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Abstract 

Advances in machine learning (ML) provide the means to bypass bottlenecks in the discovery 

of new electrocatalysts using traditional approaches. In this review, we highlight the currently 

achieved work in ML-accelerated discovery and optimization of electrocatalysts via a tight 

collaboration between computational models and experiments. First, the applicability of 

available methods for constructing machine-learned potentials (MLPs), which provide accurate 

energies and forces for atomistic simulations, are discussed. Meanwhile, the current challenges 

for MLPs in the context of electrocatalysis are highlighted. Then, we review the recent progress 

in predicting catalytic activities using surrogate models, including microkinetic simulations 

and more global proxies thereof. Several typical applications of using ML to rationalize 

thermodynamic proxies and predict the adsorption and activation energies are also discussed. 

Next, recent developments of ML-assisted experiments for catalysts characterization, synthesis 

optimization and reaction condition optimization are illustrated. Particularly, the applications 

in ML-enhanced spectra analysis and the use of ML to interpret experimental kinetic data are 

highlighted. Additionally, we also show how robotics are applied to high-throughput synthesis, 

characterization and testing of electrocatalysts to accelerate the materials exploration process 

and how this equipment can be assembled into self-driven laboratories.  
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Introduction 

In recent years, machine learning (ML) has become a buzz-word, covering distinct realities,1 

sometimes simply rebranding established methods such as (multi-)linear regressions, while in 

other cases ML enables operations through novel mathematical tools. At the same time, 

electrocatalysis has also been touted as a promising approach to sustainably produce important 

fuels and chemicals (e.g., hydrogen, hydrocarbons, ammonia).2 The traditional trial-and-error 

approach of developing new electrocatalysts is time-consuming and only samples a small 

chemical space. ML, being data-driven in nature, can learn continuously from experience to 

accelerate the discovery and to optimize processes.1 This has the potential to significantly 

shorten the time it takes to bring new electrocatalysts from the lab bench to a commercial 

application. 

 

In this review, we focus on the impact of ML on the understanding and development of 

heterogeneous electrocatalysts, with examples preferentially taken from the very recent 

literature. Our aim is to provide a primer in the currently feasible acceleration of the discovery 

and optimization of electrocatalysts via a tight collaboration between computational models 

and experiments. We do not provide an actual introduction into ML, which can be found 

elsewhere,2 but we draw the reader’s attention to the danger of overfitting when using ML with 

small datasets, where “small” is relative to the number of (hyper-)parameters of the ML model.3 

Instead, we aim to give an overview on the different roles ML can play in the activities of all 

kinds of researchers in heterogeneous electrocatalysis, from theoreticians to experimenters. As 

such, we do not focus on a particular method, material, or a single reaction (e.g., ML for 

theoretical chemists,4 for MXenes5 or for hydrogen evolution6). The focus on electrocatalysis 

is motivated by the comparably underdeveloped understanding of the atomistic origins of the 

observed catalytic activities compared to heterogeneous catalysis in the gas-phase. This lack 

of rational understanding is related to the complexity of the reaction environment and the 

challenges to achieve detailed characterizations of the functional (operando) interface. Despite 

this focus on electrocatalysis, most of the discussed approaches are also applicable to thermal 

catalysis. 

 

Our interest is two-fold: First, how can ML help to gain a reliable, detailed understanding of 

the nature and working principles of a given electrocatalyst? And second: how can ML 

accelerate the discovery of stable, more active electrocatalysts?  While the two questions can 

be related in some instances, the examples discussed below demonstrate that there is not 

necessarily a direct link: Understanding why Pt is such a good hydrogen evolution reaction 

(HER) catalyst in acidic solutions does not magically lead to propositions of excellent HER 

catalysts in alkaline solutions, and having discovered that Cu possesses a unique CO2 reduction 

reaction selectivity does not bring us closer to understanding the underlying reasons. In fact, 

there is no reason to expect ML to make a solid link between understanding, prediction, 

synthesis and operation-condition optimization. In other words, ML is not a panacea that will 

completely revolutionize chemistry. Nevertheless, it is clearly a powerful tool and our aim is 

to point out the areas connected to electrocatalysis where we currently see major impacts of 

ML and expect this trend to continue, as summarized in Figure 1. 

 

We start our review with the impact of ML on simulations at the atomic scale. This scale is 

critical for a deep understanding of the working principles (reaction mechanism and structure-

property relationships) of electrocatalysts. In this context, ML essentially represents an 

approximate solution to the Schrödinger equation and could be seen as an alternative to density 

functional theory (DFT) computations. As we discuss in detail below, ML is actually not a 

replacement for DFT, but is a promising and popular approach to mimic DFT computations to 
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accumulate thermodynamically relevant statistics of well-defined systems for which the ML 

model has been trained based on the indispensable DFT computations. In this sense, ML is 

closer to empirical force fields than DFT. Note, that we do not cover ML techniques that aim 

at speeding up the (static) DFT computations themselves, as they have been discussed earlier 

by us.7  

 

 

 

Figure 1 Schematic and summary of the impact of ML on electrocatalyst development and optimization as 
discussed in this review. 

Next, we move one step closer to the specificities of electrocatalysis: instead of investigating 

the atomistic mechanism, one can identify surrogate models that link simple-to-obtain 

“descriptors” or proxies to electrocatalytic activity. This activity can take the form of 

microkinetic simulations or more approximate variants thereof. This topic is very popular 

among computational chemists, as it allows to perform in silico screening of hypothetical 

materials. Here, the main caveat stems from the (necessary) simplifications: disregarding 

feasibility and stability (especially under the electrocatalytic reaction conditions) leads more 

often than not to unrealistic propositions. 

 

The third aspect which will be scrutinized is the intimate interplay between ML and 

experiments. This covers several application domains of ML: on the one hand, ML in the sense 

of data analysis can be exploited to extract the maximum information from experimental 

characterization methods, be it kinetic signatures of the catalysts to gain insight on the 

mechanism, or spectroscopic and microscopic data to reconstruct an atomic representation of 

the (active) material. On the other hand, ML also lends itself perfectly for a modern incarnation 

of design of experiments in order to optimize synthesis and operation conditions.  

 

Finally, we discuss automated and computer-controlled (robotic) laboratory equipment, which 

can be coupled to the ML-driven design of experiments. Indeed, such a hardware infrastructure 

is system specific to some extent, but over the last couple of years, general pieces of equipment 

have been developed that can be integrated into the human-time efficient ML-assisted 
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development of heterogeneous (electro-)catalysts. It is our strong belief that such “autonomous” 

laboratories will give rise to a new subdiscipline in chemistry: liberated from the necessity to 

master the practicalities of experimental chemistry and from the constraints of owning state-

of-the-art lab equipment, certain chemists will be able to get specialized in coming up with 

creative ways to explore chemical space and reaction conditions for numerous applications in 

electrocatalysis and beyond. Of course, this vision relies on heavy investments by states, 

universities and companies into the development and installation of the required infrastructure 

in analogy to high-performance computing facilities. As a matter of example, such a platform 

that will be accessible for various research groups, is currently being developed under the 

SwissCat+ initiative.8 
 

Machine-Learned Approximations to the Energies of Atomistic Systems 

DFT is the well-established workhorse for the atomistic understanding of electrocatalytic 

systems,9 but comes with a rather high computational cost. This motivates the development 

and usage of more efficient methods, especially in view of the size of the electrocatalytic 

interface (thousands of atoms), its dynamics (at least nanoseconds) and even the sheer number 

of catalysts one would like to computationally assess. In this context, ML is currently best seen 

as a way of constructing system-specific “force fields”, i.e., mathematical functions that output 

the system energy as a function of the positions and nature of the atoms. These functions are 

commonly called machine-learned potentials (MLP) and are many orders of magnitude faster 

than DFT. Of course, other levels of theory can be used instead of DFT if accumulating 

sufficient training data is feasible. As an example, we mention ANI-1ccx,10 which achieves 

near-coupled-clusters singles, doubles and perturbative triples accuracy for organic molecules 

via a neural network, and for the condensed-phase the random-phase approximation has been 

exploited to go beyond DFT accuracy with an MLP.11 Several approaches exist to construct 

MLPs, but kernel ridge or Gaussian process regression12 and neural networks are most 

popular.13 While the former is easier to train, the latter is mathematically even more flexible, 

not imposing any physical constraints on the structure-energy relationship. It is worth noting 

that for a given accuracy of the MLP, the computational cost to use it can vary by two orders 

of magnitude depending on its mathematical form.14 Similarly, the increase in the 

computational cost (related to the number of parameters) when adding more and more chemical 

elements depends on the architecture of the MLP, but more than about four elements is 

currently at the limit of feasibility for MLPs that cover large reaction phase-spaces. The 

common MLPs are “short-sighted”, i.e., the energy of the system is the sum of energies of each 

atom, with each atomic energy depending only on the local (≲4 Å) environment. Concurrently, 

these MLPs are “brute force”, i.e., do not contain any physical knowledge in their functional 

forms. However, there is a current trend towards “physics-based” MLPs. These more advanced 

functional forms have the advantage that the short-range and long-range interactions are 

separately accounted for, instead of neglecting the latter altogether.13,15 

 

Independent of the architecture of the MLP, it is the training of the MLP that is most time-

intensive as a user: Since MLPs are system specific, for each application a dedicated training 

set needs to be constructed. The size of the training set is on the order of 103-4 DFT energy 

evaluations and the quality of the MLP is at least as dependent on the quality and diversity of 

the training set as it is on the architecture of the MLP. Geometries that deviate too much from 

the training set will have completely wrong energies and forces. Since the flexibility and 

absence of physical constraints make MLPs unreliable for extrapolations, they tend to only 

work well for the systems and reactions they have been trained for. To give a hypothetical 

example: If one trains an MLP on liquid water, the corresponding MLP certainly cannot 



 5 

describe the combustion of O2 and H2 to yield H2O nor the decomposition of H2O2. It is also 

unlikely to properly describe excess or defects of protons, or the self-ionization of water. 

Nevertheless, the MLP will, of course, provide an energy for such systems: after all, it is trained 

for systems containing any numbers of H and O atoms. However, this energy will be 

meaningless. To adequately describe these systems, the MLP has to be improved by including 

the corresponding geometries in the training set. Indeed, recent studies have demonstrated that 

proton dynamics in liquid water can be well captured if the training set contains sufficient data 

points corresponding to proton transfers.16 

 

In practice, the currently most popular software for parametrizing and utilizing MLPs in 

electrocatalysis are LASP17 and DeepMD.18,19 The power of the former is the availability of a 

large set of predefined MLPs, while the latter has very powerful active-learning capabilities, 

enabling an efficient parametrization of system-specific MLPs. Once the MLP is trained, the 

usual arsenal of atomistic simulation techniques can be applied. Nanosecond simulations of 

systems with > 100 atoms would be computationally prohibitively expensive at the DFT level 

of theory, but are necessary to reach converged results due to the slow diffusion at the 

solid/liquid interface.20,21 These simulations are easily reachable with MLPs. 

 

For example, the free energy profiles of proton transfers on the prototypical photo-

electrocatalyst anatase TiO2/water interface have been studied via an MLP driven by the 

DPMD package.22 Trajectories of more than 2 ns could be achieved with the MLP, which 

compares to 40 ps at the DFT level of theory (see Figure 2). This extensive phase-space 

sampling was necessary, as the half-life time of OH groups at the interface was estimated to be 

300 ps. Furthermore, relying on umbrella sampling, the dissociation barrier of chemisorbed 

water molecules was estimated to be 30 kJ/mol, leading to a stabilization of the interface of 

about 8 kJ/mol. Note, that this thermodynamic driving force is not very strong, which imposes 

not only the use of accurate energy expressions, but also extensive phase-space sampling. The 

same conclusions have also been reached at other interfaces, e.g., ethanol adsorption on 

alumina, relevant for biomass processing.23 

 

In order to simulate the hydrogen evolution reaction in acidic medium over Pt, a MLP for 

Pt/H2O/HCl has been developed in LASP. Then, at a given chemical composition (and thus in 

absence of “potential control”), the free energy profiles for H2 generation have been assessed 

via umbrella sampling. These simulations demonstrated the co-existence of the Volmer-Tafel 

mechanism for high-coverage areas with the Volmer-Heyrovsky mechanism occurring at low- 

to intermediate hydrogen coverages.24 
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Figure 2 Example of interfacial structure and the effect of long sampling times at the MLP level compared to short 
sampling at the DFT level. Top: The density profile of water confined between two TiO2 surfaces and the oxygen 
radial distribution functions as obtained from DFT and from an MLP are compared. Statistics were accumulated 
over 40 ps. Bottom: Equivalent density profile, but this time obtained from an equilibrated 2.5 ns molecular 
dynamics run. Note the differences for the “second” layer, which depends strongly on the phase-space sampling 
and only minimally on the chosen unit-cell size. Reproduced from ref 22 

Another application of MLPs is the identification of realistic surface structures for catalysts 

that are not fully crystalline. For instance, reduced copper oxide surfaces, which are promising 

for CO2 electroreduction, expose metallic copper sites that are not completely smooth. This has 

been evidenced via MLP simulations driven by LASP of several nanoseconds that aimed at 

reproducing the experimental protocol, where the system undergoes stepwise reduction 

reactions.25 These defect-rich surfaces (see Figure 3) were shown to feature various active sites 

with contrasting selectivities for CO2 electroreduction products. They suggest that the square-

step active sites are responsible for alcohol products, while planar and convex-square active 

sites are more favorable for ethylene production. 

 
Figure 3 Example of construction of disordered surfaces (here oxide derived Cu) and the statistics of the obtained 
local active sites. Color code: Brown: Cu, blue : surface O, red: subsurface and bulk O. Reproduced from ref 25. 

Similarly, the effect of an aqueous environment (as in electrocatalysis) compared to gas-phase 

reactivity has been determined for the prototypical oxidation of CO via a combination of MLP 

and umbrella sampling, accumulating around 2 ns molecular dynamics.26 These explicit solvent 

simulations show that water stabilizes one of the reactants (OH*) and thus increases the barrier. 
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Furthermore, the activation entropy was found to change sign between the gas phase and the 

solution phase, as the solvent forms stronger H-bonds with the initial state (CO, OH*) 

compared to the transition state (TS), so that the “configurational” entropy (translation and 

rotation) is more restricted in the initial state than in the TS. 

 

We conclude this part by pointing out a particular challenge for the MLPs in the context of 

electrocatalysis: In principle, one would wish to simulate the electrochemical potential, as is 

done in grand-canonical DFT.27 Indeed, the electrochemical potential has a direct impact on 

the activation energies of the electrocatalytic reactions and is, therefore, necessary to gain the 

most detailed atomistic insight.28 However, all popular MLPs are agnostic to the electronic 

structure, thus the electrochemical potential is simply not defined. Hence, further developments 

are required, e.g., to combine MLPs with simplified physical models that mimic the behavior 

of electrified interfaces but are, currently, “non-reactive”, i.e., an electron transfer to-/from the 

electrode to reactants cannot be described.29 
 

Surrogate Models for Catalytic Activity : From Microkinetics to Proxies 

Atomic scale computations give relatively easy access to thermodynamic quantities, but 

obtaining kinetic information is generally more involved: transition states need to be identified 

and competing reaction pathways assessed and compared via micro-kinetic simulations, i.e., 

solving differential equations to obtain the various reaction rates as a function of time. Hence, 

thermodynamic quantities are rarely enough to fully understand electrocatalysts and even less 

to discover new ones. The most famous thermodynamic proxy for an electrocatalytic reaction 

is the hydrogen adsorption energy to construct a so-called volcano plot for the hydrogen 

evolution reaction.30,31 These thermodynamic proxies can be rationalized by so-called scaling-

relations, which establish a close link between the reaction rates as obtained from micro-kinetic 

simulations and the thermodynamics of key intermediates,32 which usually also holds in 

electrocatalysis.33 Indeed, scaling relations and the related volcano plots have been very 

popular about ten years ago34–37 and are still in use due to their favorable complexity-accuracy 

tradeoff and the thus comparably limited number of datapoints necessary to reliably train 

them.38,39 However, scaling relations do not provide an actual understanding of the working 

principles and reaction mechanisms of electrocatalysts. 

 

In this context, ML can be exploited for various tasks: first, it can be used to directly learn 

microkinetics, i.e., identify the most relevant reaction pathways40 and surface states.41 This still 

requires many expensive DFT computations, but leads to the highest confidence in the obtained 

results.  However, this application of ML is still very much in development and is, so far, not 

applied to electrocatalysis. This absence of purely theoretical ML-enhanced microkinetic 

algorithms is probably best explained by the difficulty to identify transition states in 

electrocatalysis in general.28 Hence, performing these computations in a semi-automatic and -

systematic manner seems currently too challenging and the community prefers to make more 

drastic approximations. Nevertheless, the knowledge of the surface reconstruction and 

dynamics of ternary alloys in the absence of the electrochemical environment can be 

accelerated via ML41 and is already very valuable for detailed atomistic studies of 

electrocatalysis. The use of ML to interpret experimental kinetic data will be discussed in the 

next section. 

 

Second, ML can be used to rationalize thermodynamic proxies, i.e., adsorption energies of H*, 

OH*, CO*, etc, as a function of material properties. These “surrogate models”, which link 

atomic or elemental properties (size, number of d-electrons, electronegativity and d-band 
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energies are most popular) to catalytic activity, most often generate insight into the key factors 

for discriminating activities across materials but are not directly exploitable for catalyst 

optimization. Still, given the abundance of studies along these lines in the literature, we discuss 

typical examples. Note that, as reviewed recently,42,43 the rationalization of trends in adsorption 

energies critically relies on  the use of physically relevant descriptors and interpretable ML 

frameworks. 

 

To start, Liu et al. have reported DFT results of 16 in-silico designed transition metal single-

atom catalysts stabilized on doped AlP monolayers for oxygen evolution and reduction reaction 

(OER/ORR). These results have then been rationalized by gradient-boosted regression.44 This 

study is very typical for the application of ML that rationalizes the DFT data (see reference 45 

for the analogous study of single-atom catalysts stabilized on C2N, which identifies the 

corresponding transition metal oxide formation energy as an easy descriptor for the 27 tested 

catalysts). However, this study does not, by construction, lead to the identification of more 

promising catalysts, as all the possibilities have already been explored via DFT. Similarly, 

analyzing the DFT data for more than 400 transition metal atoms adsorbed on (reduced) metal 

oxide, the coordination number of adsorbed species attached to the single-atom catalysts has 

been identified as a key descriptor for their stability. In this series, oxygen-vacancy stabilized 

Os on zirconia was found to be most promising for CO2 to CO electroreduction, including in 

presence of reaction intermediates.46 However, other physical parameters of the catalysts, such 

as the electrical conductivity of these oxide supports, have been completely neglected. When 

investigating and rationalizing the nitrogen-reduction reaction activity of single-atom-alloy, 

the authors critically assessed the feasibility and the dissolution potentials of the investigated 

catalysts. This has allowed them to narrow down the number of promising catalysts to only Mo, 

W, Ru, and Ta/Au(111).47 This study illustrates that stability arguments are very important and 

at least partially amenable for atomistic simulations. 

 

Going one step further towards catalyst discovery, surrogate models can also be used for in-

silico screening as exemplified by dual-metal phthalocyanine catalysts for CO2 reduction, see 

Figure 4. In this study, a machine-learning model based on 40 systems studied by DFT was 

used to screen the remaining 250 systems considered.48 Then, the formation energy was 

computed only for the most relevant ones and their dynamical stability was assessed via short 

molecular dynamics simulations (5 ps). Finally, Ag-MoPc was suggested to be the most 

promising CO2 reduction catalyst, which should produce CO at only -0.3 V vs RHE. However, 

in contrast to the previous study, the stability of this catalyst under realistic conditions 

(electrochemical potential, solvent, etc.) has not been considered, i.e., the propensity to react 

with water or to form hydrides has not been assessed.  

 

In the case of the identification of possible HER catalysts in the MA2Z4 family (where M is a 

transition metal, A is C, Si, Ge or Sn and Z is N, P or As), DFT computations have been 

performed on prototype surfaces, i.e., the arrangement was kept fixed across the series to 

reduce the workload.49 DFT computations of 150 out of 276 considered structures were 

performed to train an ML-model. Combinations that lead to strong deformations were treated 

as outliers and removed. The resulting surrogate model estimating the hydrogen adsorption 

energy was used to predict the HER activity of the remaining 126 catalysts. Subsequently, DFT 

computations have been performed for the twenty most promising candidates, followed by 

estimates of their stability.  This typical workflow (see ref 50 for a similar study in the MXene 

material family for HER catalysts) leads to moderate savings in terms of computational power 

(only about 30% of the systems have not been computed via DFT). This illustrates a general 

observation: On the one hand, the larger the combinatorial space, the larger the training set 
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needs to be. On the other hand, in absolute terms, the computational savings do, of course, also 

increase with increasing search space.  

 

 
Figure 4 (a) Schematic procedure of the machine-learning-accelerated prediction of catalytic activity of dual metal 
phthalocyanines, whose structure is illustrated in (b). (c) presents the parity plot and linear regression between the 
DFT reference data and the best performing gradient boosting regression (GBR) model for the limiting potential UL 
for CO2 electroreduction. Reprinted (adapted) with permission from 48. Copyright 2021 American Chemical 
Society. 

 

 

Instead of such “global” ML models, which learn based on “system-wide” descriptors (such as 

stoichiometry), ML models that only rely on the local description are more powerful for 

catalysts with a diversity of active sites, such as high-entropy alloys, ensemble of nanoparticles 

or irregular objects such as dealloyed nanostructures, oxide-derived metal surfaces, etc. 

Intriguingly, advanced local active-site models do not even rely on geometry optimizations, 

taking the relaxation energy implicitly into account via graph-convolutional neural networks.51 

A prototyping approach, i.e., assuming the same atomic arrangements across the entire family, 

has been applied to screen 870 M3M’ binary alloys as potential nitrogen reduction catalysts.52 

This study was driven by crystal (for assessing the formation energy) and surface (for 

adsorption energies) graph convolutional neural networks, which were trained on 3’040 DFT 

computations. Screening the 870 potential catalysts with this surrogate model and discarding 

alloys with positive formation energies, only 10 catalysts have been identified to be sufficiently 

promising to warrant further DFT computations. Finally, the most promising materials were 

V3Ir, Tc3Hf, V3Ni and Tc3Ta. Given that the synthetic and radioactive element Tc is not a 

credible ingredient for practical electrocatalysts, this study also highlights that significant 

reductions in computational efforts can be achieved by applying reasonable chemical 

boundaries beforehand.  
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High-entropy alloys (HEA) are typical examples of a large composition space combined with 

a very large number of local adsorption sites of different chemical composition. In order to 

predict the most promising HEA for CO2 electroreduction, Rossmeisl and co-workers have 

developed a local description of the active sites via a Gaussian process regression. This model 

has been exploited to determine the adsorption energy of H and CO and, thus to predict the 

most promising compositions in terms of selectivity and activity compared to Cu.53 One of the 

most promising HEA (AuAgPtPdCu) has independently, but concurrently, been tested 

experimentally and found to be, indeed, highly active.54 

 

As an example for irregular objects, we highlight the study of highly disordered dealloyed Au 

electrocatalysts for CO2 reduction. Based on a systematic approach, an ML model was built for 

the properties of active sites. The ML model was trained on about 1’000 active sites computed 

at the DFT level and then applied to the total of more than 11’000 active sites.55 Later, this 

approach has been extended to include more realistic activities based on advanced solvation 

treatments of about 1’000 active site motives.56 While the solvation contribution is not 

negligible, the overall conclusion, i.e., that the rough surfaces are much more active than flat 

surfaces, remains unchanged, which is reassuring given that it is in agreement with experiment. 

What this study demonstrates, however, is that even sophisticated solvation energies can be 

conveniently incorporated in the activity of local active site models. 

 

Given enough computational power, well-crafted workflows and powerful surrogate models, 

one can perform a catalyst screening of very diverse compositional spaces. For instance, Ulissi 

and co-workers have started with all bulk materials available in the Materials Project, filtering 

the resulting chemical space according to well defined criteria, with the aim to find a selective 

partial oxygen reduction catalyst, which would produce H2O2 and not H2O.57  The main results 

are summarized in Figure 5. The successive filtering of materials started with bulk materials 

containing the 48 selected elements available in the Materials Project database (more than ten 

thousand). From this database, only combinations of one oxophilic metal (e.g, Pd or Al) with 

an “inactive” element (e.g., Au, S) were kept, leading to more than 900 entries. The next level 

was removing materials which were estimated to be unstable under reaction conditions relevant 

for the oxygen reduction reaction according to the corresponding Pourbaix-diagrams. This left 

only about 70 materials to be investigated in more details. Generating low Miller-index 

surfaces would give rise to about 70’000 active sites for oxygen adsorption. In order to 

significantly reduce the number of required DFT computations, these active sites have been 

further categorized according to their likelihood to interact with oxygen. In the end, only about 

one thousand DFT computations have been performed to identify the most promising 

candidates that might reduce O2 selectively to H2O2 (see Figure 5). Note, however, that no 

oxides have been considered, a family that is likely to be very promising. 

 

A second example along the same lines that we would like to highlight is the screening of CO2 

electrocatalysts aiming at higher efficiencies for C2 products.58 The computational screening 

started with the observation that copper seems an essential building block. Therefore, only 

copper containing intermetallic compounds have been investigated, which still amounts to 

more than 200 candidates of the Materials Project database. Generating likely surfaces and 

enumerating the potential active sites for CO adsorption as a proxy lead to more than 200’000 

active site motives. To explore this huge space, an active-learning algorithm has been applied 

to limit the DFT computation only to the most important region. Still, some 4’000 DFT 

computations have been performed. From the analysis of the most promising active sites, it 

became clear that Al-Cu intermetallics seemed very promising. Therefore, corresponding 
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experiments have been performed, demonstrating a significant increase (from 35% to 60%) in 

ethylene Faradaic efficiency compared to bare copper, validating the screening strategy. 

 

A fascinating idea to reduce the size of the training sets while spanning the whole periodic 

table is the use of interpolations across the periodic table.59 In this case, instead of element-

specific parameters, period and column-related descriptors are exploited to describe the 

properties of the various atoms. This is especially valuable for screening bi- and multi-metallic 

alloys, which are typical electrocatalysts.60 Finally, if sufficient data is available, special ML 

techniques might be able to perform so-called inverse design: Instead of “blindly” screening 

materials to identify the most promising ones, the ML model can predict a material that would 

correspond most closely to the desired target via generative models. This has recently been 

exemplified for Mg-Mn-O ternary materials as photoanode properties, where the generative 

model has predicted 23 previously unknown crystal structures with reasonable calculated 

stability and band gaps.61 If in-silico screening could be properly combined with stability and 

synthesizability models, the road for a fully in-silico design of electrocatalysts would be open. 

For now, the reliable prediction of material stability is restricted to a given class (e.g., 

perovskites),62 and the best synthesizability models rely on natural language processed 

literature,63 which means that they are mostly applicable to well-studied systems. 

 

Despite some successes, inverse design is still in its infancy in heterogeneous (electro-)catalysis 

and it remains doubtful that the complexity of general inorganic materials (including 

polymorphism and phase-separation) is amenable to this type of ML. This contrasts with the 

chemical64 and conformational complexity65 of organic molecules and their adsorption modes 

on (electro-)catalysts,66 which is at least partially amenable to ML-augmented workflows and 

generative models.7 Indeed, the reactivity of flexible, polyfunctional molecules such as polyols 

has been a long-standing issue, addressed via scaling-relations36 and group-additivity,67 before 

the advent of the more advanced ML-based exploration algorithms.68,66 As an alternative to 

generative models, materials with potentially suitable properties can be directly retrieved from 

the literature via natural language processing as exemplified by electron-conducting 

polymers.69 In general, a word of caution is in place: ML models can be made excellent for 

interpolations, but tend to fail for extrapolations. This somewhat disappointing feature of ML 

is intimately linked to its strength: the flexibility of ML models allows them to fit arbitrary 

functions. However, this comes at the cost of the loss of physical bounds. From this point of 

view, only introducing physically motivated mathematical descriptions of the problem are 

likely to lead to better extrapolation capabilities. Therefore, it is likely that (near) optimal 

materials are already identified during the construction of the training set for the ML model, 

questioning the added value of the resulting ML model itself. 

 



 12 

 
Figure 5. (A) Two-dimensional latent space of surfaces of surfaces with competitive thermodynamic 
overpotentials for the production of H2O2, ηH2O2.  Examples of catalytically (B) active and (C) inactive surfaces. 
(D) Box plot of ηH2O2 distribution in each cluster and occurrence heatmaps of (E) inactive and (F) active elements 
in each cluster. Reprinted (adapted) with permission from 57. Copyright 2021 American Chemical Society. 

Assisting Experiments: Enhanced Characterization and Synthesis or Operation 
Condition Optimization  

Since ML is closely related to data analysis, it can help interpreting experimental data, typically 

obtained during catalyst characterizations, and even much older deconvolution techniques as 

applied to mass-spectrometry70 or NMR spectra71  of complex mixtures are part of ML. Modern 

data analysis methods have already been applied to decompose Raman spectra of mixtures,72 

e.g., of carbon nanotubes, a typical support in electrocatalysis.  The recent developments that 

we would like to particular highlight are the ML-enhanced extended X-Ray absorption fine 

structure (EXAFS) analysis. For example, an artificial intelligence augmented tool, relying on 

a genetic algorithm, has been shown to be very powerful across domains, from molecular 

complexes, to metallic copper and operando studies of the role and location of Sn in Li-ion 

batteries.73 A competitor of this tool has been developed based on neural networks.74 This NN-

EXAFS method specifically targets the elucidation of the structure of mono- and bi-metallic 

nanoparticles (NPs) and in particular to gain insights in thermal disorder effects. Additionally, 

if the size of the NPs is well defined, this method allows one to reconstruct likely morphologies, 

which is very valuable for structure-property relationships, including in electrocatalysis. With 

applications in molten salts,75 the transferability of the NN-EXAFS approach to very 

challenging media, has already been demonstrated.  

 

Analogously, combining an atomistic DFT-based reference library with machine-learning for 

assignments of the experimental spectra, X-ray absorption near edge structure (XANES) 

spectra of mixtures can now be easily and consistently analyzed, as demonstrated for iron 

adsorbed in silica.76 Similarly, the acceleration of the analysis of small‑angle X‑ray scattering 

(SAXS) experiments by machine-learning has been proposed.77 This hybrid genetic-algorithm, 

neural-network approach allows to more easily obtain insights into mixtures of NPs. Likewise, 

image-processing ML-techniques have been found to be highly beneficial for the high-

throughput analysis of transmission electron microscopy (TEM) images.78 Complementary, a 
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more atomistic approach based on Bayesian deep learning has been developed to reconstruct 

an atomistic view of (noisy) TEM images.79 This approach, called ARISE, allows to identify 

known polymorphs in complex mixtures and has been successfully applied to atomic electron 

tomography data of metallic FePt nanoparticles, highlighting its relevance for electrocatalytic 

operando studies. In summary, in these cases ML serves either of two purposes: reducing 

human-time consuming data analysis (image analysis) and extracting a maximum amount of 

data based on the recorded spectra via a comparison with a library of (hypothetical and/or 

previously recorded) materials of the same family. Clearly, these tools will also be very 

valuable for applications in electrocatalysis. 

 

While the characterization of catalysts is very important for establishing structure-property 

relationships and understanding trends, it is not directly connected with the catalytic activity 

itself. For further integration between machine-learning and experiments, we highlight the use 

of ML to interpret kinetic data. For example, ML was exploited to identify “optimally complex” 

reaction mechanisms for the hydrogen peroxide reduction and oxidation reaction over carbon 

nanotubes. Here, ML identified which mechanistic details can, and which cannot, be supported 

by the available experimental data. Indeed, the data analysis and uncertainty estimations 

demonstrated that even the simplest “common” three-step model cannot be parametrized 

satisfactorily, i.e., with enough independent parameters.80 A similar approach, where the 

experimental kinetic data for proton reduction in acidic medium over platinum was reproduced 

by a ML-fitted microkinetic model, has been used to determine the adsorption energy of 

hydrogen on Pt, which was found to be slightly positive.81 This finding suggests that optimal 

HER activity is related to optimal H adsorption near the relevant (hence slightly larger than the 

equilibrium) overpotential, in agreement with suggestions from Exner’s purely theoretical 

work on potential dependent volcano curves.82 Analogous analysis of kinetic data of oxygen 

reduction in acidic medium over platinum single-crystal surfaces demonstrated that the 

determination of potential-independent kinetic parameters is a drastic approximation.83 

Moreover, the obtained results challenged the common idea of a single rate determining step. 

Instead, again in line with the concept of potential-dependent volcano curves,82 the dominant 

mechanism changes as a function of the potential, with intermediate regimes where two 

competing mechanisms coexist.  These three studies clearly demonstrate that the interpretation 

of kinetic data of electrocatalytic reactions can strongly benefit from ML to maximize the 

compromise between gained insights and data over-interpretation. 

 

As mentioned at the end of the previous subsection, we have substantial doubts that a fully in-

silico design of electrocatalysts is a goal worth pursuing. However, the literature on ML-

accelerated design of experiments, i.e., the ML-driven experimental exploration of a given 

chemical space seems very promising. This includes catalyst synthesis and operation condition 

optimizations, both of which can be quite time- and resource intensive if done in a “blind” 

manner. The overall procedure is as follows: The factors that can be varied experimentally 

(typically reactant concentrations, reaction time, temperature, etc) are used as input parameters 

for a ML model that is trained to predict the experimentally measured catalytic activity. The 

most common ML model for this is a Bayesian Gaussian regression, which includes 

uncertainties and tends to deliver smooth inter- and extrapolation results, so that new 

experiments can be proposed reliably in regions where the uncertainty is high (extrapolation), 

but predicted to lead to more active materials/conditions. Of course, this supposes that there is 

a so far undetected optimum in the explored parameter space, which is not always the case. For 

example, the impact of the ratio between Fe and Ni in an oxide catalyst on the OER activity in 

alkaline medium has been described via symbolic regression. The model was well able to 
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reproduce the training set, but it turned out that the training set already included the optimal 

ratio, as subsequently confirmed by additional experiments in its vicinity.84 

  

One way to exploit machine-learning for synthesis optimization is to extract a database of 

literature results. Then, analyzing the differences in synthesis protocols can allow to identify 

the critical parameters. This has been achieved for the specific case of acidic ORR catalysts 

that are derived from the pyrolysis of zeolite imidazole frameworks (ZIF) impregnated with 

non-precious metal salts. The database analysis consisting of about 100 entries suggested that 

in addition to the more obvious factors such as the nature of the transition-metal and the 

pyrolysis temperature, the pyrolysis time also has a significant influence, likely linked to the 

formation of pyridinic N-Fe entities which has to be balanced against the evaporation of 

nitrogen-containing transition metal species. This data-derived hypothesis was then confirmed 

via dedicated experiments.85 

 

For practitioners, we would also like to highlight that already small training sets can benefit 

from ML: for the noble-metal free ZIF-derived catalysts for ORR, only 36 datapoints 

synthesized on a three-dimensional grid (iron precursor, iron/zinc ratio and pyrolysis 

temperature) were enough to train an ML model that could predict an improved combination. 

Once synthesized, this formulation was indeed found to lead to a higher activity compared to 

the training set.86 

 

When more data is available, the loop between experiment for training the ML model and 

supplementary experiments becomes more impressive. For example, the OER activity of 18 

perovskites has been evaluated in alkaline solution under various current densities, leading to 

a set of 1080 data points, where each experiment had been replicated three times to account for 

reproducibility and variability of the measurements. Based on this dataset, symbolic regression 

was able to identify a simple linear relationship between the octahedral and tolerance factors 

of the perovskites and their OER activity (see Figure 6). Subsequently, 3’000 hypothetical 

structures have been screened in-silico. The synthesis of thirteen of the most promising 

perovskites was attempted. Five of them have been successfully and purely been obtained and 

four found to be more active than the previously known perovskites, without dramatic 

degradation over time.87 This demonstrates both the data intensiveness and also the practical 

usefulness of such tight experiment/theory feedback-loops. 

 

 
Figure 6 a) Density plot and Pareto front of the mean absolute error as a function of the complexity of 8640 
mathematical formulas. B) Onset potentials for the OER reaction as a function of the ratio between the octahedral 
and tolerance factors (μ/t) (black: previously known perovskites; red dots: discovered perovskites). Reproduced 
from ref 87. 
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To close this section and bridge it to the next one mostly dealing with automation, we mention 

a typical high-dimensional optimization of experimental reaction conditions: To explore the 

relation between photocatalytic HER activity of an organic polymeric catalyst, the ionic 

strength, scavengers, presence of organic dyes and the pH, a 10 dimensional search space was 

explored using a mobile robot.88 With only 688 experiments over eight days driven by a 

Bayesian search algorithm, the HER activity could be optimized, leading to a six-fold increase 

in H2 yield compared to the baseline (catalyst plus scavenger). This example perfectly 

illustrates the combination of robotics and ML-driven design of experiment that strongly 

facilitates and accelerates catalytic system-optimizations under the constraint that the hardware 

needs to be available and adapted to the specific reaction at hand. 

 
Acceleration of Synthesis, Characterization and Testing via Robotics 

High-throughput experiments involving electrocatalyst synthesis, characterization and testing 

are crucial to provide sufficient high-quality, consistent training data for the ML models.89 

Such robotic setups can be effectively combined with ML to create a closed-loop approach for 

accelerated catalyst development.90 

 

First, combinatorial high-throughput synthesis of electrocatalysts can be performed using 

robotics, which has the ability to automatically tune key parameters such as reaction sequence, 

temperature, mixing speed, etc.91 These high-throughput techniques enable rapid synthesis of 

a large variety of catalyst materials with diverse constituents and phases.92 For example, thin 

film sputtering and pulsed laser deposition have been combined with robotic arms and shadow 

masks to synthesize a large family of catalysts with variable compositions and thicknesses.93 

Jet dispensing was explored as a high-throughput approach to screen and synthesize materials, 

while controlling important variables such as stoichiometry, solid content and solvent grade.94 

Sol-gel synthesis of catalysts can also be performed using multi-channel pipetting robots to 

extract precursor solutions into reaction vials automatically.95 Similarly, the synthesis 

conditions of a metal-organic framework (MOF) in a nine dimensional space has been explored 

via a robotic platform coupled to a microwave heating system. This has allowed to generate 

and record sufficient experimental data to reconstruct “chemical intuition”, which relies not 

only on optimized synthesis conditions, but also on the knowledge of failed attempts. As the 

authors pointed out, the literature on failed experiments is rather sparse, which limits the 

application of machine-learning to experimental data. 96 

 

Second, high-throughput characterization is important to ensure that the electrocatalyst 

materials have been synthesized with the correct chemical composition, phase, structure, etc.97 

For example, Raman spectroscopy can be combined with automatic translation and rotation 

stages with laser autofocus technology to allow rapid characterization of catalyst compositions, 

surface states and reaction intermediates.98–100 In addition, X-ray-based techniques such as X-

ray diffraction and absorption spectroscopy can be equipped with automatic sample changers 

to characterize a large number of catalysts with minimum human intervention. A new system 

called RoboRiff with robotic sample changer and goniometer has been used in cryogenic 

crystallography for beamline experiments.101 A robotic sample changer has also been 

developed for high-throughput small-angle X-ray scattering at beamlines, able to characterize 

hundreds of samples per day.102  

 

Third, high-throughput electrocatalyst testing is key in elucidating structure-property 

relations.103 Microfluidic reactors can be designed with miniature working, counter and 

reference electrodes to test catalytic activity in a parallel manner.104 For example, a 100-
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channel microreactor array is able to measure the catalytic activity of metal alloys with a spatial 

resolution of 1 mm2.105 High-throughput electrocatalyst screening can also be done using 

automated scanning droplet cells, which is a scanning probe electrochemistry technique where 

the droplet probe acts as the electrochemical cell to measure the properties of the sample. This 

has been used for high-throughput screening of HEA for ORR, identifying the model system 

Ag-Ir-Pd-Pt-Ru with maximum activity.106 In addition, continuous flow cells with gas diffusion 

layers may help to automate the quantification of products in CO2 electroreduction.58 In these 

flow systems, gas chromatography and NMR spectroscopy can be used to detect gaseous and 

liquid reaction products rapidly in real-time using automatic sample handling and injection 

systems.107 

 
Outlook and Conclusions 

Despite progress and successes achieved in recent years for the acceleration of discovery and 

optimization of electrocatalysts via machine learning, there are still some challenges and room 

for development and improvement of ML methods. 

 

MLPs become advantageous when dynamic simulations of nanoseconds for large size 

electrocatalytic interfaces are necessary. Their training remains challenging, but has become 

accessible in the last couple of years. Recent successful applications of MLPs are the 

identification of realistic surface structures of rough catalyst surfaces and the HER mechanism 

over Pt in acidic medium. However, the construction of MLPs is time consuming since they 

are system specific. Another limitation is that MLPs cannot describe the electrochemical 

potential, which has direct importance to the electrocatalytic reactions. It would thus be 

desirable to develop MLPs that can mimic the behavior of electrified interfaces.108  

 

As for the discovery of catalysts using surrogate models, the typical approach is using DFT to 

compute a number of data points to train a ML model, then using the resulting surrogate model 

to predict the activity of the remaining catalysts. Such an approach can effectively reduce 

computational efforts. We have also highlighted a recent successful prediction of promising 

perovskites photocatalysts by performing a technique called “inverse design”. However, such 

a technique is not yet broadly applicable in electrocatalysis due to the complexity of general 

inorganic materials. Indeed it is challenging to create unique and invertible ML representations 

for complex materials with specific symmetries, amorphous phases, defects, etc, requiring 

further research efforts in this direction.109 

 

In terms of ML assisting experiments, two tools for ML-enhanced EXAFS analysis have been 

reported to be powerful for molecular complexes, bulk crystals, bi-metallic NPs and can 

capture the thermal disorder effects of materials. In addition, many other ML techniques, i.e., 

image-processing (high-throughput TEM) and SAXS analysis were also highlighted in this 

review. These techniques allow to significantly reduce human intervention, thus accelerating 

the data generation process, which will be useful in electrocatalytic studies. These applications 

of ML in experimental data analysis are also strongly connected with ongoing research in 

explainable artificial intelligence, which seeks to improve interpretability of results and to build 

trust in human users.110 

 

Finally, in the area of robotics, it is noteworthy that the majority of high-throughput 

electrocatalysis experiments are still being performed on a laboratory scale. The automated 

processes need to be scaled up substantially for future commercial application. Moreover, 

many experiments are only partially automated, with the need to handle samples manually 

between steps. This can be potentially addressed by using conveyor belts to transport samples 
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between workstations and hence minimize human intervention. It is also promising to integrate 

automation into a broader range of characterization techniques, such as using reel-to-reel tape 

translation systems in high-throughput TEM to enable continuous imaging of samples.111 The 

use of autonomous laboratories is a promising way to generate high-throughput experimental 

data for screening within a well-defined family of catalysts or for the optimization of catalytic 

systems without much human intervention. The automation generally reduces minimize human 

errors and improves the productivity and reproducibility of experiments, but requires large 

capital investments from research facilities and higher levels of maintenance compared to 

manually operated machines.  

 

The different approaches covered in this review are perfectly complementary: MLPs target 

mechanistic understanding, surrogate models (e.g., scaling relations) are aimed at screening, 

and ML-augmented experiments are most useful for the optimization of catalysts. The ultimate 

goal is to combine ML and robotics into a truly automated and continuous workflow for closed-

loop materials discovery. Such a self-driving laboratory can accelerate electrocatalyst 

development, bringing us closer towards a sustainable energy future.  
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