J S C Prentice
email: jpmsro@mathsophical.com

Newton-type methods of high order via functional iteration

de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Introduction

In a recent paper [START_REF] Prentice | Newton-type methods of high order from a Taylor expansion[END_REF], we considered the solution of f (x) = 0; f : R ! R using Newton's Method [START_REF] Burden | Numerical Analysis 9th ed[END_REF] [START_REF] Kincaid | Numerical Analysis: Mathematics of Scienti…c Computing[END_REF]. In that work, we focussed our attention on the derivation of high-order variants of Newton's Method. The method of derivation was based on a Taylor series, and the paper was educational in nature.

It is possible to derive the same methods using an approach based on functional iteration. That is the topic of this paper. As in our prior work, the emphasis is on method rather than result, and the paper is intended to be pedagogical.

Functional iteration

We say p is a …xed point of g : R ! R if p = g (p) :

We de…ne functional iteration on g as the sequence

x i+1 = g (x i) :
1 Under appropriate conditions, x i will converge to p. These conditions need not concern us regarding the derivation we seek to present, and we will not discuss them here. The reader is referred to [START_REF] Burden | Numerical Analysis 9th ed[END_REF] for further information in this regard.

If we treat x i as an approximation to the …xed point p; we can de…ne the error e i in such approximation by e i x i p:

This all gives

x i+1 p = g (x i) p = g (e i + p) p = g (p) |{z} p + g 0 (p) e i + g 00 (p) e 2 i 2 + g 000 (p) e 3 i 6 + : : : + g (N) (p) e N i N ! p = g 0 (p) e i + g 00 (p) e 2 i 2 + g 000 (p) e 3 i 6 + : : : + g (N) (p) e N i N ! = g (N) (p) e N i N ! = g (N) (p) N ! (x i p) N if g 0 (p) = 0 g 00 (p) = 0 . . . g (N 1) (p) = 0:
Hence, we have e i+1 / e N i which characterizes the iteration process as being of order N . There is more that can be said regarding functional iteration, but what we have presented here is su¢ cient for our purposes.

Derivation

To construct a Newton-type method of order N; for solving

f (x) = 0; we de…ne g (x) x + N 1 X k=1 k (x) f (x) k ;
where the superscript in f k indicates exponent, not derivative. We will use prime notation or parentheses to denote derivatives, as in f 0 ; f 00 ; f 000 ; f (iv) and so on. We will also assume that k and f are as di¤erentiable as our analysis requires.

Note that, if p denotes the root of f; i.e. f (p) = 0; then

g (p) p + N 1 X k=1 k (p) f k (p) = p
so that the root of f is a …xed point of g.

We then impose the conditions

g 0 (p) = 0 g 00 (p) = 0 . . . g (N 1) (p) = 0;
where p is the root we seek. Using f (p) = 0 we can show (see Appendix A)

d n f k dx n x=p = 0 for n < k d k f k dx k x=p = k! f 0 (p) k :
We also know

d n dx n k f k = n X i=0 n i (n i) k d i f k dx i : (1)
This is a well-known expression for derivatives of a product, known as the general Leibniz rule [START_REF] Leibniz Rule | Wikipedia[END_REF]. The coe¢ cients n i in (1) are the binomial coe¢ cients. In this expression, we have dropped the argument (x) for notational convenience, which we will also do in what follows, whenever appropriate. Now,

g 0 (x) = d dx x + N 1 X k=1 k f k ! = 1 + N 1 X k=1 d dx k f k = 1 + N 1 X k=1 1 X i=0 1 i (1 i) k d i f k dx i ! = 1 + N 1 X k=1 0 k f k + k df k dx = 1 + 0 1 f + 1 df dx + N 1 X k=2 0 k f k + k df k dx ; so that g 0 (p) = 1 + 0 1 (p) f (p) + 1 (p) df dx x=p + N 1 X k=2 0 k (p) f k (p) + k (p) df k dx x=p ! = 1 + 1 (p) f 0 (p) ; since f (p) = 0 df k dx x=p = 0 for k > 2:
Hence, using g 0 (p) = 0; we conclude

1 (p) = 1 f 0 (p)) 1 (x) = 1 f 0 (x) : (2)
Consider

g 00 (x) = d 2 dx 2 x + N 1 X k=1 k f k ! = 0 + N 1 X k=1 d 2 dx 2 k f k = N 1 X k=1 2 X i=0 2 i (2 i) k d i f k dx i ! = N 1 X k=1 00 k f k + 2 0 k df k dx + k d 2 f k dx 2 = 00 1 f + 2 0 1 df dx + 1 d 2 f dx 2 + 00 2 f 2 + 2 0 2 df 2 dx + 2 d 2 f 2 dx 2 + N 1 X k=3 00 k f k + 2 0 k df k dx + k d 2 f k dx 2 = 00 1 f + 2 0 1 f 0 + 1 f 00 + 00 2 f 2 + 4 0 2 f f 0 + 2 d 2 f 2 dx 2 + N 1 X k=3 00 k f k + 2 0 k df k dx + k d 2 f k dx 2 ; so that g 00 (p) = 2 0 1 (p) f 0 (p) + 1 (p) f 00 (p) + 2 2 (p) f 0 (p) 2
in which each function is evaluated at p, of course. Using our expression for 1 obtained in (2) we …nd, using g 00 (p) = 0;

2 (p) = f 00 (p) 2 [f 0 (p)] 3) 2 (x) = f 00 (x) 2 [f 0 (x)] 3 :
For g 000 (x) we have

g 000 (x) = d 3 dx 3 x + N 1 X k=1 k f k ! = 0 + N 1 X k=1 d 3 dx 3 k f k = N 1 X k=1 3 X i=0 3 i (3 i) k d i f k dx i ! = N 1 X k=1 000 k f k + 3 00 k df k dx + 3 0 k d 2 f k dx 2 + k d 3 f k dx 3 = 000 1 f + 3 00 1 df dx + 3 0 1 d 2 f dx 2 + 1 d 3 f dx 3 + 000 2 f 2 + 3 00 2 df 2 dx + 3 0 2 d 2 f 2 dx 2 + 2 d 3 f 2 dx 3 + 000 3 f 3 + 3 00 3 df 3 dx + 3 0 3 d 2 f 3 dx 2 + 3 d 3 f 3 dx 3 + N 1 X k=4 000 k f k + 3 00 k df k dx + 3 0 k d 2 f k dx 2 + k d 3 f k dx 3 = 000 1 f + 3 00 1 f 0 + 3 0 1 f 00 + 1 f 000 + 000 2 f 2 + 6 00 2 f f 0 + 6 0 2 f 0 2 + f f 00 + 2 6f 0 f 00 + 2f f 000 + 000 3 f 3 + 9 00 3 f 2 f 0 + 3 0 3 6f f 0 2 + 3f 2 f 00 + 3 6 f 0 3 + 18f f 0 f 00 + 3f 2 f 000 + N 1 X k=4 000 k f k + 3 00 k df k dx + 3 0 k d 2 f k dx 2 + k d 3 f k dx 3
and so

g 000 (p) = 3 00 1 (p) f 0 (p) + 3 0 1 (p) f 00 (p) + 1 (p) f 000 (p) + 6 0 2 (p) f 0 (p) 2 + 6 2 (p) f 0 (p) f 00 (p) + 6 3 (p) f 0 (p) 3 :
Again, each of these functions is evaluated at p. We know that

0 1 = f 00 [f 0] 2 00 1 = f 000 [f 0] 2 2 [f 00] 2 [f 0] 3 0 2 = 3 [f 00] 2 2 [f 0] 4 f 000 2 [f 0] 3
and so

3 (p) = 3 00 1 (p) f 0 (p) + 3 0 1 (p) f 00 (p) + 1 (p) f 000 (p) : : : : : : + 6 0 2 (p) [f 0 (p)] 2 + 6 2 (p) f 0 (p) f 00 (p) 6 [f 0 (p)] 3 = f 0 (p) f 000 (p) 3 [f 00 (p)] 2 6 [f 0 (p)] 5) 3 (x) = f 0 (x) f 000 (x) 3 [f 00 (x)] 2 6 [f 0 (x)] 5 :
From all of this we …nd the second-order method

g (x) = x + 1 (x) f (x) = x f (x) f 0 (x) ;
the third-order method

g (x) = x + 1 (x) f (x) + 2 (x) f (x) 2 = x f (x) f 0 (x) f (x) 2 f 00 (x) 2 [f 0 (x)] 3 ;
and the fourth-order method

g (x) = x + 1 (x) f (x) + 2 (x) f (x) 2 + 3 (x) f (x) 3 = x f (x) f 0 (x) f (x) 2 f 00 (x) 2 [f 0 (x)] 3 3 [f 00 (x)] 2 f 0 (x) f 000 (x) f (x) 3 6 [f 0 (x)] 5 :
As should be expected, these are identical to those derived in [START_REF] Prentice | Newton-type methods of high order from a Taylor expansion[END_REF]. Naturally, methods of even higher order can be derived (see Appendix C), but we feel that these three cases provide a su¢ cient illustration of the methodology.

Program

We are certain that the functional iteration approach to deriving these methods is more elegant than the use of a Taylor series. Indeed, in the derivation of root-…nding methods, in general, this kind of approach is favoured.

Moreover, it does lend itself to a computational implementation. In Appendix B we list a program NM_HO_FI.m -a MatLab script -that generates Newton-type methods up to order seven. The reader is welcome to modify and use this code, subject to the usual courtesy of acknowledgment. The code does require the MatLab Symbolic Toolbox to run.

As with our previous work, we hope you have found this paper interesting and informative.

. . .

d k 1 f k dx k 1 = k (k 1) (2) f 0 k 1 f
+ terms proportional to f or powers of f

) d k 1 f k dx k 1 x=p=) d k f k dx k x=p = k (k 1) (1)

 111 k (k 1) (2) f 0 (p) k 1 f (p) + terms proportional to f (p) or powers of f (p) = 0:Collectively, these results yieldd n f k dx n x=p = 0 for n < k: Furthermore, d k f k dx k = k (k 1) (1) f 0 k + terms proportional to f or powers of f f 0 (p) k + terms proportional to f (p) or powers of f (p) = k! f 0 (p) k :

Appendix A

We have

Appendix B

% NM_HO_FI.m % Generates Newton-type methods up to order 7, in the form x = g(x), % suitable for functional iteration. ; % defines d5f as an implicit function of x g = g5 -theta*f^5; dg = subs(diff(g,x,5),{diff(f(x),x)},{d1f}); dg = subs(dg,{diff(f(x),x,x)},{d2f}); dg = subs(dg,{diff(f(x),x,x,x)},{d3f}); dg = subs(dg,{diff(f(x),x,x,x,x)},{d4f}); dg = subs(dg,{diff(f(x),x,x,x,x,x)},{d5f}); dg0 = subs(dg,{f(x)},{0}); dg0 = subs(dg0,{theta(x)},{T}); T = solve(dg0,T); g6 = subs(g,{theta(x)},{T}); g6 = subs(g6,{diff(f(x),x)},{d1f}); g6 = subs(g6,{diff(f(x),x,x)},{d2f}); g6 = subs(g6,{diff(d1f(x),x)},{d2f}); g6 = subs(g6,{diff(f(x),x,x,x)},{d3f}); g6 = subs(g6,{diff(d1f(x),x,x)},{d3f}); g6 = subs(g6,{diff(d2f(x),x)},{d3f}); g6 = subs(g6,{diff(f(x),x,x,x,x)},{d4f}); g6 = subs(g6,{diff(d1f(x),x,x,x)},{d4f}); g6 = subs(g6,{diff(d2f(x),x,x)},{d4f}); g6 = subs(g6,{diff(d3f(x),x)},{d4f}); g6 = subs(g6,{diff(f(x),x,x,x,x,x)},{d5f}); g6 = subs(g6,{diff(d1f(x),x,x,x,x)},{d5f}); g6 = subs(g6,{diff(d2f(x),x,x,x)},{d5f}); g6 = subs(g6,{diff(d3f(x),x,x)},{d5f}); g6 = subs(g6,{diff(d4f(x),x)},{d5f}); % NM order 6 clear T; syms T; ; % defines d6f as an implicit function of x g = g6 -theta*f^6; dg = subs(diff(g,x,6),{diff(f(x),x)},{d1f}); dg = subs(dg,{diff(f(x),x,x)},{d2f}); dg = subs(dg,{diff(f(x),x,x,x)},{d3f}); dg = subs(dg,{diff(f(x),x,x,x,x)},{d4f}); dg = subs(dg,{diff(f(x),x,x,x,x,x)},{d5f}); dg = subs(dg,{diff(f(x),x,x,x,x,x,x)},{d6f}); dg0 = subs(dg,{f(x)},{0}); dg0 = subs(dg0,{theta(x)},{T}); T = solve(dg0,T); g7 = subs(g,{theta(x)},{T}); g7 = subs(g7,{diff(f(x),x)},{d1f}); 10 g7 = subs(g7,{diff(f(x),x,x)},{d2f}); g7 = subs(g7,{diff(d1f(x),x)},{d2f}); g7 = subs(g7,{diff(f(x),x,x,x)},{d3f}); g7 = subs(g7,{diff(d1f(x),x,x)},{d3f}); g7 = subs(g7,{diff(d2f(x),x)},{d3f}); g7 = subs(g7,{diff(f(x),x,x,x,x)},{d4f}); g7 = subs(g7,{diff(d1f(x),x,x,x)},{d4f}); g7 = subs(g7,{diff(d2f(x),x,x)},{d4f}); g7 = subs(g7,{diff(d3f(x),x)},{d4f}); g7 = subs(g7,{diff(f(x),x,x,x,x,x)},{d5f}); g7 = subs(g7,{diff(d1f(x),x,x,x,x)},{d5f}); g7 = subs(g7,{diff(d2f(x),x,x,x)},{d5f}); g7 = subs(g7,{diff(d3f(x),x,x)},{d5f}); g7 = subs(g7,{diff(d4f(x),x)},{d5f}); g7 = subs(g7,{diff(f(x),x,x,x,x,x,x)},{d6f}); g7 = subs(g7,{diff(d1f(x),x,x,x,x,x)},{d6f}); g7 = subs(g7,{diff(d2f(x),x,x,x,x)},{d6f}); g7 = subs(g7,{diff(d3f(x),x,x,x)},{d6f}); g7 = subs(g7,{diff(d4f(x),x,x)},{d6f}); g7 = subs(g7,{diff(d5f(x),x)},{d6f}); % NM order 7

Appendix C

For interest's sake, we present the sixth-order method and leave the reader with the challenge of generating the seventh-order method. Note that the …rst line in this expression constitutes the …fth-order method (see [START_REF] Prentice | Newton-type methods of high order from a Taylor expansion[END_REF]).