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Abstract

The aim of this paper is to decompose the displacements of thin-walled beams with
rectangular cross-section. The decomposition is accompanied by estimates of all its terms
with respect to the norm of the strain tensor. Korn’s inequality is also given.
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1 Introduction

The first work on thin elastic structures dates back to the 19th century. It was carried
out by Euler, Bernoulli, Navier and Kirchhoff (among others). This work was continued and
completed in the 20th century by physicists such as Timoshenko and Love (among others). All
these authors started from the displacements of a beam or a plate and gave approximations:
the Bernoulli-Navier displacements (below BN displacements) or Kirchhoff-Love displacements
(below KL displacements). Then, to solve elasticity problems, they neglected certain compo-
nents of the stress tensors.

For several decades, mathematicians have been interested in the elasticity problems of thin
structures. They began by transforming the structure (beam or plate) by expanding in the
direction(s) of the small dimension(s) in order to work in a fixed domain. They then treated
elasticity problems as minimisation problems or they used PDE techniques for singular varia-
tional problems. They have shown that the asymptotic behavior of the solutions of elasticity
problems are BN or KL displacements, and they have also shown that certain components of
the stress tensors vanish.

Both approaches have their limitations.

The mathematical approach cannot easily be extended to structures formed by a large number
of beams or plates. The approach of the early pioneers (mechanicians and physicists) is the
most natural. But restricting the displacements of beams or plates to BN or KL displace-
ments is not enough, so they have added some assumptions about the stress tensors. In their



decompositions, shearing and warping are missing. It should be noted that it is not easy to
deal with these last small parts of the displacements. To deal with them, we need accurate
estimates of all the terms of the decompositions. However, we can establish a simple rule for
using the residual displacements (shearing+warping): in the strain and stress tensors, it is
sufficient to neglect the partial derivative(s) of these terms in the direction(s) of the larger
dimension(s) of the structures; i.e. we keep only the partial derivative(s) of these terms in the
smallest dimension or dimensions (if there are several of the same order) (see Theorem and
[15] 16]).

It’s a truism that a thin-walled beam with a rectangular cross-section is neither a beam
nor a plate. But on closer inspection, this structure looks much more like a plate than a beam.
It has thickness 20, width 2¢ and length L (0 < 20 < 2¢ < L), each of its pieces of length 2¢
is a small plate. This is why we start by treating this structure as a plate.

We therefore decompose any displacement of the thin-walled beam as the sum of a KL dis-
placement and a residual displacement (we use the simplified version of the plate displacement
decomposition obtained in [16]).

Any displacement u € WP(€), 5) can be written as

ous
l Uy (/) - as%5, (@) |
u(z) = Ugp(z)+uP(x) = o . oUs + u?'(x) for a.e. z in Q..
salr) O ) residual displacement
Us (') P

Kirchhoff-Love displacement

where Q.5 = P.x(—6,6), P- = (0,L)x(—¢,¢) and U7, U7 € WIP(P.), US € W?P(P.),
Pl = @lle; + wbley + ulley € WLP(Q, 5)°.

The KL displacement Uy, can now be considered as a displacement of the 3D beam B, =
(0, L)x(—¢,€)%. As a displacement of this beam, it could be decompose as the sum of a BN
displacement and a residual displacement. Unfortunately, this does not work. A straightfor-
ward calculation shows that the contributions of membrane displacement U, = U7e; + USes
and bending Us to the strain tensor are not of the same order. That is why we take a different
approach. First, we consider U, as a displacement of the 2D thin beam P. and we decompose

it as the sum of a BN displacement and a residual displacement (see [15]). This gives us
Uy € WHP(0, L), Uy € W2P(0, L) and iy, = ure; + uzez € WHP(P.)? such that

Al
U, (2" = (1) = xQchl(xl) + U (z') for ae. 2/ in P..
Z/[Q(.’El)

We continue by dealing with bending U35. As x2 is close to 0 (Jx2| < €), we develop it as
follows:

0 o~
Us (x') = Us (x1,0) + z2 22;{3 (21,0) + US (2).
2

oug
8:1:2

to be used in a PDE equation. That is why we are replacing them with functions that are much

Unfortunately, the functions U5 (-, 0), (+,0) and the last one above are not smooth enough



better suited to PDE equations. We show that there exist U3 € W2P(0,L), © € W2P(0, L),
i3 € W2P(P.) such that

U3 (2") = Us(z1) + £20(x1) + us(a’) for a.e. 2’ € P..

We therefore arrive at the following decomposition of wu:

u(z) = Ugn(z) + ™ (z) = Upn(z) — m:@,@(zl)el + @"(z) + Pl 2),

dl’l
~ dus
. 332;”;,{?(%1) B xsjfc’jm) By i (2') - “gzcj(‘” (1.1)
Upn(z) = Us(z1) — 230(21) ’ (@) = Uy (z') — SUSTUB(CU')
Us(x1) + 120(71) U3($’/)x2

for a.e. x in (2.
The first and main part of the above decomposition is a BN displacement, the second term:
the displacement @' is the residual part of the decomposition of u. Displacement %'¥ is the

d
sum of 3 terms. First —xgxgd—(:cl), where O is the torsion angle, and the KL displacement
T

@k these two terms give information on shearing and warping of the cross-sections {z1}xwe s,
x1 € (0,L). The last term &P’ represents shearing and warping of the fibers {2/} x(=4,9),
' € (0,L)x(—e,e). These terms are smaller than those in the main part but we cannot
neglect them as they play an important role in the strain and stress tensors. In the end, we
can see that the decomposition of the displacements of a thin-walled beam resembles that of
a beam (at least in its main part: the BN displacement).

Such a decomposition is only of interest if we can give an order of magnitude for the various
terms that make it up, which is done in Theorem [4.1J).

As a general reference on elasticity, we refer the reader to [I, B} 5]. For mathematical modeling
of plates we refer to [2] and [4] for rods. There is an abundance of literature written by
mechanicians on the study of thin-walled beams (see e.g. [0 [7, §]). A mathematical study
of the thin-walled beams with rectangular cross-sections using I'-convergence is given in [9].
The decomposition of displacements is presented in [10} [12] for curved beams, in [I1}, [15] for
straight beams, in [16] for plates, the decomposition of the deformations is presented in [13]
for beams and [14] for shells. In these papers we also find references to the decomposition
of displacements or deformations of structures made up of a large number of rods, plates, or
plate and rod(s).

The paper is organized as follows:

e In Section Bl we introduce the main notations.

e In Section [3| we decompose any displacement of the thin-walled beam as the sum of a
Kirchhoff-Love displacement and a residual displacement.

e In Section {4 we detail the (|1.1)) writing of a displacement and we give all the estimates
(see Theorem [4.1)).

e In Section |5, we choose a sequence of displacements of the thin-walled beam (). 5 whose
strain tensor has a L? norm of order (¢6)'*1/?. In Theorem besides the limits of the



terms of the decomposition, we give the asymptotic behavior of the strain tensor using
the limits of the terms of the decomposition.

e In Subsection [6.1] we give an application of our decomposition. We choose a classical
loading of the structure and derive the limit elasticity problem (see Theorem posed
in the rescaled domain Q = (0, L)x(—1,1)? and then the variational problems satisfied
by the limit terms in the Bernoulli-Navier displacement. In Subsection the thin-
walled beam is made of a homogeneous and isotropic material, in this case we rewrite
the results of the previous subsection.

e Appendix (Section [7)) is devoted to some technical results.

In this work, the constants appearing in the estimates will always be independent from ¢, §
and L. As a rule the Latin indices 4, j, k and [ take values in {1,2,3} while the Greek indices
a and fin {1,2}. We also use the Einstein convention of summation over repeated indices.

2 Notations

We denote by |- | the euclidian norm of R and by - the associated scalar product. The
euclidian space R? is referred to the orthonormal frame (O; e, eq, 63).
In this paper L is a fixed parameter while ¢ and § are two small parameters satisfying

)
0 < 26 < 2e < L, they will simultaneously tend to 0 as well as —.
€

Denote

P.=(0,L)x(—¢,e), 5= P.x(=4,6) the mid-surface and the thin-walled beam,

We s = (—¢€,)x(—0,9) the reference cross-section,

I'. 5 = {0} xw. s the clamped part,

e = {0} x(—¢,¢) the clamped part of the mid-surface,

Q = (0,L)x(—1,1) the re-scaled thin-walled beam,

P = (0,L)x(—1,1) the re-scaled mid surface,

w = (—1,1)? the re-scaled reference cross-section, I' = {0} xw,

for every v € WIP(Q.5)3, 1 < p < oo, the strain tensor of v is

e(v) = %((V”[})T + Vv), eij(v) = ;(g;); + gijl)

e(v) is the 3 x 3 symmetric matrix whose entries are the e;;(v)’s,



3 Decomposition of a thin-walled beam displacement via a
Kirchhoff-Love displacement

In this section we decompose every displacement as the sum of a Kirchhoff-Love displace-
ment plus a residual displacement.
Below, we use the function ps € WH*°(R) defined by

0 if0 <y <6,
ps(x1) = %(ml —¢§) ifd <x <20,
1 if z1 > 294.
Note that dps 1
Vr, € R, 0< d—ml(xl) < 5

Proposition 3.1. For every displacement u belonging to W17P(Qa75)3 there exist a Kirchhoff-
Love displacement and a residual displacement such that

Uy (') — x3-—=(a')
l s ) (31)
w(x) =Us;(x) + P (z) = + uP'(x .
( ) KL( ) ( ) Z/{QO(.CC/) — 3 axz (:U/) | ‘
Us (') restdual displacement

Kirchhoﬁ”—Loz;g displacement

for a.e. x in Q5.
Uy, = Uier +Usey is the membrane displacement, Us is the bending and Pl satisfies

5 o
/ WP wg)das = / W x3)des =0 for ae. 2’ € P.. (3.2)
-5 -0

We have
U, € WhW(P)2 U € W2P(Py), aPle WhP(Q )

and the following estimates:

C
leasUp )l Lr(p.) < sty le@llze. ),
e

O0x,0xg

C
< WHG(“)HLP(QE,M’

LP(P:)

[@ 2o )+ OIVE | 1r(0, 5) < Colle(@)lzoio, )

The constants do not depend on €, § and L.
Moreover, if u =0 a.e. on .5 then

Uu® =0, VU3 =0 a.e. on ., @WP'=0 ae on Teps.



Proof. First, we decompose u as the sum of an elementary displacement and a warping (see
Theorem in Subsection . Then, we extend u to Qf_: 5 (see Proposition in Subsection

. For simplicity, we still write u the extension of u to the thin-walled beam Qla 5
This gives
u(r) = U (2") + 23R (2)) + u** () for a.e. x = (2',23) € U 5 (3.4)
where
U*eW(pP)?, R™*eWW(P)?, u™*eW" (L)
These terms satisfy the estimates (7.9).

Case 1: The thin-walled beam (), 5 is not clamped.
Set Y = (0,1)% and

= ={¢eZ’|5(E+Y) P}, Pl= interior( U 5(5+?))‘
5655,6

We have R
P.C P.C P

Now, we are in position to construct the Kirchhoff-Love displacement associated to u. To do
this, we follow the lines of the proof of Theorem 5.2 and its Corollary 1 in [16] (remember
that all we have to do is change U** and R**). This gives the estimates (3.3) with constants
independent of ¢, § and L since these estimates are based on those of .

Case 2: The thin-walled beam (), 5 is clamped on I'; 5.
In this casee we replace the above decomposition (3.4)) by the following one:

w(z) = U () + 23R (o) + ™ () for a.e. = (', 23) € U 5 (3.5)

where

U™ = Uf*el +U;*eg + pgug*e;g, R = ,057?,** a.e. in PE/
T (1) = U () — U () + aa(l— pa(a)YR™(a) + T () for ae.  in QL.

We have only modified U3* and R**.
Since in this case U3* and R** vanish on {0} x(—3e,3¢). Estimate (7.9)3 and the Poincaré
inequality yield
*3k k% C
IR* | ze(c. 5) < COIIVR™ | L2(pry < MHB(U)HM(QM) where C; 5 = (0,20)x(—3¢,3¢). (3.6)

Then, the above together with (7.9)5 lead to
*ok C
VU || e 5) < m”e(u)”Ll’(QM) (3.7)

and then, using the Poincaré inequality

5™ Lo (e, ) < O VP lle(w)l| oa 5)- (3-8)



A straightforward calculation leads to

17 oy ) < Colle()lrq. - Hva“ﬂquﬁ>é<WeW”hp (©25):
***

+ R**

IR uncrs) + eas @™oy + | T

i < @0

The constants do not depend on ¢, § and L.
We are now in a position to construct a Kirchhoff-Love displacement vanishing on I'c 5. To do
this, we proceed as in Step 1.

For the conditions (3.2]), we refer to [16, Section 6]. O

4 From a Kirchhoff-Love displacement to a Bernoulli-Navier
displacement of the thin-walled beam

Theorem 4.1. Any displacement u € Wlfp(Q&g)?’ is the sum of a Bernoulli-Navier displace-
ment Ugn and a residual displacement u'®

u(z) = Upn(z) + 0™ (z) = Upn(z) — xm@(m)el + @) + TPl (),

dl’l
., dus , ,
Lﬁ(m)mjuf( )ﬂfaﬁﬁ’(iﬁl) u ul(m)_mg;(lﬂ) (4.1)
UBN(.T) = u2(x1) _ m3®(x1) , U (l’) = 'dg(a;’) — q:387US(m/)
Us(x1) + 220 (1) 173(90/)562

for a.e. x in Q. 5, where Uy € WIP(0,L), Uz, Us, © € W?P(0,L) and Ty, = Ure1 + Uzes €
WP(P.)?, Uiy € W2P(Py), aPh € WhP(Q. )3
We have the following estimates:

dlhy le(w)]|r (. 5)
dxl Lr(0, L) (55)1/19 ’
H C ||€(u)||LP(QE,5)
dxl Lr(0,L) dz? llLe(o,L) 6 (ed)l/p 7
d2U2‘ Cle le(u)ll e (0. 5) HdQZ/lg‘ < C le(u)ll e (. 5)
dz? llzeo,n) — e (e6)1/p dz? llzeo,n) = 6 (e0)i/p 7 (4.2)

- - - Ce?
s 1o (p.y + €l Vs| pop,) + €211 D?s| po(p.) < mﬂe(u)llm(gg,a),

~ _ 9
[amllre(p.) + ellVm|lLep) < Cmue(u)nm(ﬂa’é)’
1@ 2505 + SIVE 120 5) < Colle(w) o0 -

The constants do not depend on &, § and L.
Moreover if u =0 a.e. on .5 then
dUy dis do®
U1(0) =B(0) =U(0) =U3(0) = —(0) = —=(0 0
10)=00) =th(0) =t(0) = 2O = g2 = 1O =0,

and =0, @W'=0 ae. on Teps.



Proof. We decompose u € WHP(Q. ) as (3.1)).

Step 1. We transform the membrane displacement associated to Uy ;.

The membrane part of the Kirchhoff-Love displacement Uy, is
Uy (2" = Uy (z')er + Us (2")ey for a.e. 2’ = (z1,22) € P-.

This is a displacement of the 2D beam P.. From (3.3|) we have

C
le@U)|lLr(py < WHG(U)HM(QE,J)' (4.4)

Now, we want to decompose U, as the sum of a 2D Bernoulli-Navier displacement and a
residual displacement.

In [I5] we have dealed with 3D displacements of thin rods. Here, we can consider U}, as a
displacement of the 3D rod B. = (0,L)x(—¢,¢)?. This displacement does not depend on the
third variable x3 and its third component is equal to 0. Before obtaining a Bernoulli-Navier
displacement, in [15] we have decomposed any displacement as the sum of an elementary
displacement and a warping (see [12, [15]). Here, this gives

Uy, =U* +R" A (r9e9 + x3€3) +u" a.e. in B

where U*, R* € WLP(0, L)% and u* € WP(B.)3. Component U* is the mean value of U,
on the cross-sections, so Us = 0. Component R* is the mean value of certain moments of u
on the cross-sections (see [12] [15]), since the third component of Uy, is equal to 0 we obtain
R} = R5 = 0. After this first decomposition, we have

U, (') = (U (x1) — Ri(z1))er + Us (z1)ez +u*(2) for a.e. @’ = (z1,22) € P-.

Then, in [I5] we have constructed the Bernoulli-Navier displacement by setting U; = U, Us
is constructed using U5 and R3.

This gives Uy € WP(0, L), Uy € W?P(0, L) and U, = Ure; + uses € WHP(P.)? such that

du
Ul(:zl) — l‘gd 2
X1

Ug(xl)

u, (z') = (1) + U (z') for ae. 2/ in P.. (4.5)

We have the following estimates (see [15]):

C
)HLP P;) < (86)1/p|’6(u)||Lp(Qs,5)’

ve| 22|
dxl

Hdazl LP(0,L) LP(0,L) 1/PH et

~ 13
mll e (p.y + €l VUmll o py < CelleUy) |l p.y < CWHQ(U)HLP(QM)‘

The constants do not depend on €, 6 and L. The residual displacement u,, satisfies (see [15])
3

/ ui(-,z2)dre =0 for a.e. 1 € (0,L). (4.6)
—€

Step 3. We transform the bending 5.

Now, we treat the remaining terms of the Kirchhoff-Love displacement Uy, .



Proposition in Appendix gives U3 € W2P(0,L), © € W%P(0, L) and uz € W?P(P.) such
that
Z/I§>:L{3+x2@+ﬂg

and the estimates

d*Us 02U __c
H d:z:l ’ LP(0,L) 1/1’7H ax% Le(P) — W“e(u)”Lp(QE’5)7
2
Hdl‘l LrP(0,L) H ‘LP (0,L) 51/pHD HLP(PE < 5( )1/pH ( )HLP(QE’(;)a

2
sl o(p.y + €llVs| pop,) + €211 D%us| po(p.y < CE*|D*Us || 1o(p.y < mﬂe(u)llm(gm-

Component uj3 satisfies (see Proposition [7.5))

€ €
/ ﬂg(',xg)dxg :/ 173(-,%2):6261372 =0 for a.e. xr1 € (O,L). (47)

—€ —€

The Kirchhoff-Love displacement Uy, is then written as follows:

au au
Uy (1) — 22— (1) — 23— (1)
O d.ﬁUl d$1 d@ ~kl
Ukr(z) = U (1) — 230 (1) — T2T3—5— dz1 (z1)er +u"(x)
Us(z1) + 220(21)
- o,
(o)~ way ()
ﬂkl(ac) = () — xs%(xl) for a.e. x € Q.
89@2
173(1’,)

If u = 0 on I'c5 then, by Proposition 3.1, the Kirchhoff-Love displacement Uf.; and the
residual displacement upl (given by the decomposition (3 ) vanish on I'; 5. By construction

dal do
of the fields Uy, Us, Us, 3, ©, — and U, these functions also vanish on I' 5. O

dixl da:l

Proposition 4.2 (Korn type inequalities). Let u be a displacement in WHP(Q.5), p € (1,00).
We assume the thin-walled beam clamped on I'c 5. Then, we have

lutllzeo. 5) < CLlle(w)| e (. 5)s

CL2 CL2

luzlleas) < le(w) iz luslzoa. 5) < 7“ (Wllr (0. )

ou; Ous ouq CL
ZHB% (@ C||€(u)||LP(QE,5)» H@Tcl‘ Lo(@0s) H&E2 L@ ?He(u)”LP(QE,é),
o H&“ < el

Lp 66 8-%'3 LP(Q55 ( 5,5)’
|5 |22 < e
Oxa I1Lr (9 5) 0xs lLr(9, 5) Lr(Qe5)

The constants do not depend on ¢, § and L.



Proof. We decompose u as (4.1). The estimates of this proposition are the consequences of
those in (4.2). Indeed, the Poincaré inequality and (4.2)) 2.4 5 give

CL CL
Il Lo,y < WHG(U)HLP(QM)v 19| ro,2) < 5( )1/pH e(w)Lr(a. 5)»
L (4.8)
| & ol o < seprl @i, | & ool < 5(55)1/pu e(w)l| oo ,)-
The last two inequalities and again the Poincaré inequality imply that
CL? CL?
1ol Lo o,y < WII@(U)IILP(QE@, [Us][ Lo (o,r) < 5 5)1/p|| e(u)llLe(a. 5)- (4.9)

The constants do not depend on ¢, 6 and L. The inequalities above and the estimates (4.2)
lead to those in the proposition. O

5 Asymptotic behavior of a sequence of displacements

First, we recall the definition of the dimension reduction operator.

Definition 5.1. For ¢ measurable function on §). s, the dimension reduction operator 1l. s is
defined as follows:

IL; 5(¢)(z1, X2, X3) = ¢(x1,6X2,0X3) for a.e. (x1,X9,X3) € Q.
II. 5(¢) is a measurable function on §.
We easily check that
1. for any ¢ € LP(Q:5), 1 <p < o0

1
ITle,6(D) || () = WH‘?HD’(QM); (5.1)

2. for any ¢ € WHP(Q.5), 1 <p < o0

Mesld) _ oy, <%> Oll5(9) _

8¢>) Olle 5(¢)
8951 J 8x1 8X2

5o e :51'[5,5(8—%). (5.2)

Let u be a displacement belonging to W1 (9575)3, decomposed as (4.1)).

The strain tensor of u is given by the sum of 3 x 3 symmetric matrices defined a.e. in ). 5 by

dity d*Us d21/13

- Heé(

dry 2 dx? a dwl
e(u) - —Xr3—— d© 0 =
diUl
0 0 0

0 ou, 0%us

_$2$37dl‘% + 871‘1 — 1'3731‘% * *
+| 100 Oy Uz Oty 03 + e(@Ph.
*(7+7>—x3 A — T35 *
Oxry Oz 0x10x2 Oxo 0x5
0 0 0

10



Denote for p € (1, 00)
D = WhP(0, L) x W2P(0, L)? x WhP(0, L),

1 1
D(p)kl - {a e WIP(—1,1)2xW2P(—1,1) | / o(t)dt = 0, /1 5(t)tdt =0 }, (5.4)

p® {¢pl6W1p( 1,1)% |/ 7t dt—O}

wpl

We equip ID( P) 1 and ID)( P) ol with the semi-norms

27
[l = qujl ‘ Lr(~1,1) Hd%‘ Lr(~1,1) Hfttqj e(-1,1) v € Dy kl’
Halele’ - HW Lp(~1,1) vgpl < D(v];)pl'

We easily check that these semi-norms are norms equivalent to the usual norms of these spaces.

For every l » .
D OF .mP .mP
(<I>, v . P ) e D x LP(0, L’DWkZ)XLp(P’DWpl)

where & = (®1, P9, P3) we define the 3 x 3 symmetric tensor E(<I>, U, ®, EPZ) by

dd, RL R

— X, - X
dzq dx? ’ da? ’ :
— . de 109, 0Dy P
= -X td 2 Xyg——2 ,
E(2,7,8,0") 3d$1+28X2 e e * (5.5)
108} o8y ok
20X3 2 0X3 0X3

From now on, we assume that {(,0)} is a sequence of strictly positive real numbers such that

e — 0, 60— 0, g—>0.

Denote for p € (1,00)

W4P(0,L) = {¢ € W"P(0,L) | ¢(0) = 0},

d¢
& =0}, (5.6)

Dy p = W4P(0,L) x W2P(0,L)* x W;(0,L).

W2r(0.L) = {6 € W>P(0,L) | $(0) =

Theorem 5.2. Let {u.s}e5 be a sequence of displacements belonging to WHP(Q.5)3, p €
(1,00), decomposed as (4.1)). Suppose the thin-walled beam clamped on Tz 5 and

le(ues)ll o, 5) < C8) 1P (5.7)

11



where the constant does not depend on & and 6.
There exist a subsequence of {(g,0)}, still denoted {(,6)}, (U, ©) € D, ,, and U € LP(0, L; Dg;)kl),

" e (P D)) such that

1
52/{575’1 — U weakly in Wvl’p((), L),

1

sUes2 = U weakly in W2P(0,L),

1
EL{57573 — Uz  weakly in Wf’p(O, L), (5.8)

1
g@a(s — 0O  weakly in WA}’p(O,L),

dz@&g
da:%

— 0 weakly in LP(0, L)

and
1 o
—IL 5 (c(ue,5)) ~ B(U,0,U,T") weakly in LP(Q)>3, (5.9)

Moreover we have

1 dU. dU
s(uest) — Uy — Xo—= — X3==2 strongly in LP(Q),
’ ™ dacl dml

—II

g6 ©
1
gﬂgy(s(ugvfsg) — Uy strongly in LP(Q2), (5.10)
1

EHE,J(UE76,3) — Us  strongly in LP(Q)

Proof. Convergences (5.8) are the consequences of the estimates (4.8)-(4.9)-(5.7)) and the prop-
erties (5.1))-(5.2]) of the operator Ils.

Now, from (4.2))6,7,8.9,10-(5.7) and the properties (5.1)-(5.2)) of Il s we deduce that

- Ol 5 (e 5,0 Ol 5 (e 5,0
HH&‘; (u5,6,a) HLP(Q) T H 68‘()(28 ) LP(Q) = 0625’ H - 8&15 ) Lr(Q) < Ces,
~ Ol s (U5, 011 5 (U s,
HHg,é (%,5,3) HLP(Q) + H Eag(; 3) ‘ LP(Q) H 68)((226 3) ‘ Lr(Q) — Ce?,
81—1:—:,5 (@-:,5,3) 2 82]:[6,5 (@-:,6,3 821_[5,5 (ﬂe,é,?)) )
H or1 ‘ Lp() < Ce H Ox? )‘ Lp(Q) < Ce, H 0x10X9 ’LP(Q) < Ce
and l
_ Ol s (al)
HH&‘s(ugld) HLP(Q) + H;T;S) LP(Q) S 05527
O 5 (i) oL 5 (il) )
H 0x1 ) LP(Q) < Ced, H 00X, ‘ Lr(Q) < Ce.

Then, there exist a subsequence of {(e, d)}, still denoted {(,6)}, Ue LP(O,L;WhP(—-1,1))% @
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LP(0, L; W%P(—1,1)) such that

1 ~
55 es(@epa) = Ua  weakly in LP(0, L; WP (=1, 1)),

1 6<8ﬂ5,5,a> _ 1 O 5(tep0)
57

— = —0 kly in LP(Q)
ed 0x1 ed 0z weakly in L7 (€2),

. N (5.11)
e g(Tess) = Uy weakly in LP(0, L W2P(—1,1)),
1 O, s 1 0%, 5 1 0%, 5 .
= 575< 82{3)’ EHE»‘S( 8;727?))’5 576(333139;2) =0 weakdy in Z7(S2)
1
and UP! € LP(P;W'P(—1,1)) such that
1 _ -
?He,g(ufl&) — UP' weakly in LP(P;WhP(—1,1))3,
8 K
~pl ~pl
1 our 1 Ol 5(uz 5)
51‘[876( 8;6> = 5% — 0 weakly in LP(Q)3, (5.12)
~pl ~pl
1 8up 1 o1l su

1
The strong convergences ([5.10]) are the consequences of the fact that the sequences {—51'[575(%,571)} 5
£ €,

1 1

{gﬂe,g(u&(;g)} 5 {*He’g(uag’g)} 5 are uniformly bounded in WP (2) and the compact em-
g, 3 g,

bedding of W1P(Q) in LP().

Then, convergence ([5.9)) follows from convergences ([5.8))-(5.11))-(5.12)).

Equalities (5.2)-(E6)- () yield

1 1
/ U (-, X3)d X3 :/ UPY(, X3)dX5 =0 a.e. in P,
1 1

1 ~
/ Ur(-, X2)dX2 =0 a.e. in (0,L),
-1

1 1
/ U3('7X2)dX2 == / U3('7X2)X2dX2 =0 a.e. in (O,L).
1 1

1 1
The conditions / Ugl(-,Xg)ng =0 a.e. in P and / Us(-, X2)dX2 = 0 a.e. in (0,L) are
-1 -1
missing to get UP! € LP(P;DEZ)N) and U € LP(0, L;Dg;)kl
Despite this absence of conditions, it should be noted that these functions are only involved
in the strain tensor via their partial derivative with respect to their last variable. We can note

~ _ ~ 1 /<
that U:fl and U2 = U:fl —3 / Ugl(-, X3)dX3 have the same partial derivative with respect to
-1

X3. That is why in the strain tensor limit we replace U by U’ : with Uﬁl = ﬁgl. In the strain

A more complete decomposition of the displacements of the plates and beams would show that these
quantities are in fact equal to 0.
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~ _ _ - o 1
tensor limit we also replace U by U with U; = U;, ¢ € {1,3} and Ug = U2—§ / Us(-, X2)dXo.
1
Of course we have U € LP(0, L; D(p)kl) and Upl € LP(P; p® l)' 0
w wp

As a consequence of the above theorem

Corollary 5.3. We have

0
1 de ~ aU . 3
%H&(s (u&(; — UBN@(;) — —Xngd—xlel +| U, — Xgﬁin weakly in LP(Q)°.
0

We equip the space LP(0, L; D;ﬁ)kl) (resp. LP(P; D;i)pl)) with the norm

. —_ 851 852 82(1)3
e O T W
( y 4y W)? H ”Wkl’p 8X2 LP(Q) an LP 8X2
=l
3" ¢ r(p- D™ P _ H 0%
(resp. VO €L (P,]D)Wpl), | HWplP @)
These norms are equivalent to the usual norms of these spaces.
Lemma 5.4. For every
(2,7,3,3") e D x 12(0, ;D7 ) < LP (P Dg;)pl)
we have
[ R o e ol e
dx1 llLr(0,L) dz? lle(o,L) dxy llLe( dx1llLr(o,L) (5.13)

= l
@l s + 17 |yt < CHE(<I>,‘P7<I>7<I>‘°)HLP(Q>

Proof. From the expression (/5.5)) of E(<I>, v, P, o l) we first obtain

ddq d2(1)2 dzq)g —pl — =l
—_— — ) <C|E(®,¥,,d
Hdwl LP(0,L) H dmf ‘LP(O,L) H dxrq ‘LP(O,L) + H HWpl - CH ( P E T )HLp(Q)
Remind that if ¢, ¢ are functions in LP(P) then
6Nl Lopy + 110l Logpy < C||d + X3¢l o)
The constant only depends on p.
Hence, we get
8@1 = =l
Hda;1 LP(0,L) Han‘Lp <CHE((I)’\P’(I)’(I) )HL”(Q)’
0D, 0?ds
] E(®,v,3,3" ( .
H@XQ‘ Lr(P) H 0X2 ‘ LP(Q) H ( ) LP(Q)
This completes the proof of ((5.13]). O
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6 Asymptotic behavior of the solution of a linear elasticity
problem

6.1 The linear elasticity problem

Denote
i, (Qe5) = {v € H'(Qe5) [v=0 ae. onTos},

HL(Q) = {v e H'(Q)|v=0 ae. on r},
D, = H(0,L)x (H2(0, L)) *x H1(0, L),
Dy = L2(0, L; D) ) x L2 (P; D2 ).
For 1 <4, j, k, 1 <3, let a;j; be in L>(w) and satisfy the symmetry conditions
a;ijel (X2, X3) = ajip (X2, X3) = agij (X2, X3) for ae. (Xo,X3) cw
as well as the coercivity condition
aijil(Xa, X3)&i8m > coijéij for a.e. (X2,X3) € Q (6.1)

for every 3x3 symmetric matrix £ = (&) (co is a given strictly positive number).
The coefficients a;jx; . s of the Hooke tensor are given by
T I3
aijkl7575(m) = Qjjkl (?, ?> for a.e. x € 9575.

The constitutive law of the materials is the relation between the strain tensor and the stress
tensor,

Tijes(V) = Qijkieser(v), Yo € H%Eyg(Qs,é)?’-
For simplify we consider only applied body forces.

The displacement u. s € H%E 5(9575)3 of the thin-walled beam is the solution of the following
elasticity problem: 7

/Q Oije,s(te,s)eii(v) do :/Q feo(@) - v(x)dz, fo5 € L*(Qy)?
£,8 £,8

Yov € HII‘W; (9875)3.

(6.2)

Due to the above assumptions on the a;jx . s’s, the Lax-Milgram theorem applied to problem
(6.2) implies that this problem has a unique solution.
We make the assumption that the applied body forces f. s are of the form

fes(x) = €6 [(fl($1)+%92($1)+?93(x1)>61+<€f2($1)—?91($1)>62+<5f3($1)+%591(901))e3] :

where f = (f17f27 f3) and g = (917927g3> belong to L2(01L)3'
This allows us to obtain an a priori estimate of u.s. Using the decomposition (4.1)) for a

u e Hlljm (9875)3 and estimates (4.2)6 7,911, we first have

fes + (u=Unn) do| < Ce| sl ) le() oo )

‘ Qe,s (6.3)

< 052(55)3/2(Hf”L2(0,L) + ”gHL2(0,L)) He(u)”LP(Qe,g)
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and then

L L L
| oo Vnvao = 1P ([ fithdn+ [ ehtbdn + [ osst o)
QE,(S 0 0

L L L
€ du ) du 2e
+ 4(55)2< — g ) QQT; d.’l?l — g ) ggﬁ d$1 + — 3 /0 gl@ d.ﬁvl)

Hence, from (4.8])1,2,34 and (4.9)1 2 we deduce that

‘ ; fes - UBn dw’ < C6)*2(I1flz20.2) + gl r2(o,)) (@)l Lo(e s)- (6.4)
£,0

The constant does not depend on € and 4.
Applying the estimates . ) for u. s taken as test function in , give the estimate

le(ue,s)l e, 5) < 0(55)3/2(Hf”L2(0,L) + llgllz2(0,1)) - (6.5)

6.2 The rescaled limit problem

Theorem 6.1. Let u. 5 be the solution of the elasticity problem (6.2). Then, there exists
(L{, 0,U, Upl) € D, xDw such that for the whole sequence {(¢,0)} the convergences (.8)) and
the following hold:

1

6—51'[575 (e(uss)) — E(U,0,U, Upl) stronglyly in L*(Q)3*3. (6.6)

The quadruplet (U, 0,U, Upl) belonging to D, xDy is the solution of the variational problem

/ aijklEij (Z/{, @, U, Upl) Ekl ((I), \I/, 6, Epl) d.%'ldXQng
@ (6.7)

L L L

1 dd,, 2 _

=4(/ f-cbd:cl—/ Jodry + - /glwxl), V(®, 0,3, 8") € D, xDy.
0 3 0 dl 3 0

Proof. The solution to problem (/6.2) satisfies (6.5)). So, there exists a subsequence of {(e,9)},
still denoted {(g,0)} and (L{ .0,U,U" l) € D, xDy such that convergences ([5.8)-(5.9) hold.
Let (®,¥) be in Dy, such that ¥ € W2?(0, L), and (B, ") € Dy N (HL(Q)x HH(Q)?).
Now, consider the test displacement

dd dd
E(S(I)l(l‘l) — :L'2(372(l‘1) — IL‘3€73({L‘1)
diL'l d.%'l dU
bes(x) = 0Py (z1) — 236V (1) — m2x38d731(x1)el
8@3(I1) + xgé‘\I/(ajl)
— T2 8 (9(1)3 2
(%) ()
251 = x r3 0P 257 T2 Z3 .
+e%6 ®2<$17 2) 38X3; <$U1, 2) +e0°® (:L’l, - ) for a.e. z in Q..

RICE
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A straightforward calculation gives

1 o
L 5(c(6-5)) — E(@, 0,3, ") strongly in L(Q)***.

In (6.2), we take ¢, s as test function, we transform the RHS and LHS of this equality thanks
to Il. 5, we divide by (¢0)® and finally we pass to the limit. We obtain (6.7) with (®, ¥, ®, Epl).

Then, a density argument gives (6.7) for all (®, ¥, @, o l) € D, xDy .
Due to (5.13) and the Lax-Milgram theorem, problem (6.7) has a unique solution. As a
consequence, the whole sequences converge to their limits. Proceeding as usual we show the

strong convergence . U

6.3 The system satisfied by (U, 0)

Now, we express the displacements U and Upl in terms of U and ©.

Set
100 ~X5 0 0 X3 0 0 0 —X3 0
M=|0 0 0], M2=|[ 0o o0 o0, M=| 0 OO, M*=|-X3 0 O
00 0 0 00 0 00 0 0 0
The 4 pairs of correctors are the solutions to (m € {1,2,3,4})
—(m) =pl,(m (2) (2)
(X(%Xp())GDWmXDWm7
— —pl
[ i (M B3 (0,05, 34 ) B 0.0,8,8") dXedXa =0 (69
P
= =pl (2 (2
v(®,®7) €D xD 7
So, we get
— —pl dUli _nl dQUgi _nl dQUgi _nl d@i _nl
U. U = 221 () 5ph(1) (2) vpl(2) (3) ph(3) 7 (@) pph(4))
(U,07) dxl(x \ X )+dx%(x \ X )+dx%(x \ X )+dx1(>< xP)

Theorem 6.2. The pair (Z/l, ©) € D, is the unique solution to the variational problem

U Dy
L L L L
d | U d | @, / 1 / dd, 2 /
A— - — =4 - ddry — - a—d - Wdz |,
/0 dl‘l Z/{3 da:l ‘I)g ( 0 f e 3 0 9 d:z:1 .%'1+3 0 91 $1) (69)
S} v

v(@,v,3,3") e D,
where the entries of the 4x4 symmetric matriz A are given by ((m,n) € {1,2,3,4}?)
A, = / Qijki (MZ? + E;; (0’ 07y(m)’ypl7(m))) (le + Eyy (0’ 07y(n)’yply(n))) dX2dXs.
P

This matriz is definite positive.
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Proof. Let & be a vector in R*. We have

4
ACE= ) /P @ik m&n (M +Ei5 (0,0, X, 3P ) (Mpy+ Ejy (0,0, XM, XPH) ) dX2d X .

m,n=1
Set
§1— Xobo — X383 —X3&4 O 4
M(§) = — X384 0 0],  (XEO.XO) =D (X, xPH)
0 0 0 m=1

This allows us to rewrite A¢ - € as
Ag-€ = /P @ight&mén (M () + B (0,0, %(€), X"'(€))) (Mt (§) + B (0, 0,X(£), XPX(€)) ) dX2d X 3.
Thanks to (6.1]), we deduce that

Ag-6 2 o [ M)+ By 0,0.%(0). 17H©) PaXadXs

Now, proceeding as in Lemma [5.4] leads to

AE- €2 C(EP + IR g + IXFUON 1)

where C' is a constant strictly positive. O

6.4 The case of a homogeneous and isotropic material

In this subsection, we consider a thin-walled beam made of a homogeneous and isotropic
material. So, we have

aijkt = MO0 + (8indji + 80, {i,j,k, 1} € {1,2,3}*
where §;; is the Kronecker symbol and A, p the Lamé’s constants.

For all ¢ € R* we consider the problem satisfies by (Y(f),ypl(ﬁ )) € Dg/)klxﬂ)g/)pl. We have

(b B0 2340 2019 % %
v(@,3") < D;i)klxmi)pl
and 6Fpl(§) 8519[ afpl@) 66101

(6.11)

X1 (£)\ 0% _ 3.5 e D@ p®
/M(X354+ e )a—&dxgdxg_o, v(3,3") € DY <D .
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A straightforward calculation leads to

_ _ X2 1 _ X2 1
TO(XR) =0, BOX) = (Xt - (- 5)&). BEOK) =—v(5 - )&,
_pl X2 1
XHE) (Xa, X3) = XBUE) (X2, X3) =0, XBU(E)(Xa, X3) = —V<€1X3 — X2 X358 — (7 - 6)53)
A . . .
where v = ——— is the Poisson coefficient.
2(A + )
So, we get
— — dUy X22 1\ d?Us — X2 1\ d?Us
= = — X _— _—— = = — _— = =
Ur=0, Uz V( 2 day ( 2 ) daz? >’ Us V( 2 ) dz?’
—=pl  +=pl —pl dUq d?U, X32 1\ d?Us
= = X3— — XX — ) —=).
Ur=ty =0 Uy= <3d1 A (2 6)@%)
Problem ((6.12)) becomes
) L v L
%Qd T —/ f1®1dxy, % "o d ——dz = 2/ g1V dxy,
0 d:Ul d:Ul 0 d:Ul d(L‘l 0 (6 12)
d*U,, d2<I> 1 [ ado, '
d = 2 ®o d o—dxy, V(®,¥) eD
/ i x1 / I 1 — /0 9o gz, 401 (@, V) € D,
where E = M is the Young modulus.
At p
Now, we can reconstruct the solution to problem (6.2)). We obtain
dU: dU:
5(52/{1(901) — l‘Q(SJ(l‘l) — 1‘3673(331)
dxl dacl de
ue 5(z) =~ U (x1) — 360(x1) — 1'2.138%(%1)61
1
eUs(x1) + 260 (x1)
8U3 i)
_x3687a71 (.’E]_, ?> l
2 x oU x 277P L2 13
+e 5U2(x1,—2) _x3aX3 (961, 2) +¢e0°Ujy <ﬂc1, 25 )e3
€2
€U3 (1‘1, ?)
and for the stress tensor we have
dlUy d?*Us d?*Us de
E X - X —2uXs— 0
(d.%‘l 2d1 3d1> H 3d.7}1
O-(u&é)(x) ~ _2MX3@ 0 0
dxl
0 0 0

7 Appendix
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7.1 Elementary plate displacement of the thin-walled beam

Definition 7.1. An elementary displacement of the thin-walled beam ). 5 (considered as a
plate of thickness 25) is a displacement v € L'(Q 5)3 written in the form

v(@',x3) = V(@) + 23 A(@")  for a.e. x = (2/,x3) € Q.

The component V belongs to L' (P.)? while A = Aje; + Ases is in L' (P.)?.

Here, V gives the mid-surface displacement and x3A(x") represents a ”small rotation” of the
fiber {z'} x (=9, 0), whose axis is directed by —Az(x')e1 + A1 (z")es and whose angle is approz-
imately |A(z")].

To any displacement u € L*(Q.5) we associate an elementary displacement U, € L'(. )3
and a warping u* € L*(Q.s)?

u(z) = Ugy(x) +u*(x)

for a.e. z = (2, 23) € 02 7.1
(@) =U(2") + z3R*(2) orae r=(2,r3) € Qe (7.1)

so that

é é 0
/ u* (-, x3)dxs =0, / (-, x3)rsdrs = / Uy(+, w3)rsdrs =0 a.e. in P.. (7.2)
5 5 -5

The above equalities determine U*(z’) and R*(2’) in terms of u and integrals on the fiber
{2'} x (—0,9) (see [12]). We have
1 é
Uz = 25/_5 w(2', x3)dxs,

3
26°

for a.e. 2’ € P..

9
R*(2) = / 3 (u1 (2, x3)er + uz (2, xg)eg)d:rg,
-4

Theorem 7.2 (Theorem 4.1 in [12]). Let u be a displacement in WIP(Q. 5)3, p € (1, 00),
decomposed as (7.1). The terms U*, R* and u* of this decomposition satisfy

u* e Whk(p)?, R* e WHP(P.)?, @* € WHP(Q. )%,

1@ | ze (. 5) < Célle(u)l|Lr(a. 4)s IV || o (a5 < Clle( )HLP (Qe5)s (7.3)
* az/{3 *
S|IVR | Lo(p.) + lleagU) e (p.) tRal,, p S 51/pH e(uw)ll e, 5)-

The constants do not depend on €, § and L.

Proof. In [12, Theorem 4.1] we have considered a plate whose mid-surface is a bounded domain
in R? with a Lipschitz boundary. We have proved that the constants in the estimates given in
[12] Theorem 4.1] are independent of §. In fact, these constants depend only on the boundary
of the mid surface and on p.

Now, if we revisit the proof of [I2] Theorem 4.1] bearing in mind that the mid-surface of the
thin-walled beam is F;, we realize that what is important is to fill ). 5 with parallelotopes
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whose dimensions we control.

Set N € L € L
SR R I

where [t] is the integer part of ¢ € R. We have

5§l€75§2(5, 0 <ls < 20.

Denote Y 5 = (0,15)x(0,1. 5)x(—0,9). Note that Y 5 has a diameter less than Rs = 40 and it
contains a ball of radius r5 = §/2. This is important because the estimates in [I12, Theorem
4.1] are controlled by the ratio Rs/rs < 8.

Observe that ). 5 can be entirely filled with parallelotopes isometric to Y 5, two by two with
empty intersections.

It now remains to follow the lines of the proof of [12, Theorem 4.1] to obtain the estimates
with constants independent of €, § and L. O

7.2 Extension of a thin-walled beam displacement

Denote
PW = (=L, L)x(—¢,¢), P = (—L,2L)x(—¢,e¢), P®) = (—L,2L)x(—e¢, 3¢),
QM) = pMx(=4,0), Q2 = P2y (-4,0), QB = POy (=4,0),
Pl = (—L,2L)x (-3¢, 3¢), Wl 5 = (—3¢,3¢)x(=0,9), Ls=Px(=4,0).

Proposition 7.3. There exists an extension operator P- from WhP(Q. 5)3 into WIP(QL 5)3,
p € (1,00), satisfying

Vi€ W90 Pu(u) € W), Pelwon, =t [le(Pe() iy ) < Clle(®) oo

The constant does not depend on €, § and L.
Moreover, if u =0 a.e. on T then P.(u) =0 a.e. in (—L,0)xw’ ;.

Proof. Construction of P.(u).
We decompose u as ([7.1]).

Step 1. Extension of u to the thin-walled beam Q?g.

First, if w = 0 a.e. on {0} xw. s then we extend u by 0 in (—L,0)xw. 5. Obviously the terms
of the decomposition of u (see (7.1])) are also extended by 0 in (—L, 0) xw 5.
Otherwise, we set

Utz =u*(2) for a.e. 2’ € P,
Ut = 4U*(— %,562) — 33U (—x1,22) for a.e. 2/ € (=L,0)x(—¢,¢),
R*(2) = R*(2) for a.e. 2’ € P,

(@)
x1/ /1 * x1 * !
R*(2') = —2R (— ?,m) + 3R*(—z1,x2) for a.e. o' € (—L,0)x(—¢,¢),
7 (z) = T (x) for a.e. x € Q.3,

ut(v) =u"(—z1,22,73) for a.e. x € (—L,0)xwes.
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We have )
ut e wtr(p)3, R ewtr(pM)? wt e wH(QL))®.

Using the estimates ([7.3)), we easily check that

! o)) = Collelize(@. s, HVU’”HLP amy = Clle@lzra.),
1 1 it 1 (7.4)
SIVR |, + leas@™) i, + [ ey < 5l
We set
u(z) = U (&) + 23R (o)) + a (z) for a.e. x € Qilg.
Thus, we have u*! € WP (Qgg)‘g. A straightforward calculation yields
He(u*l)llLP(Qu < Clle(w)llzr (. 5)- (7.5)

The constants do not depend on €, § and L.

We proceed in a similar way to extend u and the terms of its decomposition in (L, 2L)xw, 5.
We denote u*? the extension of u to the domain ( L,2L)xw, s and U2, R*2, u*? the terms

of its decomposition. The estimates (|7.4)) and are still valid replacing Q( ) 5 by Q?g, of
course the constants are always independent of ¢, 5 and L.

Hence, we have

||ﬁ*2||Lp(Q<2)) < Célle(u)| Lo ) |!VU*2HLP ) < Clle(w) e, )
5 %2 %2 32 %2 < c (7.6)
VR g0 + leas @) o + || G+ RE2 o < s373lle@lzvo.
So, u*? € WLP(ng)?’ and is decomposed as
u?(z) = U (2)) + 23R (') + u**(2) for a.e. z € Qgg
It satisfies
He(u*2)||Lp(Qé2;) S C”e(u)||LP(QE,5)' (77)
Step 2. Extension to the thin-walled beam Qggg
We set
U (z')y =uU*?(z") for a.e. 2’ € P,
3 _
U3 (a') = AU (x s . ”) — U (21, 26 — a9) for ace. o € (—L,2L)x (e, 3¢),
R*3(z) = R*?(z) for a.e. 2’ € P,
*3 (1 *2 3 — a2 *2 /
R*(2') = —2R (xl, ) + 3R*(z1,2e — x2) for a.e. 2" € (—L,2L)x (e, 3¢),
w3 (x) = (z) for a.e. x € Qgg,
w3 (x) = (21, 26 — @9, x3) for a.e. x € (—L,2L)x(g,3e)x(—6,0).
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Here, using the estimates ([7.4)), we obtain
* * —* 3
U3 Wl,p(PE(?)))?)’ R*3 ¢ Wl,p(P(3))2 3¢ Wl,p(QE:’g)S,

*3 —x3
I ||Lp(QS§) < Colle(u)llzr (. 4), [V ||Lp Al = Clle(u)llze (. ), (7.8)

IRy i, + leas )y i, + |2 + 3

Lo(P) T (P < siplle@llze@. -

We set
uB(z) = U (@) + 2sRB() + 0 (x)  for ae. z € QD).
Thus, we have u*3 € Wl’p(Qg)g’ and

!\G(U*g)IILP(Qw < Clle(u)lLr(o. 5)-

The constants do not depend on ¢, § and L.
Step 3. Extension to the thin-walled beam Q’E 5

We proceed as in Step 2 to extend u*3 and the terms of its decomposition in Q. 5. We denote
u*™* the extension of u to the domain €’ 0 and U™, R*, u** the terms of its decomposition.

The estimates (| and (| are still valid replacing Q( ) 5 by Ol g, of course the constants are
always mdependent of ¢, 5 and L.

We finally obtain
Uu* e Wl’p<Ps/)37 R™ € Wl,p(Pel)27 u™t e Wl’p( 56)37
[T (|oy ) < Cole@leqey: VB llzogy ) < Clle@lizoen ), (7.9)

kk

SIIVR™ Lo (py) + lleas@™) |l Loy

C
Lr(PL) = 517"6(”)””(95,5)'

We set
P-(u)(z) = U™ (2") + 23R (') + u™* () for a.e. z € QL 5

We have P.(u) € I/Vl’p(Qf?’(;)3 and
’\e(Pe(u))\\Lp(ng’é) < Clle(uw)||ze(a. 5)-
The constants do not depend on ¢, § and L. O

7.3 Decomposition of functions defined on P.

Proposition 7.4. Let ¢ be in WYP(P.), p € (1,00). There exist ® € WP(0,L) and ¢ €
WYP(P.) such that
db=®+¢ a.c in P.

with the following estimates

H(I)HLP()L) 1/1)H¢HLP(PE HdﬂUl Lr(0,L) 1/1’H8x1‘ LP(PE)
W&mm = H(‘? ‘LP Py’ (7.10)
Haxl ‘ LP(PE) H@ml ‘ Lr(P) Haixz‘ Lr(P:) — Haim‘ Lr(P.)
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2
belongs to LP(P.) then

Furthermore, if

10T
0%¢
. 7.11
H o0xy ‘ Lp(P.) H 0x10%9 ‘ Lr(P.) ( )
The constants only depend on p.
Proof. We set
O(xp) = / ¢(w1,z2)do for a.e. xpin (0,L) and ¢ = ¢ — ®.

We have ® € WP(0,L) and ¢ € WHP(P.). The derivative of ® is

a@
d:L’l

Then, the Holder inequality yields (7.10); 2, from which we obtain (7.10[)4. Since we have
0 ¢
98 _ 9% estimate ([7.10))5 follows.

81‘2 81’2 R
Observe that / ¢(z1,79)dxg = 0 for a.e. x1 in (0, L). Thus, the Poincaré-Wirtinger inequal-

—€
ity leads to (7.10))s.

do
We have also 8¢ (x1,x2)dxe = 0 for a.e. 21 in (0, L). Hence, if

then the Poincare—ertinger inequality leads to (7.11]).

1 %9 .
(z1) = 25/ aqsl(ml,xg)dmg for a.e. in (0, L).

2

m belongs to Lp(PE)

O

Proposition 7.5. Let ¢ be in W*P(P.), p € (1,00). There exist ®, ¥ € W?P(0,L) and
¢ € W?P(P.) such that N
p=D4+ 22V +¢ a.e. in P

with the following estimates:

H(I)HLP 0.L) = 61C/110H‘Z’HLP P)’ del LP(0,L) 51/1’“37931‘ Lr(P:)’
d*® 9%¢
H dx? ‘ LP(0,L) 51/1’ H ‘ Lp(P;)’
2
H\IJHLP 0,L) S MH%‘ e (P.)’ Hda:l Lp(0,L) — 1/p"aﬂi§$2)L"(Pa)7
2
H daz? ’ L?(0,L) 51+1/P ng? Lr(P.) (7.12)
) 0%¢
HQZSHLP(P Ha ‘Lp(ps Oz e (P Ha )LP (P:)
2 52
H@xl ) LP(P.) H@:m@a:g ‘ Lo(P.)’ gxﬁ’ Lp(P:) H dx3 ¢‘ Lr(P:)’
Tt e e <l
Ox? e (P.) Ox2 e (P’ Ox10x2 1L (P) Ox10x2 Lo (P.)
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The constants only depend on p.

Proof. Step 1. We define &, ¥ and 5
We set

1 £
O(x1) = 25/ ¢(x1,x9)dxo for a.e. z1 in (0, L),
—&

3 €
U(xy) = 203 ¢(x1,x9)xodre for a.e. x1 in (0, L),
—&

and  ¢(x1,22) = ¢(a1,22) — B(x1) — 22¥(z1) for ace. (v1,22) € Pu.

We have ®, ¥ € W2P(0,L) and ¢ € W2P(P.) .
Step 2. We prove the estimates ((7.12))123456.
First, as in Proposition we prove (7.12)1 2 3.

Now, observe that

3 [° 1 (5.
U(zy) = 23 | P(w1, 22)T2dTs = % /_6 BW?d@ for a.e. 1 in (0, L)

where ¢ = ¢ — ®.
Set

Y21, 22) = 3(15(332532):1:2

Function v belongs to W2P?(P.). From the estimates in Proposition and a straightforward
calculation we deduce that

for a.e. (z1,22) € P-.

2
loien < gl vms |5 lince < Cllam v
9 C| 0%
H 0x10x2 ‘ Lr(P:) = ;H@mam‘ Ly (P:)

Then, again from the estimates in Proposition we obtain ((7.12)4 5 6.

Step 3. We prove the estimates ((7.12))7 5 9.
Observe that

$(x1,xg)dx2 =0 forae. z1€(0,L),

—&

]. € 85 _ 1 € 8¢
2 /_E D9 (w1, x9)dry = % /_E D (x1,x9)dxy — V(1) for a.e. zy € (0,L).

We have

3 [¢ 1 (¢ 0¢

\IJ(.’El) = g gf)(:t?l,l‘g)l‘gdﬂfg = *% 87:1;2(-%1’1:2)
—e —€
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5 3 2 2
So, since / 72d:v2 =0

_e 2
1 e o 3 2 2
2/ 87($17x2)dx2 = o %(wl,xz)%dm
e T
—e U2 —e UL2 for a.e. x; € (0, L). (7.13)
1 € a¢ ( )31)% B €2d
X1, €T
25 i 1,22 ) 2

0
Estimate ((7.10))3 applied with ¢ replaced by % gives
2

<o 8
Ox3

H Oxo ‘ LP(P.) Lp(P.)

As a consequence of the above estimate and equality (7.13]) we obtain

565

H% o < Cel-1/p

L -

(-, $2)d$2‘

Lr(P.)

0
We can now use the Poincaré-Wirtinger inequality with the function 8—¢ Estimate ([7.10))s

Z2
yields
1 [° 0¢
R I BEe
H@xz 2 J_. 81:2( z2)dz; Lr(P.) 0x2llLr (P’
The above together with (| lead to
32
H Wooiry <l 5
Ory e (P.) ox3 e (P’
Again the Poincaré-Wirtinger inequality
2
H¢ —® - xQ‘IIHLP(Ps) <Ce H(‘)x% LP(P.)

This proves l-) 7.8
R 9% - . :
We have a— = 5.2 This gives (7.12)10. Estimate (7.12)9 is a consequence of ([7.11) and
x x
(7.12)5. Estunate (7.12))1; comes from (7.12))3-(7.12))¢. Estimate (7.12)12 is a consequence of
(7.12)5. ]
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