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LMI Conditions for Robust Invariance of the Convex Hull of
Ellipsoids with Application to Nonlinear State Feedback Control

Hoai-Nam Nguyen†

Abstract—The convex hull of ellipsoids was suggested in the
literature for robust invariance of constrained uncertain and/or
time-varying linear discrete-time systems. It was show that a
robust invariant set obtained with the convex hull of ellipsoids can
be significantly larger than that with the ellipsoidal set. However,
the design conditions are given in terms of bilinear matrix
inequalities (BMIs), which are non-convex. The main purpose
of this paper is to present a way to overcome this weakness
by providing new convex linear matrix inequality (LMI) design
conditions. It is shown that the conditions are losslessly extended
to robust controlled invariance and to nonlinear state feedback
control design. Two examples are included with comparison to
earlier solutions from the literature to illustrate the results.

I. INTRODUCTION

Stability analysis and stabilization against uncertain time-
varying parameters of the plant with/without input and state
constraints has been a challenging research subject in the
control community [2], [3]. In the past three decades there are
drastic theoretical advances in this study area and we could say
that set invariance and Lyapunov theories play an instrumental
role for such development [14].

The most popular class of invariant sets is that of the
ellipsoidal ones [1]. They result from the level sets of quadratic
Lyapunov functions. The reason of the popularity of the
quadratic forms as invariant sets and/or candidate Lyapunov
functions is clearly due to the existence of the LMI technique.
The combination of quadratic functions and LMIs provides a
powerful tool, that can be used to reformulate several control
problems as convex semi-definite programs (SDPs). How-
ever, while the LMI technique is well appreciated, quadratic
functions are quite conservative in terms of both Domain
of Attraction (DoA) and robustness margin. The invariant
ellipsoids, that are used to approximate the DoA, can be
relatively small. In addition, it is well known [21] that there
are stable systems which are not quadratically stable and
stabilizable systems which are not quadratically stabilizable.
Hence requiring the existence of a quadratic function can be
restrictive.

To reduce the conservativeness, many non-quadratic Lya-
punov functions have been considered in the literature. For sta-
bility analysis of discrete-time systems with time-varying para-
metric uncertainties, parameter-dependent Lyapunov functions
were proposed in [7]. The conditions are expressed as LMI
constraints. However, since the Lyapunov functions depend on
the uncertain parameters, it is not clear how to estimate the
DoA with this framework. Homogeneous Lyapunov function
is another well-known solution to perform robust stability
analysis and to estimate the DoA [6]. However, to the best

† SAMOVAR, Télécom-SudParis, Institut Polytechnique de Paris, 91120 Palaiseau,
France hoai-nam.nguyen@telecom-sudparis.eu

of the author’s knowledge, this approach is applicable only
for continuous-time systems.

Among the classes of non-quadratic functions, the polyhe-
dral ones are in particular interesting. Using polyhedral sets,
necessary and sufficient conditions were proposed for robust
stability [5]. They can also be used for robust stabilization via,
e.g., vertex control [3], [10], [19]. However, it is well known
[3] that constructing a polyhedral invariant set is not a trivial
task, especially for high dimensional systems.

Another interesting class of non-quadratic functions is the
convex hull of ellipsoids [12], [16], [20]. Using this approach,
it was shown that the estimated DoA can be significantly larger
than that is obtained with the quadratic Lyapunov function.
However in [12], [16], [20], the associated ellipsoids are re-
quired to be robustly invariant. This implies that the considered
systems are assumed to be quadratically stable/stabilizable. In
[8], the quadratic stability assumption is removed. However
the conditions are only for robust invariance, and are in terms
of non-convex BMI constraints. In [11], the robust controlled
invariance and state feedback control design problems are
addressed for continuous-time linear systems. However, the
conditions are still in terms of BMIs. In addition, it is not
clear how to implement the control law in [11].

In this paper we follow the research line of [8], [11]. The
aim is to provide new conditions for robust invariance and
robust controlled invariance of the convex hull of ellipsoids.
We address also the problem of designing a nonlinear state
feedback control law. The contributions are:

1) The associated ellipsoids are not required to be robustly
invariant. Hence the system is not assumed to be robustly
quadratically stable/stabilizable.

2) The conditions are expressed as convex LMI constraints.
Recall that the conditions in [8], [11] are in terms of
non-convex BMIs.

3) The conditions can be loselessly extended to stabiliza-
tion, providing a convex LMI solution to the nonlinear
state feedback design problem.

4) The implementation of the new control law requires the
solution of a convex optimization problem at each time
instant. A tailored efficient solver is proposed to deal
with the new optimization problem.

In a companion paper, it is shown that the control law is a
continuous piecewise linear function of state.

The paper is organized as follows. Section II is dedicated
to the robustly invariant set computation. Then in Section III
results on the design of the new stabilizing nonlinear control
law are presented. Section IV is concerned with the online op-
timization problem. Two simulated examples with comparison
to earlier solutions from the literature are evaluated in Section
V before drawing the conclusions in Section VI.



Notation: A positive definite matrix P is denoted by P ≻ 0.
We denote by Rn×m the set of real n ×m matrices, and by
Sn the set of positive definite n× n matrices. For symmetric
matrices, the symbol (∗) denotes each of its symmetric block.
For a given P ∈ Sn, E(P ) represents the following ellipsoid

E(P ) = {x ∈ Rn : xTP−1x ≤ 1} (1)

We denote by 0n/In the n × n zero/identity matrices. The
convex hull of the sets C1, C2, . . . , Cs is denoted as

C = Cos
i=1 {Ci} (2)

For any x ∈ C, ∃vi ∈ Ci, λi ≥ 0 :
s∑

i=1

λi = 1 and x =
s∑

i=1

λivi.

For a given set C, its frontier is denoted as Fr(C).

II. ROBUSTLY INVARIANT SET

This section studies LMI conditions for robust invariance
of the convex hull of ellipsoids. This case is addressed first to
introduce the main ideas. Consider the autonomous system

x(k + 1) = A(k)x(k) (3)

where x(k) ∈ Rnx is the measured state. A(k) satisfy

A(k) =

s∑
i=1

αi(k)Ai,

s∑
i=1

αi(k) = 1, αi(k) ≥ 0 (4)

where Ai ∈ Rnx×nx ,∀i = 1, s are known matrices. α(k) =
[α1(k) . . . αs(k)]

T is a vector of uncertain and time-varying
parameters.

The state x(k) is subject to polytopic constraints

x ∈ X ,X = {x ∈ Rnx : Fxx ≤ gx} (5)

where Fx ∈ Rcx×nx , gx ∈ Rcx , gx > 0. The inequalities are
taken component-wise.

Definition 1: (Robustly Invariant Constraint-Admissible
Set) A set C ⊆ Rnx is robustly invariant for (3) if and only if
∀x(k) ∈ C, it holds that x(k + 1) ∈ C,∀k ≥ 0. In addition, if
C ⊆ X , then C is constraint-admissible with respect to (5).

The existence of a robustly invariant constraint-admissible
set C for (3), (5) implies that (3) is robustly stable. In addition,
if there is no initial condition x(0) ∈ Fr(C) such that x(k) ∈
Fr(C),∀k ≥ 1, then (3) is robustly asymptotically stable.

The following theorem holds
Theorem 1: If there exist matrices Pi ∈ Snx , Zi ∈ Scx ,

i = 1, s, that satisfy the following LMIs[
Pi AiPj

(∗) Pj

]
⪰ 0,∀i, j = 1, s (6)[

Zi FxPi

(∗) Pi

]
⪰ 0,∀i = 1, s (7)

Zi(l) ≤ gx(l)
2,∀l = 1, cx, (8)

where Zi(l) is the lth diagonal element of Zi, then
Cosi=1 (E(Pi)), i = 1, s is robustly invariant for system (3),
and constraint-admissible with respect to (5).

Proof: See Appendix A. □
Remark 1: Using the proof of Theorem 1, it follows that

conditions (6) are used to guarantee the robust invariance of

Cosi=1(E(Pi)), while conditions (7), (8) are for the constraint
admissibility of Cosi=1(E(Pi)). □

Remark 2: If Pi = P , ∀i = 1, s, then conditions (6) are
the robust invariance conditions of the single ellipsoid E(P ).
Hence quadratic invariance is a special case of (6). □

Remark 3: The number of LMIs in (6), (7), (8) increases
quadratically as s increases. However, the number of LMIs
is not affected by the system dimension, that can be high
dimensional. □

Theorem 1 provides LMI conditions for robust invariance
and constraint admissibility of Cosi=1(E(Pi)). Among all
Cosi=1(E(Pi)), we would like to obtain the largest one. This
can be done by maximizing the volume of the associated
ellipsoids. Another idea is to optimize the ellipsoids with
respect to some reference directions or sets [13]. Here we show
how to optimize the set with respect to a reference direction.

Let di be a reference direction for E(Pi), ∀i = 1, s. The
problem of optimizing E(Pi) with respect to di is equivalent
to maximize µi with the constraint µ2

i d
T
i P

−1
i di ≤ 1. Thus,

using the Schur complement, one gets[
1 µid

T
i

(∗) Pi

]
⪰ 0,∀i = 1, s (9)

Combining (6), (7), (8), (9), one can write the problem of
maximizing the size of Cosi=1 (E(Pi)), ∀i = 1, s by

max
Pi,Zi,µi

{
s∑

i=1

µi

}
,

s.t. (6), (7), (8), (9)
(10)

Problem (10) is a convex SDP program. It can be solved
efficiently using free available LMI parser such as CVX [9]
or Yalmip [15].

III. ROBUSTLY CONTROLLED INVARIANT SET AND
NONLINEAR STATE FEEDBACK CONTROL DESIGN

A. Robustly Controlled Invariant Set

Perhaps the most interesting aspect of the conditions in
Theorems 1 is that they can be loselessly extended to compute
a robustly controlled invariant set, and to design a nonlinear
state feedback control law. To this aim, let us consider the
following system

x(k + 1) = A(k)x(k) +B(k)u(k) (11)

where u(k) ∈ Rnu is the control input. A(k) is defined in (4),

B(k) =
s∑

i=1

αi(k)Bi, where Bi ∈ Rnx×nu are known, α(k)

are defined in (4). The constraints on x(k) are given in (5).
The constraints on u(k) are

u ∈ U = {u ∈ Rnu : Fuu ≤ gu} (12)

where Fu ∈ Rcu×nu and gu ∈ Rcu are constant with gu > 0.
Definition 2: (Robustly Controlled Invariant Constraint-

Admissible Set) A set C ⊆ Rnx is robustly controlled invariant
for (11) if and only if ∀x(k) ∈ C, ∃u(k) = u(x(k)), one has
x(k+1) ∈ C,∀k ≥ 0. In addition, if C ⊆ X and u(x(k)) ∈ U ,
then C is constraint-admissible with respect to (5), (12).

The following theorem holds



Theorem 2: If there exist matrices Pi ∈ Snx , Zi ∈ Scx ,
Gi ∈ Scu , Yi ∈ Rnu×nx ,∀i = 1, s such that the following
LMIs [

Pi (AiPj +BiYj)
(∗) Pj

]
⪰ 0,∀i, j = 1, s (13)[

Zi FxPi

(∗) Pi

]
⪰ 0,∀i = 1, s (14)

Zi(l) ≤ gx(l)
2,∀l = 1, cx (15)[

Gi FuYi

(∗) Pi

]
⪰ 0,∀i = 1, s (16)

Gi(l) ≤ gu(l)
2,∀l = 1, cu (17)

are satisfied, then Cosi=1 (E(Pi)) is robustly controlled invari-
ant constraint-admissible for (11), (5), (12).

Proof: See Appendix B. □
Remark 4: Using the proof of Theorem 2, it follows that

x(k) is keeping inside Cosi=1 (E(Pi)) with the control law

u(k) =
s∑

i=1

λi(k)Kivi(k) (18)

where Ki = YiP
−1
i , vi(k) and λi(k) satisfy

s∑
i=1

λi(k)vi(k) = x(k) (19)

with vi(k) ∈ E(Pi), λi ≥ 0,
s∑

i=0

λi(k) = 1. Note that λi(k),

∀i = 1, s are not the uncertain parameters α(k) in (4). They
are the interpolating coefficients, that are used to decompose
x(k) into several auxiliary states vi(k). □

Remark 5: Consider the case Ki = K,∀i = 1, s. Using
(18), one has

u(k) =
s∑

i=1

λi(k)Kivi(k) = K

(
s∑

i=1

λi(k)vi(k)

)
Thus, using (19), one obtains u(k) = Kx(k). Hence, linear
feedback control law is a particular case of (18), (19). □

Similarly to Section II, once robust controlled invariance
and constraint admissibility conditions are expressed as LMI
constraints (13), (14), (15), (16), (17), the set Cos

i=1 (E(Pi))
can be optimized by solving the following SDP problem

max
Pi,Zi,Gi,Yi,µi

{
s∑

i=1

µi

}
,

s.t. (13), (14), (15), (16), (17), (9)
(20)

B. Nonlinear State Feedback Control Design
In this section, it is assumed that the LMIs (13) are strict.

This implies that (11) is robustly asymptotically stabilizable.
As shown with the proof of Theorem 2, recursive feasibility
is guaranteed with the control law

u(k) =

s∑
i=1

λi(k)Kivi(k) (21)

where vi(k) ∈ E(Pi), λi(k) ≥ 0,
s∑

i=1

λi(k) = 1 and

s∑
i=1

λi(k)vi(k) = x(k) (22)

Here by recursive feasibility, we mean that x(k + 1) ∈
Cosi=1(E(Pi)),∀x(k) ∈ Cosi=1(E(Pi)).

For a given x(k) ∈ Cosi=1(E(Pi)), there are generally
several vi(k), λi(k) satisfying (22), see Fig. 1. The variables
vi(k), λi(k) can be considered as the degrees of freedom. Here
we show how to select vi(k), λi(k) in such a way that the
control law (21) robustly asymptotically stabilizes (11).

Fig. 1: State Decomposition.

For a given x, consider the following optimization problem

min
vi,λi

{
s∑

i=1

λi},

s.t.


s∑

i=1

λivi = x,

vTi P
−1
i vi ≤ 1,∀i = 1, s,

λi ≥ 0,∀i = 1, s

(23)

Note that we do not consider the constraint
s∑

i=1

λi = 1 in

(23). Clearly, min{
s∑

i=1

λi} ≤ 1, ∀x ∈ Cos
i=1 (E(Pi)). Note

also that (23) is a non-convex optimization problem due to
the multiplications between λi and vi. We will provide a way
to solve (23) efficiently in the next section. For the moment, let
us assume that the solution of (23) is available, and is denoted
as λ∗

i , v
∗
i .

We have the following theorem.
Theorem 3: The control law (21) with λi(k) = λ∗

i

and vi(k) = v∗i guarantees recursive feasibility and robust
asymptotic stability ∀x(k) ∈ Cosi=1 (E(Pi)).

Proof: See Appendix C. □
In summary, the proposed control strategy consists of two

stages: offline stage and online stage.

Algorithm 1: Offline Stage

1: Calculate Pi, Yi,∀i = 1, s by solving (20).
2: Calculate the gains Ki as, Ki = YiP

−1
i , ∀i = 1, s.

Algorithm 1: Online Stage - At Time Instant k

1: Measure or estimate x(k).
2: Solve the optimization problem (23) to obtain λ∗

i , v
∗
i .

3: The control law is given as u(k) =
s∑

i=1

λ∗
iKiv

∗
i .



IV. ONLINE OPTIMIZATION PROBLEM

A. SDP Formulation

The implementation of the control law (21), (23) requires
the solution of a non-convex problem at each time instant. In
the following, we show how to reformulate (23) as a convex
SDP problem. For this purpose, define

ζi = λivi,∀i = 1, s (24)

Using (24), problem (23) becomes

min
ζi,λi

{
s∑

i=1

λi},

s.t.


s∑

i=1

ζi = x,

ζTi P
−1
i ζi ≤ λ2

i ,∀i = 1, s,
λi ≥ 0,∀i = 1, s

(25)

Thus, using the Schur complement

min
ζi,λi

{
s∑

i=1

λi},

s.t.



s∑
i=1

ζi = x,[
λi ζTi
ζi λiPi

]
⪰ 0,∀i = 1, s,

λi ≥ 0,∀i = 1, s

(26)

(26) is a convex SDP problem, which is required to solve at
each time instant. Although there has been a lot of progress in
convex optimization, solving a SDP problem in an embedded
platform can generally take an unnecessary long time. This
might restrict the applicability of the approach for fast dynam-
ical systems. In this next section, we provide a way to solve
efficiently (26), or equivalently (25). The solution is based
on the alternating direction method of multipliers (ADMM)
algorithm. In the past ten years, ADMM has emerged as a
powerful algorithm for solving structured convex optimization
problems. The main contribution of this section is to show how
to convert (25) into a form that the sub-optimization problems
associated with the ADMM can be solved efficiently.

In the following, the ADMM theory is recalled [4].

B. Alternating Direction Method of Multipliers

Consider the optimization problem

min
z,w
{f(z) + h(w)} ,

s.t. z − w = 0
(27)

where f(z), h(w) are convex functions. One way to solve (27)
is to form the following augmented Lagrangian

Lρ(z, w, θ) = f(z)+h(w)+θT (z−w)+
ρ

2
(z−w)TP(z−w)

(28)
where θ is the Lagrange multiplier, ρ ≥ 0 is a tuning
parameter, and P is a positive definite matrix. In general, P
is chosen as P = I [4]. However, P is a design parameter
in this paper. ρ controls the relative priority between the cost
function and the constraints. In practice, trial and error can be
used to select a good value for ρ.

In each iteration of ADMM, we perform alternating mini-
mization of Lρ(z, w, θ) over z and w. At iteration q we carry
out the following steps.

z(q+1) := argmin
z
{Lρ(z, w

(q), θ(q))} (29)

w(q+1) := argmin
w
{Lρ(z

(q+1), w, θ(q))} (30)

θ(q+1) := θ(q) + ρP(z(q+1) − w(q+1)) (31)

where the superscript (q) is used to denote the values of
variables calculated at iteration q.

The ADMM is particularly useful when the minimizations
(29), (30) can be carried out efficiently. In the next section we
show how to convert (25) into a form that (29), (30) admit
closed-form expressions.

The primal and dual residuals at iteration q are given by

e(q)p = z(q) − w(q), e
(q)
d = z(q) − z(q−1) (32)

The algorithm is terminated when the primal and dual residuals
satisfy a stopping criterion. A typical criterion is to stop
when ∥e(q)p ∥∞ ≤ ϵp, ∥e(q)d ∥∞ ≤ ϵd, where ϵd, ϵp are given
tolerances.

C. Efficient ADMM-based Solver

In this section, we will show how cast (25) as an optimiza-
tion problem (27). The following definition is recalled [4].

Definition 3: (Indicator function) For a given set C ⊂ Rnx ,
its indicator function is denoted by IC(x) : Rnx → {0,∞}
where

IC(x) =
{

0 if x ∈ C,
+∞ if x /∈ C

Let us take

z = [λ1 λ2 . . . λs ζ
T
1 ζT2 . . . ζTs ]

T (33)

Define λi, ζi, and w as{
λi = λi, ζi = ζi, ∀i = 1, s

w = [λ1 λ2 . . . λs ζ
T

1
ζT
2

. . . ζT
s
]T

(34)

The matrix P is chosen as

P = diag
(
1, . . . , 1, P−1

1 , . . . , P−1
s

)
(35)

Using (33), (34), problem (25) is recast as (27) with
f(z) =

s∑
i=1

λi + I s∑
i=1

ζi=x
(λ, ζ),

h(w) =
s∑

i=1

I ζT
i
P−1
i ζ

i
≤ λ2

i ,

λi ≥ 0

(λi, ζi)
(36)

Applying ADMM to problem (27), (36), we carry out the
following steps in each iteration.

Step 1: The optimization problem is

min
z

{
ρ
2z

TPz + fT
z z
}

s.t. Czz = x
(37)

where
fz = fλ + θ(q) − ρPw(q),
fλ = [1 1 . . . 1 0 0 . . . 0]T ,
Cz =

[
0 0 . . . 0 I I . . . I

] (38)



(37) is a quadratic program with equality constraints. Using
the method of Lagrange multipliers, the optimal solution of
(37) is given as [4]

z(q+1) = Sxx+ Sffz
Sx = P−1CT

z (CzP−1CT
z )

−1,
Sf = ρ−1P−1(−I+ CT

z (CzP−1CT
z )

−1CzP−1)
(39)

The matrices Sf , Sx are constant, and are calculated offline.
Step 2: The optimization problem is

min
w

{
ρ
2w

TPw − (θ(q) + ρPz(q+1))Tw
}
,

s.t.
{

ζT
i
P−1
i ζ

i
≤ λ2

i ,

λi ≥ 0

(40)

The cost function and the constraints of (40) are separable
in (λi, ζi), ∀i = 1, s. Their update can all be carried out in
parallel. The solution of the following problem provides the
update of (λi, ζi)

min
λi,ζi

{
ρ
2λ

2
i +

ρ
2ζ

T

i
P−1
i ζ

i
− (θ

(q)
λi

+ ρλ
(q+1)
i )λi

−(θ(q)ζ
i

+ ρP−1
i ζ

(q+1)
i )T ζ

i

}
,

s.t.
{

ζT
i
P−1
i ζ

i
≤ λ2

i ,

λi ≥ 0

(41)

where θ
(q)
λi

, θ
(q)
ζ
i

are, respectively, the Langrange multipliers for
λi, ζi at iteration q. Rewrite problem (41) as

min
λi,ζi

{
(λi − βi)

2 + (ζ
i
− γi)

TP−1
i (ζ

i
− γi)

}
,

s.t.
{

ζT
i
P−1
i ζ

i
≤ λ2

i ,

λi ≥ 0

(42)

where βi =
1
ρθ

(q)
λi

+λ
(q+1)
i , γi =

Pi

ρ θ
(q)
ζ
i

+ζ
(q+1)
i The solution

of (42) can be computed explicitly by using the method of
Lagrange multipliers. The solution is given by [18]

If βi < 0, γT
i P

−1
i γi ≤ β2

i ,

λ
(q+1)
i = 0, ζ(q+1)

i
= 0

If βi ≥ 0, γT
i P

−1
i γi ≤ β2

i ,

λ
(q+1)
i = βi, ζ

(q+1)

i
= γi

Otherwise,

λ
(q+1)
i =

βi+
√

γT
i P−1

i γi

2 ,

ζ(q+1)

i
=

βi+
√

γT
i P−1

i γi

2
√

γT
i P−1

i γi

γi

(43)

Remark 6: The solution of (42) can be obtained analytically
by using P in (35). If P = I is used as in the standard ADMM
[4], then the solution of (42) can only be obtained numerically
via iterative procedures. □

Algorithm 2 summarizes the particularization of the ADMM
method to problem (25).

Algorithm 2: ADMM based Solver

1: Using (39) to update z(q+1).
2: Using (43) to update w(q+1).
3: θ(q+1) ← θ(q) + ρP(z(q+1) − w(q+1)).

V. EXAMPLE

This section demonstrate the potential benefit of the new
methods by simulations of two examples system. The CVX
toolbox [9] was used to solve SDP problems.

A. Example 1

Consider system (3) with

A1 =

[
0.9022 0.0085
−0.0036 0.9858

]
, A2 =

[
1.2 0.6
−0.5 0

]
(44)

The constraints are

−1 ≤ [0.0036 0.0142]x ≤ 1, −145 ≤ x1 ≤ 145

The goal is to calculate a robust invariant constraint-admissible
set that is as large as possible.

Using Theorem 1, Fig. 2 shows the ellipsoids E(P1) (solid
blue line), E(P2) (solid red line). The matrices P1, P2 are

P1 = 104
[

1.9455 −0.6858
−0.6858 0.7173

]
,

P2 = 104
[

2.1024 −0.8832
−0.8832 0.6895

]
For comparison, Fig. 2 also shows the maximum-volume
robustly invariant constraint-admissible ellipsoid (dash-dot
black line), and the maximal robustly invariant constraint-
admissible polytope (dashed green line). It can be observed
that Co2

i=1(E(Pi)) is slightly smaller than the polytope, and
both of them are much larger than the maximum-volume
ellipsoid.
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Fig. 2: Robustly invariant constraint-admissible sets. Convex
hull of ellipsoids (solid blue and solid red), maximum-volume
ellipsoid (dash-dot black), and maximal polyhedral set (dashed
green) for example 1.

B. Example 2

Consider the system (11) with

A1 =

[
1.0 −1.4
−1.0 −0.8

]
A2 =

[
1.0 1.4
−1.0 −0.8

]
,

B1 =
[
5.9 2.8

]T
, B2 =

[
3.1 −2.8

]T (45)

The goal is to design a robust stabilizing controller. There are
only input constraints −1 ≤ u(k) ≤ 1.



It can be verified that (45) is not quadratically stabilizable.
Using Theorem 2, one obtains

P1 =

[
22.91 −19.99
−19.99 18.01

]
, P2 =

[
21.24 −10.51
−10.51 8.97

]
,

K1 =
[
−0.0949 0.1296

]
, K2 =

[
−0.0095 0.2060

]
It is interesting to observed that the closed-loop system with
the linear control law u(k) = K1x(k) or with u(k) = K2x(k)
is not robustly stable. For example, the eigenvalues of (A1 +
B1K2) are 1.0887 and −0.3676.

The sets E(P1), E(P2) are presented in Fig. 3. Note that
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Fig. 3: Convex hull of ellipsoids for example 2.

procedures in [3] to calculate a robustly controlled invariant
and constraint-admissible polyhedral set for (45) could not be
terminated after one hour.

For the initial condition x(0) = [−4.7589 4.175]T , Fig.
4(a) presents the state and input trajectories of the closed-loop
system as functions of time. Fig. 4(b) shows the realization of
α and the sum (λ1 + λ2) as functions of time. As expected,
(λ1 + λ2) is a decreasing function.
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(a) State and Input (b) α and λ1 + λ2

Fig. 4: (a) State and input trajectories (b) α realization and
λ1 + λ2 trajectories for example 2.

For this example, we solved the online optimization problem
(26) using the SEDUMI solver in CVX toolbox, and using the
ADMM solver in Algorithm 2. Using the TIC/TOC function
of MATLAB 2022b, we found that the online computation
times for one sampling interval were 0.4318[s], and 2.2296×
10−3[s] for the SEDUMI solver, and for the ADMM solver,
respectively.

VI. CONCLUSION

In this paper, the convex hull of ellipsoids is considered
as a powerful tool for constrained control of uncertain and/or
time-varying linear discrete-time systems. Using this class of
set, convex LMI conditions for robust invariance and robust

controlled invariance are proposed. Similar results have also
established for the nonlinear state feedback control design. A
tailored efficient ADMM algorithm is proposed to solve online
the optimization, that is required for the implementation of
the new control law. Two numerical examples demonstrate the
effectiveness of the new approach.

The proposed approach is a natural generalization of the
quadratic function framework in the robust case. We believe
it will provide solution for several control design problems
that have not been found a definitive answer. This claim is
supported by the fact that using the given framework a set of
control gains is designed. Each control gain in the set takes
charge of a local region in the state space via its associated
ellipsoid.
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APPENDIX

A. Proof of Theorem 1: For robust invariance proof, one
needs to show that ∀x(k) ∈ Cosi=1 (E(Pi)), one has x(k+1) ∈
Cosi=1 (E(Pi)), ∀k ≥ 0. We decompose x(k) as

x(k) =

s∑
j=1

λj(k)vj(k) (46)

where vj(k) ∈ E(Pj), λj(k) ≥ 0 and
s∑

j=1

λj(k) = 1.

Using (46), one has

x(k + 1) = A(k)x(k) = A(k)
s∑

j=1

λj(k)vj(k)

=
s∑

j=1

λj(k)A(k)vj(k)

or equivalently, vj(k + 1) = A(k)vj(k)

x(k + 1) =

s∑
j=1

λj(k)vj(k + 1) (47)

Using (47), if we can show that

vj(k + 1) ∈ Cos
i=1 (E(Pi)) , j = 1, s (48)

then x(k + 1) ∈ Cos
i=1 (E(Pi)). Pre and post multiplying (6)

by [
Inx

0nx

0nx P−1
j

]
one obtains, ∀j = 1, s[

Pi Ai

AT
i P−1

j

]
⪰ 0,∀i, j = 1, s

For each i, multiply the corresponding by αi(k), and sum to
obtain, ∀i = 1, s s∑

i=1

αi(k)Pi

s∑
i=1

αi(k)Ai

(∗) P−1
j

 ⪰ 0

Thus, using the Schur complement

P−1
j ⪰ A(k)T

(
s∑

i=1

αi(k)Pi

)−1

A(k)

with A(k) =
s∑

i=1

αi(k)Ai. Or equivalently

vj(k)
TP−1

j vj(k) ≥

vj(k + 1)T
(

s∑
i=1

αi(k)Pi

)−1

vj(k + 1)
(49)

Using (49), it follows that ∀vj(k) ∈ E(Pj), one has

vj(k + 1) ∈ E

(
s∑

il=1

αi(k)Pi

)
(50)

where E

(
s∑

il=1

αi(k)Pi

)
is a parameterized ellipsoid, that

depends on αi(k). Now we show by contradiction that

E

(
s∑

il=1

αi(k)Pi

)
⊆ Cosi=1 (E(Pi))

Assume ∃xc ∈ E

(
s∑

il=1

αi(k)Pi

)
such that xc /∈

Cos
i=1(E(Pi)). Without loss of generality, one can assume

xc ∈ Fr

(
E

(
s∑

il=1

αi(k)Pi

))
. Let fc ∈ Rnx be a support-

ing hyperplane of E

(
s∑

il=1

αi(k)Pi

)
at xc. Because the sets

E

(
s∑

il=1

αi(k)Pi

)
and Cosi=1(E(Pi)) are symmetric, one has

|fT
c x| < |fT

c xc|,∀x ∈ Cosi=1(E(Pi)) (51)

Denote gc = |fT
c xc|. Hence ∃αi(k) ≥ 0,

s∑
i=1

αi(k) = 1 such

that

fT
c

(
s∑

i=1

αi(k)Pi

)
fc = g2c (52)

Using (51), one gets |fT
c x| < g2c ,∀x ∈ Cosi=1(E(Pi)). It is

well known [17] that this condition is satisfied if and only if

fT
c Pifc < g2c . Hence, ∀αi(k) ≥ 0,

s∑
i=1

αi(k) = 1

fT
c

(
s∑

i=1

αi(k)Pi

)
fc < g2c (53)

which contradicts (52). Hence E

(
s∑

il=1

αi(k)Pi

)
⊆

Cosi=1(E(Pi)). Using (50), one gets vj(k + 1) ∈
Cosi=1(E(Pi)),∀vj(k) ∈ E (Pj) ,∀j = 1, s. It follows
that the set Cosi=1(E(Pi)) is robustly invariant.

It remains to prove the constraint admissibility. Concern-
ing the constraints (5), clearly, Cosi=1(E(Pi)) is constraint-
admissible if and only if E(Pi) ⊆ X , i = 1, s. Using [17],
E(Pi) ⊆ X if and only if ∃Zi ∈ Scx such that the LMIs (7),
(8) are satisfied. The proof is complete. □

B. Proof of Theorem 2: For robust controlled invariance,
one needs to show that ∀x(k) ∈ Cosi=1 (E(Pi)), ∃u(k) such
that x(k + 1) ∈ Cos

i=1 (E(Pi)).
Decompose x(k) ∈ Cosi=1 (E(Pi)) as

x(k) =

s∑
j=1

λj(k)vj(k) (54)

where vj(k) ∈ E (Pj) and
s∑

j=1

λj(k) = 1, λj(k) ≥ 0. Consider

the following control law

u(k) =

s∑
j=1

λj(k)uj(k) (55)



where, Kj = YjP
−1
j

uj(k) = Kjvj(k),∀j = 1, s (56)

Substituting (54), (55), (56) into (11), one gets

x(k + 1)

=
s∑

j=1

λj(k)A(k)vj(k) +
s∑

j=1

λj(k)Kjvj(k)

=
s∑

j=1

λj(k)(A(k) +B(k)Kj)vj(k) =
s∑

j=1

λj(k)vj(k + 1)

(57)
with

vj(k + 1) = (A(k) +B(k)Kj) vj(k) (58)

Now we will use (13) to show that, if vj(k) ∈ E(Pj) then
vj(k + 1) ∈ Cosi=1 (E(Pi)), ∀j = 1, s.

Rewrite (13) as, with Yj = KjPj ,[
Pi (Ai +BiKj)Pj

(∗) Pj

]
⪰ 0 (59)

Pre and post multiplying (59) by[
Inx

0nx

0nx
P−1
j

]
one gets [

Pi (Ai +BiKj)
(∗) P−1

j

]
⪰ 0,∀i, j = 1, s

For each i, multiply the corresponding by αi(k), and sum to
get, ∀i, j = 1, s

s∑
i=1

αi(k)Pi (∗)
s∑

i=1

αi(k) (Ai +BiKj)
T

P−1
j

 ⪰ 0

By using the Schur complement, one obtains, ∀j = 1, s

P−1
j ⪰

(A(k) +B(k)Kj)
T

(
s∑

i=1

αi(k)Pi

)−1

(A(k) +B(k)Kj)

It follows that
vj(k)

TP−1
j vj(k) ≥

vj(k + 1)T
(

s∑
i=1

αi(k)Pi

)−1

vj(k + 1)
(60)

Hence, if vj(k) ∈ E(Pj) then vj(k + 1) ∈ Cos
i=1 (E(Pi)).

Therefore Cos
i=1 (E(Pi)) is robustly controlled invariant.

It remains to show that Cos
i=1 (E(Pi)) is constraint-

admissible. Using the proof of Theorem 1, it follows that
(14), (15) provides a necessary and sufficient condition for
satisfying the state constraints (5). For the input constraints,
using (56), one has u ∈ U if and only if one has u ∈ U if and
only if

Kjvj ∈ U ,∀vj ∈ E(Pj),∀j = 1, s

Using [17], this condition is satisfied if and only if ∃Gj ∈ Scu
such that the following condition is satisfied

[
Gj FuKjPj

(∗) Pj

]
⪰ 0

Gj(l) ≤ gu(l)
2,∀l = 1, cu

(61)

where Gj(l) is the lth diagonal element of Gj .
By substituting Yj = KjPj ,∀j = 1, s in (61), one obtains

(16), (17). The proof is complete. □
C. Proof of Theorem 3: Recursive feasibility and asymp-

totic stability are proved at the same time. Consider the fol-
lowing candidate Lyapunov function, ∀x(k) ∈ Cosi=1 (E(Pi))

V (x(k)) =

s∑
i=1

λ∗
i (k) (62)

Clearly, V (k) ≥ 0,∀k, and V (x(k)) = 0 if and only if x = 0.
Substituting (21), (22) into (11), one gets

x(k + 1) =
s∑

i=1

λ∗
i (k)(A(k) +B(k)Ki)v

∗
i (k)

=
s∑

i=1

λ∗
i (k)vi(k + 1)

(63)

where vi(k + 1) = (A(k) + B(k)Ki)v
∗
i (k). As shown in the

proof of Theorem 2, if v∗i (k) ∈ E(Pi), then vi(k + 1) ∈
Cos

j=1 (E(Pj)). Hence we can decompose vi(k + 1) as

vi(k + 1) =

s∑
j=1

λijvij(k + 1) (64)

where
s∑

j=1

λij = 1, λij ≥ 0, and vij(k+1) ∈ E(Pj),∀j = 1, s.

Substituting (64) into (63), one obtains

x(k + 1) =
s∑

i=1

λ∗
i (k)

s∑
j=1

λijvij(k + 1)

=
s∑

j=1

s∑
i=1

λ∗
i (k)λijvij(k + 1)

=
s∑

j=1

ηj(k)

(
s∑

i=1

λ∗
i (k)λij

ηj
vij(k + 1)

)
=

s∑
j=1

ηj(k)ξj(k + 1)

where ηj(k) =
s∑

i=1

λ∗
i (k)λij , and ξj(k + 1) =

s∑
i=1

λ∗
i (k)λij

ηj
vij(k + 1). Using the facts that

s∑
i=1

λ∗
i (k)λij

ηj
= 1

and vij(k + 1) ∈ E(Pj),∀i, j = 1, s, one gets ξj(k + 1) ∈
E(Pj),∀j = 1, s. This implies that x(k+1) can be written as a
convex combination of ξj(k+1) with ηj(k) being interpolating
coefficients. Hence recursive feasibility is guaranteed.

One has
s∑

j=1

ηj(k) =
s∑

j=1

s∑
i=1

λ∗
i (k)λij =

s∑
i=1

λ∗
i (k)

s∑
j=1

λij

Since
s∑

j=1

λij = 1, one obtains
s∑

j=1

ηj(k) =
s∑

i=1

λ∗
i (k). By

optimizing (63) at time k + 1, one has V (x(k + 1)) =
s∑

i=1

λ∗
i (k + 1) ≤

s∑
i=1

ηi(k). It follows that V (x(k + 1)) ≤
s∑

i=1

λ∗
i (k), or equivalently V (x(k + 1)) ≤ V (x(k)). Hence

V (x(k)) is a non-increasing function.
Since the LMIs (13) are strict, it follows that there exists

no initial condition x(0) ∈ Fr (Cosi=1 (E(Pi))) such that
x(k) ∈ Fr (Cosi=1 (E(Pi))), ∀k ≥ 1. Hence V (x(k)) is
strictly decreasing, and V (x(k)) is a Lyapunov function. In
other words, the closed-loop system is robustly asymptotically
stable. □


