS(Ŝ;D) - is inferior (or superior)
to B̂S(t, Ŝref ;D) - respectively ÎBS(Ŝref ;D). Those reference metrics are the BS - respectively

IBS - obtained with Ŝref , a predicted probability of staying active up to time t constant and
equal to the proportion of active policies in D. The BSS and IBSS represent the improvement
in terms of Brier Score over a reference model: the higher, the better.

A.4 Estimation of π∗

Very intuitively, for policyholders linked to a non-active policy, the last observation ended
with either lapse or death and ∆(i) ̸= 0. For any observation related to a policyholder that

eventually lapsed π
(i)
∗ = 1. For any observation related to a policy that eventually ended with

the policyholder’s death, we have π
(i)
∗ = 0. Deriving π

(i)
∗ is more complex for policyholders with

an active policy where we have

π
(i)
∗ = P (∆

(i)
∗ = 1|∆(i) = 0,X (i)(T (i))) =

P
(
∆

(i)
∗ = 1,∆(i) = 0 | X (i)(T (i))

)
P
(
∆(i) = 0 | X (i)(T (i))

) . (20)

By treating the competing risks within the cause-specific framework, we have that the proba-
bility of having an active policy, in other words having survived every cause of events, is the
product of the cause-specific probabilities (See Heisey and Patterson (2006)). Given the risk

profiles that we introduced in Section 1, we define r
(i)
lapser(t) the all-causes survival probability of

subject i at time t and r
(i)
acceptant(t) the death survival probability of subject i at time t. More-

over, in practice, we only have access to a limited history Tmax = max(T (i)), corresponding to

the longest time a policy was ever observed to last. In order to estimate π
(i)
∗ , we will consider

that the ultimate event time T
(i)
∗ is bounded by T . Thus we have

π
(i)
∗ =

1− r
(i)
lapser(Tmax)/

r
(i)
acceptant(Tmax)

r
(i)
lapser(T

(i))/
r
(i)
acceptant(T

(i))

=
r
(i)
acceptant(T

(i))

r
(i)
lapser(T

(i))
·

(
1−

r
(i)
lapser(Tmax)

r
(i)
acceptant(Tmax)

)
. (21)
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