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Kullback-Leibler residual and regularization for inverse problems with noisy data and noisy operator

1. Introduction. In this paper, we are interested in the inversion of a nonlinear operator F . Our aim is thus to find an approximation of a solution x of the inverse problem formulated as:

F (x) = y.
(1) We assume that the data are corrupted by Poisson noise. For this type of noise, the relevant distance is the Kullback-Leibler (KL) distance defined in the following.

Therefore, we assume that the distance between the non noisy data y and the noisy data y δ can be estimated with the Kullback-Leibler (KL) distance:

KL(y δ , y) ≤ δ 2 (2) 
where δ is a positive constant. This assumption replaces the classical one, yy δ 2 ≤ δ 2 used for Tikhonov regularization. In order to use the Kullback-Leibler (KL) distance, we assume that F : D → D is defined on the domain

D = {v ∈ L 1 (Ω), d 1 ≤ v ≤ d 2 },
where Ω is a bounded open set of R n and where d 1 and d 2 are two strictly positive constants, 0 < d 1 < d 2 < ∞. For the sake of simplicity, we consider the case where the domain and the codomain of the operator are the same, but different strictly positive upper and lower bounds could be considered for these spaces. In the classical inverse problem theory, it is assumed that the operator F is known exactly. We assume here that only an approximation F δ : D → D of the exact operator is known. An example of such problems is the spectral computerized tomography (SPCT) inverse problem when the detector response is unknown. We are interested to estimate an approximate solution of the inverse problem from the noisy data and also to study some methods to recover at the same time this solution and the unknown operator. In the following, we investigate variational
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approaches with regularization functionals based on the Kullback-Leibler distance as discrepancy term and regularization term. There is no detailed study of this type of inverse problems with Poisson noise on the data and an inexact operator. The joint additive Kullback-Leibler (KL) residual minimization and regularization for linear inverse problems has been investigated in [START_REF] Resmerita | Joint additive Kullback-Leibler residual minimization and regularization for linear inverse problem[END_REF] but the operator is assumed to be well determined. Our study generalizes this work and several proofs will be similar to the ones detailed in this work. In order to investigate linear problems with inexact operators, Regularized Total Least Squares methods have been proposed

with cost functionals based on the Frobenius norm and the L 2 norm [START_REF] Golub | Tikhonov regularization and total least squares[END_REF]. In the framework of the Regularized Total Least Squares, some estimates of (x, F, y) are determined by solving the constrained minimization problem:

Minimize F -F δ 2 + y -y δ 2 subject to F x = y, Bx ≤ R ( 3 
)
where B is some unbounded densely defined self-adjoint strictly positive definite operator used to restrict the set of admissible solutions and R a positive constant.

Dual Regularized Total Least Squares are studied in [START_REF] Lu | Regularized total least squares:computational aspects and error bounds[END_REF], [26]. In these cases, the inverse problem is formulated as the following constrained minimization problem:

Minimze Bx subject to F x = y, F -F δ ≤ h, y -y δ ≤ δ (4) 
where h is some bound on the noise on the operator. A double regularization approach is considered in [START_REF] Bleyer | A double regularization approach for inverse problems with noisy data and inexact operator[END_REF] for inverse problems with bilinear operators of the unknown function x and of a kernel k. The kernel function determines the behaviour of the operator and a double penality term is used to stabilize the reconstruction of the unknown solution and of the charateristic function governing the operator. A convergence rate analysis of Tikhonov regularization for nonlinear inverse problems with noisy operators is detailed in [START_REF] Lu | Convergence rate analysis of Tikhonov regularization for nonlinear ill-posed problems with noisy operators[END_REF] for uniform and non uniform noise bounds.

In both cases, the discrepancy term is the square of the L 2 norm. In this work, we extend these studies and we investigate the properties of the regularization methods minimizing functionals based on the KL distance. We estimate error bounds for the solution of the inverse problem and convergence rates depending on noise bounds on the data and the operator. These convergence rates are obtained if source conditions are satisfied, as usual for linear and nonlinear inverse problems [START_REF] Engl | Regularization of Inverse Problems[END_REF][START_REF] Resmerita | Regularization of ill-posed inverse problems in Banach spaces:convergence rates[END_REF][START_REF] Burger | Convergence rates of convex variational reglarization[END_REF][START_REF] Scherzer | Variational Methods in Imaging[END_REF].

In order to determine also the direct operator, we consider the case where it depends linearly on a kernel. In this case, the noise of the operator is due to this unknown characteristic function. A stabilizing term is included in the regularization functional. Assuming that source conditions holds, we estimate the convergence rate for both the solution of the inverse problem and the operator.

This article is organized as follows. In the second section, we present some preliminaries about the Kullback-Leibler functional and the operator noise and in the third section we present the mathematical framework with two different regularization functionals. In the fourth section, we analyze the well-posedness and convergence properties of the model, and we detail the convergence rates for the different cases investigated. Finally, in the last section, we present some simulations results for Spectral Computerized Tomography inverse problem illustrating the effect of the noise on the data or on the operator. v in its domain is given by:

Notation and preliminary results on

KL(u, v) = Ω (v -u + uln( u v ))dx. ( 5 
)
To avoid divergencies, it is possible to define a regularized distance:

KL (u, v) = Ω (v -u + uln( u + v + ))dx (6) 
where is a small parameter [29, 30]. In the following, we will consider restricted Kullback-Leibler distances. We consider functions in D for which the KL divergence leads to well-defined regularization methods [START_REF] Pöschl | Tikhonov regularization with general residual term[END_REF]. The assumption that the regularized solutions belongs to the set D is quite natural. It has been shown in [START_REF] Resmerita | Joint additive Kullback-Leibler residual minimization and regularization for linear inverse problem[END_REF] that under the assumptions that the solution x is bounded and bounded away from zero almost everywhere and that the forward operator is a linear integral operator with a non negative kernel, then the regularized solutions obtained from the minimization of functionals based on the KL distance are also bounded and bounded away from zero. In this case, the set D is well-defined.

From the definition of the Kullback-Leibler divergence, we have the following equality for any function u, v and w in the domain of Kullback-Leibler divergence:

KL(u, v) + KL(w, u) -KL(w, v) = Ω (ln(u) -ln(v))(u -w)dx. (7) 
The following properties will be useful in the following [START_REF] Resmerita | Regularization of ill-posed inverse problems in Banach spaces:convergence rates[END_REF][START_REF] Eggermont | Maximum entropy regularization for Fredholm integral equations of the first kind[END_REF]: (ii) For any fixed v, the function KL(., v) is lower semicontinuous with respect to the weak topology of L 1 (Ω). For any fixed v, the function KL(v, .) is lower semicontinuous with respect to the weak topology of L 1 (Ω). KL is also lower semicontinous with respect to the product topology of L 1 (Ω) × L 1 (Ω).

(iii) Let A : L 1 (Ω) → L 1 (Ω) a compact, linear operator, with a positive range. For any C > 0 and any stricly positive u ∈ L 1 (Ω), the following sets are weakly compact

in L 1 (Ω): {x ∈ L 1 (Ω) : KL(Ax, u) ≤ C}. Proposition 2.3. Let u, v ∈ D ⊂ L 1 (Ω)
, then there exists a positive constant C such that:

KL(u, v) ≤ C u -v 1 . (8) 
Proof. The functions u and v are uniformly bounded away from zero and

KL(u, v) = Ω (v -u + uln(1 + u -v v ))dx. ( 9 
)
With ln(1 + t) ≤ t for all t > -1, we obtain:

KL(u, v) ≤ C u -v 1 (10) 
for a positive constant C.

3. Problem formulation. We assume that the distance between the noisy data and the non noisy data can be evaluated with the Kullback-Leibler distance with:

KL(y δ , y) ≤ δ 2 . ( 11 
)
Moreover, we assume we have a uniform operator noise and that there exists a positive constant δ F such that:

sup x∈D F (x) -F δ (x) 1 ≤ δ F (12) 
We consider two different regularization functionals depending on whether we want to estimate the solution of the inverse problem from noisy data and from a noisy operator or at the same time this solution and the foward operator.

The first regularization functional considered J 1 is:

J 1 (x) = KL(y δ , F δ (x)) + αKL(x, x * ) ( 13 
)
where α is a regularization parameter and x * ∈ D an initial guess.

In order to estimate at the same time the solution of the nonlinear inverse problem and the operator, we will investigate the case where the nonlinear operators F and F δ can be characterized by functions k and k δ ∈ L 2 (Ω). We assume also that they depend linearly on them [START_REF] Bleyer | A double regularization approach for inverse problems with noisy data and inexact operator[END_REF][START_REF] Bleyer | An alternating iterative minimisation algorithm for the doubleregularised total least square functional[END_REF] . We will consider the operator F

F : L 2 (Ω) × D → D (k, x) → F (k, x)
such that F (k, x) = F (x) and F (k δ , x) = F δ (x) where F is linear with respect to k and nonlinear with respect to x. In this case, the error on the operators in Eq.12 can be replaced by a bound on the error on the kernel k.

We will use the following regularization functional:

J 2 (x, k) = KL(y δ , F δ (x)) + αKL(x, x * ) + β k -k * 2 2 ( 14 
)
where α and β are two regularization parameters. The kernel k * and the function

x * are used as initial guesses. The two terms stabilize the inversion with respect to

x and k.

We will rewrite the regularization functional as:

J 2 (x, k) = KL(y δ , F δ (x)) + α(KL(x, x * ) + η k -k * 2 2 ) ( 15 
)
where η is a positive constant. In the following, we will denote Φ the functional including the regularization terms for x and k

Φ(x, k) = KL(x, x * ) + η k -k * 2 2 . (16) 
3.1. Well-posedness. In this section, we analyze the properties of the regularization functionals J 1 and J 2 . We first show the well-posedness of the method and that the minimizers of the functionals exist for every parameters α and β.

Theorem 3.1. Assume that α > 0, and y δ ∈ D. Assume that the operator F δ is weak-to-norm continuous with respect to the weak topology of L 1 (Ω). Then there exists a global minimizer of the functional J 1 over D.
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Proof. The proof is along the line of Theorem 3.1 in [START_REF] Hofmann | A convergence rates result for Tikhonov regularization in Banach spaces with non-smooth operators[END_REF] , Theorem 4.2 [START_REF] Bleyer | A double regularization approach for inverse problems with noisy data and inexact operator[END_REF]. We restrict the KL distance to functions in D [START_REF] Pöschl | Tikhonov regularization with general residual term[END_REF]. The regularization functional is weak lower semicontinuous, positive (Proposition 2.2). Since x ∈ D, we can not consider that x 1 → ∞ and show that the functional is coercive. Yet, since Ω is bounded and with Eq.6, we can see that J 1 and KL(x, x * ) are bounded from above and below for x ∈ D. It is possible to find a minimizing sequence of J 1 and with the weak compactness of the level sets of KL intersected with D, it is also possible to extract a subsequence converging weakly in the L 1 (Ω) topology. The weak lower semicontinuity of J 1 concludes the proof.

Theorem 3.2. Assume that α > 0, and y δ ∈ D. Assume that the operator F is weak-to-norm continuous with respect to the topologies of L 2 (Ω)×L 1 (Ω) and L 1 (Ω).

Then there exists a global minimizer of the functional J 2 over L 2 (Ω) × D.

Proof. The functional J 2 is positive, proper and coercive since it follows with Proposition 2.1 that:

J 2 (k, x) ≥ αKL(x, x * ) + β k -k * 2 2 → ∞ (17) 
as (k, x) → ∞.

Let m = inf{J 2 (k, x), (k, x) ∈ dom(J 2 )} where dom(J 2 ) is the domain of the functional J 2 . There exists a sequence (k j , x j ) such that J 2 (k j , x j ) → m. Thus the sequence (k j , x j ) is bounded. The kernels k j belongs to L 2 (Ω) which is reflexive Hilbert space and from Proposition 2.2 (iv), there exist subsequences also denoted as (k j , x j ) such that k j k and x j x in the L 2 (Ω) and L 1 (Ω) topologies respectively. With the weak lower semicontinuity of the functional J 2 with respect to the product topology, we obtain:

m ≤ J 2 (k, x) ≤ lim inf J 2 (k j , x j ) = lim J 2 (k j , x j ) = m. (18) 
Thus (k, x) is a global minimizer.

3.2. KL-minimal and Φ-minimal solutions. We will consider KL-minimal solutions of Eq.1, in the following sense: an element x ∈ D, is called a KL-minimizing solution of (1) if F (x) = y and KL(x, x * ) = min{KL(x, x * ) : x ∈ D, F (x) = y}.

Proposition 3.3. Assume that there exists a solution of (1), and that the operator F is weak-to-norm continuous. Then there exists a KL-minimal solution.

Proof. There exists a sequence (x k ) of solutions of (1) in D, such that

KL(x k , x * ) → c = inf{KL(x, x * ) : x ∈ D, F (x) = y} (19) 
With Proposition 2.2, it is possible to extract a weakly convergent subsequence which is also denoted by (x k ), with a weak limit denoted by x. From the weak lower semicontinuity of KL (Proposition 2.2 (ii)), it follows that KL(x, x * ) ≤ c.

Moreover, for all k, F (x k ) = y and F is weak-to-norm continuous, thus it follows that F (x) = y.

Similarly, we can define a Φ-minimal solution of F (h, x) = y with Φ given in Eq.14. The L 2 norm and the KL distance are weakly lower semicontinuous with respect to the weak topologies of L 2 (Ω) and L 1 (Ω) respectively and therefore it follows:

Proposition 3.4. Assume that there exists a solution (k, x) of F (k, x) = y, and that the operator F is weak-to-norm continuous. Then there exists a Φ-minimal solution.

4.

Convergence properties and convergence rates. In this section, we study the convergence properties and the convergence rates for linear and nonlinear inverse problems solved with the approximate solutions x δ α or (k δ α , x δ α ) obtained with the regularization functionals J 1 or J 2 . We show that the solutions converge to some solution of the inverse problems F (x) = y or F (k, x) = y as the noise levels tend to zero, provided the regularization parameter α is chosen appropriately. We will use the following proposition:

Proposition 4.1. Let us assume that F is Fréchet differentiable in a ball B around
x and that there is a positive constant L such that for all x in B:

F (x) -F (x) ≤ L x -x 1 ( 20 
)
where . is the norm of the linear operators F (x) : L 1 (Ω) → L 1 (Ω) and F (x) :

L 1 (Ω) → L 1 (Ω).
Then we have for all x in D:

F (x) -F (x) -F (x)(x -x) 1 ≤ L x -x 2 1 /2. ( 21 
)
This result is obtained with the mean value theorem.

4.1.

Convergence properties for the regularization functional J 1 and nonlinear inverse problems. We first show that under an appropriate regularization parameter choice rule, the minimizer x δ α of the functional J 1 converges to a KLminimal exact solution as the noise levels δ and δ F converge towards zero.

Proposition 4.2. Let (y δ j ) and (F δ j ) two sequences of noisy data and weak-to-norm continuous operators F δ j : D → D such that KL(y δ j , y) ≤ δ 2 j and sup x∈D F δ j (x) -F (x) 1 ≤ δ F,j with δ j → 0 and δ F,j → 0. Assume that the regularization parameter α j satisfies α j → 0 and

lim j→∞ δ j + δ F,j α j = 0. ( 22 
)
Let x δj αj be the minimizer of J 1 obtained with the noisy data y δ j , the noisy operator F δ j , and the regularization parameter α j . There exists a convergent subsequence of (x δj αj ). The limit of every convergent subsequence of (x

δj αj ) is a KL-minimal solution of F (x) = y.
Proof. The minimizing property of x δj αj guarantees that:

0 ≤ J 1 (x δj αj ) = KL(y δ j , F δ j (x δj αj )) + α j KL(x δj αj , x * ) ≤ KL(y δ j , F δ j (x)) + α j KL(x, x * ). (23) where x is a KL-minimal solution of F (x) = y.
With Eq.7, we get:

KL(y δ j , F δ j (x)) -KL(y, F δ j (x)) -KL(y δ j , y) = - Ω (ln(y) -ln(F δ j (x)))(y -y δ j )dx (24)
With Propositions 2.2 and 2.3, there exist positive constants C, C 1 such that:

KL(y, F δ j (x)) ≤ C F (x) -F δ j (x) 1 ≤ Cδ F,j (25) 
|

Ω (ln(y) -ln(F δ j (x)))(y -y δ j )dx| ≤ (ln(y) -ln(F δ j (x)) ∞ y -y δ j 1 ≤ C 1 δ j . ( 26 
)
where we have used Proposition 2.1 and KL(y δ j , y) ≤ δ 2 j . With Eq.22, 23 and 24 and with KL(y δ j , y) ≤ δ 2 j , we obtain that, as δ j → 0, there exists a positive constant C 2 such that:

KL(y δ j , F δ j (x)) ≤ C 2 (δ j + δ F,j ). ( 27 
)
The sequence KL(x δj αj , x * ) is bounded and therefore there exists a weakly convergent subsequence also denoted by x δj αj converging weakly towards x. We will prove that x is a KL-minimal solution. The nokse on the operator is bounded and thus we have:

F (x) -F δ j (x) 1 ≤ sup x∈D F (x) -F δ j (x) 1 = δ F,j . (28) 
F δ j is a weak-to-norm continuous operator and thus F δ j (x) -F δ j (x δj αj ) 1 → 0, and thus we obtain that

F δ j (x δj αj ) → F (x) in L 1 (Ω).
With the weak lower semicontinuity of KL, it follows:

KL(y, F (x)) ≤ lim inf j→∞ KL(y δ j , F δ j (x δj αj )). ( 29 
)
Therefore, we obtain:

0 ≤ KL(y, F (x)) ≤ lim inf j→∞ KL(y δ j , F δ j (x δj αj )) (30) 
≤ lim inf j→∞ KL(y δ j , F δ j (x δj αj )) + α j KL(x δj αj , x * ) (31) ≤ lim inf j→∞ C 2 (δ F,j + δ j ) + α j KL(x, x * ) = 0 (32) 
and thus F (x) = y.

With Eq.21 and with the weak lower semicontinuity of KL, we obtain:

KL(x, x * ) ≤ lim inf j→∞ KL(x δj αj , x * ) (33) ≤ lim inf j→∞ C 2 (δ j + δ F,j ) α j + KL(x, x * ) (34) ≤ KL(x, x * ) (35)
and thus x is a KL-minimal solution and KL(x

δj αj , x * ) → KL(x, x * ). With Propo- sition 2.1, it follows that x δj αj → x in the strong topology of L 1 (Ω).
The former result can be applied to a sequence (F δ j ) of bounded linear operators.

We now detail convergence rates based on some source condition.

Theorem 4.3. Let F and F δ two nonlinear operators satisfying the uniform noise bound of Eq.12 . We assume that F is Fréchet differentiable and that there exists a Lipschitz constant L such that:

F (x 1 ) -F (x 2 ) ≤ L x 1 -x 2 1 ( 36 
)
for all x 1 , x 2 ∈ D, where F (x) denotes the norm of the linear operator F (x).

Moreover, we assume that the following source condition holds:

F (x) * w = ln( x x * ) (37) for some w ∈ L ∞ (Ω) with 2L w ∞ sup x∈D x 1 ≤ 1. In this formula, x ∈ D is a KL-minimal solution of (1), x * ∈ D and F (x) * : L ∞ (Ω) → L ∞ (Ω) is the adjoint of F (x)
. Let y and y δ such that KL(y δ , y) ≤ δ 2 , and x δ α the minimizer of the regularization functional J 1 . Then with the parameter choice α ∼ (δ + δ F ) 1/2 , we obtain the convergence rate KL(

x δ α , x) = O((δ + δ F ) 1/2 ).
Proof. The proof is similar to the one of Proposition 4.2. With Eq.7, we get:

KL(y δ , F δ (x)) -KL(y, F δ (x)) -KL(y δ , y) = - Ω (ln(y) -ln(F δ (x)))(y -y δ )dx (38)
With Proposition 2.2 and 2.3, there exist positive constants C and C 1 such that:

KL(y, F δ (x)) ≤ C F (x) -F δ (x) 1 ≤ C δ F (39) | Ω (ln(y) -ln(F δ (x)))(y -y δ )dx| ≤ ln(y) -ln(F δ (x)) ∞ y -y δ 1 ≤ C 1 δ. ( 40 
)
With KL(y δ , y) ≤ δ 2 , we obtain that, as δ → 0, there exists a positive constant C 2 such that:

KL(y δ , F δ (x)) ≤ C 2 (δ + δ F ). ( 41 
)
The Lipschitz continuity of the Fréchet derivative F and Proposition 4.1 imply that:

F (x δ α ) = F (x) + F (x)(x δ α -x) + r δ α (42) with r δ α 1 ≤ L 2 x δ α -x 2 1 . (43) 
The minimizers x δ α satisfies:

KL(y δ , F δ (x δ α )) + αKL(x δ α , x * ) -αKL(x, x * ) ≤ KL(y δ , F δ (x)) ( 44 
)
where x is a KL-minimal solution of F (x) = y. With Eq.7, we have:

KL(x, x * ) + KL(x δ α , x) -KL(x δ α , x * ) = Ω (ln(x) -ln(x * ))(x -x δ α )dx. (45) 
Thus with Eq.37 it follows that:

KL(y δ , F δ (x δ α )) + αKL(x δ α , x) + α w, F (x)(x δ α -x) ≤ KL(y δ , F δ (x)) (46) 
where ., . denotes the dual pairing of two functions. Moreover, we have

α w, F (x)(x δ α -x) ≤ αL w ∞ x δ α -x 2 1 /2 + α w ∞ F δ (x δ α ) -F (x δ α ) 1 +α w ∞ y δ -F δ (x δ α ) 1 + α w ∞ F (x) -y δ 1 ( 47 
)
and there is positive constant C 3 such that:

F δ (x δ α ) -y δ 1 ≤ C 3 KL(y δ , F δ (x δ α )) 1/2 (48) 
and

F (x) -y δ 1 ≤ C 3 KL(y δ , F (x)) 1/2 (49) 
We obtain thus for positive constants C 4 = 2 sup x∈D x 1 and C 5 :

|α w, F (x)(x δ α -x) | ≤ αC 4 L w ∞ KL(x δ α , x) + α w ∞ C 5 δ F +αC 3 w ∞ δ + αC 3 w ∞ KL(y δ , F δ (x δ α )) 1/2 (50) 
and we can reformulate Eq.46 as:

(KL(y δ , F δ (x δ α )) 1/2 -αC 3 w ∞ /2) 2 + α(1 -C 4 L w ∞ )KL(x δ α , x) ≤ α w ∞ C 5 δ F +αC 3 w ∞ δ + C 2 (δ + δ F ) + (αC 3 w ∞ ) 2 /4 (51) ≤ C 6 (δ + δ F + (α w ∞ ) 2 ) (52)
for a positive constant C 6 . We obtain thus:

KL(x δ α , x) ≤ C 6 1 -C 4 L w ∞ ( (δ + δ F ) α + α w 2 ∞ ). ( 53 
)
With the choice α ∼ (δ

+ δ F ) 1/2 , we obtain that KL(x δ α , x) = O((δ + δ F ) 1/2 ).
The former proposition gives a convergence rate for an a priori choice of the regularization parameter. Methods of choice of regularization parameters based on the Morozov principle have been studied in detail for the minimization of regularization functional based on least squares [START_REF] Anzengruber | Discrepancy principle for Tikhonov-type functionals with nonlinear operators[END_REF][START_REF] Engl | Regularization of Inverse Problems[END_REF]. A Generalized Discrepancy Principle was proposed in [27] to take into account the discretization errors and the incompatibility of the data with the equation to be solved. Some rules for the choice of the regularization parameter for Poisson noise have been proposed in [START_REF] Santos | A new parameters choice method for ill-posed problem with Poisson data and its application to emission tomographic imaging[END_REF][START_REF] Bardsley | Regularization parameter selection methods for ill-posed Poisson maximum likelihood estimation[END_REF][START_REF] Bertero | A discrepancy principle for Poisson data[END_REF][START_REF] Hohage | Inverse problems with Poisson data: statistical regularization theory, applications and algorithms[END_REF].

Generalzing these rules in the case where the operator is inexact will be the subject of future work.

4.2.

Convergence properties for the regularization functional J 2 and nonlinear operators depending linearly on a kernel. In this section, we investigate the regularization functional J 2 and we want to reconstruct also the forward operator. The convergence rates are thus given for k δ α → k, and x δ α → x. For the case investigated here, we will use the following source condition:

R( F (k, x) * ) ∩ ∂Φ(k, x) = ∅ ( 54 
)
where ∂Φ is the subdifferential of Φ defined in Eq.16 and R denotes the range of an operator. The former condition implies that there exists, (φ x , φ k ) in the subdifferential of Φ at (k, x) such that:

(φ k , φ x ) = (η(k -k * ), ln( x x * )) = F (k, x) * w, w ∈ L 1 (Ω) (55) 
We assume that F is Fréchet differentiable, with a Lipschitz continuous derivative.

For (u, v) ∈ L 2 (Ω) × L 1 (Ω), the Fréchet derivative of F at a point (k, x) is given by:

F (k, x)(u, v) = F (u, x) + F (k, v). (56) For (u, v) ∈ L 2 (Ω) × L 1 (Ω)
, the remainder of the Taylor expansion can be estimated by:

F (k + u, x + v) -F (k, x) -F (k, x)(u, v) 1 ≤ C (u, v) 2 1 (57) for a positive constant C.
We first show the convergence of the regularization method. Proposition 4.4. Let y δ j a sequence of data such that KL(y δ j , y) ≤ δ 2 j with δ j → 0.

We assume that the operator F is weak-to-norm continuous with respect to the topology of L 2 (Ω)×L 1 (Ω). Assume also that the regularization parameter α j satisfies Proof. The minimizing property of (k δj αj , x δj αj ) guarantees that:

α j → 0 and
0 ≤ J 2 (x δj αj , k δj αj ) = KL(y δ j , F (k δj αj , x δj αj )) + α j KL(x δj αj , x * ) + β j k δj αj -k * 2 1 ≤ KL(y δ j , F (k, x)) + α j KL(x, x * ) + ηα j k -k * 2 1 ≤ δ 2 j + α j KL(x, x * ) + ηα j k -k * 2 1 . ( 59 
)
where (k, x) is a Φ-minimal norm solution of F (k, x) = y.

The sequence KL(x δj αj , x * ) is bounded and therefore there exists a weakly convergent subsequence x δj αj converging weakly towards x. Similarly,

k δj αj -k * 2 is
bounded and thus there is a subsequence k δj αj converging weakly towards k. We will prove that (k, x) is a Φ-minimal solution and F (k, x) = y.

We have

F (k δj αj , x δj αj ) -F (k, x) = F (k δj αj , x δj αj ) -F (k δj αj , x) + F (k δj αj -k, x). (60) 
and thus F (k

δj αj , x δj αj ) → F (k, x) in L 1 (Ω).
With the lower semicontinuity of KL with respect to the product topology, it follows that:

KL(y, F (k, x)) ≤ lim inf j→∞ KL(y δ j , F (k δj αj , x δj αj )). (61) 
Therefore, we obtain:

0 ≤ KL(y, F (k, x))) (62) 
≤ lim inf j→∞ KL(y δ j , F (k

δj αj , x δj αj )) + α j (KL(x δj αj , x * ) + η k * -k δj αj 2 
2 ) (63)

≤ lim inf j→∞ δ 2 j + α j (KL(x, x * ) + η k * -k 2 2 ) = 0 (64) thus F (k, x) = y.
With Eq.59 and with the weak lower semicontinuity of KL, we obtain:

KL(x, x * ) + η k * -k 2 1 ≤ lim inf j→∞ KL(x δj αj , x * ) + η k * -k δj αj 2 2
(65)

≤ lim inf j→∞ δ 2 j α j + KL(x, x * ) + η k * -k 2 2 (66) ≤ KL(x, x * ) + η k * -k 2 2 (67) Therefore (k, x) is a Φ-minimal solution.
The next result gives some convergence rates for the regularization method based on the functional J 2 .

Theorem 4.5. Let y and y δ such that KL(y δ , y) ≤ δ 2 , (k, x) a Φ-minimal solution of F (k, x) = y, (k δ α , x δ α ) the minimizer of the regularization functional J 2 . We assume the source condition Eq.54 holds for w ∞ small enough. Then KL(x δ α , x)+

η k δ α -k 2 2 ∼ δ 1/2 .
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Proof. With Eq. 7 , we obtain:

KL(y, F (k δ α , x δ α ))+KL(y δ , y)-KL(y δ , F (k δ α , x δ α )) = Ω (ln(y)-ln( F (k δ α , x δ α )
))(y-y δ )dx (68) and thus with Proposition 2.1, there exist some positive constants C, C 1 such that:

KL(y, F (k δ α , x δ α )) ≤ KL(y δ , y) + KL(y δ , F (k δ α , x δ α )) + C y -y δ 1 (69) ≤ KL(y δ , F (k δ α , x δ α )) + δ 2 + C 1 δ. ( 70 
)
Let U δ α = (k δ α , x δ α ), and U = (k, x), the Lipschitz continuity of the Fréchet derivative F implies that:

F (U δ α ) = F (U ) + F (U )(U δ α -U ) + R x,k (71) 
R x,k 1 ≤ L 2 U δ α -U 2 = L 2 ( x δ α -x 2 1 + k δ α -k 2 2 ). ( 72 
)
The minimizers (x δ α , k δ α ) satisfies:

KL(y δ , F (k δ α , x δ α )) + αKL(x δ α , x * ) -αKL(x, x * ) + β k δ α -k * 2 2 ≤ KL(y δ , F (k, x)) + β k -k * 2 2 . (73) 
Let (φ x , φ k ) = (ln( x x * ), η(k -k * ) the subdifferential of the regularization functional at (k, x):

KL(y δ , F (k δ α , x δ α )) + αKL(x δ α , x) + ηα k δ α -k 2 2 + α( φ x , x δ α -x + φ k , k δ α -k ) ≤ KL(y δ , F (k, x)) (74)
and with the source condition of Eq.54:

KL(y δ , F (k δ α , x δ α )) + αKL(x δ α , x) + ηα k δ α -k 2 2 +α F (k δ α , x δ α ) * w, (x δ α -x, k δ α -k) ≤ KL(y δ , F (k, x)). (75) 
With Eq.70 , we get:

KL(y δ , F (k δ α , x δ α )) + αKL(x δ α , x) + ηα k δ α -k 2 2 +α F (k δ α , x δ α ) * w, (x δ α -x, k δ α -k) ≤ KL(y δ , F (k, x)) + δ 2 + C 1 δ. ( 76 
) -F (k, x) * w, (x δ α -x, k δ α -k) ≤ w, -F (k, x)(x δ α -x, k δ α -k) (77) ≤ w, -F (k δ α , x δ α ) + F (k, x) -R x,k (78) 
≤ w ∞ R x,k + w ∞ F (k, x) -y δ 1 + w ∞ y δ -F (k δ α , x δ α )) 1 . (79) 
There exist positive constants C , C 1 and C 2 such that:

R x,k ≤ C ( x δ α -x 2 1 + k δ α -k 2 2 ) ≤ C 1 KL(x δ α , x) + C k δ α -k 2 2 (80) F (k δ α , x δ α ) -y δ 1 ≤ C 2 KL( F (k δ α , x δ α ), y δ ) 1/2 (81) F (k, x) -y δ 1 ≤ C 2 KL( F (k, x), y δ ) 1/2 ≤ C 2 δ. (82) 
We obtain thus:

α -F (k, x) * w, (x δ α -x, k δ α -k) ≤ C 1 α w ∞ KL(x δ α , x) + C α w ∞ k δ α -k 2 2 +C 2 w ∞ αδ + C 2 α w ∞ KL(y δ , F (k δ α , x δ α )) 1/2 .
(83) Eq.76 can be rewritten:

KL(y δ , F (k δ α , x δ α )) -C 2 α w ∞ KL(y δ , F (k δ α , x δ α )) 1/2 +α(1 -C 1 w ∞ )KL(x δ α , x) + α(η -C w ∞ ) k δ α -k 2 2 ≤ δ 2 + δ 2 + C δ + C 2 α w ∞ δ (84) ≤ A 1 δ. ( 85 
)
where A 1 is a positive constant. Assuming that w ∞ < min(1/C 1 , η/C ), we have:

KL(y δ , F (k δ α , x δ α )) -C 2 α w ∞ KL( F (k δ α , x δ α ), y δ ) 1/2 -A 1 δ ≤ 0 (86) KL(y δ , F (k δ α , x δ α )) 1/2 ≤ C 2 α w ∞ 2 + (C 2 α w ∞ ) 2 + 4A 1 δ 2 . ( 87 
)
With this inequality, we obtain:

KL(x δ α , x) ≤ 1 1 -C 1 w ∞ ( C 2 α w 2 ∞ , 2 + w ∞ (C 2 α w ∞ ) 2 + 4A 1 δ 2 + A 1 δ α ) (88) k δ α -k 2 2 ≤ 1 η -C w ∞ ( C 2 α w 2 ∞ , 2 + w ∞ (C 2 α w ∞ ) 2 + 4A 1 δ 2 + A 1 δ α ). ( 89 
)
For the parameter choice α ∼ δ 1/2 , we obtain: 

KL(x δ α , x) = O(δ 1/2 ) (90) k δ α -k 2 2 = O(δ 1/2 ). ( 91 
n(E, u, θ) = n 0 (E) exp - L(u,θ) µ(E, x)dx ( 92 
)
where n 0 (E) is the source spectrum, L(u, θ) is the line defined by the X-ray beam and µ(E, x) is the linear attenuation coefficient at energy E for the voxel x. The number of photons detected by the detector for energy E, pixel u and angle θ can be written as :

s(E, u, θ) = R d(E, E)n(E, u, θ)dE ( 93 
)
where d(E, E) : B × B → [0, 1] is the detector response function and thus:

s(E, u, θ) = R d(E, E)n 0 (E) exp - L(u,θ) µ(E, x)dx dE. ( 94 
)
It describes the probability that a photon with the energy E is detected at the energy E. We assume that we can write the attenuation coefficient as a sum of M basis functions for each material that are separable in energy and space:

µ(E, x) = M m=1 ρ m (x)τ m (E) ( 95 
)
where ρ m (x) is the concentration of the material m at the voxel x and τ m (E) is a well-defined function describing the attenuation effects in the material m at energy E. The total number of materials is denoted as M . It is possible to reformulate the direct problem with Radon projection operator which maps a function f ∈ L 1 (Ω)

to its line integrals. Let L(θ, u) be the line defined by L(θ, u) = {τ θ * + u θ : τ ∈ R}, with θ = (cos(θ), sin(θ)) and θ * = (-sin(θ), cos(θ)), the Radon transform for f ∈ L 1 (Ω) is given by:

Rf (θ, u) = R θ f (u) = R u,θ f = x∈L(θ,u)∩Ω f (x)dx (96) 
and it follows:

s(E, u, θ) = R d(E, E)n 0 (E) exp (-R u,θ µ) dE. ( 97 
)
The nonlinear forward problem can be formulated as s = F(ρ) with a nonlinear

operator F : L 1 (Ω) M → L 1 (B × Σ × [0, π]). It can also be formulated as s = F(d, ρ)
with a nonlinear operator F :

L 2 (B × B) × L 1 (Ω) M → L 1 (B × Σ × [0, π]
). The framework presented above can thus be applied. The following proposition shows that the operator F satisfies the continuity assumption of the former sections.

Proposition 5.1. The operators

F : L 1 (Ω) M → L 1 (B × Σ × [0, π]) and F : L 2 (B × B) × L 1 (Ω) M → L 1 (B × Σ × [0, π]) are weak-to-norm continuous.
Proof. Let us assume for the sake of simplicity, that M = 1. Let us consider a sequence (ρ n ) in L 1 (Ω) converging weakly towards ρ in the weak topology of L 1 (Ω), then, for all φ ∈ L ∞ (Ω):

Ω ρ n (x)φ(x)dx → Ω ρ(x)φ(x)dx as n → ∞ (98) 
For u ∈ B and θ ∈ [0, π], taking φ as the indicator function of the line L(θ, u), it follows that:

L(θ,u) ρ n (x)dx → L(θ,u) ρ(x)dx (99) 
and thus F(ρ n ) → F(ρ) almost everywhere. With the dominated convergence

theorem in L 1 (Ω), it follows that F(ρ n ) → F(ρ) in L 1 (B × Σ × [0, π]). Similarly, the weak convergence of a sequene (d n ) towards d in L 2 (B × B) implies the strong convergence of F(d n ) towards F(d) in L 1 (B × Σ × [0, π]).
The convergence properties presented in the former sections are obtained with an operator mapping a space D ⊂ L 1 (Ω) with itself. They can be easily generalized to a mapping between different spaces of strictly positive functions included in L 1 (Ω).

Moreover, they may be extended to a product of spaces included in (L 1 (Ω)) M by considering the regularization term 1≤m≤M KL(ρ m , ρ * m ). After discretization, the inverse problem considered is a finite dimensional one. An integrated circuit counts the number of photons that are detected in the i th energy bin

[E i , E i+1 ].
The number of photons detected in the i th , for the angle θ is :

s i (u, θ) = F i (ρ) = B d i (E)n(E, u)dE (100) 
where

d i (E) = Ei+1 Ei d(E, E)dE. (101) 
The function

d i (E) ∈ L 1 (B, [0, 1]
) is the response function of the i th energy bin of the detector. For the numerical simulation, we consider that our detector has P pixels, I energy bins, and the projections are measured for S angles. The dectector response function d is characterized by a set (d i ) 1≤i≤I of response functions.The projections data are thus the vector s ∈ R IP S = (s ijl ) 1≤i≤I,1≤j≤P,1≤l≤S . The domain to reconstruct is also discretized with Q pixels. We want to recover the set of the masses of the materials ρ ∈ R M Q = (ρ ij ) 1≤i≤M,1≤j≤Q . The discretization levels are thus n = M P and m = IP S. We consider a cost function similar to the ones in Eq.13 and Eq.14 in order to recover the maps of the materials:

J 1 (ρ) = KL(s, F(ρ)) + α 1≤m≤M KL(ρ m , ρ * m ) (102) 
and

J 2 (ρ, d) = KL(s, F(ρ, d)) + α 1≤m≤M KL(ρ m , ρ * m ) + β 1≤i≤I d i -d * i 2 2 . (103)
5.2. Numerical experiments.

Minimization algorithms.

In this subsection, we present the minimization algorithms used for the functionals J 1 and J 2 .

Regularization functional J 1

For the minimization of the regularization functional J 1 , we have to optimize the concentrations map ρ. The objective functional is non convex with respect to the materials concentrations. During the minimization, the simulation may be trapped in local minima. Recently, several methods have been proposed which reonstruct material-specific volumes directly from the photon counts. They are commonly referred to as one-step inversion methods. All of these methods are iterative: there is currently no analytical inversion formula for the material decomposition problem.

They asssume a well-known detector response function [START_REF] Long | Multi-material decomposition using statistical image reconstruction for spectral CT[END_REF][START_REF] Barber | An algorithm for constrained one-step of spectral CT data[END_REF]28,[START_REF] Mechlem | Joint satistical iterative material image reconstruction for spectral computed tomography using a semi-empirical forward model[END_REF]. In this work, we have used the Mechlem approach to minimize the regularization functional. The principle of the method is to minimize the functional based on the KL divergence which corresponds to the Poisson negative log-likelihood of the data by Separable Quadratic Surrogates (SQS). The surrogates are derived sequentially. The minimization also integrates Ordered Subsets (OS) and Nesterov acceleration. The minimization method is described in detail in [START_REF] Mechlem | Joint satistical iterative material image reconstruction for spectral computed tomography using a semi-empirical forward model[END_REF].

Regularization functional J 2

In [START_REF] Bleyer | An alternating iterative minimisation algorithm for the doubleregularised total least square functional[END_REF], an efficient and convergent alternating mimization scheme for the minimization of doubly regularized Total Least Square was presented. In each step, the regularization functional is minimized over one variable while keeping the second one fixed. In the case investigated in [START_REF] Bleyer | An alternating iterative minimisation algorithm for the doubleregularised total least square functional[END_REF], for each subproblem, the functional is convex and a global minimum is obtained. The sequence obtained is converging towards a critical point of the regularization functional. In this work, we have not the same convergence results since the functionals considered are not convex but we use the same optimization methodology. In the case of the functional J 2 , numerical experiments have been performed to reconstruct both the function and the kernel. For the minimization of the regularization functional J 2 , we alternate the minimization with respect to ρ and with respect to the detector response. For the minimization with respect to ρ, we use the former Mechlem algorithm. For the minimzation with respect to the detector response, we use a gradient descent algorithm.

The operator F i is linear with respect to the detector response and thus the Fréchet derivative of F i (Eq.100) for d i ∈ L 2 (B, [0, 1]) with respect to the detector response is:

F i (ρ, d) : L 2 (B, [0, 1]) → L 1 (Σ × [0, π]) h → F i (ρ, h) Let k ∈ L ∞ (Σ × [0, π]) k, F i (h, ρ) = [0,π]×Σ k(u, θ) B d h( )exp(-R u,θ m x m (x)µ m ( ))dudθ = B d h( ) [0,π]×Σ k(u, θ)exp(-R u,θ m x m (x)µ m ( ))dudθ. ( 104 
)
The adjoint of F i is thus the operator

F * i : L ∞ (Σ × [0, π]) → L 2 (B, [0, 1]) defined by : k → [0,π]×Σ k(u, θ)exp(-R u,θ m x m (x)µ m ( ))dudθ. ( 105 
)
The gradient of the KL data term with respect to the detector function d i is thus

F * i Z(F i (h, ρ) -s δ i )
where Z is a diagonal matrice diag(1/(F i (ρ, d) + )).

5.2.2. Simulations details. We present here simulations to illustrate the former convergence results. We can not show that the solution satisfies the source condition, but we use different noise levels for the projection data s and for the forward operator and show the effect on the quality of the reconstruction. We assume that the detector response function is approximately known. The approximation of the detector response function d will be denoted d δ . Our aim is first to reconstruct ρ from the noisy data s δ and from the noisy kernel d δ using the regularization functional J 1 . Then, we give approximate solutions for the concentrations and the kernel using the regularization functional J 2 .

We have designed a simple two-dimensional 3-materials phantom, consisting of a large square of water at 1 g/ml, a small square of iodine at 10 g/ml, and a small square of gadolinium at 10 g/ml. The iodine and gadolinium squares are inside the water square, but do not overlap. The phantom has 2562 voxels. This phantom is displayed in Figure 1. Through this phantom, 725 parallel projections were simulated, with 362 rays per projection, using the AIR toolbox [START_REF] Hansen | AIR Tools-A MATLAB package of algebraic iterative reconstruction methods[END_REF] to generate the sparse forward projection matrix. The line integrals obtained were then converted to photon counts, following and the functional J 2 .

Functional J 1

The decrease with the iterations of the KL data term measuring the mismatch between the measured photons counts and those simulated through the reconstructed volume are displayed in Fig. 3 for the different noise levels investigated. Functional J 2

For the functional J 2 , we started the simulation with a noisy detector response d * . A gradient descent step for the detector response is performed every 5 iterations. The decrease of the relative errors for the iodine, water and gadolinium concentrations obtained with the alternate minimization algorithm are displayed in Figure 9, 10 and 11. The final concentrations maps are displayed in Figure 12.

Large decreases of the errors for the three materials are observed with the minimization of the functional J 2 . The increase of the noise level on the forward operator it can be seen that better reconstruction results are obtained with a few gradient steps for the detector response function. Yet, the solution seems to be trapped in a local minima after a few iterations.

Conclusion.

In this work, we have studied inverse problems with noisy data and unknown operator. We have considered regularization functionals based on the Kullback-Leibler divergence as data term and regularization term. We have first considered the case where we want only to recover the solution of linear or nonlinear inverse problems. Then we consider a more general functional when the aim is to estimate also the forward operator. We have studied the convergence properties of the regularization methods based on these functionals. We have derived convergence rates based on source conditions and restrictions on the linearity of the direct operator. Some numerical experiments illustrate the effect of the noise levels on the data and on the operator for Spectral Computerized Tomography. 

  Kullback-Leibler divergence. The Kullback-Leibler divergence is the Bregman divergence associated with the Poisson noise distribution [4]. The Kullback-Leibler divergence between two functions u and KULLBACK-LEIBLER REGULARIZATION FOR NOISY DATA AND NOISY OPERATOR 3
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 211 For any u, v in the domain of the KL divergence, v -KL(u, v), where . 1 denotes the L 1 (Ω) norm. Proposition 2.2. (i) The function (u, v) → KL(u, v) is convex.

  be the minimizer of J 2 obtained from the noisy data y δ j and regularization parameters α j . There exists a convergent subsequence of (x δj αj , k δj αj ). The limit of every convergent subsequence of (x δj αj , k δj αj ) is a Φ-minimal norm solution of F (k, x) = y.
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 5131 A numerical experiment: spectral Computerized Tomography. In this section, we present some numerical experiments showing the effect of the noise levels on the forward operator or on the data on the quality of the approximate solution for a nonlinear inverse problem obtained with joint KL data term and regularization.Multi-energy Computerized Tomography, or spectral CT, is an imaging modality where the information received depends on the energy of each photon hitting the detector. This information is provided by a photon counting detector which gives an image for each energy bin. Assuming that the objects attenuation can be obtained by linear combination of the attenuations of only a few materials, this energyresolved information allows to reconstruct several volumes, each one representing a different material concentration map (e.g soft tissues and bone)[START_REF] Long | Multi-material decomposition using statistical image reconstruction for spectral CT[END_REF][START_REF] Schlomka | Experimental feasiblitiy of multi-energy photon-counting k-edge imaging in pre-clinical computed tomography[END_REF][START_REF] Ducros | Regularization of nonlinear decomposition of spectral X-ray projection images[END_REF]. The measured projections are corrupted by Poisson noise. The spectral CT problem sets an ill-posed inverse problem that has to be regularized to obtain stable results for material decomposition. In the first subsection, we present the forward model relating the projected mass of the material to the number of photons detected and the regularization functional. In the second section, we detail the numerical results.KULLBACK-LEIBLER REGULARIZATION FOR NOISY DATA AND NOISY OPERATOR Forward model for spectral CT. For the sake of simplicity, we consider a 2D object to reconstruct. The forward model presented here can be easily extended to 3D. We denote Ω the space that contains the 2-dimensional (2-D) object studied and x the voxel position. This object is imaged on a 1-D detector for several projection angles. The number of photons transmited at energy E for each pixel u of the detector and for each angle θ is denoted n(E, u, θ). The energy range is denoted as B and the set of the pixels values on the detector as Σ. With the Beer-Lambert law, it follows :
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 1 Figure 1. Ground truth maps (a) iodine (b) gadolinium (c) water.
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 22253 Figure 2. Detector response functions d i (E) for the five energy bins. s 1 / s 1 = δ . Some Gaussian noise is added to the detector response function d to obtain the noisy detector response d δ such that the relative error on the kernel measured with the L 2 norm d-d δ 2

Figure 3 .

 3 Figure 3. Evolution of the data term for different noise levels. Bold line (δ = 0.1,δ F = 0), dashed line (δ = 0.1, δ F = 0.1), thin line (δ = 0.1, δ F = 0.2).The decrease of the relative error measured with the l 1 norm for the concentrations of iodine, water and gadolinium with the iterations are displayed on Figure4, 5 and 6 for the different noise levels δ and δ F studied.

Figure 7 Figure 4 .

 74 Figure 7 and 8 show the last iterate for the iodine, gadolinium and water concentrations for the different noise levels investigated. The gray window is a very broad one: for iodine and gadolinium, the values 0.0 are displayed in black and values above 0.015 are displayed in white. For water, the values 0.0 are displayed in black and values above 1.5 are displayed in white. Large decreases are obtained for the KL data term and for the reconstruction errors for the three materials. As expected, the quality of the reconstruction degrades when the noise level on the forward operator increases. Some cross-talk artifacts are also visible when the noise level increases.

Figure 5 .

 5 Figure 5. Evolution of the gadolinium relative reconstruction error. Bold line (δ = 0.1, δ F = 0), dashed line (δ = 0.1, δ F = 0.1), thin line (δ = 0.1, δ F = 0.2).

Figure 6 .

 6 Figure 6. Evolution of the water relative reconstruction error. Bold line (δ = 0.1, δ F = 0), dashed line (δ = 0.1, δ F = 0.1), thin line (δ = 0.1, δ F = 0.2).
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 8 Figure 8. Reconstruction maps for the noise levels (a) iodine (b) gadolinium (c) water (δ = 0.1, δ F = 0.2).