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Abstract—In this paper, we study the joint phase and timing es-
timation problem in Faster-than-Nyquist (FTN) systems. We use
the Cramér–Rao lower bound (CRB) as a cost function to design
optimal pilot sequences subject to an energy constraint. We rely
on harmonic approximations of the bound to establish closed-
form relations between the ultimate synchronization performance
and the transmitted waveform characteristics (i.e., pulse shaping
filter and signaling density). We show that increasing the symbol
rate at fixed bandwidth is beneficial to phase estimation and
detrimental to timing synchronization. Therefore, we propose a
joint timing/phase pilot design to accommodate this trade-off.
Lastly, we illustrate the strengths of the proposed pilots with
respect to traditional Zadoff–Chu sequences in presence of a
residual carrier frequency offset.

I. INTRODUCTION

A single-carrier linearly modulated signal is said Faster-
than-Nyquist (FTN) iff the symbol rate is greater than the
transmit pulse’s bandwidth [1]. This transmission strategy is
promising to increase spectral efficiency at fixed constellation
size, especially in power-constrained channels (e.g. mobile
and satellite communications, optical fiber) [2]–[5]. Addition-
ally, FTN signals exhibit low-probability of intercept (LPI)
properties: (i) their cyclic autocorrelation function vanishes at
multiples of the symbol rate [6]; (ii) filter-hopping techniques
and time-varying symbol rate are new degrees of freedom to
support physical layer security [7], [8].

However, FTN signaling comes at the cost of intersymbol-
interference (ISI) which requires advanced precoding and/or
detection schemes to take advantage of the underlying spectral
efficiency gain at an acceptable error probability (e.g., [9]–
[11]). Most of these contributions assume a perfectly syn-
chronized receiver, eluding the unexplored timing, phase and
frequency estimation problem in presence of non-orthogonal
pulse shapes. In the following, we focus on pilot-aided (PA)
synchronization with time-invariant parameters.

A trivial approach consists in sending pilots at the Nyquist
rate prior to an FTN data transmission. Those two sequences
are possibly separated by a time gap to avoid interpulse inter-
ference. In this case, one may reuse traditional Nyquist-rate
synchronization techniques: the so-called zero-one alternating
pilot sequence is shown to achieve satisfactory results in terms
of Cramér–Rao lower bound (CRB) for joint timing and phase
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estimation [12] and practical maximum-likelihood (ML)-based
estimators can be subsequently derived [13].

However, a more challenging and bandwidth-efficient strat-
egy relies on a fully FTN transmission (i.e., pilots and data
symbols are transmitted at the same FTN rate). In [14],
CRB-optimal (or near-optimal) timing pilots are derived as
a function of the signaling density (i.e., pulse compression
factor). However, this work does not consider phase nor
frequency offsets.

In this paper we extend [14] to the design of joint
phase/timing optimal pilots in FTN scenarios. Our contribution
may also be seen as a follow-up to [15] via a general-
ization to non-orthogonal pulses. We show that phase and
timing CRB-optimal pilot sequences both accept closed-form
asymptotic approximations. In particular, we build a real-
valued orthogonal basis where each vector corresponds to an
optimal timing or phase pilot at a given signaling density. As
in [15], the restriction to real-valued pilot sequences conve-
niently decouples the two parameters of interest. We reveal
a timing/phase estimation trade-off: as the signaling density
increases, the former parameter’s estimation is penalized while
it is beneficial to the latter. Therefore, we propose a joint
timing/phase pilot design efficiently implemented by reusing
the aforementioned CRB approximation.

The rest of this paper is organized as follows. In Section II
we define the observation model: linearly modulated pilots are
transmitted over an additive white Gaussian noise (AWGN)
channel in presence of timing, phase and frequency offsets.
Then we recall the expression of timing and phase CRBs
assuming a pre-compensated frequency offset. In Section III,
we derive closed-form approximations of the bounds to reveal
the impact of underlying pulse shape and signaling density.
We determine optimal timing/phase pilot sequences accord-
ingly and we illustrate their performance in Nyquist and
FTN scenarios based on root-raised cosine (RRC) pulses. In
Section IV, we study the robustness of the proposed CRB-
optimal sequences in presence of residual frequency offset; to
this extent we specify ML-based timing and phase estimators.
We also benchmark the proposed CRB-optimal pilots against
traditional Zadoff–Chu (ZC) root sequences [16]. Finally,
Section V draws our conclusions.

Notation: Z and R are the sets of integer and real numbers,
respectively. IN is the finite set {0, . . . , N − 1}. We use ·T



to denote transpose, ·∗ conjugate and ·H conjugate transpose.
E {·} is the expectation operator. ‖·‖2 is the Euclidean norm
for continuous-time or discrete-time signals, depending on the
context.

II. OBSERVATION MODEL WITH TIMING, PHASE AND
FREQUENCY OFFSETS

A. System model

We consider a single-carrier linear modulation, observed
in presence of timing, phase and frequency synchronization
impairments denoted ξ, φ, F , respectively:

rc(t) , ej(2πFt+φ)
∑
k∈IK

ckg(t− kTs − ξTs) + wc(t), t ∈ R

(1)

where {ck}k∈IK represents a pilot sequence (i.e., pattern
known by the receiver), g(t) is a real-valued pulse shaping
filter characterized by a frequency support (−B/2;B/2) and
enforcing ‖g‖22 = 1, Ts is the symbol period and wc(t) is a
white noise with power spectral density 2N0.

The signaling density is defined as ρ , 1/(BTs) and a
transmission is reputed to be FTN iff ρ > 1 [1].

We sample (1) after an ideal low-pass filter v(t) ,
1/T sinc(t/T ) for notational convenience1. The sampling rate
1/T is chosen such that 1/T ≥ B + Fmax with Fmax the
greatest possible frequency offset (i.e., |F | ≤ Fmax):

r(nT ) , (rc ∗ v)(nT )

= ej(2πνn+φ)
∑
k∈IK

ckg(nT − kTs − ξTs)

+ w(nT ), n ∈ Z (2)

where ν , FT is the normalized frequency offset and
w(nT ) , (wc ∗ v)(nT ) are uncorrelated noise samples.

In practice, the impulse response g(t) is truncated to Ng
symbol periods; this number is selected large enough to
reasonably preserve the bandlimited assumption. Without loss
of generality Ts/T is chosen as a positive integer such
that N , Ts(Ng + K)/T denotes the number of “useful”
samples to be captured from (2). Those samples are gathered
in r , [r(−(N/2)T ) r((−N/2 + 1)T ) . . . r((N/2 − 1)T )]T,
compactly expressed by

r = ejφDνGξc+w (3)

where
• Gξ is the shaping matrix with entries [Gξ]n,k = g(nT −
kTs−ξTs), k ∈ IK , n ∈ {−N/2−N/2+1 · · ·N/2−1};

• Dν is an (N × N) diagonal matrix, with [Dν ]m,m =

ej2πν(m−N/2), m ∈ IN associating a regular phase shift
to each sample;

• c = [c0 . . . cK−1]
T is the pilot sequence vector;

1More realistic T -orthogonal filters with some excess bandwidth are
acceptable to yield white noise samples while preserving a sufficient statistic
for synchronization and symbol detection [17].

TABLE I
DEFAULT SIMULATION SETTINGS

Parameter Value

Filter type RRC

Roll-off factor α 0.2

Impulse response truncation length Ng 64

Pilot sequence length K 50 symbols

Signal-to-noise ratio Es/N0 10 dB

Number of samples per symbol Ts/T 4

• w = [w(−(N/2)T )w((−N/2 + 1)T ) . . . w((N/2 −
1)T )]T is the noise vector such that w ∼ CN (0, σ2

wIN ),
where σ2

w is related to the per-symbol energy Es for
independent and uniformly distributed (iud) symbols by
σ2
w , T−1(Es/N0)

−1.
To exemplify the upcoming results, Tab. I summarizes the
default values of the aforementioned parameters.

B. Timing and phase CRBs in the pilot-aided case

Although we study the impact of a residual carrier frequency
offset in Section IV (i.e., ν 6= 0), we first establish the Fisher
information matrix (FIM) for phase and timing unknown
parameters only:

J =

[
Jξ,ξ Jξ,φ
Jφ,ξ Jφ,φ

]
(4)

where each element is directly obtained from [18, Eq. (15.52)]:

Jξ,ξ =
2

σ2
w

cHĠ
H

ξ Ġξc, (5)

Jφ,φ =
2

σ2
w

cHGH
ξGξc, (6)

Jξ,φ = Jφ,ξ =
2

σ2
w

<
{
jcHĠ

H

ξGξc
}

(7)

with Ġξ , dGξ/dξ. From (4) the general expression of the
CRB is

CRB(ψi|c) ,
Jψj ,ψj

Jφ,φJξ,ξ − J2
ξ,φ

, ψi, ψj ∈ {ξ, φ} : ψi 6= ψj .

(8)

From (8), it is clear that Jξ,φ is wanted as small as possible.
In particular, if c is real-valued, then Jξ,φ = Jφ,ξ = 0, as
shown in [15, Lemma 3]. We restrict our study to this case in
the following since it conveniently decouples ξ and φ, thereby
enabling a separate estimation approach:

CRB(ψ|c) =
(

2

σ2
w

cHP ψc

)−1
, ψ ∈ {ξ, φ} (9)

with P ξ = Ġ
H

ξ Ġξ and P φ = GH
ξGξ.

Besides having a Toeplitz structure, both matrices P ξ and
P φ are banded if we assume a greater pilot length K than



autocorrelation supports for dg(nT )/dξ and g(nT ), respec-
tively. Therefore a circulant approximation can suitably be
applied to P ψ , motivating the following asymptotic spectral
decomposition [19]:

P ψ
K�1
≈ F H

KΛ̃ψFK (10)

where FK is the unitary discrete Fourier transform
(DFT) matrix whose columns are denoted {fk}k∈IK and
Λ̃ψ = diag

{
λ̃ψ,1, λ̃ψ,2 . . . λ̃ψ,K−1

}
gathers the correspond-

ing eigenvalues:

λ̃ψ,k =
√
K
[
FKpψ,c

]
k
, k ∈ IK (11)

with pψ,c the “circularized” first column of P ψ .

III. DESIGN OF JOINT TIMING AND PHASE OPTIMAL PILOT
SEQUENCES

A. Real-valued optimal timing or phase pilot sequences

We first derive CRB-optimal timing and phase pilot se-
quence based on (9)-(11) subject to energy and real value
constraints.

Since g(t) is real-valued, λ̃ψ,k and λ̃ψ,K−k are equal; their
corresponding eigenvectors are fk and f∗k. As a consequence,
the unitary DFT basis in (10) may be replaced by a (real)
orthogonal basis denoted F̃

T

K where the columns f̃k are built
as follows:

f̃k =


fk if fk is real-valued√
2<{fk} if fk is complex-valued and k ≤ bK2 c,√
2={fk} if fk is complex-valued and k > bK2 c.

(12)

We first take CRB(ψ|c) as a cost function for the design of
real-valued optimal pilot sequences. Using (9), (10) and (12),
the optimization problem becomes

c̃ψ,opt = argmaxcc
TF̃

T

KΛ̃ψF̃Kc (13)

s.t. ‖c‖22 = K.

Considering the quadratic form in (13), the solution is directly
obtained via the maximum principle [20, Th. 6.5]:

c̃ψ,opt =
√
Kf̃kmax

(14)

where kmax refers to the index of the largest |λ̃ψ,k|, k ∈ IK .
In [14, Th. 1] a closed-form approximation of {λ̃ξ,k}k∈IK

is provided for long pilot sequences. Herein, we focus on the
case where ρ ≥ 1/2 since the filters specified in Tab. I are
such that α ≤ 1. We perform similar derivations to encompass
phase and timing parameters:

λ̃ψ,k
K�1
≈ 1

TsT

[
Hψ

(
ρB

k

K

)
+Hψ

(
ρB

K − k
K

)]
(15)

with Hξ(f) , (2πTs)
2f2 |G(f)|2, Hφ(f) , |G(f)|2 and

G(f) ,
∫∞
−∞ g(t)e−j2πftdt such that G(f) 6= 0 for f ∈

(−B/2;B/2).
For long-enough pilot sequences, this result exhibits a

straightforward relation between the signaling density ρ and
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Fig. 1. Amplitude of eigenvalues {λ̃ξ,k}k∈IK (solid lines) and
{λ̃φ,k}k∈IK (dashed lines). The approximation in (15) is also displayed
(circle and triangle marks). Several transmission densities are considered:
ρ = 25/30 (Nyquist) and ρ ∈ {25/21, 25/12} (FTN). All other parameters
are set as in Tab. I.
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Fig. 2. CRB(ξ|c̃ψ,opt) (solid lines) and CRB(φ|c̃ψ,opt) (dashed lines) as
function of the signaling density ρ. For each CRB, the pilot sequence c̃ψ,opt
in (14) is optimized according to both the parameter of interest (violet) and
its counterpart (olive). All other values are set as in Tab. I.

the transmit pulse’s frequency response G(f). In this case,
the nullity of P ψ necessarily increases with ρ in an FTN
scenario (i.e., ρ > 1). This fact is exemplified in Fig. 1
where the λ̃ψ,k’s amplitude is depicted for several signaling
densities. The approximation (15) turns out to be relevant
even at moderate pilots lengths. At a given FTN density,
there exists a single optimal timing sequence [14] while
several optimal phase sequences reach the same asymptotic
performance. Traditional Nyquist systems stand as a particular
case where optimal timing/phase sequences are independent of
the signaling density (ρ ≤ 1) [15].

In Fig. 2, we evaluate CRB(ψi|c̃ψj ,opt) with ψi, ψj ∈ {ξ, φ}



as a function of the signaling density ρ. CRB(ξ|c̃ψ,opt)
strictly decreases with ρ [14] whereas the opposite behavior
is observed for CRB(φ|c̃ψ,opt). Among the two parameters of
interest, timing estimation is the most sensitive to a suboptimal
pilot sequence selection, as already hinted at in Fig. 1. In an
FTN scenario, the timing/phase optimization trade-off revealed
in Fig. 2 either suggests (i) the use of separate pilots for
each parameter or (ii) a joint timing/phase design as proposed
hereafter.

B. Timing and phase optimization trade-off

To control the timing/phase pilot optimization trade-off, we
introduce a user-defined parameter γ ∈ [0, 1] and we define
the following cost function based on the individual timing and
phase CRBs in (9):

C(γ, c) =

[
2

σ2
w

(
γcHP ξc+ (1− γ)cHP φc

)]−1
. (16)

Owing to the approximate eigenstructure of P ψ in (10)-(11)
and its real basis expansion in (12), we specify the following
joint optimization problem from (16):

c̃γopt = argmaxcγc
TP ξc+ (1− γ)cTP φc (17)

s.t. c ∈ {
√
Kf̃k}k∈IK .

We first emphasize the low computational complexity of the
maximum search in (17): for a given value of γ, the cost
function in (16) is only evaluated K times. Fig. 3 depicts
C(γ, c̃γopt) as a function of γ along with its asymptotic
CRBs. In FTN scenarios, we observe a decreasing dynamic
range of C(γ, c̃γopt) with ρ. For example, in the case where
ρ = 25/12, the parameter γ operates a choice between only
two pilot sequences. Such a restriction can be explained by
the increasing nullity of F H

KΛ̃ψFK with ρ, as asymptotically
reported in (15) and illustrated with Fig. 1.
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Fig. 3. Timing/phase cost function C(γ, c̃γopt) (thick dashed lines) as a
function of γ ∈ [0; 1] and CRB(ψ|c̃ψ,opt) (solid lines for ψ = ξ and
dotted lines for ψ = φ) as a reference. Several transmission densities are
considered: ρ = 25/30 (Nyquist) and ρ ∈ {25/21, 25/12} (FTN). All other
parameters are set as in Tab. I.

IV. MAXIMUM LIKELIHOOD ESTIMATION IN PRESENCE OF
RESIDUAL FREQUENCY OFFSET

In this Section, we evaluate the performance of the proposed
timing/phase pilot sequences with the help of ML-based esti-
mators denoted ψ̂ML(c) where c represents the pilot sequence
under test. In particular, we rely on ML’s asymptotic efficiency
to assess the CRBs’ “achievability” [18, Ch. 7]: in presence
of orthogonal parameters ξ and φ we expect

ψ̂ML(c)
a∼ N (ψ,CRB (ψ|c)) (18)

where a∼ refers to an asymptotic distribution obtained for K
large enough.

In practice, the ML estimators are implemented via the
golden section search (GSS) algorithm [21] instead of a naive
grid-search or a cross-correlation-based approach. In brief, the
GSS algorithm performs a dichotomic-like search on the cost
function, where the intervals are ruled by the golden ratio.
A stop criterion in terms of step tolerance is set according
to the target CRB. Since the likelihood function must be
concave over the entire search interval, we limit the GSS
to fine timing/phase estimation: ξ ∈ [0; 1) and φ ∈ [0; 2π).
The performance of ψ̂ML(c) is measured in terms of mean-
squared-error: MSE(ψ̂ML(c)) , E

{
|ψ̂ML(c)− ψ|2

}
, through

Monte Carlo simulation (10 000 random experiments).
As a baseline, we also consider the so-called Zadoff–

Chu (ZC) root sequences [16] which are notably used in
cellular network (e.g., LTE) in virtue of their good correlation
and constant amplitude properties. That said, ZC sequences
have a limited practical interest in FTN scenarios because
their orthogonality feature cannot be exploited directly at the
symbol level due to intersymbol interference. Each ZC root
sequence is denoted cpZC , [cpZC[0] c

p
ZC[1] . . . c

p
ZC[K − 1]]

T

with
cpZC[k] , e−jπ

p
K k(k+mod(K,2)), k ∈ IK (19)

and where p ∈ IK the root index such that gcd(K, p) =
1. We remark from (19) that ZC sequences are complex-
valued which preserve coupling between timing and phase
parameters. The impact of p on the performance is negligible
for long sequences but shows a slight influence in severe
FTN scenarios with short sequences. In the simulation setup
described in Tab. I, it can be shown that p = 31 yields the
lowest CRB(ξ|cpZC) at ρ = 25/12 [14]; it is thus the value
chosen in the following.

In Fig. 4 we characterize the robustness of timing and phase
estimation performance in presence of a residual normalized
frequency offset (i.e., ν 6= 0). For c ∈ {c̃ψ,opt, c31ZC}, we
depict MSE(ξ̂ML(c)) and MSE(φ̂ML(c)) as a function of ν
in Fig. 4a and Fig. 4b, respectively. The corresponding CRBs
are also given as a reference.

First of all, ML-based estimators reach their corresponding
CRBs at ν = 0 for each pilot sequence and signaling density;
this is also the case for shorter pilot sequences (i.e., K ≥ 1
at Es/N0 = 10 dB — not depicted here). For both timing
and phase parameters MSE(ψ̂ML(c)) quickly increases with



ν thereby requiring a prior coarse synchronization. An error
floor is revealed at ν ≥ 0.0055; it characterizes the limits
of GSS search interval previously chosen. By taking into
account the pulse shape and the signaling density, the proposed
pilot sequences c̃ψ,opt provide a significant performance gain
compared to the reference ZC sequence c31ZC. This observation
is particularly salient for the timing parameter. Our results en-
courage a density-specific pilot optimization in FTN scenarios.
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(a) Estimation of ξ via c̃ξ,opt and c31ZC (φ = 0)
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(b) Estimation of φ via c̃φ,opt and c31ZC (ξ = 0)

Fig. 4. MSE(ψ̂ML|c̃ψ,opt) (solid lines) and MSE(ψ̂ML|c31ZC) (asterisk mark-
ers) as a function of the normalized frequency offset ν. Several transmission
densities are considered: ρ = 25/30 (Nyquist) and ρ ∈ {25/21, 25/12}
(FTN). CRB(ψ|c̃ψ,opt) (dashed lines) and CRB(ψ|c31ZC) (dotted lines) are
displayed for comparison. All other parameters are set as in Tab. I.

V. CONCLUSION AND FUTURE WORK

In the case of FTN singlecarrier systems, we studied the
design of CRB-optimal pilot sequences in view of joint timing
and phase estimation. To this extent we proposed closed-
form approximations of the CRB suited for long enough
sequences (viz., more than 10 symbols). Using this result,
optimal timing and phase pilots can be analytically determined
via the signaling density and the pulse shaping function.
The proposed optimal pilots revealed their superiority with
respect to density-independent traditional ZC sequences. This

observation is corroborated by ML estimators in presence of a
residual frequency offset. Future work could include the design
of FTN-specific non-data-aided frequency synchronization al-
gorithms as a prerequisite to PA timing/phase estimation.
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