
HAL Id: hal-04177985
https://hal.science/hal-04177985v1

Submitted on 7 Aug 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Kullback-Leibler residual and regularization for inverse
problems with noisy data and noisy operator

Bruno Sixou, Cyril Mory

To cite this version:
Bruno Sixou, Cyril Mory. Kullback-Leibler residual and regularization for inverse problems with
noisy data and noisy operator. Inverse Problems and Imaging , 2019, 13 (5), pp.1113-1137.
�10.3934/ipi.2019050�. �hal-04177985�

https://hal.science/hal-04177985v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Manuscript submitted to Website: http://AIMsciences.org
AIMS’ Journals
Volume X, Number 0X, XX 200X pp. X–XX

KULLBACK-LEIBLER RESIDUAL AND REGULARIZATION FOR1

INVERSE PROBLEMS WITH NOISY DATA AND NOISY2

OPERATOR3

Bruno Sixou and Cyril Mory

CREATIS, CNRS UMR 5220; INSERM U1044; INSA de Lyon; Université de Lyon 1;
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Abstract. We study the properties of a regularization method for inverse

problems with joint Kullback-Leibler data term and regularization when the
data and the operator are corrupted by some noise. We show the convergence of

the method and we obtain convergence rates for the approximate solution of the

inverse problem and for the operator when it is characterized by some kernel,
under the assumption that some source conditions are satisfied. Numerical

results showing the effect of the noise levels on the reconstructed solution are

provided for Spectral Computerized Tomography.

1. Introduction. In this paper, we are interested in the inversion of a nonlinear4

operator F . Our aim is thus to find an approximation of a solution x of the inverse5

problem formulated as:6

F (x) = y. (1)

We assume that the data are corrupted by Poisson noise. For this type of noise,7

the relevant distance is the Kullback-Leibler (KL) distance defined in the following.8

Therefore, we assume that the distance between the non noisy data y and the noisy9

data yδ can be estimated with the Kullback-Leibler (KL) distance:10

KL(yδ, y) ≤ δ2 (2)

where δ is a positive constant. This assumption replaces the classical one, ‖y −11

yδ‖2 ≤ δ2 used for Tikhonov regularization. In order to use the Kullback-Leibler12

(KL) distance, we assume that F : D → D is defined on the domain D = {v ∈13

L1(Ω), d1 ≤ v ≤ d2}, where Ω is a bounded open set of Rn and where d1 and d214

are two strictly positive constants, 0 < d1 < d2 <∞. For the sake of simplicity, we15

consider the case where the domain and the codomain of the operator are the same,16

but different strictly positive upper and lower bounds could be considered for these17

spaces. In the classical inverse problem theory, it is assumed that the operator F18

is known exactly. We assume here that only an approximation Fδ : D → D of the19

exact operator is known. An example of such problems is the spectral computerized20

tomography (SPCT) inverse problem when the detector response is unknown. We21

are interested to estimate an approximate solution of the inverse problem from22

the noisy data and also to study some methods to recover at the same time this23

solution and the unknown operator. In the following, we investigate variational24
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2 BRUNO SIXOU AND CYRIL MORY

approaches with regularization functionals based on the Kullback-Leibler distance1

as discrepancy term and regularization term. There is no detailed study of this type2

of inverse problems with Poisson noise on the data and an inexact operator. The3

joint additive Kullback-Leibler (KL) residual minimization and regularization for4

linear inverse problems has been investigated in [21] but the operator is assumed5

to be well determined. Our study generalizes this work and several proofs will be6

similar to the ones detailed in this work. In order to investigate linear problems with7

inexact operators, Regularized Total Least Squares methods have been proposed8

with cost functionals based on the Frobenius norm and the L2 norm [12]. In the9

framework of the Regularized Total Least Squares, some estimates of (x, F, y) are10

determined by solving the constrained minimization problem:11

Minimize ‖F − Fδ‖2 + ‖y − yδ‖2 subject to Fx = y, ‖Bx‖ ≤ R (3)

where B is some unbounded densely defined self-adjoint strictly positive definite12

operator used to restrict the set of admissible solutions and R a positive constant.13

Dual Regularized Total Least Squares are studied in [17], [26]. In these cases, the14

inverse problem is formulated as the following constrained minimization problem:15

Minimze ‖Bx‖ subject to Fx = y, ‖F − Fδ‖ ≤ h, ‖y − yδ‖ ≤ δ (4)

where h is some bound on the noise on the operator. A double regularization16

approach is considered in [6] for inverse problems with bilinear operators of the un-17

known function x and of a kernel k. The kernel function determines the behaviour18

of the operator and a double penality term is used to stabilize the reconstruction of19

the unknown solution and of the charateristic function governing the operator. A20

convergence rate analysis of Tikhonov regularization for nonlinear inverse problems21

with noisy operators is detailed in [18] for uniform and non uniform noise bounds.22

In both cases, the discrepancy term is the square of the L2 norm. In this work, we23

extend these studies and we investigate the properties of the regularization methods24

minimizing functionals based on the KL distance. We estimate error bounds for the25

solution of the inverse problem and convergence rates depending on noise bounds26

on the data and the operator. These convergence rates are obtained if source condi-27

tions are satisfied, as usual for linear and nonlinear inverse problems [11, 22, 8, 24].28

In order to determine also the direct operator, we consider the case where it depends29

linearly on a kernel. In this case, the noise of the operator is due to this unknown30

characteristic function. A stabilizing term is included in the regularization func-31

tional. Assuming that source conditions holds, we estimate the convergence rate32

for both the solution of the inverse problem and the operator.33

This article is organized as follows. In the second section, we present some34

preliminaries about the Kullback-Leibler functional and the operator noise and in35

the third section we present the mathematical framework with two different reg-36

ularization functionals. In the fourth section, we analyze the well-posedness and37

convergence properties of the model, and we detail the convergence rates for the38

different cases investigated. Finally, in the last section, we present some simula-39

tions results for Spectral Computerized Tomography inverse problem illustrating40

the effect of the noise on the data or on the operator.41

2. Notation and preliminary results on Kullback-Leibler divergence. The42

Kullback-Leibler divergence is the Bregman divergence associated with the Poisson43

noise distribution [4]. The Kullback-Leibler divergence between two functions u and44
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v in its domain is given by:1

KL(u, v) =

∫
Ω

(v − u+ uln(
u

v
))dx. (5)

To avoid divergencies, it is possible to define a regularized distance:2

KLε(u, v) =

∫
Ω

(v − u+ uln(
u+ ε

v + ε
))dx (6)

where ε is a small parameter [29, 30]. In the following, we will consider restricted3

Kullback-Leibler distances. We consider functions in D for which the KL divergence4

leads to well-defined regularization methods[20]. The assumption that the regular-5

ized solutions belongs to the set D is quite natural. It has been shown in [21] that6

under the assumptions that the solution x is bounded and bounded away from zero7

almost everywhere and that the forward operator is a linear integral operator with a8

non negative kernel, then the regularized solutions obtained from the minimization9

of functionals based on the KL distance are also bounded and bounded away from10

zero. In this case, the set D is well-defined.11

From the definition of the Kullback-Leibler divergence, we have the following12

equality for any function u, v and w in the domain of Kullback-Leibler divergence:13

KL(u, v) +KL(w, u)−KL(w, v) =

∫
Ω

(ln(u)− ln(v))(u− w)dx. (7)

The following properties will be useful in the following [22, 10]:14

Proposition 2.1. For any u, v in the domain of the KL divergence, ‖v − u‖21 ≤15

( 2
3‖v‖1 + 4

3‖u‖1)KL(u, v), where ‖.‖1 denotes the L1(Ω) norm.16

Proposition 2.2. (i) The function (u, v)→ KL(u, v) is convex.17

(ii) For any fixed v, the function KL(., v) is lower semicontinuous with respect to18

the weak topology of L1(Ω). For any fixed v, the function KL(v, .) is lower semicon-19

tinuous with respect to the weak topology of L1(Ω). KL is also lower semicontinous20

with respect to the product topology of L1(Ω)× L1(Ω).21

(iii) Let A : L1(Ω)→ L1(Ω) a compact, linear operator, with a positive range. For22

any C > 0 and any stricly positive u ∈ L1(Ω), the following sets are weakly compact23

in L1(Ω): {x ∈ L1(Ω) : KL(Ax, u) ≤ C}.24

25

Proposition 2.3. Let u, v ∈ D ⊂ L1(Ω), then there exists a positive constant C26

such that:27

KL(u, v) ≤ C‖u− v‖1. (8)

Proof. The functions u and v are uniformly bounded away from zero and28

KL(u, v) =

∫
Ω

(v − u+ uln(1 +
u− v
v

))dx. (9)

With ln(1 + t) ≤ t for all t > −1, we obtain:29

KL(u, v) ≤ C‖u− v‖1 (10)

for a positive constant C.30

31
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3. Problem formulation. We assume that the distance between the noisy data1

and the non noisy data can be evaluated with the Kullback-Leibler distance with:2

KL(yδ, y) ≤ δ2. (11)

Moreover, we assume we have a uniform operator noise and that there exists a3

positive constant δF such that:4

sup
x∈D
‖F (x)− Fδ(x)‖1 ≤ δF (12)

We consider two different regularization functionals depending on whether we5

want to estimate the solution of the inverse problem from noisy data and from a6

noisy operator or at the same time this solution and the foward operator.7

The first regularization functional considered J1 is:8

J1(x) = KL(yδ, Fδ(x)) + αKL(x, x∗) (13)

where α is a regularization parameter and x∗ ∈ D an initial guess.9

In order to estimate at the same time the solution of the nonlinear inverse problem10

and the operator, we will investigate the case where the nonlinear operators F and11

Fδ can be characterized by functions k and kδ ∈ L2(Ω). We assume also that they12

depend linearly on them [6, 7] . We will consider the operator F̃13

F̃ : L2(Ω)×D → D

(k, x) 7→ F̃ (k, x)

such that F̃ (k, x) = F (x) and F̃ (kδ, x) = Fδ(x) where F̃ is linear with respect to k14

and nonlinear with respect to x. In this case, the error on the operators in Eq.1215

can be replaced by a bound on the error on the kernel k.16

17

We will use the following regularization functional:18

J2(x, k) = KL(yδ, Fδ(x)) + αKL(x, x∗) + β‖k − k∗‖22 (14)

where α and β are two regularization parameters. The kernel k∗ and the function19

x∗ are used as initial guesses. The two terms stabilize the inversion with respect to20

x and k.21

We will rewrite the regularization functional as:22

J2(x, k) = KL(yδ, Fδ(x)) + α(KL(x, x∗) + η‖k − k∗‖22) (15)

where η is a positive constant. In the following, we will denote Φ the functional23

including the regularization terms for x and k24

Φ(x, k) = KL(x, x∗) + η‖k − k∗‖22. (16)

3.1. Well-posedness. In this section, we analyze the properties of the regulariza-25

tion functionals J1 and J2. We first show the well-posedness of the method and26

that the minimizers of the functionals exist for every parameters α and β.27

28

Theorem 3.1. Assume that α > 0, and yδ ∈ D. Assume that the operator Fδ is29

weak-to-norm continuous with respect to the weak topology of L1(Ω). Then there30

exists a global minimizer of the functional J1 over D.31
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Proof. The proof is along the line of Theorem 3.1 in [14] , Theorem 4.2 [6]. We1

restrict the KL distance to functions in D [20]. The regularization functional is2

weak lower semicontinuous, positive (Proposition 2.2). Since x ∈ D, we can not3

consider that ‖x‖1 → ∞ and show that the functional is coercive. Yet, since Ω is4

bounded and with Eq.6, we can see that J1 and KL(x, x∗) are bounded from above5

and below for x ∈ D. It is possible to find a minimizing sequence of J1 and with6

the weak compactness of the level sets of KL intersected with D, it is also possible7

to extract a subsequence converging weakly in the L1(Ω) topology. The weak lower8

semicontinuity of J1 concludes the proof.9

Theorem 3.2. Assume that α > 0, and yδ ∈ D. Assume that the operator F̃ is10

weak-to-norm continuous with respect to the topologies of L2(Ω)×L1(Ω) and L1(Ω).11

Then there exists a global minimizer of the functional J2 over L2(Ω)×D.12

Proof. The functional J2 is positive, proper and coercive since it follows with Propo-13

sition 2.1 that:14

J2(k, x) ≥ αKL(x, x∗) + β‖k − k∗‖22 →∞ (17)

as ‖(k, x)‖ → ∞.15

Let m = inf{J2(k, x), (k, x) ∈ dom(J2)} where dom(J2) is the domain of the16

functional J2. There exists a sequence (kj , xj) such that J2(kj , xj)→ m. Thus the17

sequence (kj , xj) is bounded. The kernels kj belongs to L2(Ω) which is reflexive18

Hilbert space and from Proposition 2.2 (iv), there exist subsequences also denoted19

as (kj , xj) such that kj ⇀ k and xj ⇀ x in the L2(Ω) and L1(Ω) topologies20

respectively. With the weak lower semicontinuity of the functional J2 with respect21

to the product topology, we obtain:22

m ≤ J2(k, x) ≤ lim inf J2(kj , xj) = limJ2(kj , xj) = m. (18)

Thus (k, x) is a global minimizer.23

3.2. KL-minimal and Φ-minimal solutions. We will consider KL-minimal so-24

lutions of Eq.1, in the following sense: an element x ∈ D, is called a KL-minimizing25

solution of (1) if F (x) = y and KL(x, x∗) = min{KL(x, x∗) : x ∈ D,F (x) = y}.26

Proposition 3.3. Assume that there exists a solution of (1), and that the operator27

F is weak-to-norm continuous. Then there exists a KL-minimal solution.28

Proof. There exists a sequence (xk) of solutions of (1) in D, such that29

KL(xk, x
∗)→ c = inf{KL(x, x∗) : x ∈ D,F (x) = y} (19)

With Proposition 2.2, it is possible to extract a weakly convergent subsequence30

which is also denoted by (xk), with a weak limit denoted by x. From the weak31

lower semicontinuity of KL (Proposition 2.2 (ii)), it follows that KL(x, x∗) ≤ c.32

Moreover, for all k, F (xk) = y and F is weak-to-norm continuous, thus it follows33

that F (x) = y.34

Similarly, we can define a Φ-minimal solution of F̃ (h, x) = y with Φ given in35

Eq.14. The L2 norm and the KL distance are weakly lower semicontinuous with36

respect to the weak topologies of L2(Ω) and L1(Ω) respectively and therefore it37

follows:38

Proposition 3.4. Assume that there exists a solution (k, x) of F̃ (k, x) = y, and39

that the operator F̃ is weak-to-norm continuous. Then there exists a Φ-minimal40

solution.41
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4. Convergence properties and convergence rates. In this section, we study1

the convergence properties and the convergence rates for linear and nonlinear inverse2

problems solved with the approximate solutions xδα or (kδα, x
δ
α) obtained with the3

regularization functionals J1 or J2. We show that the solutions converge to some4

solution of the inverse problems F (x) = y or F̃ (k, x) = y as the noise levels tend to5

zero, provided the regularization parameter α is chosen appropriately. We will use6

the following proposition:7

Proposition 4.1. Let us assume that F is Fréchet differentiable in a ball B around8

x and that there is a positive constant L such that for all x in B:9

‖F ′(x)− F ′(x)‖ ≤ L‖x− x‖1 (20)

where ‖.‖ is the norm of the linear operators F ′(x) : L1(Ω) → L1(Ω) and F ′(x) :10

L1(Ω)→ L1(Ω). Then we have for all x in D:11

‖F (x)− F (x)− F ′(x)(x− x)‖1 ≤ L‖x− x‖21/2. (21)

This result is obtained with the mean value theorem.12

4.1. Convergence properties for the regularization functional J1 and non-13

linear inverse problems. We first show that under an appropriate regularization14

parameter choice rule, the minimizer xδα of the functional J1 converges to a KL-15

minimal exact solution as the noise levels δ and δF converge towards zero.16

Proposition 4.2. Let (yδj ) and (F δj ) two sequences of noisy data and weak-to-norm17

continuous operators F δj : D → D such that KL(yδj , y) ≤ δ2
j and supx∈D ‖F δj (x) −18

F (x)‖1 ≤ δF,j with δj → 0 and δF,j → 0. Assume that the regularization parameter19

αj satisfies αj → 0 and20

lim
j→∞

δj + δF,j
αj

= 0. (22)

Let x
δj
αj be the minimizer of J1 obtained with the noisy data yδj , the noisy operator21

F δj , and the regularization parameter αj. There exists a convergent subsequence of22

(x
δj
αj ). The limit of every convergent subsequence of (x

δj
αj ) is a KL-minimal solution23

of F (x) = y.24

Proof. The minimizing property of x
δj
αj guarantees that:25

0 ≤ J1(xδjαj ) = KL(yδj , F
δ
j (xδjαj )) + αjKL(xδjαj , x

∗) ≤ KL(yδj , F
δ
j (x)) + αjKL(x, x∗). (23)

where x is a KL-minimal solution of F (x) = y.26

With Eq.7, we get:27

KL(yδj , F
δ
j (x))−KL(y, F δj (x))−KL(yδj , y) = −

∫
Ω

(ln(y)− ln(F δj (x)))(y − yδj )dx (24)

With Propositions 2.2 and 2.3, there exist positive constants C, C1 such that:28

KL(y, F δj (x)) ≤ C‖F (x)− F δj (x)‖1 ≤ CδF,j (25)

29

|
∫

Ω

(ln(y)− ln(F δj (x)))(y− yδj )dx| ≤ ‖(ln(y)− ln(F δj (x))‖∞‖y− yδj‖1 ≤ C1δj . (26)
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where we have used Proposition 2.1 and KL(yδj , y) ≤ δ2
j . With Eq.22, 23 and 241

and with KL(yδj , y) ≤ δ2
j , we obtain that, as δj → 0, there exists a positive constant2

C2 such that:3

KL(yδj , F
δ
j (x)) ≤ C2(δj + δF,j). (27)

The sequence KL(x
δj
αj , x

∗) is bounded and therefore there exists a weakly con-4

vergent subsequence also denoted by x
δj
αj converging weakly towards x. We will5

prove that x is a KL-minimal solution. The nokse on the operator is bounded and6

thus we have:7

‖F (x)− F δj (x)‖1 ≤ sup
x∈D
‖F (x)− F δj (x)‖1 = δF,j . (28)

F δj is a weak-to-norm continuous operator and thus ‖F δj (x)− F δj (x
δj
αj )‖1 → 0, and8

thus we obtain that F δj (x
δj
αj )→ F (x) in L1(Ω).9

With the weak lower semicontinuity of KL, it follows:10

KL(y, F (x)) ≤ lim inf
j→∞

KL(yδj , F
δ
j (xδjαj )). (29)

Therefore, we obtain:11

0 ≤ KL(y, F (x)) ≤ lim inf
j→∞

KL(yδj , F
δ
j (xδjαj )) (30)

≤ lim inf
j→∞

KL(yδj , F
δ
j (xδjαj )) + αjKL(xδjαj , x

∗) (31)

≤ lim inf
j→∞

C2(δF,j + δj) + αjKL(x, x∗) = 0 (32)

and thus F (x) = y.12

With Eq.21 and with the weak lower semicontinuity of KL, we obtain:13

KL(x, x∗) ≤ lim inf
j→∞

KL(xδjαj , x
∗) (33)

≤ lim inf
j→∞

C2(δj + δF,j)

αj
+KL(x, x∗) (34)

≤ KL(x, x∗) (35)

and thus x is a KL-minimal solution and KL(x
δj
αj , x

∗) → KL(x, x∗). With Propo-14

sition 2.1, it follows that x
δj
αj → x in the strong topology of  L1(Ω).15

The former result can be applied to a sequence (F δj ) of bounded linear operators.16

We now detail convergence rates based on some source condition.17

Theorem 4.3. Let F and Fδ two nonlinear operators satisfying the uniform noise18

bound of Eq.12 . We assume that F is Fréchet differentiable and that there exists19

a Lipschitz constant L such that:20

‖F ′(x1)− F ′(x2)‖ ≤ L‖x1 − x2‖1 (36)

for all x1, x2 ∈ D, where ‖F ′(x)‖ denotes the norm of the linear operator F ′(x).21

Moreover, we assume that the following source condition holds:22

F ′(x)∗w = ln(
x

x∗
) (37)

for some w ∈ L∞(Ω) with 2L‖w‖∞ supx∈D ‖x‖1 ≤ 1. In this formula, x ∈ D is a23

KL-minimal solution of (1), x∗ ∈ D and F ′(x)∗ : L∞(Ω) → L∞(Ω) is the adjoint24

of F ′(x). Let y and yδ such that KL(yδ, y) ≤ δ2, and xδα the minimizer of the25
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regularization functional J1. Then with the parameter choice α ∼ (δ + δF )1/2, we1

obtain the convergence rate KL(xδα, x) = O((δ + δF )1/2).2

Proof. The proof is similar to the one of Proposition 4.2. With Eq.7, we get:3

KL(yδ, Fδ(x))−KL(y, Fδ(x))−KL(yδ, y) = −
∫

Ω

(ln(y)− ln(Fδ(x)))(y − yδ)dx (38)

With Proposition 2.2 and 2.3, there exist positive constants C ′ and C1 such that:4

5

KL(y, Fδ(x)) ≤ C ′‖F (x)− Fδ(x)‖1 ≤ C ′δF (39)

6

|
∫

Ω

(ln(y)− ln(Fδ(x)))(y − yδ)dx| ≤ ‖ln(y)− ln(Fδ(x))‖∞‖y − yδ‖1 ≤ C1δ. (40)

With KL(yδ, y) ≤ δ2, we obtain that, as δ → 0, there exists a positive constant C27

such that:8

KL(yδ, Fδ(x)) ≤ C2(δ + δF ). (41)

The Lipschitz continuity of the Fréchet derivative F ′ and Proposition 4.1 imply9

that:10

F (xδα) = F (x) + F ′(x)(xδα − x) + rδα (42)

with11

‖rδα‖1 ≤
L

2
‖xδα − x‖21. (43)

The minimizers xδα satisfies:12

KL(yδ, Fδ(x
δ
α)) + αKL(xδα, x

∗)− αKL(x, x∗) ≤ KL(yδ, Fδ(x)) (44)

where x is a KL-minimal solution of F (x) = y. With Eq.7, we have:13

KL(x, x∗) +KL(xδα, x)−KL(xδα, x
∗) =

∫
Ω

(ln(x)− ln(x∗))(x− xδα)dx. (45)

Thus with Eq.37 it follows that:14

KL(yδ, Fδ(x
δ
α)) + αKL(xδα, x) + α〈w,F ′(x)(xδα − x)〉 ≤ KL(yδ, Fδ(x)) (46)

where 〈., .〉 denotes the dual pairing of two functions. Moreover, we have15

α〈w,F ′(x)(xδα − x)〉 ≤ αL‖w‖∞‖xδα − x‖21/2 + α‖w‖∞‖Fδ(xδα)− F (xδα)‖1
+α‖w‖∞‖yδ − Fδ(xδα)‖1 + α‖w‖∞‖F (x)− yδ‖1 (47)

and there is positive constant C3 such that:16

‖Fδ(xδα)− yδ‖1 ≤ C3KL(yδ, Fδ(x
δ
α))1/2 (48)

and17

‖F (x)− yδ‖1 ≤ C3KL(yδ, F (x))1/2 (49)

We obtain thus for positive constants C4 = 2 supx∈D ‖x‖1 and C5:18

|α〈w,F ′(x)(xδα − x)〉| ≤ αC4L‖w‖∞KL(xδα, x) + α‖w‖∞C5δF

+αC3‖w‖∞δ + αC3‖w‖∞KL(yδ, Fδ(x
δ
α))1/2 (50)
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and we can reformulate Eq.46 as:1

(KL(yδ, Fδ(x
δ
α))1/2 − αC3‖w‖∞/2)2 + α(1− C4L‖w‖∞)KL(xδα, x) ≤ α‖w‖∞C5δF

+αC3‖w‖∞δ + C2(δ + δF ) + (αC3‖w‖∞)2/4 (51)

≤ C6(δ + δF + (α‖w‖∞)2) (52)

for a positive constant C6. We obtain thus:2

KL(xδα, x) ≤ C6

1− C4L‖w‖∞
(
(δ + δF )

α
+ α‖w‖2∞). (53)

With the choice α ∼ (δ + δF )1/2, we obtain that KL(xδα, x) = O((δ + δF )1/2).3

The former proposition gives a convergence rate for an a priori choice of the reg-4

ularization parameter. Methods of choice of regularization parameters based on the5

Morozov principle have been studied in detail for the minimization of regularization6

functional based on least squares [1, 11]. A Generalized Discrepancy Principle was7

proposed in [27] to take into account the discretization errors and the incompat-8

ibility of the data with the equation to be solved. Some rules for the choice of9

the regularization parameter for Poisson noise have been proposed in [23, 3, 5, 15].10

Generalzing these rules in the case where the operator is inexact will be the subject11

of future work.12

4.2. Convergence properties for the regularization functional J2 and non-13

linear operators depending linearly on a kernel. In this section, we investi-14

gate the regularization functional J2 and we want to reconstruct also the forward15

operator. The convergence rates are thus given for kδα → k, and xδα → x. For the16

case investigated here, we will use the following source condition:17

R(F̃ ′(k, x)∗) ∩ ∂Φ(k, x) 6= ∅ (54)

where ∂Φ is the subdifferential of Φ defined in Eq.16 and R denotes the range18

of an operator. The former condition implies that there exists, (φx, φk) in the19

subdifferential of Φ at (k, x) such that:20

(φk, φx) = (η(k − k∗), ln(
x

x∗
)) = F̃ ′(k, x)∗w,w ∈ L1(Ω) (55)

We assume that F̃ is Fréchet differentiable, with a Lipschitz continuous derivative.21

For (u, v) ∈ L2(Ω) × L1(Ω), the Fréchet derivative of F̃ at a point (k, x) is given22

by:23

F̃ ′(k, x)(u, v) = F̃ ′(u, x) + F̃ ′(k, v). (56)

For (u, v) ∈ L2(Ω)×L1(Ω), the remainder of the Taylor expansion can be estimated24

by:25

‖F̃ (k + u, x+ v)− F̃ (k, x)− F̃ ′(k, x)(u, v)‖1 ≤ C‖(u, v)‖21 (57)

for a positive constant C.26

We first show the convergence of the regularization method.27

Proposition 4.4. Let yδj a sequence of data such that KL(yδj , y) ≤ δ2
j with δj → 0.28

We assume that the operator F̃ is weak-to-norm continuous with respect to the29

topology of L2(Ω)×L1(Ω). Assume also that the regularization parameter αj satisfies30

αj → 0 and31

lim
j→∞

δ2
j

αj
= 0 (58)
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Let (x
δj
αj , k

δj
αj ) be the minimizer of J2 obtained from the noisy data yδj and regu-1

larization parameters αj. There exists a convergent subsequence of (x
δj
αj , k

δj
αj ). The2

limit of every convergent subsequence of (x
δj
αj , k

δj
αj ) is a Φ-minimal norm solution of3

F̃ (k, x) = y.4

Proof. The minimizing property of (k
δj
αj , x

δj
αj ) guarantees that:5

0 ≤ J2(xδjαj , k
δj
αj ) = KL(yδj , F̃ (kδjαj , x

δj
αj )) + αjKL(xδjαj , x

∗) + βj‖kδjαj − k
∗‖21

≤ KL(yδj , F̃ (k, x)) + αjKL(x, x∗) + ηαj‖k − k∗‖21
≤ δ2

j + αjKL(x, x∗) + ηαj‖k − k∗‖21. (59)

where (k, x) is a Φ-minimal norm solution of F̃ (k, x) = y.6

The sequence KL(x
δj
αj , x

∗) is bounded and therefore there exists a weakly con-7

vergent subsequence x
δj
αj converging weakly towards x. Similarly, ‖kδjαj − k∗‖2 is8

bounded and thus there is a subsequence k
δj
αj converging weakly towards k. We will9

prove that (k, x) is a Φ-minimal solution and F̃ (k, x) = y.10

We have11

F̃ (kδjαj , x
δj
αj )− F̃ (k, x) = F̃ (kδjαj , x

δj
αj )− F̃ (kδjαj , x) + F̃ (kδjαj − k, x). (60)

and thus F̃ (k
δj
αj , x

δj
αj )→ F̃ (k, x) in L1(Ω).12

With the lower semicontinuity of KL with respect to the product topology, it13

follows that:14

KL(y, F̃ (k, x)) ≤ lim inf
j→∞

KL(yδj , F̃ (kδjαj , x
δj
αj )). (61)

15

Therefore, we obtain:16

0 ≤ KL(y, F̃ (k, x))) (62)

≤ lim infj→∞KL(yδj , F̃ (k
δj
αj , x

δj
αj )) + αj(KL(x

δj
αj , x

∗) + η‖k∗ − kδjαj‖22) (63)

≤ lim infj→∞ δ2
j + αj(KL(x, x∗) + η‖k∗ − k‖22) = 0 (64)

thus F (k, x) = y.17

With Eq.59 and with the weak lower semicontinuity of KL, we obtain:18

KL(x, x∗) + η‖k∗ − k‖21 ≤ lim inf
j→∞

KL(xδjαj , x
∗) + η‖k∗ − kδjαj‖

2
2 (65)

≤ lim inf
j→∞

δ2
j

αj
+KL(x, x∗) + η‖k∗ − k‖22 (66)

≤ KL(x, x∗) + η‖k∗ − k‖22 (67)

Therefore (k, x) is a Φ-minimal solution.19

The next result gives some convergence rates for the regularization method based20

on the functional J2.21

Theorem 4.5. Let y and yδ such that KL(yδ, y) ≤ δ2, (k, x) a Φ-minimal solution22

of F̃ (k, x) = y, (kδα, x
δ
α) the minimizer of the regularization functional J2. We23

assume the source condition Eq.54 holds for ‖w‖∞ small enough. Then KL(xδα, x)+24

η‖kδα − k‖22 ∼ δ1/2.25
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Proof. With Eq. 7 , we obtain:1

KL(y, F̃ (kδα, x
δ
α))+KL(yδ, y)−KL(yδ, F̃ (kδα, x

δ
α)) =

∫
Ω

(ln(y)−ln(F̃ (kδα, x
δ
α)))(y−yδ)dx

(68)
and thus with Proposition 2.1, there exist some positive constants C, C1 such that:2

KL(y, F̃ (kδα, x
δ
α)) ≤ KL(yδ, y) +KL(yδ, F̃ (kδα, x

δ
α)) + C‖y − yδ‖1 (69)

≤ KL(yδ, F̃ (kδα, x
δ
α)) + δ2 + C1δ. (70)

Let Uδα = (kδα, x
δ
α), and U = (k, x), the Lipschitz continuity of the Fréchet3

derivative F̃ ′ implies that:4

F̃ (U δα) = F̃ (U) + F̃ ′(U)(U δα − U) +Rx,k (71)
5

‖Rx,k‖1 ≤
L

2
‖U δα − U‖2 =

L

2
(‖xδα − x‖21 + ‖kδα − k‖22). (72)

The minimizers (xδα, k
δ
α) satisfies:6

KL(yδ, F̃ (kδα, x
δ
α)) + αKL(xδα, x

∗)− αKL(x, x∗) + β‖kδα − k∗‖22
≤ KL(yδ, F̃ (k, x)) + β‖k − k∗‖22. (73)

Let (φx, φk) = (ln( xx∗ ), η(k− k∗) the subdifferential of the regularization functional7

at (k, x):8

KL(yδ, F̃ (kδα, x
δ
α)) + αKL(xδα, x) + ηα‖kδα − k‖22 + α(〈φx, xδα − x〉+ 〈φk, kδα − k〉)

≤ KL(yδ, F̃ (k, x)) (74)

and with the source condition of Eq.54:9

KL(yδ, F̃ (kδα, x
δ
α)) + αKL(xδα, x) + ηα‖kδα − k‖22

+α〈F̃ ′(kδα, xδα)∗w, (xδα − x, kδα − k)〉 ≤ KL(yδ, F̃ (k, x)). (75)

With Eq.70 , we get:10

KL(yδ, F̃ (kδα, x
δ
α)) + αKL(xδα, x) + ηα‖kδα − k‖22

+α〈F̃ ′(kδα, xδα)∗w, (xδα − x, kδα − k)〉 ≤ KL(yδ, F̃ (k, x)) + δ2 + C1δ. (76)

〈−F̃ ′(k, x)∗w, (xδα − x, kδα − k)〉 ≤ 〈w,−F̃ ′(k, x)(xδα − x, kδα − k)〉 (77)

≤ 〈w,−F̃ (kδα, x
δ
α) + F̃ (k, x)−Rx,k〉 (78)

≤ ‖w‖∞‖Rx,k‖
+‖w‖∞‖F̃ (k, x)− yδ‖1 + ‖w‖∞‖yδ − F̃ (kδα, x

δ
α))‖1. (79)

There exist positive constants C ′, C ′1 and C2 such that:11

‖Rx,k‖ ≤ C ′(‖xδα − x‖21 + ‖kδα − k‖22) ≤ C ′1KL(xδα, x) + C ′‖kδα − k‖22 (80)

‖F̃ (kδα, x
δ
α)− yδ‖1 ≤ C2KL(F̃ (kδα, x

δ
α), yδ)1/2 (81)

12

‖F̃ (k, x)− yδ‖1 ≤ C2KL(F̃ (k, x), yδ)1/2 ≤ C2δ. (82)
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We obtain thus:1

α〈−F̃ ′(k, x)∗w, (xδα − x, kδα − k)〉 ≤ C ′1α‖w‖∞KL(xδα, x) + C ′α‖w‖∞‖kδα − k‖22
+C2‖w‖∞αδ + C2α‖w‖∞KL(yδ, F̃ (kδα, x

δ
α))1/2. (83)

Eq.76 can be rewritten:2

KL(yδ, F̃ (kδα, x
δ
α))− C2α‖w‖∞KL(yδ, F̃ (kδα, x

δ
α))1/2

+α(1− C ′1‖w‖∞)KL(xδα, x) + α(η − C ′‖w‖∞)‖kδα − k‖22
≤ δ2 + δ2 + C ′δ + C2α‖w‖∞δ (84)

≤ A1δ. (85)

where A1 is a positive constant. Assuming that ‖w‖∞ < min(1/C ′1, η/C
′), we have:3

KL(yδ, F̃ (kδα, x
δ
α))− C2α‖w‖∞KL(F̃ (kδα, x

δ
α), yδ)1/2 −A1δ ≤ 0 (86)

4

KL(yδ, F̃ (kδα, x
δ
α))1/2 ≤ C2α‖w‖∞

2
+

√
(C2α‖w‖∞)2 + 4A1δ

2
. (87)

With this inequality, we obtain:5

KL(xδα, x) ≤ 1

1− C ′1‖w‖∞
(
C2α‖w‖2∞,

2
+
‖w‖∞

√
(C2α‖w‖∞)2 + 4A1δ

2

+
A1δ

α
) (88)

6

‖kδα − k‖22 ≤
1

η − C ′‖w‖∞
(
C2α‖w‖2∞,

2
+
‖w‖∞

√
(C2α‖w‖∞)2 + 4A1δ

2

+
A1δ

α
). (89)

For the parameter choice α ∼ δ1/2, we obtain:7

KL(xδα, x) = O(δ1/2) (90)
8

‖kδα − k‖22 = O(δ1/2). (91)

9

5. A numerical experiment: spectral Computerized Tomography. In this10

section, we present some numerical experiments showing the effect of the noise levels11

on the forward operator or on the data on the quality of the approximate solution for12

a nonlinear inverse problem obtained with joint KL data term and regularization.13

Multi-energy Computerized Tomography, or spectral CT, is an imaging modality14

where the information received depends on the energy of each photon hitting the15

detector. This information is provided by a photon counting detector which gives an16

image for each energy bin. Assuming that the objects attenuation can be obtained17

by linear combination of the attenuations of only a few materials, this energy-18

resolved information allows to reconstruct several volumes, each one representing19

a different material concentration map (e.g soft tissues and bone) [16, 25, 9]. The20

measured projections are corrupted by Poisson noise. The spectral CT problem21

sets an ill-posed inverse problem that has to be regularized to obtain stable results22

for material decomposition. In the first subsection, we present the forward model23

relating the projected mass of the material to the number of photons detected and24

the regularization functional. In the second section, we detail the numerical results.25
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5.1. Forward model for spectral CT. For the sake of simplicity, we consider a1

2D object to reconstruct. The forward model presented here can be easily extended2

to 3D. We denote Ω the space that contains the 2-dimensional (2-D) object studied3

and x the voxel position. This object is imaged on a 1-D detector for several4

projection angles. The number of photons transmited at energy E for each pixel5

u of the detector and for each angle θ is denoted n(E, u, θ). The energy range6

is denoted as B and the set of the pixels values on the detector as Σ. With the7

Beer-Lambert law, it follows :8

n(E, u, θ) = n0(E) exp

(
−
∫
L(u,θ)

µ(E,x)dx

)
(92)

where n0(E) is the source spectrum, L(u, θ) is the line defined by the X-ray beam9

and µ(E,x) is the linear attenuation coefficient at energy E for the voxel x. The10

number of photons detected by the detector for energy E , pixel u and angle θ can11

be written as :12

s(E , u, θ) =

∫
R
d(E , E)n(E, u, θ)dE (93)

where d(E , E) : B ×B → [0, 1] is the detector response function and thus:13

s(E , u, θ) =

∫
R
d(E , E)n0(E) exp

(
−
∫
L(u,θ)

µ(E,x)dx

)
dE. (94)

It describes the probability that a photon with the energy E is detected at the14

energy E . We assume that we can write the attenuation coefficient as a sum of M15

basis functions for each material that are separable in energy and space:16

µ(E,x) =

M∑
m=1

ρm(x)τm(E) (95)

where ρm(x) is the concentration of the material m at the voxel x and τm(E) is a17

well-defined function describing the attenuation effects in the material m at energy18

E. The total number of materials is denoted as M . It is possible to reformulate the19

direct problem with Radon projection operator which maps a function f ∈ L1(Ω)20

to its line integrals. Let L(θ, u) be the line defined by L(θ, u) = {τ θ̄∗+uθ̄ : τ ∈ R},21

with θ̄ = (cos(θ), sin(θ)) and θ̄∗ = (−sin(θ), cos(θ)), the Radon transform for22

f ∈ L1(Ω) is given by:23

Rf(θ, u) = Rθf(u) = Ru,θf =

∫
x∈L(θ,u)∩Ω

f(x)dx (96)

and it follows:24

s(E , u, θ) =

∫
R
d(E , E)n0(E) exp (−Ru,θµ) dE. (97)

The nonlinear forward problem can be formulated as s = F(ρ) with a nonlinear25

operator F : L1(Ω)M → L1(B×Σ× [0, π]). It can also be formulated as s = F(d, ρ)26

with a nonlinear operator F : L2(B × B) × L1(Ω)M → L1(B × Σ × [0, π]). The27

framework presented above can thus be applied. The following proposition shows28

that the operator F satisfies the continuity assumption of the former sections.29

Proposition 5.1. The operators F : L1(Ω)M → L1(B×Σ× [0, π]) and F : L2(B×30

B)× L1(Ω)M → L1(B × Σ× [0, π]) are weak-to-norm continuous.31
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Proof. Let us assume for the sake of simplicity, that M = 1. Let us consider a1

sequence (ρn) in L1(Ω) converging weakly towards ρ in the weak topology of L1(Ω),2

then, for all φ ∈ L∞(Ω):3 ∫
Ω

ρn(x)φ(x)dx→
∫

Ω

ρ(x)φ(x)dx as n→∞ (98)

For u ∈ B and θ ∈ [0, π], taking φ as the indicator function of the line L(θ, u), it4

follows that:5 ∫
L(θ,u)

ρn(x)dx→
∫
L(θ,u)

ρ(x)dx (99)

and thus F(ρn) → F(ρ) almost everywhere. With the dominated convergence6

theorem in L1(Ω), it follows that F(ρn) → F(ρ) in L1(B × Σ × [0, π]). Similarly,7

the weak convergence of a sequene (dn) towards d in L2(B ×B) implies the strong8

convergence of F(dn) towards F(d) in L1(B × Σ× [0, π]).9

The convergence properties presented in the former sections are obtained with an10

operator mapping a space D ⊂  L1(Ω) with itself. They can be easily generalized to11

a mapping between different spaces of strictly positive functions included in  L1(Ω).12

Moreover, they may be extended to a product of spaces included in (L1(Ω))M by13

considering the regularization term
∑

1≤m≤M KL(ρm, ρ
∗
m). After discretization,14

the inverse problem considered is a finite dimensional one. An integrated circuit15

counts the number of photons that are detected in the ith energy bin [Ei, Ei+1].16

The number of photons detected in the ith, for the angle θ is :17

si(u, θ) = Fi(ρ) =

∫
B

di(E)n(E, u)dE (100)

where18

di(E) =

∫ Ei+1

Ei
d(E , E)dE . (101)

The function di(E) ∈ L1(B, [0, 1]) is the response function of the ith energy bin of19

the detector. For the numerical simulation, we consider that our detector has P20

pixels, I energy bins, and the projections are measured for S angles. The dectector21

response function d is characterized by a set (di)1≤i≤I of response functions.The22

projections data are thus the vector s ∈ RIPS = (sijl)1≤i≤I,1≤j≤P,1≤l≤S . The23

domain to reconstruct is also discretized with Q pixels. We want to recover the set24

of the masses of the materials ρ ∈ RMQ = (ρij)1≤i≤M,1≤j≤Q. The discretization25

levels are thus n = MP and m = IPS. We consider a cost function similar to the26

ones in Eq.13 and Eq.14 in order to recover the maps of the materials:27

J1(ρ) = KL(s,F(ρ)) + α
∑

1≤m≤M

KL(ρm, ρ
∗
m) (102)

and28

J2(ρ, d) = KL(s,F(ρ, d)) + α
∑

1≤m≤M

KL(ρm, ρ
∗
m) + β

∑
1≤i≤I

‖di − d∗i ‖22. (103)

5.2. Numerical experiments.29
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5.2.1. Minimization algorithms. In this subsection, we present the minimization al-1

gorithms used for the functionals J1 and J2.2

Regularization functional J13

For the minimization of the regularization functional J1, we have to optimize the4

concentrations map ρ. The objective functional is non convex with respect to the5

materials concentrations. During the minimization, the simulation may be trapped6

in local minima. Recently, several methods have been proposed which reonstruct7

material-specific volumes directly from the photon counts. They are commonly re-8

ferred to as one-step inversion methods. All of these methods are iterative: there is9

currently no analytical inversion formula for the material decomposition problem.10

They asssume a well-known detector response function [16, 2, 28, 19]. In this work,11

we have used the Mechlem approach to minimize the regularization functional. The12

principle of the method is to minimize the functional based on the KL divergence13

which corresponds to the Poisson negative log-likelihood of the data by Separable14

Quadratic Surrogates (SQS). The surrogates are derived sequentially. The min-15

imization also integrates Ordered Subsets (OS) and Nesterov acceleration. The16

minimization method is described in detail in [19].17

Regularization functional J218

In [7], an efficient and convergent alternating mimization scheme for the minimiza-19

tion of doubly regularized Total Least Square was presented. In each step, the20

regularization functional is minimized over one variable while keeping the second21

one fixed. In the case investigated in [7], for each subproblem, the functional is22

convex and a global minimum is obtained. The sequence obtained is converging23

towards a critical point of the regularization functional. In this work, we have24

not the same convergence results since the functionals considered are not convex25

but we use the same optimization methodology. In the case of the functional J2,26

numerical experiments have been performed to reconstruct both the function and27

the kernel. For the minimization of the regularization functional J2, we alternate28

the minimization with respect to ρ and with respect to the detector response. For29

the minimization with respect to ρ, we use the former Mechlem algorithm. For30

the minimzation with respect to the detector response, we use a gradient descent31

algorithm.32

The operator Fi is linear with respect to the detector response and thus the33

Fréchet derivative of Fi (Eq.100) for di ∈ L2(B, [0, 1]) with respect to the detector34

response is:35

F ′i(ρ, d) : L2(B, [0, 1])→ L1(Σ× [0, π])

h 7→ Fi(ρ, h)

Let k ∈ L∞(Σ× [0, π])36

〈k,Fi(h, ρ)〉 =

∫
[0,π]×Σ

k(u, θ)

∫
B

dεh(ε)exp(−Ru,θ
∑
m

xm(x)µm(ε))dudθ

=

∫
B

dεh(ε)

∫
[0,π]×Σ

k(u, θ)exp(−Ru,θ
∑
m

xm(x)µm(ε))dudθ. (104)

The adjoint of F ′i is thus the operator F∗i : L∞(Σ × [0, π]) → L2(B, [0, 1]) defined37

by :38

k 7→
∫

[0,π]×Σ

k(u, θ)exp(−Ru,θ
∑
m

xm(x)µm(ε))dudθ. (105)
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The gradient of the KL data term with respect to the detector function di is thus1

F∗i Z(Fi(h, ρ)− sδi ) where Z is a diagonal matrice diag(1/(Fi(ρ, d) + ε)).2

5.2.2. Simulations details. We present here simulations to illustrate the former con-3

vergence results. We can not show that the solution satisfies the source condition,4

but we use different noise levels for the projection data s and for the forward oper-5

ator and show the effect on the quality of the reconstruction. We assume that the6

detector response function is approximately known. The approximation of the de-7

tector response function d will be denoted dδ. Our aim is first to reconstruct ρ from8

the noisy data sδ and from the noisy kernel dδ using the regularization functional9

J1. Then, we give approximate solutions for the concentrations and the kernel using10

the regularization functional J2.11

We have designed a simple two-dimensional 3-materials phantom, consisting of12

a large square of water at 1 g/ml, a small square of iodine at 10 g/ml, and a small13

square of gadolinium at 10 g/ml. The iodine and gadolinium squares are inside the14

water square, but do not overlap. The phantom has 2562 voxels. This phantom is15

displayed in Figure 1.16

(a) (b)

(c)

Figure 1. Ground truth maps (a) iodine (b) gadolinium (c) water.

Through this phantom, 725 parallel projections were simulated, with 362 rays17

per projection, using the AIR toolbox [13] to generate the sparse forward projection18

matrix. The line integrals obtained were then converted to photon counts, following19
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the classical polychromatic Beer-Lambert attenuation law. We consider in this work1

5 energy bins. The detector response functions can thus be decomposed into 52

energy response functions di. The detector response was simulated according to the3

model presented in appendix A.2 of [25]. The detector responses for the five energy4

bins are displayed in Figure 2. In the end, the photon counts were corrupted with5

Poisson noise. This model therefore neglects pile-up, scatter, charge sharing and6

probably many other complex effects.7

In the simulations, the noise on the data s is characterized by the value ‖sδ −
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Figure 2. Detector response functions di(E) for the five energy bins.
8

s‖1/‖s‖1 = δ′. Some Gaussian noise is added to the detector response function d9

to obtain the noisy detector response dδ such that the relative error on the kernel10

measured with the L2 norm ‖d−dδ‖2
‖d‖2 is 0.05 or 0.1. The noise on the operator is11

evaluated by an approximate value of supρ∈D ‖F(ρ, d)−F(ρ, dδ)‖1/‖F(ρ, d)‖1 = δ′F .12

This quantity is estimated by sampling the concentration maps ρ around the initial13

concentration ρ∗. The initial guess concentration ρ∗ used in the simulations consists14

of squares of gadolinium and iodine centered at the positions corresponding of the15

ground truth. The size of the borders is three times the ones of the ground truth16

squares. In order to sample the set D and evaluate δ′F , we have tested considered17

several phantoms. The support of the materials are varied between the empty set18

and the support of the first guess concentration ρ∗ enlarged by a factor 1.5. The19

concentrations are chosen between 0.5 and 1.5 times the true gadolinium, water and20

iodine concentrations. The initial guess detector response d∗ is obtained from the21

true dectector response function d with a convolution with a Gaussian kernel. It is22

such that supρ∈D ‖F(ρ, d)−F(ρ, d∗)‖1/‖F(ρ, d)‖1 = 0.1.23

The iodine and gadolinium concentrations are not bounded away from 0 every-24

where. In order to avoid divergencies, we have just taken into account the pixels25

in the images with values different from 0 for these materials. The lower box con-26

straint is thus ensured even if the lower bound value d1 is not precisely determined27

for these materials. Similar results are obtained with Eq.6 and a small constant ε.28

The regularization parameter α has been chosen in order to obtain to largest29

decrease of the regularization functional, with an extensive sweeping of the param-30

eter values, multiplying or dividing it by powers of 2, and choosing the largest31
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possible regularization that did not cause significant amount of cross-talk. The pa-1

rameter η is chosen such that the two regularization terms in Φ have the same2

order of magnitude at the end of the optimization. Several values have been3

tested. The best simulation results have been obtained with η = 10. In the re-4

construction of the simulated data, we have compared the concentrations of the5

materials with the ground truth concentrations. In order to evaluate the quality6

of the reconstruction for each material m, the l1 relative error is calculated with7

‖ρm−ρm‖1/‖ρm‖1 =
∑P
p=1 |ρmp− ˆρmp|/

∑P
p=1 |ρmp|, where ρm be the ground truth8

concentration map and ρm the estimated concentration map9

5.3. Results and discussion. We have tested different noise levels for the data10

and the detector response. We present successively the results for the functional J111

and the functional J2.12

Functional J113

The decrease with the iterations of the KL data term measuring the mismatch be-14

tween the measured photons counts and those simulated through the reconstructed15

volume are displayed in Fig.3 for the different noise levels investigated.16
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Figure 3. Evolution of the data term for different noise levels.
Bold line (δ

′
= 0.1, δ′F = 0), dashed line (δ′ = 0.1, δ′F = 0.1), thin

line (δ′ = 0.1, δ′F = 0.2).

The decrease of the relative error measured with the l1 norm for the concentra-17

tions of iodine, water and gadolinium with the iterations are displayed on Figure 4,18

5 and 6 for the different noise levels δ′ and δ′F studied.19

Figure 7 and 8 show the last iterate for the iodine, gadolinium and water con-20

centrations for the different noise levels investigated. The gray window is a very21

broad one: for iodine and gadolinium, the values 0.0 are displayed in black and22

values above 0.015 are displayed in white. For water, the values 0.0 are displayed23

in black and values above 1.5 are displayed in white. Large decreases are obtained24

for the KL data term and for the reconstruction errors for the three materials. As25

expected, the quality of the reconstruction degrades when the noise level on the26

forward operator increases. Some cross-talk artifacts are also visible when the noise27

level increases.28
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Figure 4. Evolution of the iodine relative reconstruction error.
Bold line (δ′ = 0.1, δ′F = 0), dashed line (δ′ = 0.1, δ′F = 0.1), thin
line (δ′ = 0.1, δ′F = 0.2).
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Figure 5. Evolution of the gadolinium relative reconstruction er-
ror. Bold line (δ

′
= 0.1, δ′F = 0), dashed line (δ

′
= 0.1, δ′F = 0.1),

thin line (δ
′

= 0.1, δ′F = 0.2).

Functional J21

For the functional J2, we started the simulation with a noisy detector response d∗. A2

gradient descent step for the detector response is performed every 5 iterations. The3

decrease of the relative errors for the iodine, water and gadolinium concentrations4

obtained with the alternate minimization algorithm are displayed in Figure 9, 105

and 11. The final concentrations maps are displayed in Figure 12.6

Large decreases of the errors for the three materials are observed with the mini-7

mization of the functional J2. The increase of the noise level on the forward operator8
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Figure 6. Evolution of the water relative reconstruction error.
Bold line (δ′ = 0.1, δ′F = 0), dashed line (δ = 0.1, δ′F = 0.1), thin
line (δ′ = 0.1, δ′F = 0.2).

degrades the accuracy of the reconstruction. The comparison of the thin and dashed1

lines on these figures shows the improvement achieved with the alternate minimiza-2

tion and the optimization of the detector response function. With these results,3

it can be seen that better reconstruction results are obtained with a few gradient4

steps for the detector response function. Yet, the solution seems to be trapped in a5

local minima after a few iterations.6

6. Conclusion. In this work, we have studied inverse problems with noisy data7

and unknown operator. We have considered regularization functionals based on the8

Kullback-Leibler divergence as data term and regularization term. We have first9

considered the case where we want only to recover the solution of linear or nonlinear10

inverse problems. Then we consider a more general functional when the aim is to11

estimate also the forward operator. We have studied the convergence properties12

of the regularization methods based on these functionals. We have derived conver-13

gence rates based on source conditions and restrictions on the linearity of the direct14

operator. Some numerical experiments illustrate the effect of the noise levels on the15

data and on the operator for Spectral Computerized Tomography.16
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Figure 9. Evolution of the water reconstruction error. Bold line
(δ
′

= 0.1, δF = 0), thin line (δ
′

= 0.1, δ′F = 0.1), dashed line:
solution obtained with alternate minimization.
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Figure 10. Evolution of the iodine reconstruction error. Bold
line (δ
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= 0.1, δF = 0), thin line (δ
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= 0.1, δ′F = 0.1), dashed line:

solution obtained with alternate minimization.
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Figure 11. Evolution of the gadolinium relative reconstruction
error. Bold line (δ
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= 0.1, δF = 0), thin line (δ

′
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dashed line: solution obtained with alternate minimization.
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Figure 12. Reconstruction maps for (a) iodine (b) gadolinium
(c) water obtained with the iterative algorithm starting form (δ′ =
0.1, δF = 0.1.
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