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ABSTRACT

Slow or fast third-octave bands representations (with a frame
resp. every 1-s and 125-ms) have been a de facto standard for urban
acoustics, used for example in long-term monitoring applications.
It has the advantages of requiring few storage capabilities and of
preserving privacy. As most audio classification algorithms take
Mel spectral representations with very fast time weighting (ex. 10-
ms) as input, very few studies have tackled classification tasks using
other kinds of spectral representations of audio such as slow or fast
third-octave spectra.

In this paper, we present a convolutional neural network ar-
chitecture for transcoding fast third-octave spectrograms into Mel
spectrograms, so that it could be used as input for robust pre-trained
models such as YAMNet or PANN models. Compared to training a
model that would take fast third-octave spectrograms as input, this
approach is more effective and requires less training effort. Even
if a fast third-octave spectrogram is less precise both on time and
frequency dimensions, experiments show that the proposed method
still allows for classification accuracy of 62.4% on UrbanSound8k
and 0.44 macro AUPRC on SONYC-UST.

Index Terms— Convolutional Neural Network (CNN), Gener-
ative algorithm, third-octave spectrogram, Mel spectrogram, Urban
soundscape

1. INTRODUCTION

In recent years, various sound source classification models have
gained recognition for their robustness. Among them, YAMNet
[1] and PANNS [2] pre-trained models have emerged as powerful
models capable of predicting the presence of more than 500 sound
sources, thanks to their training on the extensive Audioset database
[3]. These models are widely recognized as among the most ef-
fective sound source classification models available and use Mel
spectral representations with a frame every 10-ms as input .

IEC 61672-1 [4] standardizes the measurement of fast (125-
ms) and slow (1-s) third-octave spectral representations, which have
been used in several noise monitoring applications [5 16} 7,89, 110].
Fast third-octave spectrograms offer several advantages over Mel
spectrograms for long-term monitoring applications. First, they
make recordings unintelligible and thus preserve privacy, as demon-
strated by Gontier et al. [11]]. Moreover, they are more lightweight,
with a bit rate approximately 138 times lower than that of 16bits,
32kHz, mono waveform recordings and about 30 times lower than
that of Mel recordings (see table[I] for precise references).

Gontier et al. [12] addressed multi-label classification tasks in
urban environments using a Convolutional Neural Network (CNN)
directly trained on third-octave spectrograms. While their model
showed good performance on the Cense Lorient dataset [8], it lacks
robustness on other third-octave recorded datasets. This limita-
tion arises partly from training the model on highly homogeneous
datasets. Pre-trained models such as YAMNet and PANNS, on the
other hand, have shown robustness in a variety of sound source clas-
sification tasks. Unfortunately, these models are trained on Mel
spectrograms with 10-ms frames, and can only consider the cor-
responding Mel representation as input.

To enable the direct use of those pre-trained models with other
types of spectrograms such as fast third-octave ones, we present in
this paper a transcoding method that converts fast third-octave spec-
trograms into Mel spectrograms. This transcoding operation is done
using a CNN module learned with a teacher-student approach that
leverages the pre-trained models’ outputs to reconstruct Mel spec-
trograms. While this study focuses on a specific fast third-octave
representation, we believe that the proposed method can be adapted
to any kind of spectral representation. Section[2]reviews prior work
on the transcoding task. Sections |3|and 4| outline our model archi-
tecture and training method. In section[3} we evaluate the perfor-
mances of the transcoder. Generated audio and open source code
are available online. [

2. RELATED WORK

To the best of our knowledge, no work is available for the task
at hand in audio processing specifically. In computer vision, sev-
eral methods have been proposed to address the task of convert-
ing one set of features to another set of features (feature transla-
tion) [13}114]. A pseudo-inverse can be employed to retrieve a Mel
spectrogram from a fast third-octave spectrogram and temporal in-
formation can be interpolated. This would result in a blurred Mel
spectrogram, which could be seen as analogous to a noisy image
in a denoising paradigm. Auto-encoding methods [15]], adversarial
methods [[16], and diffusion methods [17] have been used in super-
resolution and denoising tasks.

In contrast to previous works, our goal is to obtain generated
Mel spectrograms that can achieve similar output class distributions
as the original Mel spectrogram when processed by the pre-trained
model used for training the transcoder.

ICompanion website: https://github.com/modantailleur/
paperSpectralTranscoder
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3. METHODS

3.1. Spectral representations

In this study, we selected the Lorient Cense project fast third-octave
calculation method [8|] which involves computing 29 third-octave
bands within the frequency range of 20Hz to 12,5kHz, using a rect-
angular 125-ms temporal window.

It is worth noting that YAMNet and PANNs models require Mel
spectrograms as input, but the spectrograms used by these classifiers
differ slightly from each other (as shown in Table [T). Therefore,
we present two different transcoders in the subsequent sections to
match the input requirements of each pre-trained model.

spectral representation Mel Third-Octave

origin PANN  YAMNet Cense Lorient

sample rate 32kHz 16kHz 32kHz

. . 1024 400 4096

window size G2ms)  (25ms)  (128ms)

it size 1024 512 4096
(32ms) (32ms) (128ms)

hop size 320 160 4000
(10ms) (10ms) (125ms)

window hann hann rectangular

frequency bins 64 64 29

min frequency 50Hz 125Hz 20Hz

max frequency 14kHz 7,5kHz 12,5kHz

mel normalisation slaney - -

mel formula slaney htk -

log offset 1.0 0.001 19.95

bit rate 103kb/s  100kb/s 3,71kb/s

Table 1: Differences between PANN (ResNet38) and YAMNet Mel
spectral spectrograms, and Cense third-octave spectrograms

3.2. Model

The proposed CNN transcoder model, consists of two parts: a PINV
transcoder and a Convolutional Neural Network (CNN) (see Figure
Q)‘ The PINV transcoder presented in figure |I| first reconstructs
the full-band spectrogram from the third-octave spectrogram using
a pseudo-inverse method. Then, it performs time-axis interpola-
tion to match the time dimension of the target Mel spectrogram.
Finally, the log Mel filterbank is applied to the full-band spectro-
gram, resulting in a roughly predicted Mel spectrogram. This PINV
transcoder conveniently matches the target Mel spectrogram dimen-
sions, and is adaptable to various undersampled spectral data.

The CNN part then refines the Mel spectrogram by adding
residual information to it (see figure ). The CNN architecture,
which is identical to the one used by Lagrange et al. [18], is fully
convolutional and has several layers, each employing rectified linear
units (ReLU) activations. In the following sections, we refer to our
transcoder, which is trained on pre-trained models’ output logits, as
CNN trained on logits (or CNN-logits).

3.3. Teacher-student approach

We take a teacher-student approach to train our CNN model in or-
der to generate a Mel spectrogram by taking into account the output
of YAMNet or PANNs pre-trained classifiers (see figure [3). We
selected the ResNet38 PANN model, which has 73,783,247 param-
eters, as it is the most performing model to date that uses Mel spec-

21-22 September 2023, Tampere, Finland

PINV transcoder Mel

Linear log Mel
Interpolation filterbank

(8,2049) (101,2049)

third-octave
spectrogram

(8,29)

spectrogram

(101,64)

Figure 1: PINV transcoder architecture, to recover a 1s sample
PANN Mel spectrogram from a 1s sample fast third-octave spec-
trogram

CNN transcoder Mel
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transcoder

Figure 2: CNN transcoder architecture, to recover a Is sample
PANN Mel spectrogram from a 1s sample fast third-octave spec-
trogram
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Figure 3: PANN CNN transcoder trained with a teacher-student ap-
proach (CNN-logits) using the Binary Cross-Entropy (BCE) loss
function

trograms as input [2]]. We also consider the well-established YAM-
Net classifier which has a lower number of parameters: 3,740,425.
PANNSs and YamNet parameters are not updated during the CNN
transcoder training, reducing computational complexity and ensur-
ing broader applicability to pre-trained classifiers using similar Mel
spectrogram inputs.

4. EXPERIMENTAL PROTOCOL

4.1. Data

The dataset used for training and evaluating our models is the TAU
Urban Acoustic Scenes 2020 Mobile dataset [[19]]. This dataset con-
sists of 10-second audio clips from 10 different acoustic scenes,
namely airport, indoor shopping mall, metro station, pedestrian
street, public square, street with a medium level of traffic, travel-
ing by tram, traveling by bus, traveling by an underground metro,
and urban park. The dataset includes recordings from multiple de-
vices that overlap in the given development subset. As the evalu-
ation dataset has not been released yet, we use only the develop-
ment subset for training and evaluating our models. To ensure non-
overlapping data, we use only data from device A, which provides
29h20 of audio. We randomly split the development subset into
training (75%), validation (12.5%), and evaluation (12.5%) sets. All
audio files are normalized based on the maximum absolute value.
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4.2. Baselines

In this study, we compare the performance of the CNN-logits
transcoder with the performance of a reference PINV transcoder
(as shown in Figure[I)), which does not require any learning.

In addition, we explore an alternative training method that is
solely based on the Mean Squared Error (MSE) loss between the
generated Mel spectrogram and the ground truth spectrogram, with-
out relying on a teacher-student approach. This transcoder will be
referred to as CNN trained on mels (or CNN-mels) in the subse-
quent sections.

To further evaluate the performance of our proposed teacher-
student approach, we compare it with other teacher-student meth-
ods that are not explicitly designed for transcoding fast third-octave
spectrograms into Mel spectrograms (see figure f). Specifically,
we retrain the PANN and YAMNet models, as well as efficient
nets (efficient net by with 4,682,059 parameters and efficient net
b7 with 65,135,455 parameters) [20], using pseudo-inverted Mel-
spectrograms as input with the method illustrated in Figure [T} In
the subsequent sections, we will refer to these retrained models as
PANN-1/3-oct, YAMNet-1/3-oct, Effnet-b0, and Effnet-b7.

Mel .
spectrogram PANN C,
(101,64) .

Cs
i
third-octave Mel
spectrogram PINV spectrogram - 1
classifier C;

C

Figure 4: Classifier trained with a teacher-student approach, to
match PANN outputs

4.3. Training procedure

Both types of training methods, i.e., with and without teacher-
student approach, employ Adam optimizer [21] during optimiza-
tion.

For the CNN architecture, we have conducted experiments with
varying kernel sizes, numbers of layers, dilations, numbers of chan-
nels, and learning rates. Only the models with parameters leading
to the best loss are presented in the subsequent sections.

All the models are trained for 200 epochs, with a batch size of
64, leading to 2,472,000 iterations. We checked empirically that
convergence is reached for all models.

4.4. Metrics

To assess the performance of the proposed methods, we introduce
the Prediction to Prediction accuracy on First Class (PtoPa-FC) met-
ric, and calculate it on our evaluation subset of the TAU Urban
Acoustic Scenes 2020 Mobile dataset. This metric measures the
accuracy of the pre-trained model that uses transcoded Mel spec-
trograms as input in predicting the same first class as that of the
pre-trained models that use ground truth Mel spectrograms as input.
However, it should be noted that this metric only provides informa-
tion regarding the accuracy of the first predicted class. Therefore,
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we also analyze the KL-divergence between the distribution of the
two predictions vectors. All predictions are based on 10-second au-
dio excerpts.

To further evaluate the effectiveness of our models, we subject
them to testing on two additional annotated datasets: SONYC-UST
[22] and UrbanSound8K [23]. However, the output classes of the
pre-trained PANN and YAMNet models do not correspond exactly
to the target classes of these datasets. To address this issue, we pro-
pose to augment the pre-trained models with two additional fully
connected layers that have an intermediate size of 100. These lay-
ers are trained on the training subset of SONYC-UST and evalu-
ated on the test subset, and we employ cross-validation for Urban-
Sound8K as recommended by the authors. The objective of the
fully connected layers is to aggregate the 527 (or 521) input classes
of the pre-trained models into the 8 (or 10) target classes of Urban-
Sound8K or SONYC-UST datasets, respectively. Importantly, we
only train the additional fully connected layers, and the pre-trained
models are not re-trained during this process. We apply a threshold
of 0.5 for the multi-label task of SONYC-UST, and we consider the
class with the highest output value as present for UrbanSound8K
multi-class classification task. We found that our proposed method
outperforms a manual aggregation method similar to the one pro-
posed by [24]], which gave poorer results on both datasets using our
models.

5. RESULTS

Table [2] summarizes the performance of the methods on the TAU
Urban Acoustic Scenes 2020 Mobile dataset. The parameter tun-
ing procedure mentioned in section[4.3]identify a CNN model with
a kernel size of 5, no dilation, 64 channels, and 5 layers, trained
with a learning rate of 10™2. This model contains 192,961 parame-
ters, which represents 0.26% of PANN’s and 5.2% of YamNet’s to-
tal number of parameters. Our CNN-logits model outperforms the
baseline models for PANN, achieving a PtoPa-FC of 89.3% and a
lower KL-divergence than the baselines. When YAMNet is used as
the target classifier, our CNN-logits model achieves a higher PtoPa-
FC than the other models. Notably, the KL-divergence of our model
is higher than that of the YAMNet-1/3-oct model. This suggests that
while its predicted first class is closer to that of YAMNet, the over-
all distribution of predictions across all classes is further away from
the ones of the pre-trained model.

The classification results of PANN and YAMNet models on
the SONYC-UST and UrbanSound8k datasets using both original
and transcoded Mel spectrograms as input are shown in Table [3]
The state-of-the-art macro-AUPRC for a model that is fully trained
on the SONYC-UST dataset is reported between 0.49 and 0.65
[22} 25]. In contrast, the best accuracy achieved on the Urban-
Sound8k dataset is 90% [26]. Despite not being specifically trained
on these datasets, the PANN model using ground truth Mel spectro-
grams as input still achieves fairly good results, albeit not outper-
forming state-of-the-art models. PANN models that use transcoded
Mel spectrograms as input have a 18.6% decrease in accuracy com-
pared to when a ground truth Mel spectrogram is used. This is
promising, as fast third-octave spectrograms contain much less in-
formation both on frequency and time dimensions. In contrast, us-
ing the transcoder for YAMNet resulted in a much more significant
drop in accuracy.

Several factors may explain why the CNN-logits method per-
formed less effectively when used with YAMNet. First, YAMNet
is smaller and less accurate than the ResNet38 PANN model, as
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Figure 5: Mel spectrograms of a 1s file from the evaluation dataset, using different transcoding methods.

classifier teacher-student model MSE (mels) | KL divergence (logits) | PtoPa-FC % 1 | training time
No PINV 12.43 0.014438 0.4 -
CNN-mels 10.14 0.013945 0.5 -
PANN CNN-logits 18.56 0.000734 89.3 14456s
Yes PANN 1/3 oct - 0.000792 83.7 31702s
Eftnet-b0 - 0.008994 69.4 11157s
Effnet-b7 - 0.006117 76.8 39653s
N PINV 3.23 0.032255 0.8 -
© CNN-mels 0.2 0.013405 0.1 -
CNN-logits 1.39 0.001863 85.1 5073s
YAMNet Yes YAMNet 1/3 oct - 0.000919 83.3 4667s
Effnet-b0 - 0.005072 75.1 11153s
Effnet-b7 - 0.003189 79.3 39701s
Table 2: Performance of the different models on TAU Urban Acoustic Scenes 2020 Mobile evaluation subset using pre-trained models
predictions
input. spectrogram Mel transcoded Mel blurry results. Conversely, by training on a set of 527 (or 521) high-
classifier PANN YAMNet| PANN  YAMNet level features, the neural network has more degrees of freedom and
accuracy on Ur- 81.0% 755% | 62.4 % 427 % is not constrained to be as close to the ground truth spectrogram. As
banSound8k shown in Table 2} this is reflected in the lower MSE for the CNN-
mAUPRC on | 55 48 44 34 mels model than for the CNN-logits model.
Sonyc-UST

Table 3: Performance of the different models on UrbanSound8k and
Sonyc-UST. Bold values indicate the best scores achieved by clas-
sifiers using either ground truth Mel spectrograms as input (left), or
Mel spectrograms transcoded from third-octave spectrograms.

evidenced by its lower performance on the multi-label and multi-
class classification tasks in the UrbanSound8k and SONYC-UST
datasets. Consequently, the coarser output logits of YAMNet com-
pared to PANN suggest that the feature vector of size 521 produced
by YAMNet may not be as relevant for spectrogram reconstruction.
Additionally, YAMNet’s Mel bins range from 125Hz to 7.5kHz,
while PANN’s Mel bins range from 20Hz to 14kHz, which is much
closer to the range of third-octave bands (see Table [T). The 64
Mel bands of YamNet are confined within a narrower frequency
range thus requesting for a reconstruction of higher frequency reso-
lution, which could contribute to the enhanced difficulty in retriev-
ing YAMNet’s Mel bands from third-octave bands.

The CNN-logits method produces spectrograms that are more
realistic and less blurry than those obtained using the CNN-mels
and PINV baselines (as shown in Figure[5). This can be attributed to
the fact that by minimizing the MSE between the two spectrograms,
the algorithm tends to produce results that are closer to the ground
truth in terms of average pixel-to-pixel distance but leads to globally

6. CONCLUSION

In this study, we proposed a teacher-student approach to learning
a transcoder whose task is to transform any spectral representation
into a Mel spectrogram, for being used as input of pre-trained clas-
sifiers such as PANN and YAMNet models. This technique demon-
strates a relatively high accuracy of 62.4% and macro AUPRC of
0.44 on UrbanSound8k and SONYC-UST, respectively, despite the
limitations of a third-octave spectrogram in terms of temporal and
frequency resolution.

However, one limitation of this method is that a new transcoder
must be trained for each Mel spectral representation, in order to
adapt to its different possible parameters (number of Mel bins, hop
size, sample rate, etc...). To address this limitation, future research
could explore reconstructing the audio entirely from a fast or slow
third-octave spectral representation, which would allow the usage
of any pre-trained classifier, including the state-of-the-art PANN
model Wavegram-Logmel-CNN, which utilizes information on both
time-domain waveforms and log Mel spectrograms.

Very interestingly, our experiments show empirically that pre-
dicted Mels using a loss built on logits do not only allow effective
prediction but also results in Mels that have far better time / fre-
quency structure.
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