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ABSTRACT

Sound retrieval for assisted music composition depends on
evaluating similarity between musical instrument sounds, which is
partly influenced by playing techniques. Previous methods utiliz-
ing Euclidean nearest neighbours over acoustic features show some
limitations in retrieving sounds sharing equivalent timbral proper-
ties, but potentially generated using a different instrument, playing
technique, pitch or dynamic. In this paper, we present a metric
learning system designed to approximate human similarity judg-
ments between extended musical playing techniques using graph
neural networks. Such structure is a natural candidate for solving
similarity retrieval tasks, yet have seen little application in mod-
elling perceptual music similarity. We optimize a Graph Convo-
lutional Network (GCN) over acoustic features via a proxy metric
learning loss to learn embeddings that reflect perceptual similari-
ties. Specifically, we construct the graph’s adjacency matrix from
the acoustic data manifold with an example-wise adaptive k-nearest
neighbourhood graph: Adaptive Neighbourhood Graph Neural Net-
work (AN-GNN). Our approach achieves 96.4% retrieval accuracy
compared to 38.5% with a Euclidean metric and 86.0% with a mul-
tilayer perceptron (MLP), while effectively considering retrievals
from distinct playing techniques to the query example.

Index Terms— auditory similarity, content-based music re-
trieval, graph neural networks, metric learning

1. INTRODUCTION

An important aspect of music information retrieval (MIR) is the re-
trieval of sound samples based on perceived similarity in style or
orchestration. In digital music composition, this plays an impor-
tant role in categorization, organization, and exploration of large
musical libraries for creative purposes. At a first level of approxi-
mation, MIR research considers the identity of a musical instrument
a sufficient proxy for similarity between musical timbres. However,
differences in musical instrument playing techniques lead to per-
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ceptually distinct sounds even when played on the same instrument
[1].

While timbre perception research often employs dimensionality
reduction techniques to identify explanatory acoustic dimensions
for perceptual data, metric learning over acoustic features has been
proposed as a means to model perceptual similarity [2]. However,
this approach has limited practical application in music information
retrieval due to the use of very small sets of simple sound stimuli.

A recent publication [3] sought to address these limitations by
focusing on similarity retrieval in terms of human similarity judge-
ments between musical instrument playing techniques (IPTs), or
instrument-mute-technique classes (IMT), from the Studio-on-Line
(SOL) dataset. By using time-frequency scattering acoustic features
[4], they reported 90% (with a Euclidean metric) and 99% (with a
learned linear metric) top-5 similarity retrieval accuracy. However,
the study had some limitations: relevant similarity retrievals typi-
cally belonged to the same IMT class as the query, suggesting that
the system was mainly capable of demonstrating invariance to dif-
ferences in pitch and dynamics.

In this paper, we demonstrate that retrieval accuracy under the
Euclidean metric significantly declines when only considering rele-
vant retrievals with a distinct IMT to the query. We focus on model-
ing human judgments at the level of clusters, which consist of per-
ceptually similar sounds that belong to different IMT categories. By
capturing the perceptual similarities across distinct IMTs, we aim to
develop a more robust and accurate system for timbre modeling in
a musical sound retrieval context.

Graph Neural Networks (GNNs) have recently gained popu-
larity in the field of similarity retrieval due to their ability to cap-
ture complex relationships between data points. GNNs can lever-
age graph structure of data and can learn representations that are
more informative than traditional methods. Euclidean distance or
cosine similarity metrics, which are based on pairwise comparisons
of feature vectors, can be limited in their ability to capture high-
dimensional and non-linear relationships between data points.

Recent research has shown that GNN-based methods can
achieve state-of-the-art performance in image [5] and text re-
trieval [6]. A recent publication demonstrated the effectiveness of
GNNs trained under triplet metric learning to model music artist
similarity from acoustic features [7]. In contrast, our work does not
rely on known similarity relationships derived from metadata (as in
[7]), but leverages an adaptive similarity measure that learns from
structure within the input data.

The key idea of our approach consists of the following compo-
nents:
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Figure 1: Overview of the system architecture. We transform the input audio waveform into an acoustic feature representation via the
operator Φ (e.g. Open-L3 deep feature embedding). We compute embeddings for the dataset X using our graph neural network (AN-GNN)
architecture (Section 4). We use 2 GNN blocks in series. We construct a graph using input embeddings as nodes, while adaptively computing
its adjacency matrix via the relation network with a learned example-wise scaling parameter σ (Section 4.2). Graph convolution is performed
over the graph (Section 4.1), producing updated node embeddings. The graph convolution output is then passed through a FFN. We optimize
the parameters of the network under the Proxy-Anchor metric learning objective [8] (see Section 3.1), using human judgments to determine
similarity relationships (see Section 2).

• Similarity Retrieval: to pose a more robust retrieval task, we
only consider relevant retrievals from the corpora that do not
belong to the same IMT as the query sound.

• Metric learning: We utilize metric learning over Open-L3 deep
acoustic features [9, 10] to approximate similarity among the
perceptual clusters. We adopt triplet metric learning with the
Proxy-Anchor Loss [8], which helps refine the learned embed-
dings by minimizing intra-cluster distances and maximizing
inter-cluster distances. This approach enhances the overall per-
formance of our system in approximating human judgments of
similarity across distinct IMTs.

• Learning embeddings: Our approach employs an architecture
that combines a multi-layered graph convolutional network
(GCN) frontend with a feed-forward network (FFN) backend
to learn embeddings. This hybrid architecture enables us to
capture complex relationships within the input acoustic fea-
tures.

• Adaptive neighbourhood adjacency matrix: We consider a
GCN architecture that constructs an adjacency matrix by learn-
ing an example-wise scaling parameter from data in order to
determine a node’s neighbourhood.

Overall, our work demonstrates an effective approach for mod-
eling auditory similarity with applications in similarity retrieval, or-
chestration, assisted composition, and objective music similarity.
We provide a publicly available code repository for reproduction of
this work1.

2. DATASET

The Cyberlioz dataset, introduced in [3] as Cyberlioz-v1, is a
collection of human similarity judgements between unique musi-
cal instrument playing techniques from 31 subjects. The dataset
is based on the perceptual similarity judgements of 78 reference
sounds, sourced from the comprehensive Studio-on-Line (SOL)
(v0.9) dataset [11], sampled at 44.1 kHz. The reference sounds are
of equal pitch and dynamics but belong to distinct instrument-mute-
technique (IMT) class (e.g. violin+sordino–pizzicato). A ’mute’

1Experiments repository: https://github.com/cyrusvahidi/ipt-similarity

refers to a device attached to a musical instrument to alter the sound
it produces; combined with a range of playing techniques, a diverse
range of timbres can be produced by a single instrument. There-
fore, the combination of instrument, mute and technique is indica-
tive of the timbral identity of a sample. Participants provided sim-
ilarity judgments by arranging the 78 sounds into clusters on a 2-
dimensional grid. The 31 cluster graphs were aggregated via hyper-
graph partitioning, resulting in an ensemble of 19 distinct similarity
clusters that the 78 sounds are assigned to. The SOL dataset con-
sists of a much larger set of sounds that are equivalent to one of the
78 reference IMT classes, but vary in pitch and dynamics.

As in Cyberlioz-v1, for each reference sound, we include every
sample of SOL from the same IMT. As a result, the set of 78 refer-
ence sounds (the seed set) extends to 7332 sound samples, which we
call the extended set. In Cyberlioz-v1, only instrument and playing
technique are considered as the selection criteria. While this de-
cision seemed reasonable at the time of this study, mute and other
kinds of extension can have a drastic effect on timbre. Thus, in
Cyberlioz-v2, mute is also considered as a selection criterion. As
a consequence, our extended set is fewer in number than [3], due
to a more restrictive IMT class equivalence. With this new dataset,
Cyberlioz-v2, the task is also made harder, hence we observe reduc-
tion in retrieval accuracy when considering the system proposed in
[3] (see Section 5.3).

3. METRIC LEARNING OF AUDITORY SIMILARITY

Distance metric learning is of relevance in MIR applications such as
content-based music retrieval, music similarity [12], artist similar-
ity [13, 7], few-shot learning for instrument classification [14], rep-
resentation learning [15] and modelling auditory similarity judge-
ments [3, 16]. In metric learning, the goal is to adapt an embed-
ding function to satisfy some semantic or perceptual similarity con-
straints of interest.

Our task is to learn a distance metric on acoustic features using
human judgements of binary similarity. We aim to learn an em-
bedding representation z = f(Φ(x)), where f is a learned metric
on acoustic features Φ(x). The metric should satisfy the following
must-link (S) and not-link (D) constraints [17]:

https://github.com/cyrusvahidi/ipt-similarity


2023 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics October 22-25, 2023, New Paltz, NY

S = {(xi,xj) : xi and xj should be similar} (1)

D = {(xi,xj) : xi and xj should be dissimilar} (2)

3.1. Proxy-Anchor Loss

Metric learning loss functions typically compare pairs or triplets
[18] (pair-based), or relate datapoints to learned embeddings per
class (proxy-based) [19, 8]. Proxy-Anchor loss [8] significantly
mitigates the number of pairwise comparisons required by pair and
triplet losses, by only using learned proxy embeddings in the role
of ”anchor”. This solves the computational challenges associated
with online sampling of informative tuples in triplet and pair-based
losses. The Proxy-Anchor loss is defined as:

L(X) =
1

|P+|
∑

p∈P+

log
(
1 +

∑
x∈X+

p

e−α(s(x,p)−δ))
+

1

|P |
∑
p∈P

log
(
1 +

∑
x∈X−

p

eα(s(x,p)+δ)) (3)

where X is a batch of embeddings output by the network,
α > 0 is a scaling factor, δ > 0 is a margin, and s denotes cosine
similarity. The set of positive proxies in the batch, P+, contains the
proxies for the unique cluster labels in the batch, while the set P
contains all of the available proxies. For a single proxy embedding,
p, X+

p and X−
p are the positive and negative embedding vectors in a

batch. Hence Eqn. (3) encourages that each embedding fΦ(x) in a
batch is pulled towards its positive proxy, while being repelled from
all negative proxies. In our experiments, we initialize 19 learnable
proxy embeddings of size 512, i.e. one for each of the perceptual
clusters labels in our dataset. Following [8], we set α = 32 and
δ = 0.1. We refer the reader to [8] for more details on the loss
function and its hyperparameters

4. GRAPH NEURAL NETWORKS

4.1. Graph Convolution

Graph Convolutional Networks (GCNs) were originally proposed
in [20] to perform classification on graph structured data. The core
idea was to update node representations by exchanging information
across nodes. GCNs learn a function f(·, ·) on a graph G which
takes two inputs: a node feature matrix Hl ∈ Rn×d and corre-
sponding adjacency matrix A ∈ Rn×n. The output is an updated
node feature matrix Hl+1 ∈ Rn×d. In this expression, n denotes
the number of nodes, d the dimensionality of node features and l de-
notes the layer number in the GCN. Based on [20], the convolution
expression can be rewritten as:

Hl+1 = h(AHlWl) (4)

where Wl ∈ Rd×d is a transformation matrix to be learned, A ∈
Rn×n is the normalized version of the correlation matrix A, and
h(·) denotes a non-linear operation, which is the Exponential Linear
Unit (ELU) [21] in this work.

4.2. Constructing the Graph

Given a collection of n audio samples, we extract acoustic features
with an operator Φ. Each feature vector is treated as the node of

our graph. Since the adjacency matrix A is unknown, we derive it
directly from acoustic features.

A simple approach is to construct the edges via Euclidean k-
nearest neighbours (k-NN) on the node features. For each node vi,
we initialize an empty set of neighbours N0 = ∅. For K iterations
of neighbour selection, we select the closest neighbour (that was
not already selected) by computing the pairwise Euclidean distance,
resulting in a set of K-nearest neighbours:

Nk+1(vi) = Nk(vi) ∪

{
argmin

vj ̸∈Nk(vi)

∥Φ(vj)−Φ(vi)∥2

}
(5)

For each node vi, we add an edge eji from vj to vi for all vj ∈
Nk(vi), thus obtaining the graph G = (V,E), where V and E
respectively denote the nodes and edges.

Alternatively, we can construct the graph using a Gaussian sim-
ilarity function:

Aij = exp

(
− d(vi, vj)

2σ2

)
(6)

where d is the Euclidean distance and σ is an example-wise scale
parameter. We predict σ with a learned function over batch samples.
By tuning σ according to the data, the neighbourhood structure can
be adaptively controlled [22]. Eqn. (6) can be rewritten as

Aij = exp

(
− 1

2
d
(Φ(vi)

σi
,
Φ(vj)

σj

))
(7)

where σi = gϕ(vi) and σj = gϕ(vj) are the learned scaling param-
eters for nodes vi and vj . gϕ (relation network in Fig. 1) is learned
by a multi-layered perceptron (MLP) comprising of two linear lay-
ers with ReLU activation [23], followed by a linear layer with no
non-linearity. The adjacency matrix A is sparsified by keeping the
k-max values for each row in A.

4.3. Adaptive Neighbourhood Graph Neural Network (AN-
GCN)

Recent works [24, 25] have shown that dynamic graph convolu-
tion, where the graph structure is allowed to change, can learn better
graph representations than GCNs with fixed graph structure. Based
on this, we adapt our model to recompute the graph at each layer
from the updated node embeddings. In Fig. 1, we refer to this as
Adaptive Neighbourhood Graph Neural Network (AN-GNN).

A single block of our model consists of three components in
sequence: a relation network (RN), a GCN network and a feed-
forward network (FFN). The RN is used to predict the example-wise
scale parameter σ given the node feature embeddings. The GCN
processes the input graph and updates the node representations and
finally the FFN network (a simple multi-layer perceptron with two
fully-connected layers and non-linearity in between) is used on each
node to encourage feature diversity and mitigate the over-smoothing
phenomenon [26]. Our AN-GNN uses two of such blocks in se-
quence and k = 3 nearest neighbours to compute the adjacency
matrix, A, in each block.

As a point of comparison, we replace the adaptive neighbour-
hood graph with a Euclidean k-nearest neighbour graph (k = 3)
(kNN-GNN).
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5. EXPERIMENTS

5.1. Acoustic Feature Extraction

For the AN-GNN’s input nodes, we extract OpenL3 deep embed-
dings [10] of dimensionality 512 using the music content encoder.
For the sake of comparison, we also assess the system with MFCCs
and joint time–frequency scattering (JTFS) coefficients [4] as in-
put. We use librosa v0.10.0 [27] to extract 40 MFCCs from the
log-power Mel spectrogram of 128 bins. We compute JTFS co-
efficients with the same hyperparameters and preprocessing steps
outlined in [3], but using a recently introduced implementation in
Kymatio [28, 29]. We compute each acoustic feature using the first
second of every audio example in the dataset and globally average
across time. We perform affine standardization of the input features
to enforce zero mean and unit variance. We compute the statistics
on the train set and propagate them to the test set.

5.2. Training setup

We used the AdamW optimizer with a learning rate of 0.05, weight
decay of 1e-5, and trained for 50 epochs using a batch size of 512.
To adjust the learning rate, we use a StepLR scheduler with a step
size of 10 and gamma value of 0.8. Our model’s loss function is the
Proxy-Anchor Loss, configured with a margin of 0.1, 19 classes,
and an embedding size of 512. To validate the model, we used
5-fold cross-validation with random train-test splits. We train and
compare 4 models: a full-rank linear projection, MLP, kNN-GNN,
and AN-GNN. The MLP and GNN models have comparable pa-
rameter counts. The MLP architecture has two nonlinear layers
(ReLU activation, batch normalization, dropout 0.5) with 256 and
512 units, followed by output linear layer of 512 units.

5.3. Evaluation by similarity retrieval

To evaluate the performance of the learned system, we consider a
retrieval-by-similarity task.

Let G(n) denote the perceptual cluster label for audio sample
xn. Using our learned embedding operator, ϕk(xn) returns xn’s
k-th nearest neighbour in a test dataset of a total of N samples. We
define the precision-at-rank-k as follows:

p(n,K) =
1

K

K∑
k=1

1(ϕk(xn) ∈ G(n)) (8)

P(K) =
1

N

N∑
n=1

p(n,K) (9)

where the indicator function 1(ϕk(xn) ∈ G(n)) deems xn’s k-th
nearest neighbour as a relevant sample only if it belongs to the same
perceptual cluster in Cyberlioz. We consider K = 5 nearest neigh-
bours for every query in the test set and only consider retrievals
within the test set.

In [3], the authors reported precision-at-k (P@k) of 90% (Eu-
clidean) and 99% (LMNN), where the entire Cyberlioz-v1 dataset
was used for train and test.

In this paper, we pose a more challenging retrieval task by:

1. considering a more rigorous annotation scheme with
Cyberlioz-v2

2. using a 5-folds cross-validation learning scheme

ii-P@5
# params JTFS OpenL3

Euclidean 0 33.22 ± 1.9 38.5 ± 1.2
Linear Projection 262K 37.6 ± 1.4 56.9 ± 1.0

MLP 526K 47.8 ± 4.6 86.0 ± 6.6
kNN-GNN 529K 65.3 ± 10.6 95.9 ± 3.2
AN-GNN 563K 66.2 ± 9.7 96.4 ± 3.4

Table 1: Inter-IMT-precision-at-rank-5 (ii-P@5) retrieval accuracy
(see Section 5.3) across 5 cross-validation folds for various archi-
tectures: Euclidean distance on identity features, a linear projection,
MLP, kNN-GNN and AN-GNN. We compare JTFS (429 dimen-
sions) and OpenL3 (512 dimensions) input features. We list the
number of learnable parameters for each setting for OpenL3 input.

3. evaluating the system with a figure of merit that ignores rel-
evant retrievals of identical IMT class to the query example,
termed inter-IMT-precision-at-k (ii-P@k).

For the sake of comparison, we follow the approach outlined in
[3] for similarity retrieval with JTFS under a Euclidean metric and
a metric learned with the large margin nearest neighbours (LMNN),
but Cyberlioz-v2. For this reference system, we observe ii-P@5
of 34.9% (Euclidean) and 37.8% (LMNN), and P@5 of 75.2% and
82.5%, respectively.

In Table 1, we report the ii-P@5 for each architecture with
JTFS (429 dimensions) and OpenL3 (512 dimensions) input fea-
tures. To test for sensitivity to dimensionality in the metric learn-
ing approach, we assess performance on random input features of
512 dimensions, observing about 8% ii-P@5 for all architectures.
With MFCCs as input, we observe a highest ii-P@5 (40.2%) with
AN-GNN. Open-L3 features perform best under every architecture,
while the AN-GNN consistently achieves the highest ii-P@5 across
5 cross-validation folds. We observe that the ii-P@k is always sub-
stantially lower than the P@k, since many of the top P@k retrievals
are likely to be acoustically similar to the query. With MLP, kNN-
GNN or AN-GNN performance consistently improves for every in-
put feature. With JTFS and OpenL3 input features, our kNN-GNN
and AN-GNN approaches bring substantial improvements in per-
formance over an MLP of comparable parameter count.

6. CONCLUSIONS

We introduced a graph neural network approach for modelling per-
ceptual similarity between musical playing techniques. Our GNN
adaptively constructs its adjacency matrices and is trained under
a Proxy-Anchor metric learning loss. Our AN-GNN approach
demonstrates a highly effective system for learning from human
judgements and auditory similarity retrieval, and significantly out-
performs previous methods. Our approach offers applications in
assisted music composition, content-based sound retrieval, sound
sample library navigation and timbre similarity evaluation.

A limitation of this work is in our assumption of absolute invari-
ance of the human similarity judgements to differences in pitch and
dynamics between sounds. In future work, we plan to investigate
strategies that consider varying degrees of invariance. We intend to
explore approaches to graph construction that account for pitch rela-
tionships. This work provides several potential avenues for further
research, including: expansion beyond musical instrument sounds,
learning features directly from data and modelling continuous dis-
similarity scores beyond binary supervised clusters.
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