
HAL Id: hal-04177913
https://hal.science/hal-04177913v3

Submitted on 19 Oct 2023 (v3), last revised 24 Jan 2024 (v5)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Trocq: Proof Transfer for Free, With or Without
Univalence

Cyril Cohen, Enzo Crance, Assia Mahboubi

To cite this version:
Cyril Cohen, Enzo Crance, Assia Mahboubi. Trocq: Proof Transfer for Free, With or Without Uni-
valence. 33rd European Symposium on Programming (ESOP), 2024. �hal-04177913v3�

https://hal.science/hal-04177913v3
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

111

Trocq: Proof Transfer for Free, With or Without Univalence

CYRIL COHEN
∗
, Université Côte d’Azur, Inria, France

ENZO CRANCE
∗
,Mitsubishi Electric R&D Centre Europe, France and Nantes Université, École Centrale

Nantes, CNRS, INRIA, LS2N, UMR 6004, France
ASSIA MAHBOUBI

∗
, Nantes Université, École Centrale Nantes, CNRS, INRIA, LS2N, UMR 6004, France

Libraries of formalized mathematics use a possibly broad range of different representations for a same
mathematical concept. Yet light to major manual input from users remains most often required for obtaining
the corresponding variants of theorems, when such obvious replacements are typically left implicit on paper.
This article presents Trocq, a new proof transfer framework for dependent type theory. Trocq is based on
a novel formulation of type equivalence, used to generalize the univalent parametricity translation. This
framework takes care of avoiding dependency on the axiom of univalence when possible, and may be used
with more relations than just equivalences. We have implemented a corresponding plugin for the Coq proof
assistant, in the Coq-Elpi meta-language. We use this plugin on a gallery of representative examples of proof
transfer issues in interactive theorem proving, and illustrate how Trocq covers the spectrum of several
existing tools, used in program verification as well as in formalized mathematics in the broad sense.

CCS Concepts: • Theory of computation→ Type theory.

Additional Key Words and Phrases: Parametricity, Representation independence, Univalence, Proof assistants

1 INTRODUCTION

Formalized mathematics is the art of devising explicit data structures for every object and statement
of the mathematical literature, in a certain choice of foundational formalism. As one would expect,
several such explicit representations are most often needed for a same mathematical concept.
Sometimes, these different choices are made explicit on paper: multivariate polynomials can for
instance be represented as lists of coefficient-monomial pairs, e.g., when computing Gröbner bases,
but also as univariate polynomials with polynomial coefficients, e.g., for the purpose of projecting
algebraic varieties. The conversion between these equivalent data structures will however remain
implicit on paper, as they code in fact for the same free commutative algebra. In some other cases,
implementation details are just ignored on paper, e.g., when a proof involves both reasoning with
Peano arithmetic and computing with large integers.

Example 1.1 (Relating proof-oriented data-structures with computation-oriented ones). The standard
library of the Coq proof assistant [The Coq Development Team 2022] actually proposes two data
structures for representing natural numbers. Type N uses a unary representation, so that the
associated elimination principle N_ind expresses the usual recurrence scheme:

Inductive N : Type :=
| ON : N
| SN (n : N) : N.

N_ind : ∀ P : N → ◻, P ON → (∀ n : N, P n → P (S n)) → ∀ n : N, P n.

∗All authors contributed equally to this research.

Authors’ addresses: Cyril Cohen, cyril.cohen@inria.fr, Université Côte d’Azur, Inria, 2004 route des Lucioles, Valbonne,
France, 06902; Enzo Crance, Mitsubishi Electric R&D Centre Europe, Rennes, France, 35700 and Nantes Université, École
Centrale Nantes, CNRS, INRIA, LS2N, UMR 6004, Nantes, France, 44300; Assia Mahboubi, AssiaMahboubi, Nantes Université,
École Centrale Nantes, CNRS, INRIA, LS2N, UMR 6004, Nantes, France, 44000-F.

HTTPS://ORCID.ORG/0000-0003-3540-1050
HTTPS://ORCID.ORG/0000-0002-0498-0910
HTTPS://ORCID.ORG/0002-0312-5461
https://orcid.org/0000-0003-3540-1050
https://orcid.org/0000-0002-0498-0910
https://orcid.org/0002-0312-5461

111:2 Cyril Cohen, Enzo Crance, and Assia Mahboubi

Type N uses a binary representation positive of non-negative integers, as sequences of bits with a
head 1, and is thus better suited for coding efficient arithmetic operations. The successor function
SN: N→N is no longer a constructor of the type, but can be implemented as a program, via an auxiliary
successor function Spos for type positive.

Inductive positive : Type := Inductive N : Type :=
| xI : positive → positive (* p1 *) | ON : N
| xO : positive → positive (* p0 *) | Npos : positive → N.
| xH : positive. (* 1 *)

Fixpoint Spos (p : positive) : positive :=
match p with xH ⇒ xO xH | xO p ⇒ xI p | xI p ⇒ xO (Spos p) end.

Definition SN (n : N) := match n with Npos p ⇒ Npos (Spos p) | _ ⇒ Npos xH end.

This successor is useful to implement conversions ↑N ∶ N → N and ↓N ∶ N → N between the
unary and binary representations. These conversion functions are in fact inverses of each other.
The natural recurrence scheme on natural numbers thus transfers to type N:

N_ind : ∀ P : N → ◻, P ON → (∀ n : N, P n → P (SN n)) → ∀ n : N, P n.

Incidentally, N_ind can be proved from N_ind by using only the fact that ↓N is a left inverse of ↑N,
and the following compatibility lemma:

∀𝑛 ∶ N, ↓N (SN 𝑛) = SN (↓N 𝑛)
Program verification supplies numerous examples of proof transfer use-cases, but this issue goes

way beyond computational concerns. For instance, the formal study of summation and integration,
in basic real analysis, provides a classic example of frustrating proof transfer bureaucracy.
Example 1.2 (Extended domains). Given a sequence (𝑢𝑛)𝑛∈N of non-negative real numbers, i.e.,

a function 𝑢 ∶ N → (︀0,+∞(︀, 𝑢 is said to be summable when the sequence (∑𝑛
𝑘=0𝑢𝑘)𝑛∈N has a

finite limit, denoted ∑𝑢. Now for two summable sequences 𝑢 and 𝑣 , it is easy to see that 𝑢 + 𝑣 , the
point-wise addition of 𝑢 and 𝑣 , is also a summable sequence, and that:

∑(𝑢 + 𝑣) = ∑𝑢 +∑ 𝑣 (1)
Making the definition of the real number ∑𝑢 depend on a summability witness does not scale, as
every other algebraic operation “under the sum” then requires a new proof of summability. In a
classical setting, the standard approach rather assigns a default value to the case of an infinite sum,
for instance by introducing an extended domain (︀0,+∞⌋︀, and extending the addition operation
to the extra +∞ case. Now for a sequence 𝑢 ∶ N → (︀0,+∞⌋︀, the limit ∑𝑢 is always defined, as
increasing partial sums either converge to a finite limit, or diverge to +∞. The road map is then
to prove first that Equation 1 holds for any two sequences of extended non-negative numbers.
The result is then transferred to the special case of summable sequences of non-negative numbers.
Major libraries of formalized mathematics including Lean’s mathlib [DBL 2020], Isabelle/HOL’s
Archive of Formal Proofs, coq-interval [Martin-Dorel and Melquiond 2016] or Coq’s mathcomp-

analysis [Affeldt and Cohen 2023], resort to such extended domains and transfer steps, notably for
defining measure theory. Yet, as reported by expert users [Gouëzel 2021], the associated transfer
bureaucracy is essentially done manually and thus significantly clutters formal developments in
real and complex analysis, probabilities, etc.
While formalizing mathematics in practice, users of interactive theorem provers should be

allowed to elude mundane arguments pertaining to proof transfer, as they would on paper, and

Trocq: Proof Transfer for Free, With or Without Univalence 111:3

spare themselves the related, quickly overwhelming bureaucracy. Yet, they still need to convince
the proof checker and thus have to provide explicit transfer proofs, albeit ideally automatically
generated ones. The present work aims at providing a general method for implementing this nature
of automation, for a diverse range of proof transfer problems.

In this paper, we focus on interactive theorem provers based on dependent type theory, such as
Coq, Agda [Norell 2008] or Lean [de Moura and Ullrich 2021]. These proof management systems
are genuine functional programming languages, with full-spectrum dependent types, a context in
which representation independence meta-theorems can be turned into concrete instruments for
achieving program and proof transfer.
Seminal results on the contextual equivalence of distinct implementations of a same abstract

interface were obtained for system F, using logical relations [Mitchell 1986] and parametricity
meta-theorems [Reynolds 1983; Wadler 1989]. In the context of type theory, such meta-theorems
can be turned into syntactic translations of the type theory of interest into itself, automating this
way the generation of the statement and the proof of parametricity properties for type families
and for programs. Such syntactic relational models can accommodate dependent types [Bernardy
and Lasson 2011], inductive types [Bernardy et al. 2012] and in fact the full Calculus of Inductive
Constructions, including its impredicative sort [Keller and Lasson 2012].
In particular, the univalent parametricity translation [Tabareau et al. 2021] makes benefit of

the univalence axiom [Univalent Foundations Program 2013] so as to transfer programs and
theorems using established equivalences of types. This approach crucially removes the need for
devising an explicit common interface for the types in relation. In presence of an internalized
univalence axiom and of higher-inductive types, the structure invariance principle provides internal
representation of independence results, for more general relational correspondences between types
than equivalences [Angiuli et al. 2021b]. This last approach is thus particularly relevant in the frame
of cubical type theory [Cohen et al. 2017; Vezzosi et al. 2019]. Indeed, a computational interpretation
of the univalence axiom brings computational adequacy to otherwise possibly stuck terms, those
resulting from a transfer involving an axiomatized univalence principle.
Unfortunately, a Swiss-army knife for automating the bureaucracy of proof transfer is still

missing from the arsenal available to users of major proof assistants like Coq, Lean or Agda. Besides
implementation concerns, the above examples actually illustrate fundamental limitations of the
scope of existing approaches:

Univalence is overkill. Both univalent parametricity and the structure invariance principle can be
used to derive the statement and the proof of the induction principle N_ind of Example 1.1, from the
elimination scheme of type N. But up to our knowledge, all the existing methods for automating
this implication will pull in the univalence principle in the proof, although it can be obtained by
hand by very elementary means. This limitation is all the more unsatisfactory that the univalence
axiom is incompatible with proof irrelevance, a commonly assumed axiom in libraries formalizing
classical mathematics, as Lean’s mathlib.

Equivalences are not enough, neither are quotients. Univalent parametricity cannot help with our
Example 1.2, as it is geared towards equivalences. But in this case, we are in fact not aware of an
implemented method which would apply. In particular, the structure invariance principle [Angiuli
et al. 2021b] would not apply as such in this case.
This leads us to the crux of our problem: existing techniques for transferring results from one

type to another, e.g., from N to N or from extended real numbers to real numbers, are either not
suitable for dependent types, or too coarse to track the exact amount of data needed in a given
proof, and not more.

111:4 Cyril Cohen, Enzo Crance, and Assia Mahboubi

Contributions. This paper presents three contributions:
● A parametricity framework à la carte, which generalizes [Tabareau et al. 2021]’s univalent
parametricity translation, as well as refinements à la CoqEAL [Cohen et al. 2013] and
generalized rewriting [Sozeau 2009]. Its pivotal ingredient is an appropriate, and up to our
knowledge novel, phrasing of type equivalence, which allows for a finer-grained control of
the data propagated by the translation.
● A conservative subtyping extension of 𝐶𝐶𝜔 [Coquand and Huet 1988], used to formulate
an inference algorithm for the synthesis of parametricity proofs.
● The implementation of a new parametricity plugin for the Coq proof assistant, using the
Coq-Elpi [Tassi 2019] meta-language. This plugin rests on original formal proofs, conducted
on top of the HoTT library [Bauer et al. 2017], and is distributed with a collection of
application examples.

Outline. The rest of this paper is organized as follows. Section 2 introduces proof transfer and recalls
the principle, strengths and weaknesses of the univalent parametricity translation. In Section 3, we
present a new definition of type equivalence and we put this definition to good use in a hierarchy
of structures for relations preserved by parametricity. Section 4 then presents variants of the raw
and univalent parametricity translations, and the Trocq translation. In Section 5, we eventually
discuss a few applications, including Examples 1.1 and 1.2, before concluding in Section 6.

2 STRENGTHS AND LIMITS OF UNIVALENT PARAMETRICITY

We first clarify the essence of proof transfer in dependent type theory (§ 2.1) and briefly recall a
few concepts related to type equivalence and to the univalence principle (§ 2.2). We then review
and discuss the limits of univalent parametricity (§ 2.3).

2.1 Proof transfer in type theory

Let us first recall the syntax of the Calculus of Constructions, 𝐶𝐶𝜔 , a 𝜆-calculus with dependent
function types and a predicative hierarchy of universes, denoted ◻𝑖 :

𝐴,𝐵,𝑀, 𝑁 ∶∶= ◻𝑖 ⋃︀ 𝑥 ⋃︀𝑀 𝑁 ⋃︀ 𝜆𝑥 ∶ 𝐴.𝑀 ⋃︀ Π𝑥 ∶ 𝐴. 𝐵
We omit the typing rules of the calculus, available in Appendix A. We also use the standard equality
type, called propositional equality, as well as dependent pairs, denoted Σ𝑥 ∶ 𝐴. 𝐵. We write 𝑡 ≡ 𝑢 the
definitional equality between two terms 𝑡 and 𝑢. Proof assistants Coq, Agda and Lean are based on
various extensions of this core, notably with inductive types and with an impredicative sort. When
the universe level does not matter, we casually remove the annotation and use notation ◻.

In this context, proof transfer from type𝑇1 to type𝑇2 roughly amounts to synthesizing a new type
former𝑊 ∶ 𝑇2 → ◻, i.e., a type parametric in some type 𝑇2, from an initial type former 𝑉 ∶ 𝑇1 → ◻,
i.e., a type parametric in some type𝑇1, so as to ensure that for some given relations 𝑅𝑇 ∶ 𝑇1 → 𝑇2 → ◻
and 𝑅◻ ∶ ◻ → ◻ → ◻, there is a proof𝑤 that:

Γ ⊢𝑤 ∶ ∀(𝑡1 ∶ 𝑇1)(𝑡2 ∶ 𝑇2), 𝑅𝑇 𝑡1 𝑡2 → 𝑅◻(𝑉 𝑡1)(𝑊 𝑡2)

for a suitable context Γ. This setting generalizes as expected to 𝑘-ary type formers, and to more
pairs of related types. In practice, relation 𝑅◻ is often a right-to-left arrow, i.e., 𝑅◻ 𝐴 𝐵 ≜ 𝐵 → 𝐴, as
in this case the proof𝑤 substantiates a proof step turning goal clause Γ ⊢ 𝑉 𝑡1 into Γ ⊢𝑊 𝑡2.

Phrased as such, this synthesis problem is arguably quite loosely specified. Consider for instance
the transfer problem discussed in Example 1.1. A first possible formalization involves the design
of an appropriate common interface structure for types N and N, for instance by setting both 𝑇1
and 𝑇2 as Σ𝑁 ∶ ◻.𝑁 × (𝑁 → 𝑁), and both 𝑉 and𝑊 as: 𝜆𝑋 ∶ 𝑇1 .Π𝑃 ∶ 𝑋 .1 → ◻. 𝑃 𝑋 .2 → (Π𝑛 ∶

Trocq: Proof Transfer for Free, With or Without Univalence 111:5

𝑋 .1. 𝑃 𝑛 → 𝑃 (𝑋 .3 𝑛)) → Π𝑛 ∶ 𝑋 .1. 𝑃 𝑛, where 𝑋 .𝑖 denotes the 𝑖-th item in the dependent tuple 𝑋 .
In this case, relation 𝑅𝑇 may characterize isomorphic instances of the structure. Such instances of
proof transfer are elegantly addressed in cubical type theories via internal structure univalence
principles, whose implementation [Angiuli et al. 2021b] is able to automatize the synthesis of the
required structure. The hassle of devising explicit structures manually for concrete instances of
proof transfer is sometimes referred to as the anticipation problem [Tabareau et al. 2021].

Another option is to consider two different types 𝑇1 ≜ N × (N→ N) and 𝑇2 ≜ N × (N→ N) and
𝑉 ′ ≜ 𝜆𝑋 ∶ 𝑇1. ∀𝑃 ∶ N→ ◻. 𝑃 𝑋 .1→ (∀𝑛 ∶ N, 𝑃 𝑛 → 𝑃(𝑋 .2 𝑛)) → ∀𝑛 ∶ N, 𝑃 𝑛
𝑊 ′ ≜ 𝜆𝑋 ∶ 𝑇2. ∀𝑃 ∶ N→ ◻. 𝑃 𝑋 .1→ (∀𝑛 ∶ N, 𝑃 𝑛 → 𝑃(𝑋 .2 𝑛)) → ∀𝑛 ∶ N, 𝑃 𝑛.

Here one would typically expect 𝑅𝑇 to be a type equivalence between 𝑇1 and 𝑇2, so as to transport
(𝑉 ′ 𝑡1) to (𝑊 ′ 𝑡2), along this equivalence.

Note that some solutions of given instances of proof transfer problems are in fact too trivial to be
of interest. Consider for example the case of a functional relation between 𝑇2 and 𝑇1, with 𝑅𝑇 𝑡1 𝑡2
defined as 𝑡1 = 𝜙 𝑡2, for some 𝜙 ∶ 𝑇2 → 𝑇1. In this case, the composition𝑉 ○𝜙 is an obvious candidate
for𝑊 , but an often uninformative one. Indeed, this composition can only propagate structural ar-
guments, blind to the additional mathematical proofs of program equivalences potentially available
in the context. For instance, here is a constructible but rather useless variant of𝑊 ′:

𝑊 ′′ ≜ 𝜆𝑋 ∶ 𝑇2. ∀𝑃 ∶ N→ ◻. 𝑃 (↑N 𝑋 .1) → (∀𝑛 ∶ N, 𝑃 𝑛 → 𝑃 (↑N (𝑋 .2 (↓N 𝑛))))) → ∀𝑛 ∶ N, 𝑃 𝑛.
Automation devices dedicated to proof transfer thus typically consist of a meta-program which

attempts to compute type former𝑊 and proof𝑤 by induction on the structure of 𝑉 , by composing
registered canonical pairs of related terms, and the corresponding proofs. These tools differ by
the nature of relations they can accommodate, and by the class of type formers they are able to
synthesize. For instance, generalized rewriting [Sozeau 2009], which provides essential support
to formalizations based on setoids [Barthe et al. 2003], addresses the case of homogeneous (and
reflexive) relations, i.e., when 𝑇1 and 𝑇2 coincide. The CoqEAL library [Cohen et al. 2013] provides
another example of such transfer automation tool, geared towards refinements, typically from a
proof-oriented data-structure to a computation-oriented one. It is thus specialized to heterogeneous,
functional relations but restricted to closed, quantifier-free type formers. We now discuss the few
transfer methods which can accommodate dependent types and heterogeneous relations.

2.2 Type equivalences, univalence

Let us first focus on the special case of types related by an equivalence, and start with a few
standard definitions, notations and lemmas. Omitted details can be found in the usual references,
like the Homotopy Type Theory book [Univalent Foundations Program 2013]. Two functions
𝑓 ,𝑔 ∶ 𝐴 → 𝐵 are point-wise equal, denoted 𝑓 ≑𝑔 when their values coincide on all arguments, that is
𝑓 ≑ 𝑔 ∶ Π𝑎 ∶ 𝐴. 𝑓 𝑎 = 𝑔 𝑎. For any type 𝐴, 𝑖𝑑𝐴 denotes 𝜆𝑎 ∶ 𝐴.𝑎, the identity function on 𝐴, and we
will write 𝑖𝑑 when the implicit type 𝐴 is not ambiguous.

Definition 2.1 (Type isomorphism, type equivalence). A function 𝑓 ∶ 𝐴 → 𝐵 is an isomorphism,
denoted IsIso(𝑓), if there exists a function 𝑔 ∶ 𝐵 → 𝐴 which satisfies the section and retraction
properties, which respectively assert that 𝑔 is both a point-wise left and right inverse of 𝑓 . An
isomorphism 𝑓 is an equivalence, denoted IsEquiv(𝑓), when it moreover enjoys a last adjunction
property, relating the proofs of the section and retraction properties and ensuring that IsEquiv(𝑓)
is proof-irrelevant.

Two types 𝐴 and 𝐵 are equivalent, denoted 𝐴 ≃ 𝐵, when there is an equivalence 𝑓 ∶ 𝐴 → 𝐵:

𝐴 ≃ 𝐵 ≜ Σ𝑓 ∶ 𝐴 → 𝐵. IsEquiv(𝑓)

111:6 Cyril Cohen, Enzo Crance, and Assia Mahboubi

Lemma 2.2. Any isomorphism 𝑓 ∶ 𝐴 → 𝐵 is also an equivalence.

The data of an equivalence 𝑒 ∶ 𝐴 ≃ 𝐵 thus include two transport functions, denoted respectively
↑𝑒 ∶ 𝐴 → 𝐵 and ↓𝑒 ∶ 𝐵 → 𝐴. They can be used for proof transfer from 𝐴 to 𝐵, using ↑𝑒 at covariant
occurrences, and ↓𝑒 at contravariant ones. The univalence principle asserts that equivalent types
are indistinguishable.

Definition 2.3 (Univalent universe). A universe 𝒰 is univalent if for any two types 𝐴 and 𝐵 in 𝒰 ,
the canonical map 𝐴 = 𝐵 → 𝐴 ≃ 𝐵 is an equivalence.

In variants of𝐶𝐶𝜔 , univalence can be postulated as an axiom for all universes ◻𝑖 , with no explicit
computational content, as done for instance in the HoTT library for the Coq proof assistant [Bauer
et al. 2017]. Some more recent variants of dependent type theory [Angiuli et al. 2021a; Cohen et al.
2017] feature a built-in computational univalence principle, and are used to implement experimental
proof assistants, such as Cubical Agda [Vezzosi et al. 2019]. In both cases, the univalence principle
provides a powerful proof transfer principle from ◻ to ◻, as for any two types 𝐴 and 𝐵 such that
𝐴 ≃ 𝐵, and any 𝑃 ∶ ◻ → ◻, we can obtain that 𝑃 𝐴 ≃ 𝑃 𝐵 as a direct corollary of univalence.
Concretely, 𝑃 𝐵 is obtained from 𝑃 𝐴 by appropriately allocating the transfer functions provided by
the equivalence data, a transfer process typically useful in the context of proof engineering [Ringer
et al. 2021].
Going back to our example from § 2.1, transferring along an equivalence N ≃ N will thus

produce𝑊 ′′ from 𝑉 ′. In presence of univalence, even in its non-computational form, it is also
possible to achieve the more informative transport from 𝑉 ′ to𝑊 ′, using a method called univalent
parametricity [Tabareau et al. 2021], which we shall discuss in the next section.

2.3 Parametricity translations

Univalent parametricity strengthens the transfer principle provided by the univalence axiom by
combining it with parametricity. In𝐶𝐶𝜔 , the essence of parametricity, which is to devise a relational
interpretation of types, can be turned into an actual syntactic translation, as relations can themselves
be modeled as 𝜆-terms in 𝐶𝐶𝜔 . The seminal work of Bernardy et al., Keller and Lasson combine
in what we refer to as the raw parametricity translation, which essentially defines inductively a
logical relation J𝑇 K for any type 𝑇 , as described on Figure 1.

● Context translation:
J ∐︀̃︀ K = ∐︀̃︀ (2)

J Γ, 𝑥 ∶ 𝐴 K = J Γ K, 𝑥 ∶ 𝐴,𝑥 ′ ∶ 𝐴′, 𝑥𝑅 ∶ J𝐴 K 𝑥 𝑥 ′ (3)
● Term translation:

J◻𝑖 K = 𝜆𝐴𝐴′. 𝐴 → 𝐴′ → ◻𝑖 (4)
J𝑥 K = 𝑥𝑅 (5)

J𝐴 𝐵 K = J𝐴 K 𝐵 𝐵′ J𝐵 K (6)
J𝜆𝑥 ∶ 𝐴. 𝑡 K = Π(𝑥 ∶ 𝐴)(𝑥 ′ ∶ 𝐴′)(𝑥𝑅 ∶ J𝐴 K 𝑥 𝑥 ′). J 𝑡 K (7)

JΠ𝑥 ∶ 𝐴. 𝐵 K = 𝜆𝑓 𝑓 ′.Π(𝑥 ∶ 𝐴)(𝑥 ′ ∶ 𝐴′)(𝑥𝑅 ∶ J𝐴 K 𝑥 𝑥 ′). J𝐵 K(𝑓 𝑥)(𝑓 ′ 𝑥 ′) (8)

Fig. 1. Raw parametricity translation for 𝐶𝐶𝜔 .

This presentation uses the standard convention that 𝑡 ′ is the term obtained from a term 𝑡 by
replacing every variable 𝑥 in 𝑡 with a fresh variable 𝑥 ′. A variable 𝑥 is translated into a variable

Trocq: Proof Transfer for Free, With or Without Univalence 111:7

𝑥𝑅 , where 𝑥𝑅 is a fresh name. The associated abstraction theorem ensures that this translation
preserves typing, in the following sense:

Theorem 2.4. If Γ ⊢ 𝑡 ∶ 𝑇 then J Γ K ⊢ 𝑡 ∶ 𝑇 , J Γ K ⊢ 𝑡 ′ ∶ 𝑇 ′ and J Γ K ⊢ J 𝑡 K ∶ J𝑇 K 𝑡 𝑡 ′.

Proof. By structural induction on the typing judgment, see for instance [Keller and Lasson
2012]. □

A key, albeit mundane ingredient of Theorem 2.4 is the fact that the rules of Figure 1 ensure that:
⊢ J◻𝑖 K ∶ J◻𝑖+1 K ◻𝑖 ◻𝑖 (9)

This translation precisely generates the statements expected from a parametric type family or
program. For instance, the translation of a Π-type, given by Equation 8, is a type of relations on func-
tions, which relates those producing related outputs from related inputs. Concrete implementations
of this translation are available [Keller and Lasson 2012; Tassi 2019], and useful to generate and
prove parametricity properties for type families or for constants, improved induction schemes, etc.

The key observation of univalent parametricity is that, it is possible to preserve the abstraction
theorem while restricting to relations that are in fact (heterogeneous) equivalences. This however
requires a careful design in the translation of universes:

J◻𝑖 K 𝐴 𝐵 ≜ Σ(𝑅 ∶ 𝐴 → 𝐵 → ◻𝑖)(𝑒 ∶ 𝐴 ≃ 𝐵).Π(𝑎 ∶ 𝐴)(𝑏 ∶ 𝐵). 𝑅 𝑎 𝑏 ≃ (𝑎 =↓𝑒 𝑏)
where J ⋅ K now refers to the univalent parametricity translation, replacing the notation introduced
for the raw variant. For any two types 𝐴 and 𝐵, J◻𝑖 K 𝐴 𝐵 packages a relation 𝑅 and an equivalence
𝑒 such that 𝑅 is equivalent to the functional relation associated with ↓𝑒 . Crucially, one can show
that assuming univalence, J◻𝑖 K is equivalent to equivalence, that is, for any two types 𝐴 and 𝐵:

J◻𝑖 K 𝐴 𝐵 ≃ (𝐴 ≃ 𝐵).
This observation is actually an instance of a more general technique available for constructing

syntactic models of type theory [Boulier et al. 2017], based on attaching extra intensional specifi-
cation to negative type constructors. In these models, a standard way to recover the abstraction
theorem consists in refining the translation into two variants, for any term𝑇 ∶ ◻𝑖 , that is also a type.
Its translation as a term, denoted (︀𝑇 ⌋︀, should be a dependent pair, which equips a relation with
the additional data prescribed by the interpretation J◻𝑖 K of the universe. The translation J𝑇 K of 𝑇
as a type will be the relation itself, that is, the projection of the dependent pair (︀𝑇 ⌋︀ onto its first
component, denoted rel((︀𝑇 ⌋︀). We refer to the original publication [Tabareau et al. 2021, Figure 4]
for a complete description of the translation.

We can now state the resulting abstraction theorem [Tabareau et al. 2021], where ⊢𝑢 refers to a
typing judgment of 𝐶𝐶𝜔 assuming the univalence axiom:

Theorem 2.5. If Γ ⊢ 𝑡 ∶ 𝑇 then J Γ K ⊢𝑢 (︀ 𝑡 ⌋︀ ∶ J𝑇 K 𝑡 𝑡 ′.

Note that proving the abstraction theorem 2.5 involves in particular proving that:
⊢𝑢 (︀◻𝑖 ⌋︀ ∶ J◻𝑖+1 K ◻𝑖 ◻𝑖 and rel((︀◻𝑖 ⌋︀) ≡ J◻𝑖 K. (10)

The definition of relation (︀◻𝑖 ⌋︀ uses the univalence principle in a crucial way, in order to prove
that the relation in the universe is equivalent to equality on the universe, i.e., to prove that:

⊢𝑢 Π𝐴𝐵 ∶ ◻𝑖 . J◻𝑖 K 𝐴 𝐵 ≃ (𝐴 = 𝐵).
Importantly, this univalent parametricity translation can be seamlessly extended so as to also
make use of a global context of user-defined equivalences. Now let us go back to our motivating
Example 1.1. A closer look at [Tabareau et al. 2021, Figure 4] reveals why the univalent parametricity
translation can only resort to the univalence axiom in transferring the recurrence principle from

111:8 Cyril Cohen, Enzo Crance, and Assia Mahboubi

type N to type N. Because of the role of univalence in Equation 10, univalence is actually necessary
as soon as the translated term involves an essential occurrence of a universe ◻𝑖 .

3 TYPE EQUIVALENCE IN KIT

This section describes the first step towards overcoming the limitations of univalent parametricity,
as identified in Section 2.3. We thus propose (§ 3.1) an equivalent, modular presentation of type
equivalence, phrased as a nested sigma type. Then (§ 3.2), we carve a hierarchy of structures on
relations out of this dependent tuple, selectively picking pieces. Last, we revisit (§ 3.3) parametricity
translations through the lens of this finer grained analysis of the relational interpretations of types.

3.1 Disassembling type equivalence

Let us first observe that the Definition 2.1, of type equivalence, is quite asymmetrical, although this
fact is somehow put under the rug by the infix 𝐴 ≃ 𝐵 notation. First, the data of an equivalence
𝑒 ∶ 𝐴 ≃ 𝐵 privileges the left-to-right direction, as ↑𝑒 is directly accessible from 𝑒 as its first projection,
while accessing the right-to-left transport requires an additional projection. Second, the statement
of the adjunction property, which we eluded in Definition 2.1, is actually:

Π𝑎 ∶ 𝐴. ap↑𝑒 (𝑠 𝑎) = 𝑟 ○ ↓𝑒

where ap𝑓 (𝑡) is the term 𝑓 𝑢 = 𝑓 𝑣 , for any identity proof 𝑡 ∶ 𝑢 = 𝑣 . This statement uses proofs
𝑠 and 𝑟 , respectively of the section and retraction properties of 𝑒 , but not in a symmetrical way,
although swapping them leads to an equivalent definition. This entanglement prevents tracing the
respective roles of each direction of transport, left-to-right or right-to-left, during the course of a
given univalent parametricity translation. Exercise 4.2 in the HoTT book [Univalent Foundations
Program 2013] however suggests a symmetrical wording of the definition of type equivalence, in
terms of functional relations.

Definition 3.1. A relation 𝑅 ∶ 𝐴 → 𝐵 → ◻𝑖 , is functional, denoted IsFun(𝑅), when:

Π𝑎 ∶ 𝐴. IsContr(Σ𝑏 ∶ 𝐵. 𝑅 𝑎 𝑏)

where for any type 𝑇 , IsContr(𝑇) is the standard contractibility predicate Σ𝑡 ∶ 𝑇 .Π𝑡 ′ ∶ 𝑇 . 𝑡 = 𝑡 ′.

We can now obtain an equivalent but symmetrical characterization of type equivalence, as a
functional relation whose symmetrization is also functional.

Lemma 3.2. For any types 𝐴,𝐵 ∶ ◻, type 𝐴 ≃ 𝐵 is equivalent to:

Σ𝑅 ∶ 𝐴 → 𝐵 → ◻ . IsFun(𝑅) × IsFun(𝑅−1)

where relation 𝑅−1 ∶ 𝐵 → 𝐴 → ◻ just swaps the arguments of an arbitrary 𝑅 ∶ 𝐴 → 𝐵 → ◻.

We sketch below a proof of this result, left as an exercise in [Univalent Foundations Program
2013]. The essential argument is the following characterization of functional relations:

Lemma 3.3. For any types 𝐴,𝐵 ∶ ◻, we have (𝐴 → 𝐵) ≃ Σ𝑅 ∶ 𝐴 → 𝐵 → ◻. IsFun(𝑅).

Proof. The proof goes by chaining the following equivalences:

(Σ𝑅 ∶ 𝐴 → 𝐵 → ◻ . IsFun(𝑅)) ≃ (𝐴 → Σ𝑃 ∶ 𝐵 → ◻. IsContr(Σ𝑏 ∶ 𝐵. 𝑃 𝑏)) ≃ (𝐴 → 𝐵)

□

Trocq: Proof Transfer for Free, With or Without Univalence 111:9

Proof of Lemma 3.2. The proof goes by chaining the following equivalences:

(𝐴 ≃ 𝐵) ≃ Σ𝑓 ∶ 𝐴 → 𝐵. IsEquiv(𝑓) by definition of (𝐴 ≃ 𝐵)
≃ Σ𝑓 ∶ 𝐴 → 𝐵.Π𝑏 ∶ 𝐵. IsContr(Σ𝑎.𝑓 𝑎 = 𝑏) standard result in HoTT
≃ Σ𝑓 ∶ 𝐴 → 𝐵. IsFun(𝜆(𝑏 ∶ 𝐵)(𝑎 ∶ 𝐴). 𝑓 𝑎 = 𝑏) by definition of IsFun(⋅)
≃ Σ (𝑓 ∶ Σ𝑅 ∶ 𝐴 → 𝐵 → ◻ . IsFun(𝑅)) . IsFun(𝜋1(𝑓)−1) by Lemma 3.3

≃ Σ𝑅 ∶ 𝐴 → 𝐵 → ◻ . IsFun(𝑅) × IsFun(𝑅−1) by associativity of Σ

□

However, the symmetrical version of type equivalence provided by Lemma 3.2 does not expose
explicitly the two transfer functions in its data, although this computational content can be ex-
tracted via first projections of contractibility proofs. In fact, it is possible to devise a definition of
type equivalence which directly provides the two transport functions in its data, while remain-
ing symmetrical. The essential ingredient of this rewording is an alternative characterization of
functional relations.

Definition 3.4. For any types 𝐴,𝐵 ∶ ◻, a relation 𝑅 ∶ 𝐴 → 𝐵 → ◻, is a univalent map, denoted
IsUmap(𝑅) when there exists a function𝑚 ∶ 𝐴 → 𝐵 together with proofs:

𝑔1 ∶ Π(𝑎 ∶ 𝐴)(𝑏 ∶ 𝐵).𝑚 𝑎 = 𝑏 → 𝑅 𝑎 𝑏 and 𝑔2 ∶ Π(𝑎 ∶ 𝐴)(𝑏 ∶ 𝐵). 𝑅 𝑎 𝑏 →𝑚 𝑎 = 𝑏

such that:
Π(𝑎 ∶ 𝐴)(𝑏 ∶ 𝐵). (𝑔1 𝑎 𝑏) ○ (𝑔2 𝑎 𝑏) ≑ 𝑖𝑑 .

Now comes the crux lemma of this section, formally proved in the companion code1.

Lemma 3.5. For any types 𝐴,𝐵 ∶ ◻ and any relation 𝑅 ∶ 𝐴 → 𝐵 → ◻

IsFun(𝑅) ≃ IsUmap(𝑅).

Proof. The proof goes by rewording the left hand side, in the following way:

Π𝑥 . IsContr(𝑅 𝑥) ≃ Π𝑥 . Σ(𝑟 ∶ Σ𝑦. 𝑅 𝑥 𝑦).Π(𝑝 ∶ Σ𝑦. 𝑅 𝑥 𝑦). 𝑟 = 𝑝
≃ Π𝑥 . Σ𝑦. Σ(𝑟 ∶ 𝑅 𝑥 𝑦).Π(𝑝 ∶ Σ𝑦. 𝑅 𝑥 𝑦). (𝑦, 𝑟) = 𝑝
≃ Σ𝑓 .Π𝑥 . Σ(𝑟 ∶ 𝑅 𝑥 (𝑓 𝑥)).Π(𝑝 ∶ Σ𝑦. 𝑅 𝑥 𝑦). (𝑓 𝑥, 𝑟) = 𝑝
≃ Σ𝑓 . Σ(𝑟 ∶ Π𝑥 . 𝑅 𝑥 (𝑓 𝑥)).Π𝑥 .Π(𝑝 ∶ Σ𝑦. 𝑅 𝑥 𝑦). (𝑓 𝑥, 𝑟 𝑥) = 𝑝
≃ Σ𝑓 . Σ𝑟 .Π𝑥 .Π𝑦.Π(𝑝 ∶ 𝑅 𝑥 𝑦). (𝑓 𝑥, 𝑟 𝑥) = (𝑦, 𝑝)
≃ Σ𝑓 . Σ𝑟 .Π𝑥 .Π𝑦.Π(𝑝 ∶ 𝑅 𝑥 𝑦). Σ(𝑒 ∶ 𝑓 𝑥 = 𝑦). 𝑟 𝑥 =𝑒 𝑝
≃ Σ𝑓 . Σ𝑟 . Σ(𝑒 ∶ Π𝑥 .Π𝑦. 𝑅 𝑥 𝑦 → 𝑓 𝑥 = 𝑦).Π𝑥 .Π𝑦.Π𝑝. (𝑟 𝑥) =𝑒 𝑥 𝑦 𝑝 𝑝

After a suitable reorganization of the sigma types we are left to show that

Σ(𝑟 ∶ Π𝑥 .Π𝑦. 𝑓 𝑥 = 𝑦 → 𝑅 𝑥 𝑦). (𝑒 𝑥 𝑦)○(𝑟 𝑥 𝑦)≑𝑖𝑑 ≃ Σ(𝑟 ∶ Π𝑥 . 𝑅 𝑥 (𝑓 𝑥)).Π𝑥 .Π𝑦.Π𝑝. 𝑟 𝑥 =𝑒 𝑥 𝑦 𝑝 𝑝

which proof we do not detail, referring the reader to the companion code. □

As a direct corollary, we obtain a novel characterization of type equivalence:

1See lemma map_graph_equiv_isfun in file Uparam.v.

111:10 Cyril Cohen, Enzo Crance, and Assia Mahboubi

Theorem 3.6. For any types 𝐴,𝐵 ∶ ◻𝑖 , we have:

(𝐴 ≃ 𝐵) ≃ ⧈⊺ 𝐴 𝐵

where the relation ⧈⊺ 𝐴 𝐵 is defined as:

Σ𝑅 ∶ 𝐴 → 𝐵 → ◻𝑖 . IsUmap(𝑅) × IsUmap(𝑅−1)

The collection of data packed in a term of type ⧈⊺ 𝐴 𝐵 is now symmetrical, as the right-to-left
direction of the equivalence based on univalent maps can be obtained from the left-to-right by
flipping the relation and swapping the two functionality proofs. If the 𝜂-rule for records is verified,
symmetry is even definitionally involutive.

3.2 Reassembling type equivalence

Definition 3.4 of univalent maps and the resulting rephrasing of type equivalence suggest intro-
ducing a hierarchy of structures for heterogeneous relations, which explains how close a given
relation is to type equivalence. In turn, this distance is described in terms of structure available
respectively on the left-to-right and right-to-left transport functions.

Definition 3.7. For 𝑛,𝑘 ∈ {0, 1, 2a, 2b, 3, 4}, and 𝛼 = (𝑛,𝑘), relation ⧈𝛼 ∶ ◻ → ◻ → ◻, is defined as:

⧈𝛼 ≜ 𝜆(𝐴 𝐵 ∶ ◻).Σ(𝑅 ∶ 𝐴 → 𝐵 → ◻).Class𝛼 𝑅

where the map class Class𝛼 𝑅 itself unfolds to a pair type (M𝑛 𝑅) × (M𝑘 𝑅
−1), withM𝑖 defined as2:

M0 𝑅 ≜ .
M1 𝑅 ≜ (𝐴 → 𝐵)
M2a 𝑅 ≜ Σ𝑚 ∶ 𝐴 → 𝐵.𝐺2a 𝑚 𝑅 with 𝐺2a 𝑚 𝑅 ≜ Π𝑎𝑏.𝑚 𝑎 = 𝑏 → 𝑅 𝑎 𝑏

M2b 𝑅 ≜ Σ𝑚 ∶ 𝐴 → 𝐵.𝐺2b 𝑚 𝑅 with 𝐺2b 𝑚 𝑅 ≜ Π𝑎𝑏. 𝑅 𝑎 𝑏 →𝑚 𝑎 = 𝑏
M3 𝑅 ≜ Σ𝑚 ∶ 𝐴 → 𝐵. (𝐺2a 𝑚 𝑅) × (𝐺2b 𝑚 𝑅)
M4 𝑅 ≜ Σ𝑚 ∶ 𝐴 → 𝐵. Σ(𝑔1 ∶𝐺2a 𝑚 𝑅). Σ(𝑔2 ∶𝐺2b 𝑚 𝑅).Π𝑎𝑏. (𝑔1 𝑎 𝑏) ○ (𝑔1 𝑎 𝑏) ≑ 𝑖𝑑

For any types 𝐴 and 𝐵, and any 𝑟 ∶ ⧈𝛼 𝐴 𝐵 we will use notations rel(𝑟), map(𝑟) and comap(𝑟) to
refer respectively to the relation, map of type 𝐴 → 𝐵, map of type 𝐵 → 𝐴, included in the data of 𝑟 ,
for a suitable 𝛼 .

Definition 3.8. We denote 𝒜 the set {0, 1, 2a, 2b, 3, 4}2, used to index map classes in Definition 3.7.
This set is partially ordered for the product order on {0, 1, 2a, 2b, 3, 4} defined from the partial order
0 < 1 < 2∗ < 3 < 4 for 2∗ either 2a or 2b, and with 2a and 2b being incomparable.

Remark 3.9. Relation ⧈(4,4) of Definition 3.7 coincides with the relation ⧈⊺ introduced in Theo-
rem 3.6. Similarly, we denote ⧈� the relation ⧈(0,0). A relation equipped with structure ⧈(4,0) 𝐴 𝐵
(resp. ⧈(3,3) 𝐴 𝐵) is the graph of a univalent map from 𝐴 to 𝐵 (resp. isomorphism between 𝐴 and 𝐵).

In the supplementary material, the corresponding lattice to the collection ofM𝑛 is implemented as
a hierarchy of dependent tuples, more precisely, of record types. Each arrow of Figure 2 represents
an inclusion of the data packed in the source structure into the data packed in the target one.
Moreover, nodes are labeled with the names of the corresponding record fields introduced by the
richer structure.

2For the sake of readability, we omit implicit arguments, e.g., although M𝑖 has type 𝜆(𝑇1 𝑇2 ∶ ◻).(𝑇1 → 𝑇2 → ◻) → ◻, we
writeM𝑛 𝑅 for (M𝑛 𝐴 𝐵 𝑅).

Trocq: Proof Transfer for Free, With or Without Univalence 111:11

1

2b

0

2a

map
R_in_map

map_in_R

R_in_mapK

3 4

Fig. 2. Implementation of the hierarchy of Definition 3.7

3.3 Populating the hierarchy of relations

We shall now revisit the parametricity translations of Section 2.3. In particular, combining Theo-
rem 3.6 with Equation 10, crux of the abstraction theorem for univalent parametricity, ensures the
existence of a term 𝑝◻𝑖 such that:

⊢𝑢 𝑝◻𝑖 ∶ ⧈
⊺
𝑖+1 ◻𝑖 ◻𝑖 and rel(𝑝◻𝑖) ≃ ⧈

⊺
𝑖 .

Otherwise said, relation⧈⊺ ∶ ◻ → ◻ → ◻ can be endowedwith a⧈⊺ structure, assuming univalence.
Similarly, Equation 9, for the raw parametricity translation, can be read as the fact that relation ⧈�
on universes can be endowed with a ⧈� ◻ ◻ structure.
Now the hierarchy of structures introduced by Definition 3.7 enables a finer grained analysis

of the possible relational interpretations of universes. Not only would this put the raw and uni-
valent parametricity translations under the same hood, but it would also allow for generalizing
parametricity to a larger class of relations. For this purpose, we generalize the previous observation,
on the key ingredient for translating universes: for each 𝛼 ∈ 𝒜, relation ⧈𝛼 ∶ ◻ → ◻ → ◻ may be
endowed with several structures from the lattice, and we need to study which ones, depending
on 𝛼 . Otherwise said, we need to identify the pairs (𝛼, 𝛽) ∈ 𝒜2 for which it is possible to construct
a term 𝑝

𝛼,𝛽
◻ such that:

⊢𝑢 𝑝𝛼,𝛽◻ ∶ ⧈𝛽 ◻ ◻ and rel(𝑝𝛼,𝛽◻) ≡ ⧈𝛼 (11)

Note that we aim here at a definitional equality between rel(𝑝𝛼,𝛽◻) and ⧈𝛼 , rather than at an
equivalence. It is easy to see that a term 𝑝

𝛼,�
◻ exists for any 𝛼 ∈ 𝒜, as ⧈� requires no structure on

the relation. On the other hand, it is not possible to construct a term 𝑝
�,⊺
◻ , i.e., to turn an arbitrary

relation into a type equivalence.

Definition 3.10. We denote 𝒟◻ the following subset of 𝒜2:

𝒟◻ = {(𝛼, 𝛽) ∈ 𝒜2 ⋃︀ 𝛼 = ⊺ ∨ 𝛽 ∈ {0, 1, 2a}2}

The supplementary material3 constructs terms 𝑝𝛼,𝛽◻ for every pair (𝛼, 𝛽) ∈ 𝒟◻, using a meta-
program to generate them from a minimal collection of manual definitions. In particular, assuming
univalence, it is possible to construct a term 𝑝

⊺,⊺
◻ , which can be seen as an analogue of the translation

[◻] of univalent parametricity. More generally, the provided terms 𝑝𝛼,𝛽◻ depend on univalence if
and only if 𝛽 ∉ {0, 1, 2a}2.
The next natural question is the study of the possible structures ⧈𝛾 that can equip a relation

associated with a product type Π𝑥 ∶ 𝐴. 𝐵, when the relations associated with types 𝐴 and 𝐵 are
respectively equipped with structures ⧈𝛼 and ⧈𝛽 .
3File Param_Type.v

111:12 Cyril Cohen, Enzo Crance, and Assia Mahboubi

Otherwise said, we need to identify the triples (𝛼, 𝛽,𝛾) ∈ 𝒜3 for which it is possible to construct
a term 𝑝

𝛾

Π such that:

Γ ⊢ 𝐴𝑅 ∶ ⧈𝛼 𝐴 𝐴′ Γ, 𝑥 ∶ 𝐴, 𝑥 ′ ∶ 𝐴′, 𝑥𝑅 ∶ 𝐴𝑅 𝑥 𝑥
′ ⊢ 𝐵𝑅 ∶ ⧈𝛽 𝐵 𝐵′

Γ ⊢ 𝑝
𝛾

Π 𝐴𝑅 𝐵𝑅 ∶ ⧈𝛾 (Π𝑥 ∶ 𝐴. 𝐵) (Π𝑥 ′ ∶ 𝐴′ . 𝐵′)
and

rel(𝑝𝛾Π 𝐴𝑅 𝐵𝑅) ≡ 𝜆𝑓 .𝜆𝑓 ′ .Π(𝑥 ∶ 𝐴)(𝑥 ′ ∶ 𝐴′)(𝑥𝑅 ∶ rel(𝐴𝑅) 𝑥 𝑥 ′). rel(𝐵𝑅) (𝑓 𝑥) (𝑓 𝑥 ′)
The corresponding collection of triples can actually be described as a function𝒟Π ∶ 𝒜 → 𝒜2, such

that 𝒟Π(𝛾) = (𝛼, 𝛽) provides the minimal requirements on the structures associated with 𝐴 and 𝐵,
with respect to the partial order on 𝒜2. The supplementary material4 provides a corresponding
collection of terms 𝑝𝛾Π for each 𝛾 ∈ 𝒜, as well as all the associated weakenings. Once again, these
definitions are generated by a meta-program. Observe in particular that by symmetry, 𝑝(𝑚,𝑛)

Π can be
obtained from 𝑝

(𝑚,0)
Π and 𝑝(𝑛,0)Π by swapping the latter and glueing it to the former. Therefore, the

values of 𝑝𝛾Π and 𝒟Π(𝛾) are completely determined by those of 𝑝(𝑚,0)
Π and 𝒟Π(𝑚, 0). In particular,

for any𝑚,𝑛 ∈ 𝒜:
𝒟Π(𝑚,𝑛) = ((𝑚𝐴, 𝑛𝐴), (𝑚𝐵, 𝑛𝐵))

for𝑚𝐴, 𝑛𝐴,𝑚𝐵, 𝑛𝐵 ∈ 𝒜 defined as 𝒟Π(𝑚, 0) = ((0, 𝑛𝐴), (𝑚𝐵, 0)) and 𝒟Π(𝑛, 0) = ((0,𝑚𝐴), (𝑛𝐵, 0)).
We sum up in Figure 3 the values of 𝒟Π(𝑚, 0).

𝑚 𝒟Π(𝑚, 0)1 𝒟Π(𝑚, 0)2
0 (0, 0) (0, 0)
1 (0, 2a) (1, 0)
2a (0, 4) (2a, 0)
2b (0, 2a) (2b, 0)
3 (0, 4) (3, 0)
4 (0, 4) (4, 0)

𝑚 𝒟→(𝑚, 0)1 𝒟→(𝑚, 0)2
0 (0, 0) (0, 0)
1 (0, 1) (1, 0)
2a (0, 2b) (2a, 0)
2b (0, 2a) (2b, 0)
3 (0, 3) (3, 0)
4 (0, 4) (4, 0)

Fig. 3. Minimal dependencies for dependent and non-dependent products at class (𝑚, 0)

Note that in the case of a non-dependent product, constructing 𝑝𝛾→ requires less structure on
the domain 𝐴 of an arrow type 𝐴 → 𝐵, which motivates the introduction of function 𝒟→(𝛾).
Using the combinator for dependent products to interpret an arrow type, albeit correct, potentially
pulls in unnecessary structure (and axiom) requirements. The supplementary material5 includes a
construction of terms 𝑝𝛾→ for any 𝛾 ∈ 𝒜.

4 A CALCULUS FOR PROOF TRANSFER

This section introduces Trocq, a framework for proof transfert designed as a generalization of
parametricity translations, so as to allow for interpreting types as instances of the structures
introduced in Section 3.2. We adopt a sequent style presentation, which fits closely the type system
of𝐶𝐶𝜔 , while explaining in a consistent way the transformations of terms and contexts. This choice
of presentation departs from the standard literature about parametricity in pure type systems.
Yet, it brings the presentation closer to actual implementations, whose necessary management of
parametricity contexts is put under the rug by notational conventions (e.g., the primes of Section 2.3).

4File Param_Forall.v
5File Param_Arrow.v

Trocq: Proof Transfer for Free, With or Without Univalence 111:13

For this purpose, we successively introduce four calculi, of increasing sophistication. We start
(§ 4.1) with introducing this sequent style presentation by rephrasing the raw parametricity trans-
lation, and the univalent parametricity one (§ 4.2). We then introduce 𝐶𝐶+𝜔 (§ 4.3), a calculus of
constructions with annotations on sorts and subtyping, before defining (§ 4.4) the Trocq calculus.

4.1 Raw parametricity sequents

We introduce parametricity contexts, under the form of a list of triples packaging pairs of variables
together with a witness that they are related:

Ξ ∶∶= 𝜀 ⋃︀ Ξ, 𝑥 ∼ 𝑥 ′ ∵ 𝑥𝑅

We write (𝑥, 𝑥 ′, 𝑥𝑅) ∈ Ξ if there exists Ξ′ and Ξ′′ such that Ξ = Ξ′, 𝑥 ∼ 𝑥 ′ ∵ 𝑥𝑅, Ξ′′.
We denote Var(Ξ) the sequence of variables related in a parametricity context Ξ, with multiplic-

ities:
Var(𝜀) = 𝜀 Var(Ξ, 𝑥 ∼ 𝑥 ′ ∵ 𝑥𝑅) = Var(Ξ), 𝑥, 𝑥 ′, 𝑥𝑅

A parametricity context Ξ is well-formed, written Ξ ⊢, if the sequence Var(Ξ) is duplicate-free . In
this case, we use the notation Ξ(𝑥) = (𝑥 ′, 𝑥𝑅) as a synonym of (𝑥, 𝑥 ′, 𝑥𝑅) ∈ Ξ.
A parametricity judgment relates a parametricity context Ξ and three terms𝑀,𝑀 ′,𝑀𝑅 of 𝐶𝐶𝜔 .

Parametricity judgments, denoted as:

Ξ ⊢𝑀 ∼ 𝑀 ′ ∵ 𝑀𝑅,

are defined by rules of Figure 4 and read in context Ξ, term𝑀 translates to the term𝑀 ′, because𝑀𝑅 .

Ξ ⊢ ◻𝑖 ∼ ◻𝑖 ∵ 𝜆(𝐴𝐵 ∶ ◻𝑖). 𝐴 → 𝐵 → ◻𝑖
(ParamSort)

(𝑥, 𝑥 ′, 𝑥𝑅) ∈ Ξ Ξ ⊢
Ξ ⊢ 𝑥 ∼ 𝑥 ′ ∵ 𝑥𝑅

(ParamVar)

Ξ ⊢𝑀 ∼ 𝑀 ′ ∵ 𝑀𝑅 Ξ ⊢ 𝑁 ∼ 𝑁 ′ ∵ 𝑁𝑅

Ξ ⊢𝑀 𝑁 ∼ 𝑀 ′ 𝑁 ′ ∵ 𝑀𝑅 𝑁 𝑁 ′ 𝑁𝑅

(ParamApp)

Ξ, 𝑥 ∼ 𝑥 ′ ∵ 𝑥𝑅 ⊢𝑀 ∼ 𝑀 ′ ∵ 𝑀𝑅

Ξ ⊢ 𝜆𝑥 ∶ 𝐴.𝑀 ∼ 𝜆𝑥 ′ ∶ 𝐴′ . 𝑀 ′ ∵ 𝜆𝑥 𝑥 ′ 𝑥𝑅 . 𝑀𝑅

(ParamLam)

Ξ ⊢ 𝐴 ∼ 𝐴′ ∵ 𝐴𝑅 Ξ, 𝑥 ∼ 𝑥 ′ ∵ 𝑥𝑅 ⊢ 𝐵 ∼ 𝐵′ ∵ 𝐵𝑅 𝑥, 𝑥 ′ ∉ Var(Ξ)
Ξ ⊢ Π𝑥 ∶ 𝐴. 𝐵 ∼ Π𝑥 ′ ∶ 𝐴′. 𝐵′ ∵ 𝜆𝑓 𝑔.Π𝑥 𝑥 ′ 𝑥𝑅 . 𝐵𝑅 (𝑓 𝑥) (𝑔 𝑥 ′)

(ParamPi)

Fig. 4. Param: sequent-style binary parametricity translation

Lemma 4.1. The relation associating a term𝑀 with pairs (𝑀 ′,𝑀𝑅) such that Ξ ⊢𝑀 ∼ 𝑀 ′ ∵ 𝑀𝑅

holds, with Ξ a well-formed parametricity context is functional: for any term𝑀 and any well-formed Ξ:

∀𝑀 ′, 𝑁 ′,𝑀𝑅, 𝑁𝑅, Ξ ⊢𝑀 ∼ 𝑀 ′ ∵ 𝑀𝑅 ∧ Ξ ⊢𝑀 ∼ 𝑁 ′ ∵ 𝑁𝑅 Ô⇒ (𝑀 ′,𝑀𝑅) = (𝑁 ′, 𝑁𝑅)

Proof. Immediate by induction on the syntax of𝑀 . □

This presentation of parametricity thus provides an alternative definition of translation J ⋅ K, from
Figure 1, and accounts for the prime-based notational convention used in the latter.

111:14 Cyril Cohen, Enzo Crance, and Assia Mahboubi

Definition 4.2. A parametricity contextΞ is admissible for a well-formed typing context Γ, denoted
Γ ⊳ Ξ, when Ξ is well-formed as a parametricity context and Γ provides coherent type annotations
for all terms in Ξ, that is, for any variables 𝑥, 𝑥 ′, 𝑥𝑅 such that Ξ(𝑥) = (𝑥 ′, 𝑥𝑅), and for any terms 𝐴′
and 𝐴𝑅 :

Ξ ⊢ Γ(𝑥) ∼ 𝐴′ ∵ 𝐴𝑅 Ô⇒ Γ(𝑥 ′) = 𝐴′ ∧ Γ(𝑥𝑅) ≡ 𝐴𝑅 𝑥 𝑥
′

We can now state and prove an abstraction theorem:

Theorem 4.3 (Abstraction theorem).

Γ ⊢ Γ ⊢𝑀 ∶ 𝐴 Γ ⊳ Ξ Ξ ⊢𝑀 ∼ 𝑀 ′ ∵ 𝑀𝑅 Ξ ⊢ 𝐴 ∼ 𝐴′ ∵ 𝐴𝑅

Γ ⊢𝑀 ′ ∶ 𝐴′ and Γ ⊢𝑀𝑅 ∶ 𝐴𝑅 𝑀 𝑀 ′

Proof. By induction on the derivation of Ξ ⊢𝑀 ∼ 𝑀 ′ ∵ 𝑀𝑅 . □

4.2 Univalent parametricity sequents

We now propose in Figure 5 a rephrased version of the univalent parametricity translation [Tabareau
et al. 2021], using the same sequent style and replacing the translation of universes with the
equivalent relation ⧈⊺. In this variant, parametricity judgments are denoted:

Ξ ⊢𝑢 𝑀 ∼ 𝑀 ′ ∵ 𝑀𝑅

where Ξ is a parametricity context and𝑀 ,𝑀 ′, and𝑀𝑅 are terms of 𝐶𝐶𝜔 . The 𝑢 index is a reminder
that typing judgments Γ ⊢𝑢 𝑀 ∶ 𝐴 involved in the associated abstraction theorem are typing
judgments of 𝐶𝐶𝜔 augmented with the univalence axiom.

Ξ ⊢𝑢 ◻𝑖 ∼ ◻𝑖 ∵ 𝑝⊺,⊺◻𝑖
(UParamSort)

(𝑥, 𝑥 ′, 𝑥𝑅) ∈ Ξ Ξ ⊢
Ξ ⊢𝑢 𝑥 ∼ 𝑥 ′ ∵ 𝑥𝑅

(UParamVar)

Ξ ⊢𝑢 𝑀 ∼ 𝑀 ′ ∵ 𝑀𝑅 Ξ ⊢𝑢 𝑁 ∼ 𝑁 ′ ∵ 𝑁𝑅

Ξ ⊢𝑢 𝑀 𝑁 ∼ 𝑀 ′ 𝑁 ′ ∵ 𝑀𝑅 𝑁 𝑁 ′ 𝑁𝑅

(UParamApp)

Ξ ⊢𝑢 𝐴 ∼ 𝐴′ ∵ 𝐴𝑅 Ξ, 𝑥 ∼ 𝑥 ′ ∵ 𝑥𝑅 ⊢𝑢 𝑀 ∼ 𝑀 ′ ∵ 𝑀𝑅

Ξ ⊢𝑢 𝜆𝑥 ∶ 𝐴.𝑀 ∼ 𝜆𝑥 ′ ∶ 𝐴′. 𝑀 ′ ∵ 𝜆𝑥 𝑥 ′ 𝑥𝑅 . 𝑀𝑅

(UParamLam)

Ξ ⊢𝑢 𝐴 ∼ 𝐴′ ∵ 𝐴𝑅 Ξ, 𝑥 ∼ 𝑥 ′ ∵ 𝑥𝑅 ⊢𝑢 𝐵 ∼ 𝐵′ ∵ 𝐵𝑅
Ξ ⊢𝑢 Π𝑥 ∶ 𝐴. 𝐵 ∼ Π𝑥 ′ ∶ 𝐴′ . 𝐵′ ∵ 𝑝⊺Π 𝐴𝑅 𝐵𝑅

(UParamPi)

Fig. 5. UParam: univalent parametricity rules

We can now rephrase the abstraction theorem for univalent parametricity.

Theorem 4.4 (Univalent abstraction theorem).

Γ ⊢ Γ ⊢𝑀 ∶ 𝐴 Γ ⊳ Ξ Ξ ⊢𝑢 𝑀 ∼ 𝑀 ′ ∵ 𝑀𝑅 Ξ ⊢𝑢 𝐴 ∼ 𝐴′ ∵ 𝐴𝑅

Γ ⊢𝑀 ′ ∶ 𝐴′ and Ξ ⊢𝑢 𝑀𝑅 ∶ rel(𝐴𝑅)𝑀 𝑀 ′

Proof. By induction on the derivation of Ξ ⊢𝑢 𝑀 ∼ 𝑀 ′ ∵ 𝑀𝑅 . □

Trocq: Proof Transfer for Free, With or Without Univalence 111:15

Remark 4.5. In Theorem 4.4, term rel(𝐴𝑅) is indeed a relation of type 𝐴 → 𝐴′ → ◻. Indeed:
Γ ⊢ 𝐴 ∶ ◻𝑖 Ξ ⊢𝑢 𝐴 ∼ 𝐴′ ∵ 𝐴𝑅 Γ ⊳ Ξ

Γ ⊢𝑢 𝐴𝑅 ∶ rel(𝑝⊺,⊺◻𝑖) 𝐴 𝐴
′

entails 𝐴𝑅 has type rel(𝑝⊺,⊺◻𝑖) 𝐴 𝐴
′ ≡ ⧈⊺ 𝐴 𝐴′ ≡ (Σ𝑅 ∶ 𝐴 → 𝐴′ → ◻. IsUmap(𝑅) × IsUmap(𝑅−1)).

4.3 Annotated type theory

We are now ready to generalize the relational interpretation of types provided by the univalent
parametricity translation, so as to allow for interpreting sorts with instances of weaker structures
than equivalence. For this purpose, we introduce a variant 𝐶𝐶+𝜔 of 𝐶𝐶𝜔 where each universe is
annotated with a label indicating the structure available on its relational interpretation. Recall
from Section 3.2 that we have used pairs 𝛼 ∈ 𝒜2 to identify the different structures of the lattice
disassembling type equivalence: these are the labels annotating sorts of 𝐶𝐶+𝜔 , so that if 𝐴 has type
◻𝛼 , then the associated relation 𝐴𝑅 has type ⧈𝛼 𝐴 𝐴′. The syntax of 𝐶𝐶+𝜔 is thus:

𝑀,𝑁,𝐴, 𝐵 ∈ 𝒯𝐶𝐶+𝜔 ∶∶= ◻
𝛼
𝑖 ⋃︀ 𝑥 ⋃︀𝑀 𝑁 ⋃︀ 𝜆𝑥 ∶ 𝐴.𝑀 ⋃︀ Π𝑥 ∶ 𝐴. 𝐵

𝛼 ∈ 𝒜 = {0, 1, 2a, 2b, 3, 4}2 𝑖 ∈ N

Before completing the actual formal definition of the Trocq proof transfer framework, let us
informally illustrate how these annotations shall drive the interpretation of terms, and in particular,
of a dependent product Π𝑥 ∶ 𝐴. 𝐵. In this case, before translating 𝐵, three terms representing the
bound variable 𝑥 , its translation 𝑥 ′, and the parametricity witness 𝑥𝑅 are added to the context. The
type of 𝑥𝑅 is rel(𝐴𝑅) 𝑥 𝑥 ′ where 𝐴𝑅 is the parametricity witness relating 𝐴 to its translation 𝐴′.
The role of annotation 𝛼 on the sort typing type 𝐴 is thus to to govern the amount of information
available in witness 𝑥𝑅 , by determining the type of 𝐴𝑅 . This intent is reflected in the typing rules
of 𝐶𝐶+𝜔 , which rely on the definition of the loci 𝒟◻, 𝒟→ and 𝒟Π, introduced in §3.3.
Typing terms in 𝐶𝐶+𝜔 requires defining a subtyping relation ≼, defined by the rules of Figure 6.

The typing rules of 𝐶𝐶+𝜔 are available in Figure 7 and follow standard presentations [Aspinall and
Compagnoni 2001]. The ≡ relation in the (SubConv) rule is the conversion relation, defined as the
closure of 𝛼-equivalence and 𝛽-reduction on this variant of 𝜆-calculus. We hence have two types of
judgment in this calculus:

Γ ⊢+ 𝐴 ≼ 𝐵 and Γ ⊢+ 𝑀 ∶ 𝐴
Where𝑀,𝐴 and 𝐵 are terms in 𝐶𝐶+𝜔 and Γ is a context in 𝐶𝐶+𝜔 (Γ ∶∶= 𝜀 ⋃︀ Γ, 𝑥 ∶ 𝐴)

Γ ⊢+ 𝐴 ∶ 𝐾 Γ ⊢+ 𝐵 ∶ 𝐾 𝐴 ≡ 𝐵
Γ ⊢+ 𝐴 ≼ 𝐵

(SubConv)
𝛼 ≥ 𝛽 𝑖 ≤ 𝑗
Γ ⊢+ ◻𝛼𝑖 ≼ ◻

𝛽

𝑗

(SubSort)

Γ ⊢+ 𝑀 ′ 𝑁 ∶ 𝐾 Γ ⊢+ 𝑀 ≼𝑀 ′

Γ ⊢+ 𝑀 𝑁 ≼𝑀 ′ 𝑁
(SubApp)

Γ, 𝑥 ∶ 𝐴 ⊢+ 𝑀 ≼𝑀 ′

Γ ⊢+ 𝜆𝑥 ∶ 𝐴.𝑀 ≼ 𝜆𝑥 ∶ 𝐴.𝑀 ′
(SubLam)

Γ ⊢+ Π𝑥 ∶ 𝐴. 𝐵 ∶ ◻𝑖 Γ ⊢+ 𝐴′ ≼ 𝐴 Γ, 𝑥 ∶ 𝐴′ ⊢+ 𝐵 ≼ 𝐵′

Γ ⊢+ Π𝑥 ∶ 𝐴. 𝐵 ≼ Π𝑥 ∶ 𝐴′ . 𝐵′
(SubPi) 𝐾 ∶∶= ◻𝑖 ⋃︀ Π𝑥 ∶ 𝐴.𝐾

Fig. 6. Subtyping rules for 𝐶𝐶
+
𝜔

111:16 Cyril Cohen, Enzo Crance, and Assia Mahboubi

Γ ⊢+ 𝑀 ∶ 𝐴 Γ ⊢+ 𝐴 ≼ 𝐵
Γ ⊢+ 𝑀 ∶ 𝐵

(Conv+)
(𝛼, 𝛽) ∈ 𝒟◻

Γ ⊢+ ◻𝛼𝑖 ∶ ◻
𝛽

𝑖+1
(Sort+)

(𝑥,𝐴) ∈ Γ Γ ⊢+
Γ ⊢+ 𝑥 ∶ 𝐴

(Var+)
Γ ⊢+ 𝐴 ∶ ◻𝑖 𝑥 ∉ Var(Γ)

Γ, 𝑥 ∶ 𝐴 ⊢+
(Context+)

Γ ⊢+ 𝑀 ∶ Π𝑥 ∶ 𝐴. 𝐵 Γ ⊢+ 𝑁 ∶ 𝐴
Γ ⊢+ 𝑀 𝑁 ∶ 𝐵(︀𝑥 ∶= 𝑁 ⌋︀

(App+)
Γ, 𝑥 ∶ 𝐴 ⊢+ 𝑀 ∶ 𝐵

Γ ⊢+ 𝜆𝑥 ∶ 𝐴.𝑀 ∶ Π𝑥 ∶ 𝐴. 𝐵
(Lam+)

Γ ⊢+ 𝐴 ∶ ◻𝛼𝑖 Γ ⊢+ 𝐵 ∶ ◻𝛽𝑖 𝒟→(𝛾) = (𝛼, 𝛽)
Γ ⊢+ 𝐴 → 𝐵 ∶ ◻𝛾𝑖

(Arrow+)

Γ ⊢+ 𝐴 ∶ ◻𝛼𝑖 Γ, 𝑥 ∶ 𝐴 ⊢+ 𝐵 ∶ ◻𝛽𝑖 𝒟Π(𝛾) = (𝛼, 𝛽)
Γ ⊢+ Π𝑥 ∶ 𝐴. 𝐵 ∶ ◻𝛾𝑖

(Pi+)

Fig. 7. Typing rules for 𝐶𝐶
+
𝜔

We show that 𝐶𝐶+𝜔 is a conservative extension over 𝐶𝐶𝜔 , by defining an erasure function for
terms ⋃︀ ⋅ ⋃︀− ∶ 𝒯𝐶𝐶+𝜔 → 𝒯𝐶𝐶𝜔

and the associated erasure function for contexts, see Appendix B.

4.4 The Trocq calculus

The final stage of the announced generalization consists in building an analogue to the parametricity
translations available in pure type systems, but for the annotated type theory of § 4.3. This analogue
is geared towards proof transfer, as discussed in § 2.1, and therefore designed to synthesize the
output of the translation from its input, rather than to check that certain pairs of terms are in
relation. However, splitting up the interpretation of universes into a lattice of possible relation
structures means that the source term of the translation is not enough to characterize the desired
output: the translation needs to be informed with some extra information about the expected
outcome of the translation. In the Trocq calculus, this extra information is a type of 𝐶𝐶+𝜔 .
We thus define Trocq contexts as lists of quadruples:

Δ ∶∶= 𝜀 ⋃︀ Δ, 𝑥 @ 𝐴 ∼ 𝑥 ′ ∵ 𝑥𝑅 where 𝐴 ∈ 𝒯𝐶𝐶+𝜔 .
We also introduce a conversion function 𝛾 from Trocq contexts to 𝐶𝐶+𝜔 contexts:

𝛾(𝜀) = 𝜀

𝛾(Δ, 𝑥 @ 𝐴 ∼ 𝑥 ′ ∵ 𝑥𝑅) = 𝛾(Δ), 𝑥 ∶ 𝐴
Now, a Trocq judgment is a 4-ary relation of the form Δ ⊢𝑡 𝑀 @ 𝐴 ∼ 𝑀 ′ ∵ 𝑀𝑅 , which is

read in context Δ, term 𝑀 of annotated type 𝐴 translate to term 𝑀 ′, because 𝑀𝑅 and 𝑀𝑅 is called
a parametricity witness. Trocq judgments are defined by the rules of Figure 8. This definition
involves a weakening function for parametricity witnesses, defined as follows.

Definition 4.6. For all 𝑝,𝑞 ∈ {0, 1, 2a, 2b, 3, 4}, such that 𝑝 ≥ 𝑞, we define the map ↓𝑝𝑞 ∶M𝑝 →M𝑞 to
be the function forgetting the fields from M𝑝 that are not in M𝑞 .

For all 𝛼, 𝛽 ∈ 𝒜, such that 𝛼 ≥ 𝛽 , function ⇊𝛼
𝛽
∶ ⧈𝛼 𝐴 𝐵 → ⧈𝛽 𝐴 𝐵 is defined by:

⇊(𝑚,𝑛)
(𝑝,𝑞) ∐︀𝑅,𝑀→,𝑀←̃︀ ∶= ∐︀𝑅, ↓𝑚𝑝 𝑀→, ↓𝑛𝑞 𝑀←̃︀.

Trocq: Proof Transfer for Free, With or Without Univalence 111:17

(𝛼, 𝛽) ∈ 𝒟◻
Δ ⊢𝑡 ◻𝛼𝑖 @ ◻𝛽𝑖+1 ∼ ◻

𝛼
𝑖 ∵ 𝑝

𝛼,𝛽
◻𝑖

(TrocqSort)
(𝑥,𝐴, 𝑥 ′, 𝑥𝑅) ∈ Δ 𝛾(Δ) ⊢+

Δ ⊢𝑡 𝑥 @ 𝐴 ∼ 𝑥 ′ ∵ 𝑥𝑅
(TrocqVar)

Δ ⊢𝑡 𝑀 @ Π𝑥 ∶ 𝐴. 𝐵 ∼ 𝑀 ′ ∵ 𝑀𝑅 Δ ⊢𝑡 𝑁 @ 𝐴 ∼ 𝑁 ′ ∵ 𝑁𝑅

Δ ⊢𝑡 𝑀 𝑁 @ 𝐵(︀𝑥 ∶= 𝑁 ⌋︀ ∼ 𝑀 ′ 𝑁 ′ ∵ 𝑀𝑅 𝑁 𝑁 ′ 𝑁𝑅

(TrocqApp)

Δ ⊢𝑡 𝐴@ ◻𝛼𝑖 ∼ 𝐴′ ∵ 𝐴𝑅 Δ, 𝑥 @ 𝐴 ∼ 𝑥 ′ ∵ 𝑥𝑅 ⊢𝑡 𝑀 @ 𝐵 ∼ 𝑀 ′ ∵ 𝑀𝑅

Δ ⊢𝑡 𝜆𝑥 ∶ 𝐴.𝑀 @ Π𝑥 ∶ 𝐴. 𝐵 ∼ 𝜆𝑥 ′ ∶ 𝐴′ . 𝑀 ′ ∵ 𝜆𝑥 𝑥 ′ 𝑥𝑅 . 𝑀𝑅

(TrocqLam)

Δ ⊢𝑡 𝐴@ ◻𝛼𝑖 ∼ 𝐴′ ∵ 𝐴𝑅 Δ ⊢𝑡 𝐵 @ ◻𝛽𝑖 ∼ 𝐵
′ ∵ 𝐵𝑅 (𝛼, 𝛽) = 𝒟→(𝛿)

Δ ⊢𝑡 𝐴 → 𝐵 @ ◻𝛿𝑖 ∼ 𝐴′ → 𝐵′ ∵ 𝑝𝛿→ 𝐴𝑅 𝐵𝑅
(TrocqArrow)

Δ ⊢𝑡 𝐴@ ◻𝛼𝑖 ∼ 𝐴′ ∵ 𝐴𝑅 Δ, 𝑥 @ 𝐴 ∼ 𝑥 ′ ∵ 𝑥𝑅 ⊢𝑡 𝐵 @ ◻𝛽𝑖 ∼ 𝐵
′ ∵ 𝐵𝑅 (𝛼, 𝛽) = 𝒟Π(𝛿)

Δ ⊢𝑡 Π𝑥 ∶ 𝐴. 𝐵 @ ◻𝛿𝑖 ∼ Π𝑥 ′ ∶ 𝐴′ . 𝐵′ ∵ 𝑝𝛿Π 𝐴𝑅 𝐵𝑅
(TrocqPi)

Δ ⊢𝑡 𝑀 @ 𝐴 ∼ 𝑀 ′ ∵ 𝑀𝑅 𝛾(Δ) ⊢+ 𝐴 ≼ 𝐵
Δ ⊢𝑡 𝑀 @ 𝐵 ∼ 𝑀 ′ ∵ ⇓𝐴𝐵 𝑀𝑅

(TrocqConv)

Fig. 8. Trocq rules

ÚÚÙ
◻𝛼𝑖
◻𝛼′
𝑖

𝑡𝑅 ∶= ⇊𝛼
𝛼 ′ 𝑡𝑅

ÚÚÙ
𝐴 𝑀

𝐴′ 𝑀′
𝑁𝑅 ∶=

ÚÚÙ
𝐴

𝐴′
𝑀 𝑀 ′ 𝑁𝑅

ÚÚÙ
𝜆𝑥 ∶𝐴. 𝐵
𝜆𝑥 ∶𝐴′ . 𝐵′ 𝑀 𝑀 ′ 𝑁𝑅 ∶=

ÚÚÙ
𝐵(︀𝑥 ∶=𝑀⌋︀
𝐵′(︀𝑥 ∶=𝑀′⌋︀ 𝑁𝑅

ÚÚÙ
Π𝑥 ∶𝐴. 𝐵
Π𝑥 ∶𝐴′ . 𝐵′ 𝑀𝑅 ∶= 𝜆𝑥 𝑥 ′ 𝑥𝑅 .

ÚÚÙ
𝐵

𝐵′
(𝑀𝑅 𝑥 𝑥

′ (ÚÚÙ
𝐴
′

𝐴
𝑥𝑅))

ÚÚÙ
𝐴

𝐴′
𝑀𝑅 ∶=𝑀𝑅

Fig. 9. Weakening of parametricity witnesses

The weakening function on parametricity witnesses is defined on Figure 9 by extending function
⇊𝛼

𝛽
to all relevant pairs of types of 𝐶𝐶+𝜔 , i.e., ⇓𝑇𝑈 is defined for 𝑇,𝑈 ∈ 𝒯𝐶𝐶+𝜔 as soon as 𝑇 ≼𝑈 .

An abstraction theorem relates well-formed Trocq judgments and typing in 𝐶𝐶+𝜔 .

Theorem 4.7 (Trocq abstraction theorem).

𝛾(Δ) ⊢+ 𝛾(Δ) ⊢+ 𝑀 ∶ 𝐴 Δ ⊢𝑡 𝑀 @ 𝐴 ∼ 𝑀 ′ ∵ 𝑀𝑅 Δ ⊢𝑡 𝐴@ ◻𝛼𝑖 ∼ 𝐴′ ∵ 𝐴𝑅

𝛾(Δ) ⊢+ 𝑀 ′ ∶ 𝐴′ and 𝛾(Δ) ⊢+ 𝑀𝑅 ∶ rel(𝐴𝑅)𝑀 𝑀 ′

Proof. By induction on derivation Δ ⊢𝑡 𝑀 @ 𝐴 ∼ 𝑀 ′ ∵ 𝑀𝑅 . □

Note that type 𝐴 in the typing hypothesis 𝛾(Δ) ⊢+ 𝑀 ∶ 𝐴 of the abstraction theorem is exactly
the extra information passed to the translation. The latter can thus also be seen as an inference
algorithm, which infers annotations for the output of the translation from that of the input.

111:18 Cyril Cohen, Enzo Crance, and Assia Mahboubi

Remark 4.8. Since by definition of 𝑝𝛼,𝛽◻ (Equation 11), we have ⊢𝑡 ◻𝛼 @ ◻𝛽 ∼ ◻𝛼 ∵ 𝑝
𝛼,𝛽
◻ , by

applying Theorem 4.7 with 𝛾(Δ) ⊢+ 𝐴 ∶ ◻𝛼 , we get:
𝛾(Δ) ⊢+ 𝐴 ∶ ◻𝛼 Δ ⊢𝑡 𝐴@ ◻𝛼 ∼ 𝐴′ ∵ 𝐴𝑅

𝛾(Δ) ⊢+ 𝐴𝑅 ∶ rel(𝑝𝛼,𝛽◻) 𝐴 𝐴′
.

Now by the same definition, for any 𝛽 ∈ 𝒜, rel(𝑝𝛼,𝛽◻) = ⧈𝛼 , hence 𝛾(Δ) ⊢ 𝐴𝑅 ∶ ⧈𝛼 𝐴 𝐴′, as expected
by the type annotation 𝐴 ∶ ◻𝛼 in the input of the translation.

Remark 4.9. By applying the Remark 4.8 with ⊢+ ◻𝛼 ∶ ◻𝛽 we get ⊢+ 𝑝𝛼,𝛽◻ ∶ ⧈𝛽 ◻𝛼 ◻𝛼 as expected,
provided that (𝛼, 𝛽) ∈ 𝒟◻.

4.5 Constants

Concrete applications require extending Trocq with constants. Constants are similar to variables,
except that they are stored in a global context instead of a typing context. A crucial difference
though is that a constant may be assigned several different annotated types in 𝐶𝐶+𝜔 .

Consider for example, a constant list, standing for the type of polymorphic lists. As list 𝐴 is
the type of lists with elements of type 𝐴, it can be annotated with type ◻𝛼 → ◻𝛼 for any 𝛼 ∈ 𝒜.

Every constant declared in global environment has an associated collection of possible annotated
types𝑇𝑐 ⊂ 𝒯𝐶𝐶+𝜔 . We require that all the possible annotated types of a same constant share the same
erasure in 𝐶𝐶𝜔 , i.e., ∀𝑐,∀𝐴,∀𝐵, 𝐴, 𝐵 ∈ 𝑇𝑐 ⇒ ⋃︀𝐴 ⋃︀− = ⋃︀𝐵 ⋃︀−. For example, 𝑇list = {◻𝛼 → ◻𝛼 ⋃︀ 𝛼 ∈ 𝒜} .

In addition, we provide translations 𝒟𝑐(𝐴) for each possible annotated type 𝐴 of each constant 𝑐
in the global context. For example𝒟list(◻(1,0) → ◻(1,0)) is well defined and equal to the translation

(list, 𝜆𝐴𝐴′𝐴𝑅 . (List.All2 𝐴𝑅, List.map (map(𝐴𝑅))) ,)
where List.All2 𝐴𝑅 relates lists that are related by 𝐴𝑅 element-wise, List.map is the standard
map function on lists and map(𝐴𝑅) ∶ 𝐴 → 𝐴′ extracts the map projection of the record 𝐴𝑅 of type
⧈(1,0) 𝐴 𝐴′ ≡ Σ𝑅.𝐴 → 𝐴′. Part of these translations can be generated automatically by weakening.

We describe in Figure 10 the additional rules for constants in 𝐶𝐶+𝜔 and Trocq. Note that for an
input term featuring constants, an unfortunate choice of annotation may lead a stuck translation.

𝑐 ∈ 𝒞 𝐴 ∈ 𝑇𝑐
Γ ⊢ 𝑐 ∶ 𝐴

(Const+)
𝒟𝑐(𝐴) = (𝑐′, 𝑐𝑅)

Δ ⊢ 𝑐 @ 𝐴 ∼ 𝑐′ ∵ 𝑐𝑅
(TrocqConst)

Fig. 10. Additional constant rules for 𝐶𝐶
+
𝜔 and Trocq

5 IMPLEMENTATION AND APPLICATIONS

The supplementary material includes the source code of a plugin for Coq which provides a pro-
totype implementation for Trocq, written in Elpi [Dunchev et al. 2015], a dialect of 𝜆Prolog. We
use Elpi as a meta-language for Coq, through the Coq-Elpi [Tassi 2019] plugin, which encodes
Coq terms in higher-order abstract syntax, and provides a comprehensive API (typechecking,
elaboration, interacting with the global environment, etc). The logic programming style of Elpi, as
well as its approach to binder management proved particularly effective for the implementation of
parametricity translations. Yet the implementation of Trocq also takes benefit of other features of
Elpi, such as databases, constraint handling rules [Frühwirth and Raiser 2011], etc.
The core of the plugin consists in implementing each rule of the Trocq calculus, on top of

Coq libraries formalizing the contents of Section 3. In the logic programming paradigm of Elpi,

Trocq: Proof Transfer for Free, With or Without Univalence 111:19

each rule of Figure 8 translates gracefully into a corresponding 𝜆Prolog predicate, making the
corresponding source code very close to the presentation of §4.4. However, the Trocq plugin must
also implement a much less trivial annotation inference algorithm, so as to hide the management
of sort annotations to Coq users.
In this section we illustrate how the Trocq plugin covers the motivating examples given in

Section 1. The supplementary material contains more examples, including an example of transfer
from Z to a quotient Z⇑𝑝Z6, as well as examples showing that Trocq can be used to perform setoid
rewriting7 and generalized rewriting8.

5.1 Example 1.1: transferring induction principles

The corresponding code to this example is available in the supplementary material9. Now recall
that the problem here is obtain by proof transfer the following elimination scheme:

N_ind : ∀ P : N → ◻, P ON → (∀ n : N, P n → P (SN n)) → ∀ n : N, P n.

We first need to inform Trocq of three facts: that there is a split injection from N to N, that zeros
are related, and that successors are related:

NR : Param2a3.Rel N N
OR : rel NR ON ON
SR : ∀ m n, rel NR m n → rel NR (SN m) (SN n).

Trocq is now able to generate and apply the implication:

(∀ P : N → ◻, P ON → (∀ n : N, P n → P (SN n)) → ∀ n : N, P n)
→ ∀ P : N → ◻, P ON → (∀ n : N, P n → P (SN n)) → ∀ n : N, P n

5.2 Example 1.2: transferring results to a subtype

We setup an axiomatic context in Appendix E so as to state the goal on the type R≥0 of positive
reals.10 We prove the relation between this type and its extension R≥0, their respective binary
additions, infinite sums, and we declare them to Trocq. We can then prove:

Lemma ΣR≥0_add : forall u v : summable, ΣR≥0 (u + v) = ΣR≥0 u + ΣR≥0 v.
Proof. trocq; exact: Σ

R≥0
_add. Qed.

6 RELATEDWORK AND PERSPECTIVES

The functionalities of the prototype plugin presented in § 5 can be extended in several directions. It
would be particularly fruitful to connect it with tools able to automate the generation of equivalence
proofs, such as Pumpkin Pi [Ringer et al. 2021]. Other improvements, e.g., addressing the case of
Coq’s impredicative sort, involve non-trivial implementation issues, related to Coq’s management
of universe polymorphism. We now discuss how the current state of this prototype compares
with other implemented approaches to proof transfer in interactive theorem proving, listed in
chronological order in the summary Table 1. For each such tool, the table indicates whether a given
feature is available (✓), not available (✗) or only partially available (✐ and ➡).

6File int_to_Zp.v
7File trocq_setoid_rewrite.v
8File trocq_gen_rewrite.v
9See file peano_bin_nat.v.
10Also see file summable.v

111:20 Cyril Cohen, Enzo Crance, and Assia Mahboubi

In the context of type theory, the idea that the computational content of type isomorphisms can
be used for proof transfer already appears in [Barthe and Pons 2001]. The first implementation
report of a tool based on this idea appeared soon after [Magaud 2003]. Implemented in a meta-
language and based on proof rewriting, this heuristic translation was producing a candidate proof
term from a given proof term, with no formal guarantee, not even that of being well-typed. As
mentioned in § 2.1, generalized rewriting [Sozeau 2009], which generalizes setoid rewriting to
preorders, is also a variant of proof transfer, albeit within the same type. As such, it allows in
particular rewriting under binders. The restriction to homogeneous relations however excludes
applications to quasi partial equivalence relations (QPER) [Krishnaswami and Dreyer 2013], or to
datatype representation change.

The other proof transfer methods we are aware of all address the case of heterogeneous relations.
Incidentally, they can thus also be used for the homogeneous case, as illustrated in § 2.1, although
this special case is seldom emphasized. The Coq Effective Algebra Library (CoqEAL) [Cohen et al.
2013; Dénès et al. 2012] and the Isabelle/HOL transfer package [Haftmann et al. 2013; Huffman and
Kunčar 2013; Lammich 2013; Lammich and Lochbihler 2019], pioneered the use of parametricity-
based methods for proof transfer, motivated by the refinement of proof-oriented data-structures
to computation-oriented counterparts. Together with a subsequent generalization of the CoqEAL
approach [Zimmermann and Herbelin 2015], these tools address the case of a transfer between a
subtype of a certain type 𝐴 and a quotient of a certain type 𝐵, i.e., the case of trivial QPER in which
the zig-zag morphism is a partial surjection from 𝐴 to 𝐵.

The next two columns of the table concern proof transfer in presence of the univalence principle,
either axiomatic, in the case of univalent parametricity [Tabareau et al. 2021] or computational,
in the case of [Angiuli et al. 2021b]. Key ingredients of the univalent parametricity were already
present in earlier seemingly unpublished work [Anand and Morrisett 2017], implemented using an
outdated ancestor of the MetaCoq library [Sozeau et al. 2020].

Table 1 indicates which tools can transfer along heterogeneous relations, as this is a prerequisite
to changing type representation, and which ones operate by proving an internal implication lemma,
as opposed to a monolithic translation of an input proof term. We borrow the terminology used
in [Tabareau et al. 2021], in which anticipation refers to the need to define a dedicated structure
for the signature to be transported. Binders can prevent transfer, as well as dependent types. The
latter are recovered in presence of univalence. The first published publication [Tabareau et al.
2018] on the univalent parametricity translation suggested that the translation does not pull the
axiom in when translating terms in the 𝐹𝜔 fragment. However, Trocq can get rid of it for a strictly
larger class of terms. Finally, the table indicates which approaches can deal with quasi-equivalence
relations (QER), and with (explicit) subtyping relations.

In its current state, the Trocq plugin can already address the proof transfer bureaucracy of state-
of-the-art formal proofs, about abstract mathematics or program verification, or both [Allamigeon
et al. 2023]. We expect that our work, once put in production, makes it possible to have the same
lemma applicable to a wide variety of different types: isomorphic types, subtypes, and quotient
types. This framework moreover opens the way to a broader range of extensions, e.g., performing
unification modulo both generalized rewriting and heterogeneous transfer relations, potentially
solving problems sometimes referred to as concept alignment. We conclude with two concrete sticky
issues in interactive theorem proving that such extensions could help addressing. The first one is
the identification of canonical natural number objects in types, e.g., {𝑥 ∶ R ⋃︀ ∃𝑛 ∶ N, 𝑥 = 𝜄(𝑛)}, etc.
The last one is the identification of different parametric constructions, which happen to coincide
for some specific classes of parameters, e.g., the ring Z⇑𝑞Z, defined for all integers 𝑞 > 0, and the
Galois field F𝑞 , defined when 𝑞 = 𝑝𝑘 , happen to be canonically isomorphic if and only if 𝑞 is prime.

Trocq: Proof Transfer for Free, With or Without Univalence 111:21

[M
ag
au
d 2
00
3]

Se
toi
d r
ew
rit
e [
So
zea
u 2
00
9]

C
o
q
E
A
L
[C
oh
en
et
al.
20
13
]

Isa
be
lle
/H
OL

Tr
an
sfe
r (2
01
3)

[Z
im
me
rm
an
n a
nd
He
rbe
lin
20
15
]

[Ta
ba
rea
u e
t a
l. 2
02
1]

[A
ng
iul
i e
t a
l. 2
02
1b
]

Tr
ack
t [B

lot
et
al.
20
23
]

Tr
oc
q (
20
23
)

Heterogeneous relations ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Internal ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

No anticipation ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓

Substitution under ∀ ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓

Substitution in dep. types ✓ ✗ ✗ ✗ ✗ ✓ ✓ ✗ ✓

No univalence for ? ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✓ ✓

Preorder relations ✗ ✓ ? ? ? ✗ ? ? ✐

Subrelations ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✐

QERs ✗ ✐ ➡ ➡ ➡ ✗ ✓ ✗ ➡

Subtyping relations ✗ ✗ ➡ ➡ ➡ ✗ ✗ ➡ ➡

System C
o
q

C
o
q

C
o
q

Is
a
b
e
lle
/H
O
L

C
o
q

C
o
q
/H
o
T
T

(C
u
b
ic
a
l)
A
g
d
a

C
o
q

C
o
q or

C
o
q
/H
o
T
T

Table 1. Comparison of proof transfer automation devices

REFERENCES

2020. The lean mathematical library. In Proceedings of the 9th ACM SIGPLAN International Conference on Certified Programs
and Proofs, CPP 2020, New Orleans, LA, USA, January 20-21, 2020, Jasmin Blanchette and Catalin Hritcu (Eds.). ACM,
367–381. https://doi.org/10.1145/3372885.3373824

Reynald Affeldt and Cyril Cohen. 2023. Measure Construction by Extension in Dependent Type Theory with Application to
Integration. arXiv:2209.02345 [cs.LO] accepted for publication in JAR.

Xavier Allamigeon, Quentin Canu, and Pierre-Yves Strub. 2023. A Formal Disproof of Hirsch Conjecture. In Proceedings of
the 12th ACM SIGPLAN International Conference on Certified Programs and Proofs, CPP 2023, Boston, MA, USA, January
16-17, 2023, Robbert Krebbers, Dmitriy Traytel, Brigitte Pientka, and Steve Zdancewic (Eds.). ACM, 17–29. https:
//doi.org/10.1145/3573105.3575678

Abhishek Anand and Greg Morrisett. 2017. Revisiting Parametricity: Inductives and Uniformity of Propositions.
arXiv:1705.01163 [cs.LO]

Carlo Angiuli, Guillaume Brunerie, Thierry Coquand, Robert Harper, Kuen-Bang Hou (Favonia), and Daniel R. Licata.
2021a. Syntax and models of Cartesian cubical type theory. Math. Struct. Comput. Sci. 31, 4 (2021), 424–468. https:
//doi.org/10.1017/S0960129521000347

Carlo Angiuli, Evan Cavallo, Anders Mörtberg, and Max Zeuner. 2021b. Internalizing representation independence with
univalence. Proc. ACM Program. Lang. 5, POPL (2021), 1–30. https://doi.org/10.1145/3434293

David Aspinall and Adriana B. Compagnoni. 2001. Subtyping dependent types. Theor. Comput. Sci. 266, 1-2 (2001), 273–309.
https://doi.org/10.1016/S0304-3975(00)00175-4

Gilles Barthe, Venanzio Capretta, and Olivier Pons. 2003. Setoids in type theory. J. Funct. Program. 13, 2 (2003), 261–293.
https://doi.org/10.1017/S0956796802004501

Gilles Barthe and Olivier Pons. 2001. Type Isomorphisms and Proof Reuse in Dependent Type Theory. In Foundations of
Software Science and Computation Structures, Furio Honsell and Marino Miculan (Eds.). Springer Berlin Heidelberg, Berlin,

https://doi.org/10.1145/3372885.3373824
https://arxiv.org/abs/2209.02345
https://doi.org/10.1145/3573105.3575678
https://doi.org/10.1145/3573105.3575678
https://arxiv.org/abs/1705.01163
https://doi.org/10.1017/S0960129521000347
https://doi.org/10.1017/S0960129521000347
https://doi.org/10.1145/3434293
https://doi.org/10.1016/S0304-3975(00)00175-4
https://doi.org/10.1017/S0956796802004501

111:22 Cyril Cohen, Enzo Crance, and Assia Mahboubi

Heidelberg, 57–71.
Andrej Bauer, Jason Gross, Peter LeFanu Lumsdaine, Michael Shulman, Matthieu Sozeau, and Bas Spitters. 2017. The HoTT

library: a formalization of homotopy type theory in Coq. In Proceedings of the 6th ACM SIGPLAN Conference on Certified
Programs and Proofs, CPP 2017, Paris, France, January 16-17, 2017, Yves Bertot and Viktor Vafeiadis (Eds.). ACM, 164–172.
https://doi.org/10.1145/3018610.3018615

Jean-Philippe Bernardy, Patrik Jansson, and Ross Paterson. 2012. Proofs for free - Parametricity for dependent types. J.
Funct. Program. 22, 2 (2012), 107–152. https://doi.org/10.1017/S0956796812000056

Jean-Philippe Bernardy and Marc Lasson. 2011. Realizability and Parametricity in Pure Type Systems. In Foundations
of Software Science and Computational Structures - 14th International Conference, FOSSACS 2011, Held as Part of the
Joint European Conferences on Theory and Practice of Software, ETAPS 2011, Saarbrücken, Germany, March 26-April
3, 2011. Proceedings (Lecture Notes in Computer Science, Vol. 6604), Martin Hofmann (Ed.). Springer, 108–122. https:
//doi.org/10.1007/978-3-642-19805-2_8

Valentin Blot, Denis Cousineau, Enzo Crance, Louise Dubois de Prisque, Chantal Keller, Assia Mahboubi, and Pierre
Vial. 2023. Compositional Pre-processing for Automated Reasoning in Dependent Type Theory. In Proceedings of the
12th ACM SIGPLAN International Conference on Certified Programs and Proofs, CPP 2023, Boston, MA, USA, January
16-17, 2023, Robbert Krebbers, Dmitriy Traytel, Brigitte Pientka, and Steve Zdancewic (Eds.). ACM, 63–77. https:
//doi.org/10.1145/3573105.3575676

Simon Boulier, Pierre-Marie Pédrot, and Nicolas Tabareau. 2017. The next 700 syntactical models of type theory. In
Proceedings of the 6th ACM SIGPLAN Conference on Certified Programs and Proofs, CPP 2017, Paris, France, January 16-17,
2017, Yves Bertot and Viktor Vafeiadis (Eds.). ACM, 182–194. https://doi.org/10.1145/3018610.3018620

Cyril Cohen, Thierry Coquand, Simon Huber, and Anders Mörtberg. 2017. Cubical Type Theory: A Constructive Interpreta-
tion of the Univalence Axiom. FLAP 4, 10 (2017), 3127–3170. http://collegepublications.co.uk/ifcolog/?00019

Cyril Cohen, Maxime Dénès, and Anders Mörtberg. 2013. Refinements for Free!. In Certified Programs and Proofs - Third
International Conference, CPP 2013, Melbourne, VIC, Australia, December 11-13, 2013, Proceedings (Lecture Notes in Computer
Science, Vol. 8307), Georges Gonthier and Michael Norrish (Eds.). Springer, 147–162. https://doi.org/10.1007/978-3-319-
03545-1_10

Thierry Coquand and Gérard P. Huet. 1988. The Calculus of Constructions. Inf. Comput. 76, 2/3 (1988), 95–120. https:
//doi.org/10.1016/0890-5401(88)90005-3

Leonardo de Moura and Sebastian Ullrich. 2021. The Lean 4 Theorem Prover and Programming Language. In Automated
Deduction - CADE 28 - 28th International Conference on Automated Deduction, Virtual Event, July 12-15, 2021, Proceedings
(Lecture Notes in Computer Science, Vol. 12699), André Platzer and Geoff Sutcliffe (Eds.). Springer, 625–635. https:
//doi.org/10.1007/978-3-030-79876-5_37

Maxime Dénès, Anders Mörtberg, and Vincent Siles. 2012. A Refinement-Based Approach to Computational Algebra in Coq.
In Interactive Theorem Proving, Lennart Beringer and Amy Felty (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg,
83–98.

Cvetan Dunchev, Ferruccio Guidi, Claudio Sacerdoti Coen, and Enrico Tassi. 2015. ELPI: Fast, Embeddable, 𝜆Prolog
Interpreter. In Logic for Programming, Artificial Intelligence, and Reasoning - 20th International Conference, LPAR-20 2015,
Suva, Fiji, November 24-28, 2015, Proceedings (Lecture Notes in Computer Science, Vol. 9450), Martin Davis, Ansgar Fehnker,
Annabelle McIver, and Andrei Voronkov (Eds.). Springer, 460–468. https://doi.org/10.1007/978-3-662-48899-7_32

Thom Frühwirth and Frank Raiser. 2011. Constraint Handling Rules: Compilation, Execution, and Analysis.
Sébastien Gouëzel. 2021. Vitali-Carathéodory theorem in mathlib. https://leanprover-community.github.io/mathlib_docs/

measure_theory/integral/vitali_caratheodory.html.
Florian Haftmann, Alexander Krauss, Ondřej Kunčar, and Tobias Nipkow. 2013. Data Refinement in Isabelle/HOL. In

Interactive Theorem Proving, Sandrine Blazy, Christine Paulin-Mohring, and David Pichardie (Eds.). Springer Berlin
Heidelberg, Berlin, Heidelberg, 100–115.

Brian Huffman and Ondřej Kunčar. 2013. Lifting and Transfer: A Modular Design for Quotients in Isabelle/HOL. In Certified
Programs and Proofs, Georges Gonthier and Michael Norrish (Eds.). Springer International Publishing, Cham, 131–146.

Chantal Keller and Marc Lasson. 2012. Parametricity in an Impredicative Sort. In Computer Science Logic (CSL’12) - 26th
International Workshop/21st Annual Conference of the EACSL, CSL 2012, September 3-6, 2012, Fontainebleau, France (LIPIcs,
Vol. 16), Patrick Cégielski and Arnaud Durand (Eds.). Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 381–395.
https://doi.org/10.4230/LIPIcs.CSL.2012.381

Neelakantan R. Krishnaswami and Derek Dreyer. 2013. Internalizing Relational Parametricity in the Extensional Calculus of
Constructions. In Computer Science Logic 2013 (CSL 2013) (Leibniz International Proceedings in Informatics (LIPIcs), Vol. 23),
Simona Ronchi Della Rocca (Ed.). Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 432–451.
https://doi.org/10.4230/LIPIcs.CSL.2013.432

Peter Lammich. 2013. Automatic Data Refinement. In Interactive Theorem Proving, Sandrine Blazy, Christine Paulin-Mohring,
and David Pichardie (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 84–99.

https://doi.org/10.1145/3018610.3018615
https://doi.org/10.1017/S0956796812000056
https://doi.org/10.1007/978-3-642-19805-2_8
https://doi.org/10.1007/978-3-642-19805-2_8
https://doi.org/10.1145/3573105.3575676
https://doi.org/10.1145/3573105.3575676
https://doi.org/10.1145/3018610.3018620
http://collegepublications.co.uk/ifcolog/?00019
https://doi.org/10.1007/978-3-319-03545-1_10
https://doi.org/10.1007/978-3-319-03545-1_10
https://doi.org/10.1016/0890-5401(88)90005-3
https://doi.org/10.1016/0890-5401(88)90005-3
https://doi.org/10.1007/978-3-030-79876-5_37
https://doi.org/10.1007/978-3-030-79876-5_37
https://doi.org/10.1007/978-3-662-48899-7_32
https://leanprover-community.github.io/mathlib_docs/measure_theory/integral/vitali_caratheodory.html
https://leanprover-community.github.io/mathlib_docs/measure_theory/integral/vitali_caratheodory.html
https://doi.org/10.4230/LIPIcs.CSL.2012.381
https://doi.org/10.4230/LIPIcs.CSL.2013.432

Trocq: Proof Transfer for Free, With or Without Univalence 111:23

Peter Lammich and Andreas Lochbihler. 2019. Automatic Refinement to Efficient Data Structures: A Comparison of Two
Approaches. J. Autom. Reason. 63, 1 (2019), 53–94. https://doi.org/10.1007/s10817-018-9461-9

Nicolas Magaud. 2003. Changing Data Representation within the Coq System. In TPHOLs’2003, Vol. 2758. LNCS, Springer-
Verlag. http://www.springerlink.com/openurl.asp?genre=article&issn=0302-9743&volume=2758&spage=87 © Springer-
Verlag.

Érik Martin-Dorel and Guillaume Melquiond. 2016. Proving Tight Bounds on Univariate Expressions with Elementary
Functions in Coq. J. Autom. Reason. 57, 3 (2016), 187–217. https://doi.org/10.1007/s10817-015-9350-4

John C. Mitchell. 1986. Representation Independence and Data Abstraction. In Conference Record of the Thirteenth Annual
ACM Symposium on Principles of Programming Languages, St. Petersburg Beach, Florida, USA, January 1986. ACM Press,
263–276. https://doi.org/10.1145/512644.512669

Rob Nederpelt and Herman Geuvers. 2014. Type Theory and Formal Proof: An Introduction. Cambridge University Press.
https://doi.org/10.1017/CBO9781139567725

Ulf Norell. 2008. Dependently Typed Programming in Agda. In Advanced Functional Programming, 6th International School,
AFP 2008, Heijen, The Netherlands, May 2008, Revised Lectures (Lecture Notes in Computer Science, Vol. 5832), Pieter W. M.
Koopman, Rinus Plasmeijer, and S. Doaitse Swierstra (Eds.). Springer, 230–266. https://doi.org/10.1007/978-3-642-04652-
0_5

Christine Paulin-Mohring. 2015. Introduction to the Calculus of Inductive Constructions. In All about Proofs, Proofs for All,
Bruno Woltzenlogel Paleo and David Delahaye (Eds.). Studies in Logic (Mathematical logic and foundations), Vol. 55.
College Publications. https://inria.hal.science/hal-01094195

John C. Reynolds. 1983. Types, Abstraction and Parametric Polymorphism. In Information Processing 83, Proceedings of the
IFIP 9th World Computer Congress, Paris, France, September 19-23, 1983, R. E. A. Mason (Ed.). North-Holland/IFIP, 513–523.

Talia Ringer, RanDair Porter, Nathaniel Yazdani, John Leo, and Dan Grossman. 2021. Proof repair across type equivalences.
In PLDI ’21: 42nd ACM SIGPLAN International Conference on Programming Language Design and Implementation, Virtual
Event, Canada, June 20-25, 2021, Stephen N. Freund and Eran Yahav (Eds.). ACM, 112–127. https://doi.org/10.1145/
3453483.3454033

Matthieu Sozeau. 2009. A New Look at Generalized Rewriting in Type Theory. J. Formaliz. Reason. 2, 1 (2009), 41–62.
https://doi.org/10.6092/issn.1972-5787/1574

Matthieu Sozeau, Abhishek Anand, Simon Boulier, Cyril Cohen, Yannick Forster, Fabian Kunze, Gregory Malecha, Nicolas
Tabareau, and Théo Winterhalter. 2020. The MetaCoq Project. J. Autom. Reason. 64, 5 (2020), 947–999. https://doi.org/10.
1007/s10817-019-09540-0

Nicolas Tabareau, Éric Tanter, and Matthieu Sozeau. 2018. Equivalences for free: univalent parametricity for effective
transport. Proceedings of the ACM on Programming Languages 2, ICFP (2018), 1–29.

Nicolas Tabareau, Éric Tanter, and Matthieu Sozeau. 2021. The marriage of univalence and parametricity. Journal of the
ACM (JACM) 68, 1 (2021), 1–44.

Enrico Tassi. 2019. Deriving proved equality tests in Coq-elpi: Stronger induction principles for containers in Coq. In ITP
2019 - 10th International Conference on Interactive Theorem Proving. Portland, United States. https://doi.org/10.4230/
LIPIcs.CVIT.2016.23

The Coq Development Team. 2022. The Coq Proof Assistant. https://doi.org/10.5281/zenodo.7313584
The Univalent Foundations Program. 2013. Homotopy Type Theory: Univalent Foundations of Mathematics. https:

//homotopytypetheory.org/book, Institute for Advanced Study.
Andrea Vezzosi, Anders Mörtberg, and Andreas Abel. 2019. Cubical agda: a dependently typed programming language with

univalence and higher inductive types. Proc. ACM Program. Lang. 3, ICFP (2019), 87:1–87:29. https://doi.org/10.1145/
3341691

Philip Wadler. 1989. Theorems for Free!. In Proceedings of the fourth international conference on Functional programming
languages and computer architecture, FPCA 1989, London, UK, September 11-13, 1989, Joseph E. Stoy (Ed.). ACM, 347–359.
https://doi.org/10.1145/99370.99404

Théo Zimmermann and Hugo Herbelin. 2015. Automatic and Transparent Transfer of Theorems along Isomorphisms in
the Coq Proof Assistant. In Conference on Intelligent Computer Mathematics. Washington, D.C., United States. https:
//hal.science/hal-01152588

https://doi.org/10.1007/s10817-018-9461-9
http://www.springerlink.com/openurl.asp?genre=article&issn=0302-9743&volume=2758&spage=87
https://doi.org/10.1007/s10817-015-9350-4
https://doi.org/10.1145/512644.512669
https://doi.org/10.1017/CBO9781139567725
https://doi.org/10.1007/978-3-642-04652-0_5
https://doi.org/10.1007/978-3-642-04652-0_5
https://inria.hal.science/hal-01094195
https://doi.org/10.1145/3453483.3454033
https://doi.org/10.1145/3453483.3454033
https://doi.org/10.6092/issn.1972-5787/1574
https://doi.org/10.1007/s10817-019-09540-0
https://doi.org/10.1007/s10817-019-09540-0
https://doi.org/10.4230/LIPIcs.CVIT.2016.23
https://doi.org/10.4230/LIPIcs.CVIT.2016.23
https://doi.org/10.5281/zenodo.7313584
https://homotopytypetheory.org/book
https://homotopytypetheory.org/book
https://doi.org/10.1145/3341691
https://doi.org/10.1145/3341691
https://doi.org/10.1145/99370.99404
https://hal.science/hal-01152588
https://hal.science/hal-01152588

111:24 Cyril Cohen, Enzo Crance, and Assia Mahboubi

A THE CALCULUS OF CONSTRUCTIONS WITH UNIVERSES 𝐶𝐶𝜔

We recall the rules of the calculus of constructions (e.g. [Nederpelt and Geuvers 2014; Paulin-
Mohring 2015]) in figure 11, and rely on folklore definitions of the relation ≼.

Γ ⊢𝑀 ∶ 𝐴 Γ ⊢ 𝐴 ≡ 𝐵
Γ ⊢𝑀 ∶ 𝐵

(Conv)
Γ ⊢

Γ ⊢ ◻𝑖 ∶ ◻𝑖+1
(Sort)

(𝑥,𝐴) ∈ Γ Γ ⊢
Γ ⊢ 𝑥 ∶ 𝐴

(Var)

Γ ⊢ 𝐴 ∶ ◻𝑖 𝑥 ∉ Var(Γ)
Γ, 𝑥 ∶ 𝐴 ⊢

(Context)
Γ ⊢𝑀 ∶ Π𝑥 ∶ 𝐴. 𝐵 Γ ⊢ 𝑁 ∶ 𝐴

Γ ⊢𝑀 𝑁 ∶ 𝐵(︀𝑥 ∶= 𝑁 ⌋︀
(App)

Γ, 𝑥 ∶ 𝐴 ⊢𝑀 ∶ 𝐵
Γ ⊢ 𝜆𝑥 ∶ 𝐴.𝑀 ∶ Π𝑥 ∶ 𝐴. 𝐵

(Lam)
Γ ⊢ 𝐴 ∶ ◻𝑖 Γ, 𝑥 ∶ 𝐴 ⊢ 𝐵 ∶ ◻𝑖

Γ ⊢ Π𝑥 ∶ 𝐴. 𝐵 ∶ ◻𝑖
(Pi)

Fig. 11. typing rules for 𝐶𝐶𝜔

B ERASURE OF ANNOTATIONS

We show that our extension is conservative over 𝐶𝐶𝜔 , by defining an erasure function for terms
⋃︀ ⋅ ⋃︀− ∶ 𝒯𝐶𝐶+𝜔 → 𝒯𝐶𝐶𝜔

and for contexts, defined in Figure 12.

⋂︀ ◻𝐶𝑖 ⋂︀
− ∶= ◻𝑖 ⋃︀ 𝜀 ⋃︀− ∶= 𝜀

⋃︀Π𝑥 ∶ 𝐴. 𝐵 ⋃︀− ∶= Π𝑥 ∶ ⋃︀𝐴 ⋃︀− . ⋃︀𝐵 ⋃︀− ⋃︀ Γ, 𝑥 ∶ 𝐴 ⋃︀− ∶= Γ, 𝑥 ∶ ⋃︀𝐴 ⋃︀−

⋃︀𝜆𝑥 ∶ 𝐴. 𝐵 ⋃︀− ∶= 𝜆𝑥 ∶ ⋃︀𝐴 ⋃︀− . ⋃︀𝐵 ⋃︀−

⋃︀𝑇 𝑈 ⋃︀− ∶= ⋃︀𝑇 ⋃︀− ⋃︀𝑈 ⋃︀−

⋃︀𝑥 ⋃︀− ∶= 𝑥

Fig. 12. Erasure function from 𝐶𝐶
+
𝜔 to 𝐶𝐶𝜔

We show that the erasure of subtyping is convertibility in 𝐶𝐶𝜔 :

Lemma B.1 (Subtyping erasure).

Γ ⊢𝐶𝐶+𝜔 𝐴 ≼ 𝐵 Ô⇒ ⋃︀ Γ ⋃︀− ⊢𝐶𝐶𝜔
⋃︀𝐴 ⋃︀− ≡ ⋃︀𝐵 ⋃︀−

Proof. By induction on the derivation. □

Finally we show that our extension is conservative

Theorem B.2 (Annotation erasure).

Γ ⊢𝐶𝐶+𝜔 𝑡 ∶ 𝐴 Ô⇒ ⋃︀ Γ ⋃︀− ⊢𝐶𝐶𝜔
⋃︀ 𝑡 ⋃︀− ≡ ⋃︀𝐴 ⋃︀−

Proof. By induction on the derivation. □

Trocq: Proof Transfer for Free, With or Without Univalence 111:25

C ERASURE OF TROCQ TO PARAM
We show that Trocq entails raw parametricity after all annotations are erased.

Theorem C.1 (Erasure of Trocq).

∀𝑡,𝐴, 𝑡 ′, 𝑡𝑅 ∈ 𝒯𝐶𝐶+𝜔 , Δ ⊢ 𝑡 @ 𝐴 ∼ 𝑡 ′ ∵ 𝑡𝑅 Ô⇒ ⋃︀Δ ⋃︀− ⊢ ⋃︀ 𝑡 ⋃︀− ∼ ⋂︀ 𝑡 ′ ⋂︀− ∵ rel∗(𝑡𝑅)
where

rel∗(𝑀𝑁) ∶= rel∗(𝑀) rel∗(𝑁)
rel∗(𝜆𝑥 .𝑡) ∶= 𝜆𝑥 .rel∗(𝑡)

rel∗(𝑡) ∶= rel(𝑡)

⋃︀ 𝜀 ⋃︀− ∶= 𝜀

⋂︀Δ, 𝑥 @ 𝐴 ∼ 𝑥 ′ ∵ 𝑥𝑅 ⋂︀
− ∶= ⋃︀Δ ⋃︀− , 𝑥 ∼ 𝑥 ′ ∵ 𝑥𝑅

Proof. By induction on the derivation. □

D RECOVERING UPARAM FROM TROCQ
We show we can recover univalent parametricity by defining a maximal annotation function for
terms ⋃︀ ⋅ ⋃︀+ ∶ 𝒯𝐶𝐶𝜔

→ 𝒯𝐶𝐶+𝜔 and for contexts, defined in Figure 13.

⋃︀ ◻𝑖 ⋃︀+ ∶= ◻⊺𝑖
⋃︀Π𝑥 ∶ 𝐴. 𝐵 ⋃︀+ ∶= Π𝑥 ∶ ⋃︀𝐴 ⋃︀+ . ⋃︀𝐵 ⋃︀+

⋃︀𝜆𝑥 ∶ 𝐴. 𝐵 ⋃︀+ ∶= 𝜆𝑥 ∶ ⋃︀𝐴 ⋃︀+ . ⋃︀𝐵 ⋃︀+

⋃︀𝑇 𝑈 ⋃︀+ ∶= ⋃︀𝑇 ⋃︀+ ⋃︀𝑈 ⋃︀+

⋃︀𝑥 ⋃︀+ ∶= 𝑥

⋃︀ 𝜀 ⋃︀+ ∶= 𝜀
⋃︀ Γ, 𝑥 ∶ 𝐴 ⋃︀+ ∶= Γ, 𝑥 ∶ ⋃︀𝐴 ⋃︀+

Fig. 13. Maximal annotation function from 𝐶𝐶𝜔 to 𝐶𝐶
+
𝜔

Indeed, we have the following theorem.

Theorem D.1 (Maximal Trocq).

∀𝑡,𝐴, 𝑡 ′, 𝑡𝑅 ∈ 𝒯𝐶𝐶𝜔
, Δ ⊢ ⋃︀ 𝑡 ⋃︀+ @ ⋃︀𝐴 ⋃︀+ ∼ ⋂︀ 𝑡 ′ ⋂︀+ ∵ ⋃︀ 𝑡𝑅 ⋃︀+ ⇐⇒ ⋃︀Δ ⋃︀− ⊢𝑢 𝑡 ∼ 𝑡 ′ ∵ 𝑡𝑅 ∧ 𝛾(Δ) ⊢ 𝑡 ∶ 𝐴

Proof. By induction on the derivation. □

E DETAILED EXAMPLE

(* We postulate the bare minimum about non-negative reals *)
Axioms (R≥0 : Type) (OR≥0 : R≥0) (+R≥0 : R≥0 → R≥0 → R≥0).
(* Non-negative extended reals are a trivial extension *)

Inductive R≥0 : Type := Fin : R≥0 → R≥0 | Inf : R≥0.
(* We define the notions of sequences of numbers *)

111:26 Cyril Cohen, Enzo Crance, and Assia Mahboubi

Definition seq
R≥0

:= nat → R≥0.
Definition seqR≥0 := nat → R≥0.
(* Addition on the extended non-negative reals is definable *)

Definition a +
R≥0

b : R≥0 := match a, b with

Fin x, Fin y ⇒ Fin (r1 +R≥0 r2) | _, _ ⇒ Inf end.
(* We can derive the addition on sequences *)
Definition u +seq

R≥0
v : seq

R≥0
:= fun n ⇒ u n +

R≥0
v n.

(* We now postulate the unconditional infinite summation
on extended non-negative reals and its linearity *)

Axiom Σ
R≥0

: seq
R≥0
→ R≥0.

Axiom Σ
R≥0

_add : forall u v : seq
R≥0

, Σ
R≥0

(u + v) = Σ
R≥0

u + Σ
R≥0

v.

(* We define the notion of summable sequence *)

Definition isFin (a : R≥0) := match a with Fin _ ⇒ true | _ ⇒ false end.
Definition truncate (a : R≥0) := match a with Fin x ⇒ x | _ => OR≥0 end.
Definition isSummable (u : seqR≥0) := isFin (Σ

R≥0
(Fin ○ u)).

(* We define the type of summable sequences *)
Record summable := {to_seq :> seqR≥0; _ : isSummable to_seq}.

(* We postulate that summability is preserved by binary addition *)
Axiom summable_add :
forall u v : summable, isSummable (fun n ⇒ u n +R≥0 v n) = true.

Definition u +summable v : summable := Build_summable _ (Σ
R≥0

_add u v).

(* We define infinite sums on summable sequences *)
Definition ΣR≥0 (u : summable) : R≥0 := truncate (Σ

R≥0
(Fin ○ u)).

We then register various lemmas in Trocq, so that tactic trocq can achieve the desired transfer.

(* Finally, we transfer the proof *)
Lemma ΣR≥0_add : forall u v : summable, ΣR≥0 (u + v) = ΣR≥0 u + ΣR≥0 v.
Proof. trocq; exact: Σ

R≥0
_add. Qed.

	Abstract
	1 Introduction
	2 Strengths and limits of univalent parametricity
	2.1 Proof transfer in type theory
	2.2 Type equivalences, univalence
	2.3 Parametricity translations

	3 Type equivalence in kit
	3.1 Disassembling type equivalence
	3.2 Reassembling type equivalence
	3.3 Populating the hierarchy of relations

	4 A calculus for proof transfer
	4.1 Raw parametricity sequents
	4.2 Univalent parametricity sequents
	4.3 Annotated type theory
	4.4 The Trocq calculus
	4.5 Constants

	5 Implementation and applications
	5.1 Example 1.1: transferring induction principles
	5.2 Example 1.2: transferring results to a subtype

	6 Related work and perspectives
	References
	A The calculus of constructions with universes CC
	B Erasure of annotations
	C Erasure of Trocq to Param
	D Recovering UParam from Trocq
	E Detailed example

