
HAL Id: hal-04177989
https://hal.science/hal-04177989

Submitted on 7 Aug 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Deep Gauss–Newton for phase retrieval
Kannara Mom, Max Langer, Bruno Sixou

To cite this version:
Kannara Mom, Max Langer, Bruno Sixou. Deep Gauss–Newton for phase retrieval. Optics Letters,
2023, 48 (5), pp.1136. �10.1364/OL.484862�. �hal-04177989�

https://hal.science/hal-04177989
https://hal.archives-ouvertes.fr


Letter Optics Letters 1

Deep Gauss-Newton for phase retrieval
KANNARA MOM1,*, MAX LANGER1,2, AND BRUNO SIXOU1

1Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1206, F-69621 Villeurbanne, France
2Currently at Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, F-38000 Grenoble, France
*kannara.mom@creatis.insa-lyon.fr

Compiled January 24, 2023

We propose the Deep Gauss-Newton (DGN) algorithm.
The DGN allows to take into account the knowledge
of the forward model in a deep neural network by un-
rolling a Gauss-Newton optimization method. No regu-
larization or step size need to be chosen, they are learned
through convolutional neural networks. The proposed
algorithm does not require an initial reconstruction and
is able to retrieve simultaneously the phase and ab-
sorption from a single-distance diffraction pattern. The
DGN method was applied to both simulated and exper-
imental data and permitted large improvements of the
reconstruction error and of the resolution compared to
a state of the art iterative method and another neural
network based reconstruction algorithm. © 2023 Optica

Publishing Group
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Phase contrast imaging has higher sensitivity compared to4

attenuation-based techniques, and permits tomography at the5

microscopic and nanoscopic scales [1]. It has found many ap-6

plications such as in materials science and biomedical imaging7

[2]. Due to the high coherence and brilliance of synchrotron8

sources, resolutions down to tens of nanometers can be rou-9

tinely achieved [3]. Several phase-sensitive imaging techniques10

have been developed [4], among them, propagation-based imag-11

ing [5] requires no equipment other than the source, object and12

detector. The absorption and phase shift induced by a sample13

can be retrieved from one or several such images, which is a14

nonlinear and ill-posed inverse problem.15

Direct inversion formulas can be obtained by linearization16

of the problem [6–8]. Such analytical methods can work well17

under certain imaging conditions, but impose restrictions on18

the imaging setup [6] or the object [7, 8]. To overcome these19

limitations, for example in high resolution imaging [9], iterative20

algorithms that do not rely on linearization of the problem can21

be used. Among them are the methods of alternating projections22

on constraints in the object and the Fourier domain, e.g. the23

Hybrid Input-Output (HIO) algorithm [10]. Another class of24

algorithm is the so-called variational approaches that consist in25

minimizing a criterion defined by a data fidelity term and regu-26

larization terms. These algorithms permit a flexible inclusion of27

prior information, such as sparsity or Tikhonov regularization28

[11]. More recently, an iteratively regularised Gauss-Newton29

(IRGN) method was proposed, exploiting the regularity of the30
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Fig. 1. Architecture of the network Γθ , representing one itera-
tion of the Deep Gauss-Newton method.

solution to obtain better robustness to high-frequency errors by31

regularizing with Sobolev norms [12]. Such approaches take32

into account the non-linearity of the problem, and yield bet-33

ter reconstructions with less artifacts than linearized methods.34

Unfortunately, the computation time is high and the choice of35

appropriate regularization remains a difficult problem.36

The development of deep learning methods in recent years37

has led to many advances in image and signal processing [13].38

Specifically, deep neural networks (DNNs) have been used to39

solve a wide variety of inverse problems [14]. Despite this40

progress, the black-box nature of DNNs, i.e., their lack of inter-41

pretability, is one of the primary obstacles for their use. Several42

approaches to exploiting DNNs for the solution of inverse prob-43

lems have been proposed. DNNs can be used to reconstruct44

the unknown image directly from an available measurement, or45

some parts of an algorithm can be replaced by DNNs. Algorithm46

unrolling is an emerging technique based on the incorporation47

of convolutional neural networks (CNNs) into an iterative opti-48

mization scheme in order to give the DNN a specific role in the49

reconstruction [15]. Such approaches have found many appli-50

cations [16] and unrolling has been applied to several optimiza-51

tion approaches: gradient descent algorithms [17], primal-dual52

schemes [18], and Alternating Direction Method of Multipliers53

[19]. For phase retrieval, several architectures have been pro-54

posed, including MS-D Net [20] and PhaseGAN [21].This kind55

of network is trained to approximate the inverse operator and56

often require large training sets as well as long training time.57

Other methods have incorporated neural networks into iterative58

schemes, but they are either computationally demanding [22, 23]59

or rely on a linearization of the forward model [24].60

http://dx.doi.org/10.1364/ao.XX.XXXXXX
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Table 1. Parameters for the Neural Networks

MS-D Net DGN

Loss function MSE MSE
Training epochs 100 100
Learning rate 10−3 5 × 10−4

Batch size 10 10
Activation function ReLU LReLU
Training time 35h 21h
Number of parameters 46 × 103 31 × 103

Here, we present a new learned iterative scheme, the Deep61

Gauss-Newton (DGN) algorithm, which is obtained by unrolling62

a Gauss-Newton iteration. The proposed method combines63

CNNs and knowledge of the imaging physics given by the for-64

ward operator and its Fréchet derivative. The rationale behind65

this choice is to take a well-known algorithm that is known66

to converge quickly and enhance it with machine learning by67

unrolling. We expect this scheme to inherit or improve the con-68

vergence properties of the Gauss-Newton method. Another69

advantage of this approach is that no regularization has to be70

chosen, instead it is adaptively learned from the data during71

training. We demonstrate the capability of the method to re-72

trieve phase and attenuation from a single phase contrast image73

on simulated data as well as experimental data.74

Under the projection approximation, the interaction of a co-75

herent and parallel X-ray beam with matter can be described76

by a transmittance function [6]. In the experimental conditions77

considered here, the intensity at a distance D from the sample78

is well described by the Fresnel formalism, and is given by the79

convolution of the transmittance and the Fresnel propagator PD:80

FD(B, φ) = |e−B+iφ ∗ PD|2 with PD(·) =
1

iλD
expi π

λD |·|2 . (1)

The operator FD describes the nonlinear relationship between81

the absorption B and phase shift φ induced by the object and82

the intensity of the diffraction pattern. In the following, we will83

note f = (B, φ) the couple we aim to retrieve.84

The inverse of FD can be approximated using variational85

methods such as IRGN, corresponding to Tikhonov regulariza-86

tion of the Newton steps:87

fk+1 = argmin
f

{∣∣∣∣∣∣FD( fk) + F′
D( fk) ( f − fk)− Iobs

D

∣∣∣∣∣∣2
2
+ αk || f ||22

}
(2)

where F′D( fk) is the Fréchet dérivative [25] of FD at the point fk,
αk > 0 is a regularization parameter at iteration k, and Iobs

D is a
noisy measured intensity. Eq. (2) has a unique solution

fk+1 = fk +
[
F′D( fk)

∗F′D( fk) + αkId
]−1{

F′D( fk)
∗
[
Iobs

D − FD( fk)
]
− αk fk

}
(3)

where F′D( fk)
∗ is the adjoint of the linear map F′D( fk) and Id is

the identity. Usually, a step size for the update of fk is intro-
duced as regularization. Here, we propose instead to learn a
regularization by replacing the Tikhonov term αk fk with a CNN
Gθ

g
k

with parameters θ
g
k , and to approximate the inverse of the

operator
[
F′D( fk)

∗F′D( fk) + αkId
]

with another CNN Hθh
k

with

parameters θh
k , based on the current iterate fk and on the approx-

imate Hessian F′D( fk)
∗F′D( fk). The network H then replaces the

classical approximation of the inverse of the Hessian used in the
traditional Gauss-Newton scheme by a potentially better and

faster learned approximation. If the algorithm is stopped after
N iterations, we get fN =

(
ΓθN ◦ · · · ◦ Γθ1

)
( f0), where f0 is the

initial guess, θk =
(

θ
g
k , θh

k

)
and

Γθk
( fk) = fk+

Hθh
k

[
fk, F′D( fk)

∗F′D( fk)
{

F′D( fk)
∗
[
Iobs

D − FD( fk)
]
+ Gθ

g
k
( fk)

}]
(4)

Unrolling this scheme, we can consider ΛΘ = ΓθN ◦ · · · ◦ Γθ188

as a deep neural network representing N iterations with Θ =89

(θ1, . . . , θN) its parameters. Recent work on unrolling schemes90

has shown that using the same transformation at each iteration91

so that θk = θ for k ∈ {1, . . . , N}, yields good results [26]. ΛΘ92

can then be seen as a recurrent neural network. The architecture93

of the network Γθ used for each iteration is shown in Fig. 1.94

The network Gθg takes the current iterate fk as input, spreads95

it to 16 and then 32 channels by a convolutional layer with96

kernel size 5 × 5 using a leaky rectified linear unit (LReLU) as97

non-linearity, defined as LReLUα(x) = max(x, αx), α > 0. The98

output of the network Gθg is added to F′D( fk)
∗
[
Iobs

D − FD( fk)
]
,99

stacked with the current iterate and then fed to the network Hθh100

which consists of the same set of operations as Gθg (except it101

has four input channels instead of two). Finally, the output is102

added to the current iterate and projected onto positive numbers103

by a LReLU. The architectures of the networks are kept simple104

for several reasons. A shallow network added to the iterative105

update saves computational time and the memory required,106

while giving good reconstruction results.107

To evaluate the algorithms, we created a database of 3D ob-108

jects consisting of random combinations of one to ten ellipsoid109

and paraboloid shapes of three different materials (gold, palla-110

dium and zinc). We then computed 2D tomographic projections111

of the real and imaginary parts of the refractive index, corre-112

sponding to the phase shift and absorption. The X-ray energy113

was set to 13 keV for a wavelength of λ = 0.095 nm, and the114

propagation distance was set to D = 20 mm to yield a pixel size115

of 12 nm corresponding to the experimental conditions below.116

The phase contrast images were generated from the projection117

images according to the forward model Eq. (1). The propaga-118

tion was calculated using 4 times oversampling with an image119

size of 2048 × 2048, yielding a final image size of 512 × 512 (Fig.120

2). Gaussian noise with different amplitudes was added to the121

images to yield a peak to peak signal to noise ratio (PPSNR)122

between 10 and 100 dB. 12 000 pairs of one input image (simu-123

lated intensity) and two output images (absorption and phase)124

were generated. From this dataset, 10 000 pairs were used for125

training, 1 000 for validation during the training, and 1 000 for126

evaluation. We compare the unrolling framework to the stan-127

dard IRGN method [12] as well as to the Mixed-Scale Dense128

Network (MS-D Net), a direct reconstruction method that does129

not include prior knowledge on the imaging physics [20].130
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Fig. 2. (a) Simulated and (b) experimental intensity.
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Table 2. Results (mean and standard deviation) on 1 000 simulated images.

Method NMSE (%) FRCM (%) Resolution (nm) Time (s)

Absorption Phase Absorption Phase Absorption Phase

IRGN 85.5 (40.7) 39.3 (15.0) 71.2 (9.95) 68.1 (5.45) 238 (136) 154 (43) 116
MS-D Net 13.6 (12.8) 10.6 (10.8) 48.8 (13.8) 47.8 (13.3) 102 (77.4) 98.5 (135) 2.60

DGN 12.1 (13.5) 4.61 (6.20) 35.7 (15.7) 23.0 (16.6) 72.2 (55.2) 62.3 (37.0) 5.88

In the IRGN, the positive-definite linear operator in Eq. (3)131

can be inverted efficiently by a conjugate gradient (CG) method132

[12]. We used 100 Newton steps and 10 iterations for the CG.133

For the DGN method, we used N = 10 iterations, which means134

that the derivative F′D( fk) and its adjoint F′D( fk)
∗ are evaluated135

10 times. The number of iterations was chosen empirically so136

that the NMSE stagnates. As opposed to [17], where several137

networks are trained sequentially, i.e. iteration by iteration, here,138

given a training set {yi, f i} where yi denotes the intensity FD( f i)139

corrupted by noise, we use one network Γθ applied N times in140

a recurrent fashion to obtain the DNN Λθ , which is trained to141

perform end-to-end reconstruction. The DGN was trained using142

100 epochs with a batch size of 10, the ADAM optimizer, an143

initial learning rate of 5 × 10−4 and a cosine annealing learning144

rate schedule [27]. The LReLU activation function parameter145

was set to the default α = 0.3. Warm-up initialization decreased146

training time but did not yield better final results. Therefore, for147

simplicity, zero initialization, f0 = (0, 0), was used throughout.148

For the MS-D Net, we used the same settings as in [20]. Using149

LReLU in the MS-D Net did not improve the reconstructions.150

The hyperparameters for the networks are summarized in Tab.151

1 and were optimized using grid search. Both DGN and MS-D152

Net were trained on the same training set.153

To quantify reconstruction quality on simulated data, we154

used the normalized mean square error (NMSE). The frequency155

domain correlation between ground truth and recovered image156

was evaluated using the Fourier Ring Correlation (FRC). From157

this the Fourier Ring Correlation Metric (FRCM) [21] and the158

resolution were calculated. FRCM is the mean square difference159

between the FRC and unity over all spatial frequencies. A small160

FRCM implies a higher similarity in the Fourier domain. To161

assess the capability to retrieve high frequencies and reconstruct162

thin details, a metric to estimate the resolution was computed163

by the 2σ criterion [28]. The mean and standard deviation of the164

metrics were calculated on the test dataset. The average com-165

putation time for one reconstruction was measured to compare166

the execution time. The results are summarized in Tab. 2. Phase167

and absorption reconstructions from one simulated image pair168

are shown in Fig. 3. Both deep learning methods performed169

better than the IRGN method, which tended to leave artifacts170

in the absorption and yield a blurred phase. On average, the171

deep learning approaches performed better than the IRGN, both172

in terms of reconstructed values and resolution. In terms of173

NMSE, the deep learning approaches gave similar results for the174

absorption, but the DGN performed better than the MS-D Net175

for phase recovery. Moreover, the DGN yielded better resolu-176

tion as well as better correlation in the frequency domain. As177

expected, the MS-D Net was fastest, since it only requires one178

application of a neural network. The DGN is efficient despite the179

need to compute the derivative of the foward operator as well as180

its adjoint several times and is 20 times faster than its standard181

iterative counterpart. For comparison, an unrolled simple gradi-182

ent descent scheme [17] yielded less convincing results despite183

using more parameters (41 × 103): for the absorption 13.2 (17.3)184

% NMSE, 37.6 (15.2) % FRCM 82.2 (116) nm resolution and for185

the phase 4.74 (6.99) % NMSE, 23.9 (16.7) % FRCM, 69.3 (62.6)186

nm resolution, confirming our choice of network structure.187

The proposed approach was applied on data acquired at188

beamline NanoMAX at the MAX IV synchrotron (Lund, Swe-189

den) [29]. The diffraction pattern in Fig. 2 was obtained using190

the same image conditions as above. The sample consists of a191

stack of palladium, zinc, palladium, gold layers with thicknesses192

of 21, 10, 11, 163 nm, respectively, deposited on a 1 mm-thick sili-193

con nitride substrate, resulting in expected values for absorption194

and phase of 0.0483 and 0.217 respectively. To evaluate the re-195

constructions quantitatively, we used the normalized error (NE)196

and relative standard deviation (RSD), calculated as NE = lt−lm
lt

197

and RSD = sm
lm

, where lt is the expected value, lm the measured198

mean value and sm the standard deviation in the corresponding199

material. The shape of the object was estimated from a phase200

reconstruction using an iterative method, and chosen so that201

the calculation of lm and sm was done in homogeneous parts to202

avoid the influence of blur at the edges. The resolution was mea-203
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Fig. 3. Reconstructions from simulated data. Reconstruction
quality is given as (NMSE (%), FRCM (%), resolution (nm)).
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Fig. 4. Reconstructions for experimental data. The profiles
along the red line were measured to estimate the resolution.
Values correspond to (NE (%) (RSD (%)), resolution (nm)).

sured by fitting an error function to a line profile across an object204

edge and calculating the corresponding Gaussian full width at205

half maximum based on the error function fitting parameters.206

The reconstructions obtained in Fig. 4 show that the DGN207

yields very high quality reconstructions of the object with almost208

no remaining visible artifacts. Although the MS-D Net performs209

well on simulations, it seems to not generalize as well as the210

DGN to the experimental data given the chosen training strat-211

egy. This could be due to the DGN explicitly taking into account212

the physics model, learning the noise statistics from the data213

yielding an adapted regularization, while leveraging the conver-214

gence properties of the optimization method [16]. On the other215

hand, the MS-D Net was trained to reconstruct directly from the216

measurements, without knowledge of the physics model.217

A limitation of the proposed algorithm is that the forward218

model has to be fully known, e.g. the propagation distance has to219

be precisely measured. In future work we will study possibilites220

to correct errors in the forward model. We will also investigate221

out-of-distribution generalization error, e.g. with respect to dif-222

ferent noise properties. The developed DGN algorithm allows223

to efficiently retrieve both the phase and absorption from a sin-224

gle phase contrast image. By exploiting recent developments in225

deep learning and integrating CNNs into a regularized Gauss-226

Newton scheme, with the DGN we overcome the limitations of227

classical iterative approaches while leveraging the power of neu-228

ral networks. Since no regularization term needs to be chosen,229

the DGN network is trained to learn an optimal one for the ab-230

sorption and the phase respectively, which improves the quality231

of the reconstructions. Taking into account the knowledge of the232

forward model in a simple network enhances the reconstructions233

and allows a better generalization on real data. Compared to the234

standard IRGN, the DGN method both substantially improved235

the reconstruction and reduced the calculation time.236
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