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Abstract

In this article, we experimentally investigate the non-linear behavior of a viscoplastic film flow down
an inclined plane. We focus on the non-linear instabilities that appear as roll waves. Roll waves are
generated by perturbing a permanent flow of Herschel-Bulkley fluid (Carbopol 980) at low frequencies.
To determine the local thickness of the film, we used a laser sensor and a camera to globally capture the
transverse shape of the waves. For a regular forcing, the results show the existence of different regimes.
First, we observe primary instabilities below the cut-off frequency at the entrance of the channel.
After the exponential growth of the wave in the linear regime, we recognize the non-linear dynamics
with the existence of finite amplitude waves. This finite amplitude depends on the frequency, the
Reynolds number and the inclination angle. The results show that this instability is supercritical. At
moderate Reynolds numbers, the finite 2-D waves become sensitive to transverse perturbations, due to
a secondary instability, and become 3-D waves. The experimental results illustrate a phenomenology
of viscoplastic film flows similar to Newtonian fluids, except for the capillary waves.

Keywords: Thin Films, Roll Waves, Non-linear Evolution, Viscoplastic Fluids, Non-Newtonian Fluids,
Saturated Amplitude Waves.

1 Introduction

Small perturbations in a gravity-driven flow can
lead to the formation of roll waves that travel
faster than the bulk flow [1]. Roll waves are a fre-
quent phenomenon in many geophysical flows such
as mud, debris or lava flows [2, 3]. As noted by
Kohler et al. [4], roll waves must be taken into
account in any natural hazard assessment. The
study of roll waves is also of interest for some
industrial applications such as surface coating
[5, 6].

The scenario of appearance of these roll waves
can be summarised as follows: first, infinitesimal
two-dimensional (2-D) perturbations are amplified
exponentially when the flow is linearly unstable,
i.e. when the Reynolds number is above a critical
value [7]. This only happens when the wavelength
is long enough, i.e. when the frequency is below
a cut-off frequency. When the amplitude is large
enough, non-linearities come into play and the per-
turbation saturates if its frequency is high enough
(γ1 waves), or not if its frequency is too low (γ2
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waves, or solitary waves) [8]. In both cases, a recir-
culation flow takes place inside the crest of the
high amplitude perturbation, hence the name roll-
wave [9]. Finally, at high Reynolds numbers, those
non-linear 2-D waves may become unstable to
transverse perturbations, leading to the growth of
three-dimensional (3-D) waves that can be either
synchronous or subharmonic [10].

If this scenario seems well-established when
the fluid is Newtonian, this is not necessarily
the case for non-Newtonian fluids. Numerical and
theoretical studies have been carried out on non-
Newtonian fluids. De Oliveira Ferreira et al. [11]
found that the roll wave amplitudes and lengths
decreased along with the disturbance frequency in
viscoplastic fluids, and this seems to be also the
case for granular matter [12]. The main experi-
mental focus has been for now on the linear insta-
bility threshold, which has been notably measured
for granular flows [13], shear-thinning fluids [14],
viscoplastic fluids [15–18] and shear-thickening
fluids [19], as well as on the shape and form of
the fully developed roll wave in viscoplastic fluid
[20]. However, few experimental investigations of
the types of non-linear regimes have been con-
ducted, at least to our knowledge. In this paper,
we will explore experimentally different regimes of
non-linear waves that can be obtained with a vis-
coplastic fluid [21] flowing down a slope, and we
will compare them with what has been reported
in the literature.

The paper will be organised as follows: in a
brief state of the art, we will summarise some of
the main findings on non-linear regimes for New-
tonian and non-Newtonian fluids; then, we will
describe our experimental set-up; finally, we will
present our results and discuss the phenomenology
observed.

2 State of the art

The literature on non-linear regimes of roll waves
is rich, and many different effects have been
observed. We will focus here on two key points:
first, the two different families of non-linear 2-
D waves that can arise, and second, the 3-D
destabilisation of saturated waves.

In the literature, two main families of roll
waves have been identified for the non-linear
dynamics of a Newtonian film flow down an
inclined plane [8]. First, near the cut-off frequency,

γ1 waves are characterised by finite amplitude
(saturation) and steep fronts. These saturated
waves are the result of a supercritical instability.
Denner et al. [22] suggest two leads to explain the
saturation of the amplitude: on the one hand, a
reduction in inertia acting on the waves due to
the recirculation of fluid within the main wave
hump, on the other hand larger pressure gradi-
ents due to steeper waves with higher Reynolds
number. The second wave family introduced by
Chang et al. [8] for Newtonian fluids is the fam-
ily of γ2 waves, or solitary waves. They would be
the result of a subcritical instability, which cor-
responds generally to a sign change in the third
Landau coefficient [22]. For non-Newtonian fluids,
theoretical studies have predicted the existence
of γ1 waves for power-law fluids [23, 24], Bing-
ham fluids [25], Herschel-Bulkley fluids [26] or
viscoelastic fluids [27]. In particular, Balmforth
and Liu [26] found that γ1 waves were also the
result of a supercritical instability, and that they
saturate after an exponential growth.

At high Reynolds numbers, saturated 2-D
waves become unstable to transverse perturba-
tions, leading to the growth of secondary 3-D
instabilities [10]. The first instabilities of this kind
that can appear are of two types: subharmonic or
synchronous. The synchronous instabilities appear
far from the marginal stability curve (Re, f) and
maintain the periodicity of the saturated waves.
They are characterised by a periodic modula-
tion of the transverse wavelength. This wavelength
is very large compared to the film thickness.
Closer to the linear stability threshold, subhar-
monic instabilities may occur, resulting in a train
of out-of-phase waves in the shape of herringbone
patterns. These patterns are very sensitive to the
initial conditions, making them more difficult to
observe experimentally [28].
We have not found any study, neither numerical
nor experimental, that dealt with the transverse
destabilisation of saturated roll waves in non-
Newtonian fluids.
After this brief state of the art, we will describe
our experimental apparatus.

3 Experimental set-up

Experiments are carried out on a glass channel (2
m× 0.5 m) with an adjustable angle ϕ in the range
0 − 30◦. The fluid in a tank is driven by a pump

2



Volumetric pump

Collector

Propeller
mixer

𝑞

Shaker B&K 4809

Low 
frequency 
generator

Additional 
damping tanks

Manifold

Shaker

Manifold

𝜙
Channel

Flow rate

 𝑔

Fig. 1 (Left) Scheme of the experimental set-up inspired from [15]. (Right) A view from above showing an example of
disturbed flow: ϕ = 18.2◦ ; q = 0.47 L/s ; f = 1.5 Hz ; τy = 7.42 Pa.

PCM EcoMoineau at the entrance of the channel.
The flow rate is measured with an electromagnetic
flow meter. To mitigate the external disturbance,
we have taken great care to install two additional
damping tanks with a free surface between the
pump and the channel entrance. The experimental
set-up (see Fig. 1) is more precisely described in
previous works [15, 29]. The longitudinal position
X = 0 corresponds to the channel outlet.

Our experiments are performed with different
Carbopol 980 microgels at neutral pH. For a typ-
ical experiment, the fluid was prepared by mixing
100 g of Carbopol powder to 70 L of water. The
concentration of Carbopol is approximately 0.14
% in mass. The rheology of the fluids under study
is regularly measured with a cone-plate rheome-
ter (LamyRheology Instrument Rheometer RM
200 Touch). The rheological behaviour can be
described by the Herschel–Bulkley model:

τ = τy +Kγ̇n , (1)

where τy is the yield stress, K the consistency and
n the flow index.

Despite this non-trivial rheological law, Car-
bopol microgel at sufficiently low concentration
remains a simple fluid, in particular thixiotropic
and viscoelastic properties can be neglected com-
pared with viscoplasticity [30]. Note that even
if Carbopol rheology may be considered simpler

than real mud, it can be actually useful to under-
stand various geophysical flows [31, 32]. We added
50 g of titanium dioxide (TiO2), which corre-
sponds to 0.07 % in mass, to opacify the fluid
and allow optical measurements. We verified that
the concentration is high enough so that the opti-
cal properties do not vary much, but low enough
so that the rheological properties differ very little
from the pure Carbopol microgel. The TiO2 parti-
cles are too small to see any sedimentation during
the experiments.

To create roll waves, the entrance flow rate is
perturbed at controlled frequency f and ampli-
tude A at the flow surface (see Fig. 1) using a
shaker (B&K 4809) connected to a plate plunging
into the entrance manifold. The shaker’s displace-
ments are controlled by a low-frequency generator.
In this system, the plate is driven and vibrates
in the flow direction, generating roll waves. Film
thickness h was measured with a laser triangu-
lation sensor (Micro-Epsilon optoNCDT 1420),
fixed on a mobile carriage. It works as follows: a
laser is shot at the film surface, which creates a
bright spot by light diffusion. The distance from
this spot to the sensor is measured using triangula-
tion. This allows us to measure the thickness with
a precision of 0.01 mm of the film over a region less
than 0.5 mm wide. The mobile carriage allows us
to measure the local thickness of the film at differ-
ent positions along the channel, in particular close
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to the outlet of the channel, to study the evolution
of the wave amplitude. We have also investigated
the wave patterns using a Sony E-mount camera
placed above the channel.

Adopting the Balmforth and Liu [26] conven-
tions, the dimensionless Reynolds Re and Bing-
ham Bi numbers are given by:

Re =
ρ tan(ϕ)

K

(
ρg⟨h⟩1+n sinϕ

K

) 2−n
n

⟨h⟩n , (2)

Bi =
τy

ρg⟨h⟩ sinϕ , (3)

with ρ the density, g the gravity and ⟨h⟩ the
undisturbed film thickness. The Bingham num-
ber is defined as the ratio between the yield
stress and the maximum viscous shear stress. With
our definitions, the term in cot(ϕ) is included in
the Reynolds number, and the Froude number is
related as follows: Fr2 = Re.

The main measurement uncertainties are given
in the Table (1). The uncertainty in the flow
rate is assessed by comparing the flowmeter mea-
surement with a direct measurement (using a
balance).

4 Non-linear evolution

In this section, we focus on the non-linear evolu-
tion of the waves measured in about 100 experi-
ments. We first describe the finite amplitude 2-D
waves. Next, we present the experimental results
on the secondary instabilities.

4.1 Finite amplitude 2-D waves

We will now experimentally analyze the evolution
of the wave amplitude along the channel for differ-
ent frequencies f , flow rate q and inclination ϕ. For
this purpose, we have measured the local thick-
ness at different positions along the channel using
the laser sensor. The peak-to-peak amplitude A is
obtained by the difference between the maximum
and minimum thicknesses over a given period.

For an unsteady flow, Fig. 2(a) shows that the
waves amplitude increases linearly at the entrance
of the channel and then reaches a finite constant.
The roll-waves generation depend on the length of
the channel, as indicated by Di Cristo et al. [33].
This saturation is accompanied by steep fronts,

similar to those shown in Fig. 2(b) with time sig-
nals at four different positions along the channel
(90, 50, 10 and 0 cm from the channel outlet). Note
that we obtain the same amplitude at X = −10
cm and X = 0 cm as the waves have reached
saturation amplitude.

We have modeled the evolution of waves ampli-
tude with a Landau equation in order to determine
the kind of instability that develops:

dA

dX
= σA− l

2
A3 , (4)

where A is the wave amplitude, σ the linear wave
growth rate, X the longitudinal position and l
the Landau coefficient. In the example shown in
Fig. 2, a linear growth rate of 0.047 cm−1 was
first obtained from the amplitude variation in Fig.
2(a). Then, we calculated the Landau coefficient
l by plotting σA − dA

dX according to A3 in Fig.
3. We found a constant slope l/2 = 0.104, which
shows that the instability is supercritical since
l > 0. In fact, for l > 0, the effective growth

rate

(
σ − l

2
A2

)
decreases as the wave amplitude

increases, which leads to a finite amplitude. These
waves seem to correspond to the γ1 family waves
described in the literature [8, 28] for Newtonian
fluids, which occur as a supercritical instability
characterized by a finite amplitude.

Fig. 4 shows that the finite amplitude increases
as the Reynolds number (flow rate) increases (see
Fig. 4(b)) and/or the frequency decreases (see
Fig. 4(a)). Theses observations are qualitatively
in agreement with the simulations of viscoplastic
fluid [11, 26] and power-law fluid [23].

To understand these observations, we propose
a model in which the saturated finite amplitude
regime corresponds to the situation where all the
fluid within a wavelength is driven along by the
wave. Estimating that the volume of fluid under
a wave varies as A2

f , if there is no loss and the
waves have not been accelerated, this volume must
correspond to the volume initially contained over
a period such that:

Af ∼
√

λ(⟨h⟩ − hp) ∼
√

c

f
(⟨h⟩ − hp) , (5)

where Af is the wave finite amplitude, λ the
wavelength, ⟨h⟩ the average film thickness, f the
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Table 1 Summary of measurement errors.

Variables Absolute errors Relative errors Evaluation method

Inclination ϕ 0.1◦ 0.3 - 0.7 % Minimum graduation
Flow rate q 5.3 mL/s 1.2 % Direct measurement
Amplitude wave A 10 µm 0.1 - 1 % Sensor measurement error
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Fig. 2 a) Evolution of waves amplitude depending on the position X along the channel for a viscoplastic film (τy = 1.34
Pa, K = 1 Pa.sn, n = 0.53, ϕ = 13.9◦, q = 0.396 L/s, f = 1.5 Hz , ⟨h⟩ = 0.47 cm). b) Temporal evolution of the wave
amplitude at 4 different positions X from the outlet, respectively (blue) X = −90 cm, (green) X = −50 cm, (red) X = −10
cm and (black) X = 0 cm. The position X = 0 corresponds to the channel outlet. The evolution at X = −10 cm and X = 0
cm are similar as the waves have reached saturation amplitude.
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Fig. 3 σA − dA
dX

as a function of A3 for viscoplastic film
flow (the same case as Fig. 2). The blue squares correspond
to the experimental data and the line is a linear fit.

frequency, hp the pseudo-plug thickness and c the
phase speed. We used Balmforth and Liu [26]
results for c and hp. Fig. 5(a) shows for two differ-
ent flow configurations a good agreement between
the experimental data and this model concerning
the decrease of the wave finite amplitude as a func-
tion of the frequency, as observed in a numerical
model in [11].

Fig. 5(b) shows the waves finite amplitude nor-
malised by the average film thickness as a function
of the Reynolds number Re. Initially, an increase
in Re causes an increase of amplitude at the outlet
of the channel. Then, the normalized amplitude
seems to reach a maximum. This observation is
consistent with the literature for Newtonian fluids
[22] and viscoplastic fluids [20].

Table 2 Linear spatial growth rate σ, waves finite
amplitude Af and Landau coefficient l according to
frequency for the cases in Fig. 4(a).

f (Hz) 1.2 1.4 1.6 1.8 2 2.2

σ (cm−1) 0.041 0.042 0.042 0.040 0.038 0.033
l 0.106 0.127 0.160 0.161 0.178 0.170
Af (cm) 0.752 0.705 0.677 0.655 0.630 0.573

Table 2 gives the variation of the waves finite
amplitude and the Landau coefficient with the
disturbance frequency for the cases studied in
Fig. 4(a). It shows that the Landau coefficient
decreases at low frequencies and that the sign
change of the Landau coefficient in order to get a
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Fig. 4 Waves amplitude in a viscoplastic film flow down an inclined plane as a function of the position X: a) for different
disturbance frequencies with τy = 2.44 Pa, K = 0.66 Pa.sn, n = 0.55, ϕ = 15.6◦, q = 0.400 L/s and ⟨h⟩ = 0.41 cm; b) for
different Re with τy = 1.34 Pa, K = 1 Pa.sn, n = 0.53, ϕ = 13.9◦ for a frequency f = 1.7 Hz.
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Fig. 5 a) Experimental waves finite amplitude as a function of the disturbance frequency for two cases. In blue triangles,
the case described in Fig. 4(a) and in green circles, a film flow with τy = 2.03 Pa, K = 0.59 Pa.sn, n = 0.58, ϕ = 13.2◦,
q = 0.204 L/s, ⟨h⟩ = 0.36 cm. The lines are the predictions obtained with the model (5). b) Waves finite amplitude
normalised by the average film thickness Af/⟨h⟩ as a function of Re for the case described in Fig. 4(b).

subcritical instability should then take place for a
frequency lower than 1 Hz. Below this frequency
however, the response of the shaker is poor, which
probably explains the difficulty we had in observ-
ing solitary waves similar to those of the γ2 wave
family [28] obtained for Newtonian fluids. Fur-
thermore, it is not obvious that they exist for
viscoplastic fluids, due to yield stress.

4.2 Secondary instabilities

As mentioned in section (2), for Newtonian flu-
ids, the saturated 2-D waves may become unstable
to transverse perturbations, leading to the growth
of 3-D instabilities: synchronous or subharmonic,

respectively far from and near the marginal stabil-
ity curve. We have investigated the wave patterns
for a viscoplastic film flow to determine whether
the waves remain 2-D as in Fig. 1, or not. We want
to emphasise that this destabilisation is progres-
sive along the flow, and the ability to observe it is
likely to depend on the length of the channel.

Using a camera placed above the end of the
channel, we studied the stability diagram in the
(Re, f) plane with two inclination angles (ϕ =
26.9◦ and ϕ = 30.6◦), and we reported if the flow
observed there was 2-D or 3-D, as shown in Fig.
6. For each diagram, we have two areas. First,
an area above the marginal curve where the flow
is stable, and second an area below the marginal

6



4 5 6 7
Re

0

1

2

3

4
f

(H
z)

Stable

a)

2-D 3-D Synchronous

4 5 6 7
Re

0

1

2

3

4

Stable

b)

2-D ? 3-D Synchronous

Fig. 6 Stability diagram in the (Re, f) plane for a) ϕ = 26.9◦ and b) ϕ = 30.6◦ with τy = 5 Pa, K = 2.3 Pa.sn, n = 0.5.
The green line corresponds to the marginal curve, the blue points (respect. red squares) give the parameter sets where 2-D
waves (respect. 3-D waves) are observed. A rescaled diagram in the (Re, St) plane is available as supplementary material
with the Strouhal number St = f⟨h⟩/V .

curve where it is unstable. The marginal curve
was obtained using the methodology of Mounkaila
Noma et al. [15].

At an inclination ϕ = 26.9◦, Fig. 6(a) shows
that at low Reynolds numbers, the waves remain
2-D and then become 3-D as the Reynolds num-
ber increases. An example of such a destabilisation
is shown Fig 7. At ϕ = 30.6◦, we observed only
3-D waves at the end of the channel, as reported
in Fig. 6(b), and Fig. 8 represents some wave
patterns captured at this angle. Note that below
Re = 4.71, the amplitude of the roll waves is
too small to determine their type. We find that
the destabilisation patterns are similar to those
observed in the literature [10, 28]. The wave-
front shape is modulated by a transverse sine
of low amplitude compared to the longitudinal
wavelength (see Fig. 8). At first sight, the 3-D
waves exhibit a much larger transverse wavelength
than what is observed in Newtonian fluids. How-
ever, this is still consistent if we note that this
transverse wavelength is similar in magnitude to
the main longitudinal wavelength, as it is for
the synchronous instabilities in Newtonian fluids.
Unfortunately, we could not observe any subhar-
monic waves. The first reason is simply that they
appear close to the marginal curve, where the
growth rates are very low and the waves get out of
the channel before they could destabilise. The sec-
ond reason could be the high sensitivity of these
asynchronous waves to the initial conditions, as
explained by Scheid et al. [28]. Nevertheless, our

experiments illustrate the influence of the inclina-
tion angle in the development of instabilities, and
our observations are similar to those in the work
of Liu et al. [10] for Newtonian fluids and the sim-
ulations of Miladinova et al. [23] for power-law
fluids.

Finally, at moderate angle and low Re, we
observed the appearance of instabilities with a
rivulet-like pattern, that is when the center crest
is accelerated and seems not bounded anymore
with the rest of the wavefront. This results in a
gradual and inhomogeneous modification of the
wavelength, the effect being more pronounced at
low frequency (see Fig. 9). Rivulets have been
observed also in Newtonian fluids [34], but usu-
ally at much higher angles, when the plate is
near-vertical, and, often, dewetting processes are
involved. Here, the angles are much lower and sur-
face tension plays no apparent role, therefore we
believe it could be a new kind of destabilisation,
made possible by the change of rheology.

5 Conclusion and perspective

In this paper, we present experiments with Car-
bopol microgel aiming at studying the non-linear
dynamics of a viscoplastic film flow down an
inclined plane. Through the improvement of a pre-
vious set-up [15], this set-up allows to investigate
the wave amplitude along the channel (2 m × 0.5
m). Hence, we report finite amplitude waves sim-
ilar to the γ1 family waves for Newtonian fluids
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Fig. 7 Wave patterns observed experimentally at ϕ = 26.9◦ for the case in Fig. 6(a). The two-dimensional waves at low
Re become three-dimensional at moderate Re.

Fig. 8 Wave patterns observed experimentally at f = 2 Hz and ϕ = 30.6◦ for the case in Fig. 6(b). The wavefront is
similar to three-dimensional synchronous instabilities [10, 28] for Newtonian fluids.

Fig. 9 Wave patterns observed experimentally with ϕ = 23.5◦, τy = 3.4 Pa, K = 0.98 Pa.sn, n = 0.56 and Re = 0.86.

[8]. Theses waves are the result of a supercriti-
cal instability and characterized by steep fronts.
We observe that the finite amplitude increases as
Re increases and/or the frequency decreases. We
also show that, after an increase of amplitude at
the channel outlet with Re, the amplitude normal-
ized by the average film thickness Af/⟨h⟩ seems
to reach a maximum. These observations are in
agreement with the simulations of Balmforth and
Liu [26] for viscoplastic fluids and Denner et al.
[22] for a glycerol solution. Finally, our study
shows the appearance of secondary instabilities
affecting the finite amplitude waves. By increasing
the slope of the incline, we note the appearance
of 3-D synchronous instabilities [10, 28]. These
results illustrate the destabilising role of Re and
ϕ on the flow dynamics. However, we were unable
to observe capillary waves and 3-D subharmonic
instabilities. The evolution of the 3-D non-linear
waves remains to be explored in more details.

Acknowledgements

We thank S. Martinez and G. Geniquet for their
assistance building the experimental set-up.

Declaration

Data availability

The datasets generated and analysed during the
current study are available from the corresponding
author on reasonable request.

Declaration of interests

The authors report no conflict of interest.

Author Contributions

The authors confirm contribution to the paper as
follows: conceptualization, methodology and data
collection: DMN and SDB; analysis, interpretation
of results and writing: DMN, SDB and SM; super-
vision, discussion and critical review: HBH, DH
and VB.

8



Funding

No funding was received for conducting this study.

References

[1] R.F. Dressler, Mathematical solution of the
problem of roll-waves in inclined open chan-
nels. Communications on Pure and Applied
Mathematics 2(2-3), 149–194 (1949). https:
//doi.org/10.1002/cpa.3160020203

[2] F. Engelund, W. Zhaohui, Instability
of hyperconcentrated flow. Journal of
Hydraulic Engineering 110(3), 219–233
(1984). https://doi.org/10.1061/(ASCE)
0733-9429(1984)110:3(219)

[3] C. Ancey, Plasticity and geophysical flows:
A review. Journal of non-Newtonian Fluid
Mechanics 142(1), 4–35 (2007). https://doi.
org/10.1016/j.jnnfm.2006.05.005. Viscoplas-
tic fluids: From theory to application
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coplastique sur un plan incliné. Thèse, Uni-
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