
HAL Id: hal-04177913
https://hal.science/hal-04177913v1

Preprint submitted on 6 Aug 2023 (v1), last revised 24 Jan 2024 (v5)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Trocq: Proof Transfer for Free, With or Without
Univalence

Cyril Cohen, Enzo Crance, Assia Mahboubi

To cite this version:
Cyril Cohen, Enzo Crance, Assia Mahboubi. Trocq: Proof Transfer for Free, With or Without Uni-
valence. 2023. �hal-04177913v1�

https://hal.science/hal-04177913v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

111

Trocq: Proof Transfer for Free, With or Without Univalence

CYRIL COHEN∗, Université Côte d’Azur, Inria, France
ENZO CRANCE∗,Mitsubishi Electric R&D Centre Europe, France and Nantes Université, École Centrale

Nantes, CNRS, INRIA, LS2N, UMR 6004, France

ASSIA MAHBOUBI∗, Nantes Université, École Centrale Nantes, CNRS, INRIA, LS2N, UMR 6004, France

In interactive theorem proving, a range of different representations may be available for a single mathematical

concept, and some proofs may rely on several representations. Without automated support such as proof

transfer, theorems available with different representations cannot be combined, without light to major manual

input from the user. Tools with such a purpose exist, but in proof assistants based on dependent type theory,

it still requires human effort to prove transfer, whereas it is obvious and often left implicit on paper.

This paper presents Trocq, a new proof transfer framework, based on a generalization of the univalent

parametricity translation, thanks to a new formulation of type equivalence. This translation takes care to

avoid dependency on the axiom of univalence for transfers in a delimited class of statements, and may be

used with relations that are not necessarily isomorphisms. We motivate and apply our framework on a set of

examples designed to show that it unifies several existing proof transfer tools. The article also discusses an

implementation of this translation for the Coq proof assistant, in the Coq-Elpi meta-language.

CCS Concepts: • Theory of computation→ Type theory.

Additional Key Words and Phrases: Parametricity, Representation independence, Univalence, Proof assistants

1 INTRODUCTION
Formalized mathematics is the art of devising explicit data structures for every object and statement

of the mathematical literature, in a certain choice of foundational formalism. As one would expect,

several such explicit representations are most often needed for a same mathematical concept.

Sometimes, these different choices are made explicit on paper: multivariate polynomials can for

instance be represented as lists of coefficient-monomial pairs, e.g., when computing Gröbner bases,

but also as univariate polynomials with polynomial coefficents, e.g., for the purpose of projecting
algebraic varieties. The conversion between these equivalent data structures will however remain

implicit on paper, as they code in fact for the same free commutative algebra. In some other cases,

implementation details are just ignored on paper, e.g., when a proof involves both reasoning with

Peano arithmetic and computing with large integers.

Example 1.1 (Relating proof-oriented data-structures with computation-oriented ones). The standard
library of the Coq proof assistant [The Coq Development Team 2022] actually proposes two data

structures for representing natural numbers. Type N uses a unary representation, so that the

associated elimination principle N_ind expresses the usual recurrence scheme:

Inductive N :=
| ON : N
| SN (n : N) : N.

N_ind : ∀ P : N → ◻, P ON → (∀ n : N, P n → P (S n)) → ∀ n : N, P n.

∗
All authors contributed equally to this research.

Authors’ addresses: Cyril Cohen, cyril.cohen@inria.fr, Université Côte d’Azur, Inria, 2004 route des Lucioles, Valbonne,

France, 06902; Enzo Crance, Mitsubishi Electric R&D Centre Europe, Rennes, France, 35700 and Nantes Université, École

Centrale Nantes, CNRS, INRIA, LS2N, UMR 6004, Nantes, France, 44300; Assia Mahboubi, AssiaMahboubi, Nantes Université,

École Centrale Nantes, CNRS, INRIA, LS2N, UMR 6004, Nantes, France, 44000-F.

HTTPS://ORCID.ORG/0000-0003-3540-1050
HTTPS://ORCID.ORG/0000-0002-0498-0910
HTTPS://ORCID.ORG/0002-0312-5461
https://orcid.org/0000-0003-3540-1050
https://orcid.org/0000-0002-0498-0910
https://orcid.org/0002-0312-5461

111:2 Cyril Cohen, Enzo Crance, and Assia Mahboubi

Type N uses a binary representation positive of non-negative integers, as sequences of bits

with a head 1, and is thus better suited for coding efficient arithmetic operations. The successor

function SN : N → N is no longer a constructor of the type, but can be implemented as a program,

via an auxiliary successor function Spos for type positive .

Inductive positive : Set := Inductive N : Set :=
| xI : positive → positive (* p1 *) | ON : N
| xO : positive → positive (* p0 *) | Npos : positive → N.
| xH : positive. (* 1 *)

Fixpoint Spos (p : positive) : positive :=
match p with xH ⇒ xO xH | xO p ⇒ xI p | xI p ⇒ xO (Spos p) end.

Definition SN (n : N) :=
match n with Npos p ⇒ Npos (Spos p) | _ ⇒ Npos xH end.

This successor is useful to implement conversions ↑N ∶ N → N and ↓N ∶ N → N between the

unary and binary representations. These conversion functions are in fact inverses of each other.

The natural recurrence scheme on natural numbers thus transfers to type N :

N_ind : ∀ P : N → ◻, P ON → (∀ n : N, P n → P (SN n)) → ∀ n : N, P n.

Incidentally, N_ind can be proved from N_ind by using only the fact that ↓N is a left inverse of↑N, and the following compatibility lemma:

∀𝑛 ∶ N, ↓N (SN 𝑛) = SN (↓N 𝑛)
Program verification supplies numerous examples of proof transfer use-cases, but this issue goes

way beyond computational concerns. For instance, the formal study of summation and integration,

in basic real analysis, provides a classic example of frustrating proof transfer bureaucracy.

Example 1.2 (Extended domains). Given a sequence (𝑢𝑛)𝑛∈N of non-negative real numbers, i.e.,
a function 𝑢 ∶ N → (︀0,+∞(︀, 𝑢 is said to be summable when the sequence (∑𝑛

𝑘=0𝑢𝑘)𝑛∈N has a

finite limit, denoted ∑𝑢. Now for two summable sequences 𝑢 and 𝑣 , it is easy to see that 𝑢 + 𝑣 , the
point-wise addition of 𝑢 and 𝑣 , is also a summable sequence, and that:

∑(𝑢 + 𝑣) =∑𝑢 +∑ 𝑣 (1)

Making the definition of the real number ∑𝑢 depend on a summability witness does not scale, as

every other algebraic operation “under the sum” then requires a new proof of summability. In a

classical setting, the standard approach rather assigns a default value to the case of an infinite sum,

for instance by introducing an extended domain (︀0,+∞⌋︀, and extending the addition operation

to the extra +∞ case. Now for a sequence 𝑢 ∶ N → (︀0,+∞⌋︀, the limit ∑𝑢 is always defined, as

increasing partial sums either converge to a finite limit, or diverge to +∞. The road map is then

to prove first that Equation 1 holds for any two sequences of extended non-negative numbers.

The result is then transferred to the special case of summable sequences of non-negative numbers.

Major libraries of formalized mathematics including Lean’s mathlib [DBL 2020], Isabelle/HOL’s
Archive of Formal Proofs, coq-interval [Martin-Dorel and Melquiond 2016] or Coq’s mathcomp-
analysis [Affeldt and Cohen 2023], resort to such extended domains and transfer steps, notably for

defining measure theory. Yet, as reported by expert users [Gouëzel 2021], the associated transfer

Trocq: Proof Transfer for Free, With or Without Univalence 111:3

bureaucracy is essentially done manually and thus significantly clutters formal developments in

real and complex analysis, probabilities, etc.

While formalizing mathematics in practice, users of interactive theorem provers as well should

be allowed to elude mundane arguments pertaining to proof transfer, as they would on paper, and

spare themselves the related, quickly overwhelming bureaucracy. Yet, they still need to convince

the proof checker and thus have to provide explicit transfer proofs, albeit ideally automatically

generated ones. The present work aims at providing a general method for implementing this nature

of automation, for a diverse range of proof transfer problems.

In this paper, we focus on interactive theorem provers based on dependent type theory, such as

Coq, Agda [Norell 2008] or Lean [de Moura and Ullrich 2021]. These proof management systems

are genuine functional programming languages, with full-spectrum dependent types, a context in

which representation independence meta-theorems can be turned into concrete instruments for

achieving program and proof transfer.

Seminal results on the contextual equivalence of distinct implementations of a same abstract

interface were obtained for system F, using logical relations [Mitchell 1986] and parametricity

meta-theorems [Reynolds 1983; Wadler 1989]. In the context of type theory, such meta-theorems

can be turned into syntactic translations of the type theory of interest into itself, automating this

way the generation of the statement and the proof of parametricity properties for type families

and for programs. Such syntactic relational models can accommodate dependent types [Bernardy

and Lasson 2011], inductive types [Bernardy et al. 2012] and in fact the full Calculus of Inductive

Constructions, including its impredicative sort [Keller and Lasson 2012].

In particular, the univalent parametricity translation [Tabareau et al. 2021] makes benefit of

the univalence axiom [Univalent Foundations Program 2013] so as to transfer programs and

theorems using established equivalences of types. This approach crucially removes the need for

devising an explicit common interface for the types in relation. In presence of an internalized

univalence axiom and of higher-inductive types, the structure invariance principle provides internal
representation independence results, for more general relational correspondences between types

than equivalences [Angiuli et al. 2021]. This last approach is thus particularly relevant in the frame

of cubical type theory [Cohen et al. 2017; Vezzosi et al. 2019]. Indeed, a computational interpretation

of the univalence axiom brings computational adequacy to otherwise possibly stuck terms, those

resulting from a transfer involving an axiomatized univalence principle.

Unfortunately, a Swiss-army knife for automating the bureaucracy of proof transfer is still

missing from the arsenal available to users of major proof assistants like Coq, Lean or Agda. Besides
implementation concerns, the above examples actually illustrate fundamental limitations to the

scope of existing approaches:

Univalence is overkill. Both univalent parametricity and the structure invariance principle can

be used to derive the statement and the proof of the induction principle N_ind of Example 1.1,

from the elimination scheme of type N. But up to our knowledge, all the existing methods for

automating this implication will pull in the univalence principle in the proof, although it can be

obtained by hand by very elementary means. This is all the more frustrating that the univalence

axiom is incompatible with proof irrelevance, a commonly assumed axiom in libraries formalizing

classical mathematics, as Lean’s mathlib.

Equivalences are not enough, neither are quotients. Univalent parametricity cannot help with our

Example 1.2, as it is geared towards equivalences. But in this case, we are in fact not aware of an

implemented method which would apply. In particular, the structure invariance principle does not

apply as such in such an instance of quasi-PER [Krishnaswami and Dreyer 2013].

111:4 Cyril Cohen, Enzo Crance, and Assia Mahboubi

This leads us to the crux of our problem: existing techniques for transferring results from one

type to another, e.g., from N to N or from extended real numbers to real numbers, are either not

suitable for dependent types, or too coarse to track the exact amount of data needed in a given

proof, and not more.

Contributions. This paper presents three contributions:● A parametricity framework à la carte, which generalizes [Tabareau et al. 2021]’s univalent

parametricity translation, as well as refinements à la CoqEAL [Cohen et al. 2013] or gen-

eralized rewriting [Sozeau 2009]. Its pivotal ingredient is an appropriate, and up to our

knowledge novel, phrasing of type equivalence, which allows for a finer-grained control of

the data propagated by the translation.● A conservative subtyping extension of 𝐶𝐶𝜔 [Coquand and Huet 1988], used to formulate

an inference algorithm for the synthesis of parametricity proofs.● The implementation of a new parametricity plugin for the Coq proof assistant, using the

Coq-Elpi [Tassi 2019] meta-language. This plugin is based on original supporting formal

proofs, conducted on top of the HoTT library [Bauer et al. 2017], and distributed with a

collection of application examples.

Outline. The rest of this paper is organized as follows. Section 2 introduces proof transfer and recalls
the principle, strengths and weaknesses of the univalent parametricity translation. In Section 3, we

present a new definition of type equivalence and we put this definition to good use in a hierarchy of

structures for relations preserved by parametricity. Section 4 then presents a stratified variant of the

univalent parametricity translation. In Section 5, we introduce the technological and programming

choices that drive the implementation of the companion artifact, starting with a short description

of plugin making with Coq-Elpi, and continuing with design choices. In Section 6, we eventually

discuss a few applications, including Examples and 1.1 and 1.2, before concluding in Section 7.

2 STRENGTHS AND LIMITS OF UNIVALENT PARAMETRICITY
We first clarify the essence of proof transfer in dependent type theory (§ 2.1) and briefly recall a

few concepts related to type equivalence and to the univalence principle (§ 2.2). We then review

and discuss the limits of univalent parametricity (§ 2.3).

2.1 Proof transfer in type theory, in practice
Let us first recall the syntax of the Calculus of Constructions, 𝐶𝐶𝜔 , a 𝑙𝑎𝑚𝑏𝑑𝑎-calculus with depen-

dent function types and a predicative hierarchy of universes, denoted ◻𝑖 :
𝐴,𝐵,𝑀, 𝑁 ∶∶= ◻𝑖 ⋃︀ 𝑥 ⋃︀𝑀 𝑁 ⋃︀ _𝑥 ∶ 𝐴.𝑀 ⋃︀ Π𝑥 ∶ 𝐴. 𝐵

We omit the typing rules of the calculus, available in standard presentations [Nederpelt and Geuvers

2014]. We will also use the standard equality type, called propositional equality, as well as dependent

pairs, denoted Σ𝑥 ∶ 𝐴. 𝐵. Proof assistants Coq, Agda and Lean are based on various extensions of

this core, notably with inductive types and with an impredicative sort. When the universe level

does not matter, we will casually remove the annotation and use notation ◻.
In this context, proof transfer from type𝑇1 to type𝑇2 roughly amounts to synthesizing a new type

former𝑄 ∶ 𝑇2 → ◻, i.e., a type parametric in some type𝑇2, from an initial type former 𝑃 ∶ 𝑇1 → ◻, i.e.,
a type parametric in some type 𝑇1, so as to ensure that for some given relations 𝑅𝑇 ∶ 𝑇1 → 𝑇2 → ◻
and 𝑅◻ ∶ ◻ → ◻ → ◻, there is a proof𝑤 that:

Γ ⊢𝑤 ∶ ∀(𝑡1 ∶ 𝑇1)(𝑡2 ∶ 𝑇2), 𝑅𝑇 𝑡1 𝑡2 → 𝑅◻(𝑃 𝑡1)(𝑄 𝑡2)

Trocq: Proof Transfer for Free, With or Without Univalence 111:5

for a suitable context Γ. This setting generalizes as expected to 𝑘-ary type formers, and to more

pairs of related types. In practice, relation 𝑅◻ is often a right-to-left arrow, i.e., 𝑅◻ 𝐴 𝐵 ≜ 𝐵 → 𝐴, as

in this case the proof𝑤 substantiates a proof step turning goal clause Γ ⊢ 𝑃 𝑡1 into Γ ⊢ 𝑄 𝑡2. Phrased
as such, this synthesis problem is quite loosely specified, and some solutions are in fact too trivial to

be of interest. Consider for instance the case of a functional relation between𝑇2 and𝑇1, with 𝑅𝑇 𝑡1 𝑡2
defined as 𝑡1 = 𝜙 𝑡2, for some 𝜙 ∶ 𝑇2 → 𝑇1. In this case, the composition 𝑃 ○𝜙 is an obvious solution𝑄 ,

but often an uninformative one. Indeed, this composition can only propagate structural arguments,

but does not incorporate additional mathematical proofs of program equivalences, potentially

available in the context. For instance, going back to Example 1.1, both statements Q_trivial and

Q_ok from below can possibly be synthesized from P . The latter is more informative, but can

only be obtained if proofs that relate SN with SN and ON with ON and are available.

P (n : N) : SN n ≠ ON.

Q_trivial (n : N) : SN (↑N n) ≠ ON.
Q_ok (n : N) : SN n ≠ ON.

Automation devices dedicated to proof transfer thus typically consist of a meta-program which

attempts to compute the type former 𝑄 and the proof 𝑤 by induction on the structure of 𝑃 , by

composing registered canonical pairs of related terms, and the corresponding proofs. These tools

differ by the nature of relations they can accommodate, and by the class of type formers they are able

to synthesize. For instance, generalized rewriting [Sozeau 2009], which provides essential support

to formalizations based on setoids [Barthe et al. 2003], addresses the case of homogeneous (and

reflexive) relations, i.e., when 𝑇1 and 𝑇2 coincide. The CoqEAL library [Cohen et al. 2013] provides

another example of such transfer automation tool, geared towards refinements, typically from a

proof-oriented data-structure to a computation-oriented one. It is thus specialized to heterogeneous,

functional relations but restricted to closed, quantifier-free type formers. We now discuss the few

transfer methods which can accommodate dependent types and heterogeneous relations.

2.2 Type equivalences, univalence
Let us first focus on the special case of types related by an equivalence, and start with a few

standard definitions, notations and lemmas. Omitted details can be found in the usual references,

like the Homotopy Type Theory book [Univalent Foundations Program 2013]. Two functions

𝑓 ,𝑔 ∶ 𝐴 → 𝐵 are point-wise equal, denoted 𝑓 ≑𝑔 when their values coincide on all arguments, that is

𝑓 ≑ 𝑔 ∶ Π𝑎 ∶ 𝐴. 𝑓 𝑎 = 𝑔 𝑎. For any type 𝐴, 𝑖𝑑𝐴 denotes _𝑎 ∶ 𝐴.𝑎, the identity function on 𝐴, and we

will write 𝑖𝑑 when the implicit type 𝐴 is not ambiguous.

Definition 2.1 (Type isomorphism, type equivalence). A function 𝑓 ∶ 𝐴 → 𝐵 is an isomorphism,

denoted IsIso(𝑓), if there exists a function 𝑔 ∶ 𝐵 → 𝐴 which satisfies the section and retraction

properties, which respectively assert that 𝑔 is both a pointwise left and right inverse of 𝑓 . An

isomorphism 𝑓 is an equivalence, denoted IsEquiv(𝑓), when it moreover enjoys a last adjunction
property, relating the proofs of the section and retraction properties and ensuring that IsEquiv(𝑓)
is proof-irrelevant.

Two types 𝐴 and 𝐵 are equivalent, denoted 𝐴 ≃ 𝐵, when there is an equivalence 𝑓 ∶ 𝐴 → 𝐵:

𝐴 ≃ 𝐵 ≜ Σ𝑓 ∶ 𝐴 → 𝐵. IsEquiv(𝑓)
Lemma 2.2. Any isomorphism 𝑓 ∶ 𝐴 → 𝐵 is also an equivalence.

The data of an equivalence 𝑒 ∶ 𝐴 ≃ 𝐵 thus include two transport functions, denoted respectively↑𝑒 ∶ 𝐴 → 𝐵 and ↓𝑒 ∶ 𝐵 → 𝐴. They can be used for proof transfer from 𝐴 to 𝐵, using ↑𝑒 at covariant

111:6 Cyril Cohen, Enzo Crance, and Assia Mahboubi

occurrences, and ↓𝑒 at contravariant ones. The univalence principle asserts that equivalent types
are indistinguishable.

Definition 2.3 (Univalence principle). For any two types𝐴 and 𝐵, the canonical map𝐴 = 𝐵 → 𝐴 ≃ 𝐵
is an equivalence.

In variants of 𝐶𝐶𝜔 , the univalence principle can be postulated as an axiom, with no explicit

computational content, as done for instance in the HoTT library for the Coq proof assistant [Bauer

et al. 2017]. Some more recent variants of dependent type theory feature a built-in computational

univalence principle, and are used to implement experimental proof assistants, such as Cubical
Agda. In both cases, the univalence principle provides a powerful proof transfer principle from ◻ to◻, as for any two types 𝐴 and 𝐵 such that 𝐴 ≃ 𝐵, and any 𝑃 ∶ ◻ → ◻, we can obtain that 𝑃 𝐴 ≃ 𝑃 𝐵
as a direct corollary of univalence. Concretely, 𝑃 𝐵 is obtained from 𝑃 𝐴 by appropriately allocating

the transfer functions provided by the equivalence data, a transfer process typically useful in the

context of proof engineering [Ringer et al. 2021].

Going back to our example from § 2.1, transferring along an equivalence N ≃ N will thus produce
Q_trivial from P . In presence of a computational univalence principle, the structure identity

principle can be put to good use for deriving the more informative Q_ok , at the cost of requiring an

explicit interface for the signature to be transported, thus a successor function in our case [Angiuli

et al. 2021]. In the case of an axiomatic univalent principle, it is also possible to achieve this transport

from P to Q_ok , using a method called univalent parametricity [Tabareau et al. 2021], which we

shall discuss in the next section.

2.3 Parametricity translations
Univalent parametricity strengthens the transfer principle provided by the univalence axiom by

combining it with parametricity. In𝐶𝐶𝜔 , the essence of parametricity, which is to devise a relational

interpretation of types, can be turned into an actual syntactic translation, as relations can themselves

be modeled as _-terms in 𝐶𝐶𝜔 . The seminal work of Bernardy et al., Keller and Lasson combines in

what we refer to as a raw parametricity translation, which essentially defines inductively a logical

relation J𝑇 K for any type 𝑇 , as described on Figure 1.

● Context translation:

J ∐︀̃︀ K = ∐︀̃︀ (2)

J Γ, 𝑥 ∶ 𝐴 K = J Γ K, 𝑥 ∶ 𝐴,𝑥 ′ ∶ 𝐴′, 𝑥𝑅 ∶ J𝐴 K 𝑥 𝑥 ′ (3)

● Term translation:

J◻𝑖 K = _𝐴𝐴′. 𝐴 → 𝐴′ → ◻𝑖 (4)

J𝑥 K = 𝑥𝑅 (5)

JΠ𝑥 ∶ 𝐴. 𝐵 K = _𝑓 𝑓 ′.Π(𝑥 ∶ 𝐴)(𝑥 ′ ∶ 𝐴′)(𝑥𝑅 ∶ J𝐴 K 𝑥 𝑥 ′). J𝐵 K(𝑓 𝑥)(𝑓 ′ 𝑥 ′) (6)

J_𝑥 ∶ 𝐴. 𝑡 K = Π(𝑥 ∶ 𝐴)(𝑥 ′ ∶ 𝐴′)(𝑥𝑅 ∶ J𝐴 K 𝑥 𝑥 ′). J 𝑡 K (7)

J𝐴 𝐵 K = J𝐴 K 𝐵 𝐵′ J𝐵 K (8)

Fig. 1. Raw parametricity translation for 𝐶𝐶𝜔 .

This presentation uses the standard convention that 𝑡 ′ is the term obtained from a term 𝑡 by

replacing every variable 𝑥 in 𝑡 with a fresh variable 𝑥 ′. A variable 𝑥 is translated into a variable

Trocq: Proof Transfer for Free, With or Without Univalence 111:7

𝑥𝑅 , where 𝑥𝑅 is a fresh name. The associated abstraction theorem ensures that this translation

preserves typing, in the following sense:

Theorem 2.4. If Γ ⊢ 𝑡 ∶ 𝑇 then J Γ K ⊢ 𝑡 ∶ 𝑇 , J Γ K ⊢ 𝑡 ′ ∶ 𝑇 ′ and J Γ K ⊢ J 𝑡 K ∶ J𝑇 K 𝑡 𝑡 ′.

Proof. See for instance [Keller and Lasson 2012]. □

This translation precisely generates the statements expected from a parametric type family or

program. For instance, the translation of a Π-type, given by Equation 6, is a type of relations on func-
tions, which relates those producing related outputs from related inputs. Concrete implementations

of this translation are available [Keller and Lasson 2012; Tassi 2019], and useful to generate and

prove parametricity properties for type families or for constants, improved induction schemes, etc.

The key observation of univalent parametricity is that, it is possible to preserve the abstraction

theorem while restricting to relations that are in fact (heterogeneous) equivalences. This however

requires a careful design in the translation of universes:

J◻𝑖 K 𝐴 𝐵 ≜ Σ(𝑅 ∶ 𝐴 → 𝐵 → ◻𝑖)(𝑒 ∶ 𝐴 ≃ 𝐵).Π(𝑎 ∶ 𝐴)(𝑏 ∶ 𝐵). 𝑅 𝑎 𝑏 ≃ (𝑎 = ↓𝑒 𝑏)
where J ⋅ K now refers to the univalent parametricity translation, replacing the notation introduced

for the raw variant. This type packages a relation 𝑅 and an equivalence 𝑒 such that 𝑅 is equivalent

to the functional relation associated with ↓𝑒 . Crucially, one can show that under the univalence

axiom, J◻𝑖 K is equivalent to equivalence, that is for any two types 𝐴 and 𝐵, we have:

J◻𝑖 K 𝐴 𝐵 ≃ (𝐴 ≃ 𝐵).
This observation is actually an instance of a more general technique available for constructing

syntactic models of type theory [Boulier et al. 2017]. In these models, a standard way to recover

the abstraction theorem consists in refining the translation into two variants, for terms 𝑇 ∶ ◻𝑖 , that
are also types. Its translation as a term, denoted (︀𝑇 ⌋︀, should be a dependent pair, which equips

a relation with the additional data prescribed by the interpretation J◻𝑖 K of the universe. The

translation J𝑇 K of𝑇 as a type will be the relation itself, that is, the projection of the dependent pair(︀𝑇 ⌋︀ onto its first component, denoted rel((︀𝑇 ⌋︀). We refer to the original publication [Tabareau

et al. 2021, Figure 4] for a complete description of the translation.

We can now phrase the resulting abstraction theorem [Tabareau et al. 2021], where ⊢𝑢 refers to

a typing judgment assuming the univalence axiom:

Theorem 2.5. If Γ ⊢ 𝑡 ∶ 𝑇 then J Γ K ⊢𝑢 (︀ 𝑡 ⌋︀ ∶ J𝑇 K 𝑡 𝑡 ′.

Note that proving the abstraction theorem 2.5 involves in particular proving that:

(︀◻𝑖 ⌋︀ ∶ J◻𝑖+1 K ◻𝑖 ◻𝑖 .
As a consequence, the definition of relation (︀◻𝑖 ⌋︀ uses the univalence principle in an essential way,

in order to prove that the relation in the universe is equivalent to equality on the universe, i.e., to
prove that:

Π𝐴𝐵 ∶ ◻𝑖 . J◻𝑖 K 𝐴 𝐵 ≃ (𝐴 = 𝐵).
Crucially this univalent parametricity translation can be seamlessly extended so as to also make use

of a global context of user-defined equivalences. Now let us go back to our motivating Example 1.1.

A closer look at [Tabareau et al. 2021, Figure 4] reveals why the univalent parametricity translation

can only resort to the univalence axiom in transferring the recurrence principle from type N to

type N . Because of the above remark, on the abstraction theorem for universes, univalence will

actually be necessary as soon as the translated term involves an essential occurrence of a universe◻𝑖 .

111:8 Cyril Cohen, Enzo Crance, and Assia Mahboubi

3 TYPE EQUIVALENCE IN KIT
In this section, we rephrase and split type equivalence into pieces. First in Section. 3.1 we give an

equivalent presentation of type equivalence as a nested sigma type. Then in Section. 3.2, we carve

a hierarchy of relations out of this nested sigma type by selectively picking pieces.

3.1 Disassembling type equivalence
Let us first observe that the Definition 2.1, of type equivalence is quite asymmetrical, although this

fact is somehow put under the rug by the infix 𝐴 ≃ 𝐵 notation. First, the data of an equivalence

𝑒 ∶ 𝐴 ≃ 𝐵 privilege the left-to-right direction, as ↑𝑒 is directly accessible from 𝑒 as its first projection,

while accessing the right-to-left transport requires an additional projection. Second, the statement

of the adjunction property, which we eluded in Definition 2.1, is actually:

Π𝑎 ∶ 𝐴. ap↑𝑒 (𝑠 𝑎) = 𝑟 ○ ↓𝑒
where ap𝑓 (𝑡) is the term 𝑓 𝑢 = 𝑓 𝑣 , for any identity proof 𝑡 ∶ 𝑢 = 𝑣 . This statement uses proofs 𝑠 and

𝑟 , respectively of the section and retraction properties of 𝑒 , but not in a symmetrical way, although

swapping them provides an equivalent definition. This entanglement prevents any hope to trace

the respective roles of each direction of transport, left-to-right or right-to-left, during the course of

a given univalent parametricity translation. Exercise 4.2 in the HoTT book [Univalent Foundations

Program 2013] however suggests a symmetrical wording of the definition of type equivalence, in

terms of functional relations.

Definition 3.1. Any relation 𝑅 ∶ 𝐴 → 𝐵 → ◻𝑖 , is functional, denoted IsFun(𝑅), when:
Π𝑎 ∶ 𝐴. IsContr(Σ𝑏 ∶ 𝐵. 𝑅 𝑎 𝑏)

where for any type 𝑇 , IsContr(𝑇) is the standard contractibility predicate Σ𝑡 ∶ 𝑇 .Π𝑡 ′ ∶ 𝑇 . 𝑡 = 𝑡 ′.
We can now obtain an equivalent but symmetrical characterization of type equivalence, as a

functional relation whose symmetrization is also functional.

Lemma 3.2. For any types 𝐴,𝐵 ∶ ◻𝑖 , the type 𝐴 ≃ 𝐵 is equivalent to:

Σ𝑅 ∶ 𝐴 → 𝐵 → ◻𝑖 . IsFun(𝑅) × IsFun(𝑅−1)
where relation 𝑅−1 ∶ 𝐵 → 𝐴 → ◻𝑖 just swaps the arguments of an arbitrary 𝑅 ∶ 𝐴 → 𝐵 → ◻𝑖 .

Let us sketch a proof of this result, left as an exercise in [Univalent Foundations Program 2013].

We need the following lemma, which explains why IsFun() characterizes functional relations:
Lemma 3.3. For any types 𝐴,𝐵 ∶ ◻𝑖 , we have (𝐴 → 𝐵) ≃ Σ𝑅 ∶ 𝐴 → 𝐵 → ◻𝑖 . IsFun(𝑅).
Proof. The proof goes by chaining the following equivalences:

(Σ𝑅 ∶ 𝐴 → 𝐵 → ◻ . IsFun(𝑅)) ≃ (𝐴 → Σ𝑃 ∶ 𝐵 → ◻. IsContr(Σ𝑏 ∶ 𝐵. 𝑃 𝑏)) ≃ (𝐴 → 𝐵)
□

Proof of Lemma 3.2. The proof goes by chaining the following equivalences:

(𝐴 ≃ 𝐵) ≃ Σ𝑓 ∶ 𝐴 → 𝐵. IsEquiv(𝑓) by definition of (𝐴 ≃ 𝐵)
≃ Σ𝑓 ∶ 𝐴 → 𝐵.Π𝑏 ∶ 𝐵. IsContr(Σ𝑎.𝑓 𝑎 = 𝑏) standard result in HoTT

≃ Σ𝑓 ∶ 𝐴 → 𝐵. IsFun(_(𝑏 ∶ 𝐵)(𝑎 ∶ 𝐴). 𝑓 𝑎 = 𝑏) by definition of IsFun(⋅)
≃ Σ (𝑓 ∶ Σ𝑅 ∶ 𝐴 → 𝐵 → ◻𝑖 . IsFun(𝑅)) . IsFun(𝜋1(𝑓)−1) by Lemma 3.3

≃ Σ𝑅 ∶ 𝐴 → 𝐵 → ◻𝑖 . IsFun(𝑅) × IsFun(𝑅−1) by associativity of Σ

□

Trocq: Proof Transfer for Free, With or Without Univalence 111:9

The symmetrical version of type equivalence provided by Lemma 3.2 however does not expose

explicitly the two transfer functions in its data, although this computational content can be extracted

via first projections of contractibility proofs. In fact, it is possible to devise a definition of type

equivalence which directly provides the two transport functions in its data, while remaining

symmetrical. The essential ingredient of this rewording is the alternative characterization of

functional relations.

Definition 3.4. For any types 𝐴,𝐵 ∶ ◻𝑖 , a relation 𝑅 ∶ 𝐴 → 𝐵 → ◻𝑖 , is a univalent map, denoted
IsUmap(𝑅) when there exists a function𝑚 ∶ 𝐴 → 𝐵 together with proofs 𝑔1 ∶ Π(𝑎 ∶ 𝐴)(𝑏 ∶ 𝐵).𝑚 𝑎 =
𝑏 → 𝑅 𝑎 𝑏 and 𝑔2 ∶ Π(𝑎 ∶ 𝐴)(𝑏 ∶ 𝐵). 𝑅 𝑎 𝑏 →𝑚 𝑎 = 𝑏 such that:

Π(𝑎 ∶ 𝐴)(𝑏 ∶ 𝐵). (𝑔1 𝑎 𝑏) ○ (𝑔2 𝑎 𝑏) ≑ 𝑖𝑑 .
Now comes the crux lemma of this section, formally proved in the companion code.

Lemma 3.5. For any types 𝐴,𝐵 ∶ ◻𝑖 and any relation 𝑅 ∶ 𝐴 → 𝐵 → ◻𝑖
IsFun(𝑅) ≃ IsUmap(𝑅).

Proof. The proof goes by rewording the left hand side, in the following way:

Π𝑥 . IsContr(𝑅 𝑥) ≃ Π𝑥 . Σ(𝑟 ∶ Σ𝑦. 𝑅 𝑥 𝑦).Π(𝑝 ∶ Σ𝑦. 𝑅 𝑥 𝑦). 𝑟 = 𝑝
≃ Π𝑥 . Σ𝑦. Σ(𝑟 ∶ 𝑅 𝑥 𝑦).Π(𝑝 ∶ Σ𝑦. 𝑅 𝑥 𝑦). (𝑦, 𝑟) = 𝑝
≃ Σ𝑓 .Π𝑥 . Σ(𝑟 ∶ 𝑅 𝑥 (𝑓 𝑥)).Π(𝑝 ∶ Σ𝑦. 𝑅 𝑥 𝑦). (𝑓 𝑥, 𝑟) = 𝑝
≃ Σ𝑓 . Σ(𝑟 ∶ Π𝑥 . 𝑅 𝑥 (𝑓 𝑥)).Π𝑥 .Π(𝑝 ∶ Σ𝑦. 𝑅 𝑥 𝑦). (𝑓 𝑥, 𝑟 𝑥) = 𝑝
≃ Σ𝑓 . Σ𝑟 .Π𝑥 .Π𝑦.Π(𝑝 ∶ 𝑅 𝑥 𝑦). (𝑓 𝑥, 𝑟 𝑥) = (𝑦, 𝑝)
≃ Σ𝑓 . Σ𝑟 .Π𝑥 .Π𝑦.Π(𝑝 ∶ 𝑅 𝑥 𝑦). Σ(𝑒 ∶ 𝑓 𝑥 = 𝑦). 𝑟 𝑥 =𝑒 𝑝≃ Σ𝑓 . Σ𝑟 . Σ(𝑒 ∶ Π𝑥 .Π𝑦. 𝑅 𝑥 𝑦 → 𝑓 𝑥 = 𝑦).Π𝑥 .Π𝑦.Π𝑝. (𝑟 𝑥) =𝑒 𝑥 𝑦 𝑝 𝑝

After a suitable reorganization of the sigma types we are left to show that

Σ(𝑟 ∶ Π𝑥 .Π𝑦. 𝑓 𝑥 = 𝑦 → 𝑅 𝑥 𝑦). (𝑒 𝑥 𝑦)○(𝑟 𝑥 𝑦)≑𝑖𝑑 ≃ Σ(𝑟 ∶ Π𝑥 . 𝑅 𝑥 (𝑓 𝑥)).Π𝑥 .Π𝑦.Π𝑝. 𝑟 𝑥 =𝑒 𝑥 𝑦 𝑝 𝑝

which proof we do not detail, referring the reader to the companion code. □

As a direct corollary, we obtain a novel characterization of type equivalence:

Theorem 3.6. For any types 𝐴,𝐵 ∶ ◻𝑖 , we have:(𝐴 ≃ 𝐵) ≃ ⧈⊺ 𝐴 𝐵
where the relation ⧈⊺ 𝐴 𝐵 is defined as:

Σ𝑅 ∶ 𝐴 → 𝐵 → ◻𝑖 . IsUmap(𝑅) × IsUmap(𝑅−1)
The resulting collection of data is now symmetrical, as the reverse direction of the equivalence

based on univalent maps can be obtained by flipping the relation and swapping the two functionality

proofs. If the [-rule for records is verified, symmetry is even definitionally involutive.

3.2 Reassembling type equivalence
Theorem 3.6 obviously ensures that ⧈⊺ is an equivalence relation. but the pivotal observation for

the rest of this paper is the following: it is possible to prove the relation at the universe, that is, to

construct a term of type ⧈⊺ ◻𝑖 ◻𝑖 , which uses the univalence axiom only for the two last pieces of

data, that is, when proving that the relation is included in the graph of the map, and when proving

the coherence property.

111:10 Cyril Cohen, Enzo Crance, and Assia Mahboubi

The rest of the paper is thus devoted to the study and implementation of an improved variant

of Tabareau et al.’s univalent parametricity translation, in which the interpretation of universes

is blown up into a collection of relation structures. We thus introduce a collection of relations on

types, obtained by gradually weakening the structure of equivalence relation.

Definition 3.7. For 𝑛,𝑘 ∈ {0, 1, 2a, 2b, 3, 4}, and 𝛼 = (𝑛,𝑘), we introduce ⧈𝛼 , defined as:

⧈𝛼 ≜ _(𝐴 𝐵 ∶ ◻).Σ(𝑅 ∶ 𝐴 → 𝐵 → ◻).Class𝛼 𝑅
where the map class Class𝛼 𝑅 itself unfolds to (M𝑛 𝑅) × (M𝑘 𝑅

−1), with M𝑛 ∶ (𝐴 → 𝐵 → ◻) → ◻
defined as:

M0 𝑅 ≜ .
M1 𝑅 ≜ (𝐴 → 𝐵)
M2a 𝑅 ≜ Σ𝑚 ∶ 𝐴 → 𝐵.Π𝑎𝑏.𝑚 𝑎 = 𝑏 → 𝑅 𝑎 𝑏

M2b 𝑅 ≜ Σ𝑚 ∶ 𝐴 → 𝐵.Π𝑎𝑏. 𝑅 𝑎 𝑏 →𝑚 𝑎 = 𝑏
M3 𝑅 ≜ Σ𝑚 ∶ 𝐴 → 𝐵. Σ(𝑔1 ∶ Π𝑎𝑏.𝑚 𝑎 = 𝑏 → 𝑅 𝑎 𝑏).Π𝑎 𝑏. 𝑅 𝑎 𝑏 →𝑚 𝑎 = 𝑏
M4 𝑅 ≜ Σ𝑚 ∶ 𝐴 → 𝐵. Σ𝑔1. Σ(𝑔2 ∶ Π𝑎𝑏. 𝑅 𝑎 𝑏 →𝑚 𝑎 = 𝑏).Π𝑎𝑏. (𝑔1 𝑎 𝑏) ○ (𝑔1 𝑎 𝑏) ≑ 𝑖𝑑

For any types 𝐴 and 𝐵, and any 𝑟 ∶ ⧈𝛼 𝐴 𝐵 we will use notations rel(𝑟), map(𝑟) and comap(𝑟) to
refer respectively to the relation, map of type 𝐴 → 𝐵, map of type 𝐵 → 𝐴, included in the data of 𝑟

for a suitable 𝛼 . The relation ⧈(4,4) is also denoted ⧈⊺, in accordance with the notation introduced

in Theorem 3.6. Similarly, ⧈� refers to ⧈(0,0).
Strictly speaking all the constants introduced by definitions 3.7 are also parameterized by a

universe level, but it was omitted here for the sake of readability. The corresponding lattice to the

collection ofM𝑛 dependent tuples is depicted on Figure 2. Each arrow represents an inclusion of

the data packed in the source tuple, into the data packed in the target one. In the code, these tuples

are record types, and nodes on the figure are labeled with the names of the corresponding record

fields introduced by the richer structure.

1

2b

0

2a

map
R_in_map

map_in_R

R_in_mapK

3 4

Fig. 2. Lattice of the stratified parametricity record hierarchy

3.3 The proofs of ⧈𝛼 ◻ ◻
Now that we have a proper definition for ⧈𝛼 , the first question we ask is that of the proofs of ⧈𝛼 .
Indeed, in the raw translation we have ⊢ (⧈�, (. , .)) ∶ ⧈� ◻ ◻, and in the univalent translation there

is a witness 𝑝 such that⊢ 𝑝 ∶ ⧈⊺ ◻◻. Now let us try to figure out what the equivalent of 𝑝 should be in

our system. Let us assume we have a translation (︀ ⋅ ⌋︀ as in the univalent translation. Given Γ ⊢ 𝐴 ∶ ◻,
we would have both (︀𝐴 ⌋︀ ∶ ⧈𝛼 𝐴 𝐴′ but an abstraction theorem would give (︀𝐴 ⌋︀ ∶ J◻ K 𝐴 𝐴′
hence J◻ K = ⧈𝛼 for all 𝛼 , which is not possible.

Trocq: Proof Transfer for Free, With or Without Univalence 111:11

This means we need to update our term parametricity translation to take into account this

annotation. As a second attempt, we define a notation (︀𝐴@ ◻𝛼 ⌋︀ to direct the translation of 𝐴. But

ig we apply it to ◻, we get both
(︀◻@ ◻𝛼 ⌋︀ ∶ ⧈𝛼 ◻ ◻

∶ J◻ K ◻ ◻ by the abstraction theorem

which leads to the same impossibility. This means we need to systematically annotate sorts, so that

the term translation of ◻ now looks like (︀◻𝛾 @ ◻𝛼 ⌋︀. Let us check that we can indeed typecheck

this correctly. We have

(︀◻𝛾 @ ◻𝛼 ⌋︀ ∶ ⧈𝛼 ◻𝛾 ◻𝛾
∶ J◻𝛼 K ◻𝛾 ◻𝛾 by the abstraction theorem

Now we have rel((︀◻𝛼 @ ◻𝛽 ⌋︀) = J◻𝛼 K, hence we must find (︀◻𝛼 @ ◻𝛽 ⌋︀ verifying the two following
constraints:

rel((︀◻𝛼 @ ◻𝛽 ⌋︀) = J◻𝛼 K

(︀◻𝛼 @ ◻𝛽 ⌋︀ ∶ ⧈𝛽 ◻𝛼 ◻𝛼
which is finally consistent.

We provide in the supplementary material
1
the terms 𝑝

𝛼,𝛽
◻ such that (︀◻𝛼 @ ◻𝛽 ⌋︀ = 𝑝𝛼,𝛽◻ . We show

𝑝◻ is well defined over a domain 𝒟◻ ⊆ 𝒜2
. We characterize the terms 𝑝

𝛼,𝛽
◻ that rely on univalence,

and we give an explicit description of 𝒟◻.
Theorem 3.8 (Univalence in 𝑝

𝛼,𝛽
◻). 𝑝

𝛼,(𝑚,𝑛)
◻ uses univalence if and only if (𝑚,𝑛) ∉ {0, 1, 2a}2.

Theorem 3.9 (Characterization of 𝒟◻).
𝒟◻ = {(⊺, (𝑚,𝑛)) ⋃︀ (𝑚,𝑛) ∉ {0, 1, 2a}2}∪ {(𝛼, (𝑚,𝑛)) ⋃︀𝑚,𝑛 ∈ {0, 1, 2a}, 𝛼 ∈ 𝒜}

3.4 Translation of dependent products
The core lemma used to translate dependent products combines parametricity proofs on the domain

and co-domain of the product. In stratified parametricity, this lemma is 𝑝
𝛾

Π and is indexed by the

desired parametricity class, which we provide in the supplementary material
2
. We also have a

function 𝒟Π ∶ 𝒜→ 𝒜2
, which tells us the minimal requirements 𝒟Π(𝛾) = (𝛼, 𝛽) on the arguments

𝐴 and 𝐵 of Π𝑎 ∶ 𝐴. 𝐵 𝑎 in order to get an element in ⧈𝛾 .
We observe that we can define an operator ⋊, such that, 𝑝

(𝑚,𝑛)
Π = 𝑝(𝑚,0)

Π ⋊ 𝑝(𝑛,0)Π . Intuitively, this

operator swaps the contents of the comap part and joins it with the contents from the map part.

Thus, it suffices to define 𝑝
(𝑚,0)
Π and 𝒟Π(𝑚, 0), to recover all values of 𝑝

𝛾

Π and 𝒟Π(𝛾). In particular

𝒟Π(𝑚,𝑛) = ((𝑚𝐴, 𝑛𝐴), (𝑚𝐵, 𝑛𝐵))
where 𝒟Π(𝑚, 0) = ((0, 𝑛𝐴), (𝑚𝐵, 0)) and 𝒟Π(𝑛, 0) = ((0,𝑚𝐴), (𝑛𝐵, 0)) .

We sum up in Figure 3 the values of 𝒟Π(𝑚, 0).
1
File Param_Type.v

2
File Param_Forall.v

111:12 Cyril Cohen, Enzo Crance, and Assia Mahboubi

𝑚 𝒟Π(𝑚, 0)1 𝒟Π(𝑚, 0)2
0 (0, 0) (0, 0)
1 (0, 2a) (1, 0)
2a (0, 4) (2a, 0)
2b (0, 2a) (2b, 0)
3 (0, 4) (3, 0)
4 (0, 4) (4, 0)

𝑚 𝒟→(𝑚, 0)1 𝒟→(𝑚, 0)2
0 (0, 0) (0, 0)
1 (0, 1) (1, 0)
2a (0, 2b) (2a, 0)
2b (0, 2a) (2b, 0)
3 (0, 3) (3, 0)
4 (0, 4) (4, 0)

Fig. 3. Minimal dependencies for dependent and nondependent product at class (𝑚, 0)

3.5 The case of non-dependent products
The minimal dependency analysis gives importance to the difference between dependent and

non-dependent products. It turns out that in the case of a non-dependent product, it is possible to

create a parametricity witness 𝑝
𝛾
→ with less information on the domain 𝐴 of the arrow type 𝐴 → 𝐵,

as well as a function 𝒟→(𝛾). As a result, using a proof on dependent products on an arrow type

would suboptimal, even though it is well-typed which justifies the creation of a special case for the

arrow. The dependencies can be found in Figure 3, where we highlight the differences with the

general dependent product. We provide the witnesses 𝑝
𝛾
→ in the supplementary material.

3

4 PARAMETRICITY TRANSLATIONS AS LOGICAL PROGRAMS
In this section we introduce our parametricity translation. Concrete implementations in a functional

programming language – such as the coq-param plugin for the Coq proof assistant [Keller and

Lasson 2012] implemented in OCaml, or theMetaCoq parametricity plugin [Sozeau et al. 2020],

implemented in Coq – however have to manage explicitly the naming bureaucracy left implicit

behind the “prime” notation convention.

Because we target an implementation in a logic programming language, we can adopt a sequent

style presentation of our translation, which will take care of the “prime” notation in a self-contained

way. The overhead between our presentation and the implementation will thus be minimal.

Since we relate our translation to raw parametricity [Bernardy et al. 2012; Bernardy and Lasson

2011; Keller and Lasson 2012] and univalent parametricity [Tabareau et al. 2021], we rephrase them

in a sequent style as well, which gradually paves the way to our translation.

4.1 Raw parametricity sequents
We introduce parametricity contexts, under the form of a list of triples packaging pairs of related

variables with a witness that they are related:

Ξ ∶∶= Y ⋃︀ Ξ, 𝑥 ∼ 𝑥 ′ ∵ 𝑥𝑅
We denote𝑉𝑎𝑟(Ξ) the sequence of variables related in a parametricity context Ξ, with multiplicities:

𝑉𝑎𝑟(Y) = ∅ 𝑉𝑎𝑟(Ξ, 𝑥 ∼ 𝑥 ′ ∵ 𝑥𝑅) = 𝑉𝑎𝑟(Ξ) ∪ {𝑥, 𝑥 ′, 𝑥𝑅}
A parametricity context Ξ is well-formed if the sequence 𝑉𝑎𝑟(Ξ) is duplicate-free. In this case, we

use the notation Ξ(𝑥) = (𝑥 ′, 𝑥𝑅) as a synonym to (𝑥, 𝑥 ′, 𝑥𝑅) ∈ Ξ.
A parametricity judgment relates a parametricity context Ξ with three terms 𝑡1, 𝑡2, 𝑡3. Denoted

Ξ ⊢ 𝑡1 ∼ 𝑡2 ∵ 𝑡3
3
File Param_Arrow.v

Trocq: Proof Transfer for Free, With or Without Univalence 111:13

it is defined by induction on the syntax of 𝑡1 by the rules given on Figure 4.

Ξ ⊢ ◻𝑖 ∼ ◻𝑖 ∵ _(𝐴𝐵 ∶ ◻𝑖). 𝐴 → 𝐵 → ◻𝑖 (ParamSort)
(𝑥, 𝑥 ′, 𝑥𝑅) ∈ Ξ

Ξ ⊢ 𝑥 ∼ 𝑥 ′ ∵ 𝑥𝑅 (ParamVar)
Ξ ⊢ 𝐴 ∼ 𝐴′ ∵ 𝐴𝑅 Ξ, 𝑥 ∼ 𝑥 ′ ∵ 𝑥𝑅 ⊢ 𝐵 ∼ 𝐵′ ∵ 𝐵𝑅 𝑥, 𝑥 ′ ∉ 𝑉𝑎𝑟(Ξ)

Ξ ⊢ Π𝑥 ∶ 𝐴. 𝐵 ∼ Π𝑥 ′ ∶ 𝐴′. 𝐵′ ∵ _𝑓 𝑔.Π𝑥 𝑥 ′ 𝑥𝑅 . 𝐵𝑅 (𝑓 𝑥) (𝑔 𝑥 ′) (ParamPi)
Ξ, 𝑥 ∼ 𝑥 ′ ∵ 𝑥𝑅 ⊢𝑀 ∼ 𝑀 ′ ∵ 𝑀𝑅

Ξ ⊢ _𝑥 ∶ 𝐴.𝑀 ∼ _𝑥 ′ ∶ 𝐴′ . 𝑀 ′ ∵ _𝑥 𝑥 ′ 𝑥𝑅 . 𝑀𝑅

(ParamLam)
Ξ ⊢𝑀 ∼ 𝑀 ′ ∵ 𝑀𝑅 Ξ ⊢ 𝑁 ∼ 𝑁 ′ ∵ 𝑁𝑅

Ξ ⊢𝑀 𝑁 ∼ 𝑀 ′ 𝑁 ′ ∵ 𝑀𝑅 𝑁 𝑁 ′ 𝑁𝑅

(ParamApp)
Fig. 4. Relational-style binary parametricity translation

Lemma 4.1 (Functionality). The relation associating a term 𝑡 with pairs (𝑡 ′, 𝑡𝑅) such that Ξ ⊢ 𝑡 ∼
𝑡 ′ ∵ 𝑡𝑅 with Ξ a well-formed parametricity context is functional: for any term 𝑡 and any well-formed
Ξ: ∀𝑡 ′,𝑢′, 𝑡𝑅,𝑢𝑅, Ξ ⊢ 𝑡 ∼ 𝑡 ′ ∵ 𝑡𝑅 ∧ Ξ ⊢ 𝑡 ∼ 𝑢′ ∵ 𝑢𝑅 Ô⇒ (𝑡 ′, 𝑡𝑅) = (𝑢′,𝑢𝑅)
Proof. Immediate by induction on the syntax of 𝑡 . □

Definition 4.2 (Admissible parametricity contexts). A parametricity context Ξ is admissible for a
well-formed typing context Γ, denoted Γ ⊳ Ξ when Ξ is well-formed as a parametricity context and

Γ provides coherent type annotations for all terms in Ξ, that is, for any variables 𝑥, 𝑥 ′, 𝑥𝑅 such that

Ξ(𝑥) = (𝑥 ′, 𝑥𝑅), and for any terms 𝐴′ and 𝐴𝑅 :

Ξ ⊢ Γ(𝑥) ∼ 𝐴′ ∵ 𝐴𝑅 Ô⇒ Γ(𝑥 ′) = 𝐴′ ∧ Γ(𝑥𝑅) ≡ 𝐴𝑅 𝑥 𝑥
′

We can now state and prove an abstraction theorem:

Theorem 4.3 (Abstraction).

Γ ⊢𝑀 ∶ 𝐴 Ξ ⊢𝑀 ∼ 𝑀 ′ ∵ 𝑀𝑅 Ξ ⊢ 𝐴 ∼ 𝐴′ ∵ 𝐴𝑅 Γ ⊂ Δ ⊳ Ξ
Δ ⊢𝑀 ′ ∶ 𝐴′ and Δ ⊢𝑀𝑅 ∶ 𝐴𝑅 𝑀 𝑀 ′

Proof. By induction on the derivation Ξ ⊢𝑀 ∼ 𝑀 ′ ∵ 𝑀𝑅 . □

4.2 Univalent parametricity triples
Before we describe our stratified version of parametricity, we describe a reformulation of univalent

parametricity [Tabareau et al. 2021], but in a deductive style, rather than in a functional style.

We also change the original definition of the univalent parmetricity record with our equivalent

representation. We present this variant in Figure 5, where the statements are of the form

(Γ,Ξ) ⊢𝑀 ∼ 𝑀 ′ ∵ 𝑀𝑅

111:14 Cyril Cohen, Enzo Crance, and Assia Mahboubi

(Γ,Ξ) ⊢ ◻𝑖 ∼ ◻𝑖 ∵ 𝑝⊺,⊺◻𝑖 (UParamSort)
(Γ,Ξ) ⊢ 𝐴 ∼ 𝐴′ ∵ 𝐴𝑅 (Γ′,Ξ′) ⊢ 𝐵 ∼ 𝐵′ ∵ 𝐵𝑅

Γ′ = Γ, 𝑎 ∶ 𝐴,𝑎′ ∶ 𝐴′, 𝑎𝑅 ∶ rel(𝐴𝑅) 𝑎 𝑎′ Ξ′ = Ξ, 𝑎 ∼ 𝑎′ ∵ 𝑎𝑅(Γ,Ξ) ⊢ Π𝑎 ∶ 𝐴. 𝐵 ∼ Π𝑎′ ∶ 𝐴′. 𝐵′ ∵ 𝑝⊺Π 𝐴𝑅 𝐵𝑅
(UParamPi)

(Γ,Ξ) ⊢ 𝑓 ∼ 𝑓 ′ ∵ 𝑓𝑅 (Γ,Ξ) ⊢ 𝑎 ∼ 𝑎′ ∵ 𝑎𝑅(Γ,Ξ) ⊢ 𝑓 𝑎 ∼ 𝑓 ′ 𝑎′ ∵ 𝑓𝑅 𝑎 𝑎
′ 𝑎𝑅

(UParamApp)
(Γ,Ξ) ⊢ 𝐴 ∼ 𝐴′ ∵ 𝐴𝑅 (Γ′,Ξ′) ⊢ 𝑏 ∼ 𝑏′ ∵ 𝑏𝑅

Γ′ = Γ, 𝑎 ∶ 𝐴,𝑎′ ∶ 𝐴′, 𝑎𝑅 ∶ rel(𝐴𝑅) 𝑎 𝑎′ Ξ′ = Ξ, 𝑎 ∼ 𝑎′ ∵ 𝑎𝑅(Γ,Ξ) ⊢ _𝑎 ∶ 𝐴.𝑏 ∼ _𝑎′ ∶ 𝐴′. 𝑏′ ∵ _𝑎 𝑎′ 𝑎𝑅 . 𝑏𝑅 (UParamLam)
⊢ (Γ,Ξ) 𝑥 ∼ 𝑥 ′ ∵ 𝑥𝑅 ∈ Ξ(Γ,Ξ) ⊢ 𝑥 ∼ 𝑥 ′ ∵ 𝑥𝑅 (UParamVar)

Fig. 5. Univalent parametricity rules

where Γ is a 𝐶𝐶𝜔 typing context, Ξ a parametricity context and𝑀 ,𝑀 ′, and𝑀𝑅 are terms of 𝐶𝐶𝜔 .

We can now state the abstraction theorem for univalent parametricity, rephrased with our

notations and definitions.

Theorem 4.4 (Univalent abstraction).

Γ ⊢𝑀 ∶ 𝐴 (Γ,Ξ) ⊢𝑀 ∼ 𝑀 ′ ∵ 𝑀𝑅 (Γ,Ξ) ⊢ 𝐴 ∼ 𝐴′ ∵ 𝐴𝑅 Γ ⊂ Δ ⊳ Ξ
Δ ⊢𝑀 ′ ∶ 𝐴′ ∧ (Γ,Ξ) ⊢𝑀𝑅 ∶ rel(𝐴𝑅)𝑀 𝑀 ′

where we recall rel(𝐴𝑅) is the first projection on 𝐴𝑅 , of type

⧈⊺ 𝐴 𝐴′ ≡ (Σ𝑅 ∶ 𝐴 → 𝐴′ → ◻. IsUMap(𝑅) × IsUMap(𝑅−1))
Note that rel(𝐴𝑅) is well defined because

Γ ⊢ 𝐴 ∶ ◻𝑖 Ô⇒ Δ ⊢ 𝐴𝑅 ∶ rel(𝑝⊺,⊺◻𝑖) 𝐴 𝐴′ ≡ ⧈⊺ 𝐴 𝐴′
4.3 Annotated type theory
To give a syntactic status to parametricity classes, we define a variant 𝐶𝐶+𝜔 of 𝐶𝐶𝜔 where each

universe is annotated with a parametricity class, representing the level 𝛼 of the ⧈𝛼 relation used as

the underlying relation 𝑅 when translating this universe. For instance, the parametricity witness

𝑝
(3,1),(0,1)
◻ of ◻(3,1) at class (0, 1) will be an instance of ⧈(0,1) ◻ ◻ where rel(𝑝(3,1),(0,1)◻)⌋︀ is ⧈(3,1).

𝑡,𝑢,𝐴, 𝐵 ∈ 𝒯𝐶𝐶+𝜔 ∶∶= ◻𝛼𝑖 ⋃︀ Π𝑥 ∶ 𝐴. 𝐵 ⋃︀ _𝑥 ∶ 𝐴. 𝑡 ⋃︀ 𝑥 ⋃︀ 𝑡 𝑢
𝛼 ∈ 𝒜 = {0, 1, 2𝑎, 2𝑏, 3, 4}2 𝑖 ∈ N

The meaning of these annotations is best understood in the context of traversal of a dependent

product Π𝑥 ∶ 𝐴. 𝐵 in a parametricity translation. Indeed, before translating 𝐵, three terms repre-

senting the bound variable 𝑥 , its translation 𝑥 ′, and the parametricity witness 𝑥𝑅 will be added to

Trocq: Proof Transfer for Free, With or Without Univalence 111:15

the context. The type of 𝑥𝑅 is rel(𝐴𝑅) 𝑥 𝑥 ′ where 𝐴𝑅 is the parametricity witness relating 𝐴 to its

translation 𝐴′. In our record-based presentation, the projection rel(⋅) is made implicit, so that 𝐴𝑅 c

an also refer to the relation and not the sigma type. If 𝐴 is a universe ◻𝛼 , then this relation is ⧈𝛼 .
Typing terms requires the definition of a subtyping relation ≼ defined by the rules in Figure 6. The

typing rules are available in Figure 7 and follow standard presentations [Aspinall and Compagnoni

2001]. The ≡ relation in the (Conv
+
) rule is the conversion relation, defined as the closure of

𝛼-equivalence and 𝛽-reduction on this variant of _-calculus.

𝛼 ≥ 𝛽
Γ ⊢ ◻𝛼𝑖 ≼ ◻𝛽𝑖 (SubSort)

Γ ⊢ Π𝑥 ∶ 𝐴. 𝐵 ∶ ◻𝑖 Γ ⊢ 𝐴′ ≼ 𝐴 Γ, 𝑥 ∶ 𝐴′ ⊢ 𝐵 ≼ 𝐵′
Γ ⊢ Π𝑥 ∶ 𝐴. 𝐵 ≼ Π𝑥 ∶ 𝐴′ . 𝐵′ (SubPi)

Γ, 𝑥 ∶ 𝐴 ⊢ 𝑡 ≼ 𝑡 ′
Γ ⊢ _𝑥 ∶ 𝐴. 𝑡 ≼ _𝑥 ∶ 𝐴. 𝑡 ′ (SubLam) Γ ⊢ 𝑡 ′ 𝑢 ∶ 𝐾 Γ ⊢ 𝑡 ≼ 𝑡 ′

Γ ⊢ 𝑡 𝑢 ≼ 𝑡 ′ 𝑢 (SubApp)
Γ ⊢ 𝐴 ∶ 𝐾 Γ ⊢ 𝐵 ∶ 𝐾 𝐴 ≡ 𝐵

Γ ⊢ 𝐴 ≼ 𝐵 (SubConv) 𝐾 ∶∶= ◻𝑖 ⋃︀ Π𝑥 ∶ 𝐴.𝐾
Fig. 6. Subtyping rules for 𝐶𝐶+𝜔

We first show that our extension is conservative over 𝐶𝐶𝜔 , by defining an erasure function for

terms ⋃︀ ⋅ ⋃︀− ∶ 𝒯𝐶𝐶+𝜔 → 𝒯𝐶𝐶𝜔
and for contexts, defined in Figure 8.

We show that the erasure of subtyping is convertibility in 𝐶𝐶𝜔 :

Lemma 4.5 (Subtyping erasure).

Γ ⊢𝐶𝐶+𝜔 𝐴 ≼ 𝐵 Ô⇒ ⋃︀ Γ ⋃︀− ⊢𝐶𝐶𝜔
⋃︀𝐴 ⋃︀− ≡ ⋃︀𝐵 ⋃︀−

Proof. By induction on the derivation. □

(𝛼, 𝛽) ∈ 𝒟◻
Γ ⊢ ◻𝛼𝑖 ∶ ◻𝛽𝑖+1 (Sort

+) 𝑥 ∶ 𝐴 ∈ Γ
Γ ⊢ 𝑥 ∶ 𝐴 (Var+)

Γ ⊢ 𝐴 ∶ ◻𝛼𝑖 Γ ⊢ 𝐵 ∶ ◻𝛽𝑗 𝑘 = max(𝑖, 𝑗) 𝒟→(𝛾) = (𝛼, 𝛽)
Γ ⊢ 𝐴 → 𝐵 ∶ ◻𝛾

𝑘

(Arrow+)
Γ ⊢ 𝐴 ∶ ◻𝛼𝑖 Γ, 𝑥 ∶ 𝐴 ⊢ 𝐵 ∶ ◻𝛽𝑗 𝑘 = max(𝑖, 𝑗) 𝒟Π(𝛾) = (𝛼, 𝛽)

Γ ⊢ Π𝑥 ∶ 𝐴. 𝐵 ∶ ◻𝛾
𝑘

(Pi+)
Γ ⊢ 𝐴 ∶ ◻𝛼𝑖 Γ, 𝑥 ∶ 𝐴 ⊢ 𝑡 ∶ 𝐵

Γ ⊢ _𝑥 ∶ 𝐴. 𝑡 ∶ Π𝑥 ∶ 𝐴. 𝐵 (Lam+) Γ ⊢ 𝑡 ∶ Π𝑥 ∶ 𝐴. 𝐵 Γ ⊢ 𝑢 ∶ 𝐴
Γ ⊢ 𝑡 𝑢 ∶ 𝐵(︀𝑥 ∶= 𝑢⌋︀ (App+)

Γ ⊢ 𝑡 ∶ 𝐴 Γ ⊢ 𝐴 ≼ 𝐵
Γ ⊢ 𝑡 ∶ 𝐵 (Conv+)

Fig. 7. Typing rules for 𝐶𝐶+𝜔

111:16 Cyril Cohen, Enzo Crance, and Assia Mahboubi

⋂︀◻𝐶𝑖 ⋂︀− ∶= ◻𝑖 ⋃︀ Y ⋃︀− ∶= Y
⋃︀Π𝑥 ∶ 𝐴. 𝐵 ⋃︀− ∶= Π𝑥 ∶ ⋃︀𝐴 ⋃︀− . ⋃︀𝐵 ⋃︀− ⋃︀ Γ, 𝑥 ∶ 𝐴 ⋃︀− ∶= Γ, 𝑥 ∶ ⋃︀𝐴 ⋃︀−
⋃︀_𝑥 ∶ 𝐴. 𝐵 ⋃︀− ∶= _𝑥 ∶ ⋃︀𝐴 ⋃︀− . ⋃︀𝐵 ⋃︀−

⋃︀𝑇 𝑈 ⋃︀− ∶= ⋃︀𝑇 ⋃︀− ⋃︀𝑈 ⋃︀−
⋃︀𝑥 ⋃︀− ∶= 𝑥

Fig. 8. Erasure function from 𝐶𝐶
+
𝜔 to 𝐶𝐶𝜔

Finally we show that our extension is conservative

Theorem 4.6 (Annotation erasure).

Γ ⊢𝐶𝐶+𝜔 𝑡 ∶ 𝐴 Ô⇒ ⋃︀ Γ ⋃︀− ⊢𝐶𝐶𝜔
⋃︀ 𝑡 ⋃︀− ≡ ⋃︀𝐴 ⋃︀−

Proof. By induction on the derivation. □

4.4 Stratified parametricity relation
We update the parametricity relation to a quadruplet 𝑡 @ 𝑇 ∼ 𝑡 ′ ∵ 𝑡𝑅 where 𝑡 , 𝑇 , 𝑡 ′ and 𝑡𝑅 are

terms in 𝐶𝐶+𝜔 . We also update the parametricity context Ξ to a list of these quadruplets, and

the parametricity judgment now states that from the updated context, 4 terms are related in the

updated relation. Hence, stratified parametricity judgments are of the form (Γ,Ξ) ⊢ 𝑡 @𝑇 ∼ 𝑡 ′ ∵ 𝑡𝑅 .
Figure 9 displays all the rules for the stratified parameticity translation in 𝐶𝐶𝜔 .

The second term of the relation 𝑇 guides the translation through the various annotations on ◻.
If a specific translation is not available, we may weaken another one in order to obtain an element

of ⧈𝛼 . We start with describing the weakening function.

Weakening. From the lattice and the subtyping relation for 𝐶𝐶+𝜔 , we can define a weakening

function for the parametricity witness.

First, we define a function ↓𝑝𝑞 to weaken the map records from a level 𝑝 to a lower level 𝑞 in the

hierarchy (i.e., the function is defined for 𝑝 ≥ 𝑞), by forgetting the right number of fields. We can

then define a function ⇊𝛼
𝛽
which composes twice the previous one on each side of the parametricity

record:

⇊(𝑚,𝑛)
(𝑝,𝑞) ∐︀𝑅,𝑀→,𝑀←̃︀ ∶= ∐︀𝑅, ↓𝑚𝑝 𝑀→, ↓𝑛𝑞 𝑀←̃︀ (𝑚,𝑛) ≥ (𝑝,𝑞)

We can build the weakening function on any parametricity witness by extending this last function

to all annotated types, i.e., ⇓𝑇𝑈 such that𝑇 ≼𝑈 , and we describe the full definition of ⇓𝑇𝑈 in Figure 10.

Erasure. We show that our stratified parametricity relation entails raw parametricity after all

annotations are erased.

Theorem 4.7 (Erasure of stratification).

∀𝑡,𝐴, 𝑡 ′, 𝑡𝑅 ∈ 𝒯𝐶𝐶+𝜔 , (Γ,Ξ) ⊢ 𝑡 @ 𝐴 ∼ 𝑡 ′ ∵ 𝑡𝑅 Ô⇒ Ξ ⊢ ⋃︀ 𝑡 ⋃︀− ∼ ⋂︀ 𝑡 ′ ⋂︀− ∵ rel∗(𝑡𝑅)
where

rel∗(𝑀𝑁) ∶= rel∗(𝑀) rel∗(𝑁)
rel∗(_𝑥.𝑡) ∶= _𝑥.rel∗(𝑡)

rel∗(𝑡) ∶= rel(𝑡)

Trocq: Proof Transfer for Free, With or Without Univalence 111:17

(𝛼, 𝛽) ∈ 𝒟◻
(Γ,Ξ) ⊢ ◻𝛼𝑖 @ ◻𝛽𝑖+1 ∼ ◻𝛼𝑖 ∵ 𝑝𝛼,𝛽◻𝑖 (ParamSort+)
(𝛼, 𝛽) = 𝒟→(𝛾) 𝑘 = max(𝑖, 𝑗)(Γ,Ξ) ⊢ 𝐴@ ◻𝛼𝑖 ∼ 𝐴′ ∵ 𝐴𝑅 (Γ,Ξ) ⊢ 𝐵 @ ◻𝛽𝑗 ∼ 𝐵′ ∵ 𝐵𝑅(Γ,Ξ) ⊢ 𝐴 → 𝐵 @ ◻𝛾

𝑘
∼ 𝐴′ → 𝐵′ ∵ 𝑝𝛾→ 𝐴𝑅 𝐵𝑅

(ParamArrow+)
(𝛼, 𝛽) = 𝒟Π(𝛾) 𝑘 = max(𝑖, 𝑗)(Γ,Ξ) ⊢ 𝐴@ ◻𝛼𝑖 ∼ 𝐴′ ∵ 𝐴𝑅 (Γ′,Ξ′) ⊢ 𝐵 @ ◻𝛽𝑗 ∼ 𝐵′ ∵ 𝐵𝑅

Γ′ = Γ, 𝑎 ∶ 𝐴,𝑎′ ∶ 𝐴′, 𝑎𝑅 ∶ 𝐴𝑅 𝑎 𝑎
′ Ξ′ = Ξ, 𝑎 @ 𝐴 ∼ 𝑎′ ∵ 𝑎𝑅(Γ,Ξ) ⊢ Π𝑎 ∶ 𝐴. 𝐵 @ ◻𝛾

𝑘
∼ Π𝑎′ ∶ 𝐴′. 𝐵′ ∵ 𝑝𝛾Π 𝐴𝑅 𝐵𝑅

(ParamPi+)
(Γ,Ξ) ⊢ 𝑓 @ Π𝑎 ∶ 𝐴. 𝐵 ∼ 𝑓 ′ ∵ 𝑓𝑅 (Γ,Ξ) ⊢ 𝑎 @ 𝐴 ∼ 𝑎′ ∵ 𝑎𝑅(Γ,Ξ) ⊢ 𝑓 𝑎 @ 𝐵 ∼ 𝑓 ′ 𝑎′ ∵ 𝑓𝑅 𝑎 𝑎

′ 𝑎𝑅
(ParamApp+)

(Γ,Ξ) ⊢ 𝐴@ ◻𝛼𝑖 ∼ 𝐴′ ∵ 𝐴𝑅 (Γ′,Ξ′) ⊢ 𝑏 @ 𝐵 ∼ 𝑏′ ∵ 𝑏𝑅
Γ′ = Γ, 𝑎 ∶ 𝐴,𝑎′ ∶ 𝐴′, 𝑎𝑅 ∶ 𝐴𝑅 𝑎 𝑎

′ Ξ′ = Ξ, 𝑎 @ 𝐴 ∼ 𝑎′ ∵ 𝑎𝑅(Γ,Ξ) ⊢ _𝑎 ∶ 𝐴.𝑏 @ Π𝑎 ∶ 𝐴. 𝐵 ∼ _𝑎′ ∶ 𝐴′. 𝑏′ ∵ _𝑎 𝑎′ 𝑎𝑅 . 𝑏𝑅 (ParamLam+)
⊢ (Γ,Ξ) 𝑥 @ 𝑇 ∼ 𝑥 ′ ∵ 𝑥𝑅 ∈ Ξ(Γ,Ξ) ⊢ 𝑥 @ 𝑇 ∼ 𝑥 ′ ∵ 𝑥𝑅 (ParamVar+)

(Γ,Ξ) ⊢ 𝑡 @ 𝑇 ∼ 𝑡 ′ ∵ 𝑡𝑅 Γ ⊢ 𝑇 ≼ 𝑇 ′
(Γ,Ξ) ⊢ 𝑡 @ 𝑇 ′ ∼ 𝑡 ′ ∵ ⇓𝑇𝑇 ′ 𝑡𝑅 (ParamSub+)

Fig. 9. Stratified parametricity rules

ÚÚÙ◻
𝐶
𝑖

◻𝐶′
𝑖

𝑡𝑅 ∶= ⇊𝐶𝐶′ 𝑡𝑅
ÚÚÙΠ𝑥 ∶𝐴. 𝐵
Π𝑥 ∶𝐴′ . 𝐵′ 𝑡𝑅 ∶= _𝑥 𝑥 ′ 𝑥𝑅 . ÚÚÙ𝐵

𝐵′
(𝑡𝑅 𝑥 𝑥 ′ (ÚÚÙ𝐴

′

𝐴
𝑥𝑅))

ÚÚÙ𝑇 𝑈

𝑇 ′ 𝑈 ′
𝑡𝑅 ∶= ÚÚÙ𝑇𝑇 ′ 𝑈 𝑈 ′ 𝑡𝑅

ÚÚÙ_𝑥 ∶𝐴. 𝐵
_𝑥 ∶𝐴′ . 𝐵′ 𝑇 𝑇

′ 𝑡𝑅 ∶= ÚÚÙ𝐵(︀𝑥 ∶=𝑇 ⌋︀
𝐵′(︀𝑥 ∶=𝑇 ′⌋︀ 𝑡𝑅ÚÚÙ𝑇𝑇 ′ 𝑡𝑅 ∶= 𝑡𝑅

Fig. 10. Weakening function

⋃︀◻𝑖 ⋃︀+ ∶= ◻⊺𝑖⋃︀Π𝑥 ∶ 𝐴. 𝐵 ⋃︀+ ∶= Π𝑥 ∶ ⋃︀𝐴 ⋃︀+ . ⋃︀𝐵 ⋃︀+
⋃︀_𝑥 ∶ 𝐴. 𝐵 ⋃︀+ ∶= _𝑥 ∶ ⋃︀𝐴 ⋃︀+ . ⋃︀𝐵 ⋃︀+

⋃︀𝑇 𝑈 ⋃︀+ ∶= ⋃︀𝑇 ⋃︀+ ⋃︀𝑈 ⋃︀+
⋃︀𝑥 ⋃︀+ ∶= 𝑥
⋃︀ Y ⋃︀+ ∶= Y

⋃︀ Γ, 𝑥 ∶ 𝐴 ⋃︀+ ∶= Γ, 𝑥 ∶ ⋃︀𝐴 ⋃︀+
Fig. 11. Maximal annotation function from
𝐶𝐶𝜔 to 𝐶𝐶+𝜔

111:18 Cyril Cohen, Enzo Crance, and Assia Mahboubi

Proof. By induction on the derivation. □

Recovering univalent parmetricity. We show we can recover univalent parametricity by defining a

maximal annotation function for terms ⋃︀ ⋅ ⋃︀+ ∶ 𝒯𝐶𝐶𝜔
→ 𝒯𝐶𝐶+𝜔 and for contexts, defined in Figure 11.

Indeed, we have the following theorem.

Theorem 4.8 (Maximally annotated stratified parametricity).

∀𝑡,𝐴, 𝑡 ′, 𝑡𝑅 ∈ 𝒯𝐶𝐶𝜔
, (Γ,Ξ) ⊢ ⋃︀ 𝑡 ⋃︀+ @ ⋃︀𝐴 ⋃︀+ ∼ ⋂︀ 𝑡 ′ ⋂︀+ ∵ ⋃︀ 𝑡𝑅 ⋃︀+ ⇐⇒ Ξ ⊢𝑢 𝑡 ∼ 𝑡 ′ ∵ 𝑡𝑅

Proof. By induction on the derivation. □

Abstraction theorem for stratified parametricity. Finally, we state our abstraction theorem:

Theorem 4.9 (Stratified Abstraction).

Γ ⊢𝑀 ∶ 𝐴 (Γ,Ξ) ⊢𝑀 @ 𝐴 ∼ 𝑀 ′ ∵ 𝑀𝑅 (Γ,Ξ) ⊢ 𝐴@ ◻𝛼𝑖 ∼ 𝐴′ ∵ 𝐴𝑅 Γ ⊂ Δ ⊳ Ξ
Δ ⊢𝑀 ′ ∶ 𝐴′ ∧ Δ ⊢𝑀𝑅 ∶ rel(𝐴𝑅)𝑀 𝑀 ′

Proof. By induction on the derivation. □

By applying the rule with Γ ⊢ 𝐴 ∶ ◻𝛼 we get:

Γ ⊢ 𝐴 ∶ ◻𝛼 (Γ,Ξ) ⊢ 𝐴@ ◻𝛼 ∼ 𝐴′ ∵ 𝐴𝑅 (Γ,Ξ) ⊢ ◻𝛼 @ ◻𝛽 ∼ ◻𝛼 ∵ 𝑝𝛼,𝛽◻ Γ ⊂ Δ ⊳ Ξ
Δ ⊢ 𝐴′ ∶ ◻𝛼 ∧ Δ ⊢ 𝐴𝑅 ∶ rel(𝑝𝛼,𝛽◻) 𝐴 𝐴′

By definition rel(𝑝𝛼,𝛽◻) = ⧈𝛼 , hence Γ ⊢ 𝐴𝑅 ∶ ⧈𝛼 𝐴 𝐴′, as expected by the initial type annotation.

Therefore, by applying the rule with Γ ⊢ ◻𝛼 ∶ ◻𝛽 we get Γ ⊢ 𝑝𝛼,𝛽◻ ∶ ⧈𝛽 ◻𝛼 ◻𝛼 as expected, provided

that (𝛼, 𝛽) ∈ 𝒟◻.
4.5 Handling constants on top of 𝐶𝐶+𝜔
For concrete applications, we must take constants into our calculus and translations. The case of

constants is very similar to the case of variables, except that they are not stored in the context Γ,
and they can be annotated by several different types.

For example, the constant list, such that list 𝐴 represents the type of lists of elements of can

be annotated with the type ◻𝛼 → ◻𝛼 for any 𝛼 ∈ 𝒜.
We pose a set of constants 𝒞, and its possible annotated types𝑇⋅ ∶ 𝒞 →𝔓(𝒯𝐶𝐶+𝜔), with the property

that all possible annotated types of a constant have the same erasure in𝐶𝐶𝜔 , i.e., ∀𝑐,∀𝐴,∀𝐵, 𝐴, 𝐵 ∈
𝑇𝑐 ⇒ ⋃︀𝐴 ⋃︀− = ⋃︀𝐵 ⋃︀−. For example, 𝑇List = {◻𝛼 → ◻𝛼 ⋃︀ 𝛼 ∈ 𝒜} .

Additionally, we provide translations 𝒟𝑐(𝐴) for each possible annotation 𝑇𝑐 of each constant 𝑐 .

For example 𝒟List(◻(1,0) → ◻(1,0)) is well defined and equal to the translation

(list, _𝐴𝐴′𝐴𝑅 . (List.All2 𝐴𝑅, List.map (map(𝐴𝑅))) ,)
where List.All2 𝐴𝑅 relates lists that are pointwise related by 𝐴𝑅 , List.map is the standard map

function on lists and map(𝐴𝑅) ∶ 𝐴 → 𝐴′ extracts the map projection of the record 𝐴𝑅 of type⧈(1,0) 𝐴 𝐴′ ≡ Σ𝑅.𝐴 → 𝐴′.
We describe in Figure 12 the additional rules for constants in𝐶𝐶+𝜔 and the stratified parametricity

translation. Note that the wrong choice of annotation may lead to the absence of translation for a

given term containing constants. For example, we cannot pick the annotated type ◻(1,0) → ◻(1,0)
in order to translate list @ ◻(2,0).

Trocq: Proof Transfer for Free, With or Without Univalence 111:19

𝑐 ∈ 𝒞 𝐴 ∈ 𝑇𝑐
Γ ⊢ 𝑐 ∶ 𝐴 (Const+) ⊢ (Γ,Ξ) 𝒟𝑐(𝐴) = (𝑐′, 𝑐𝑅)(Γ,Ξ) ⊢ 𝑐 @ 𝐴 ∼ 𝑐′ ∵ 𝑐𝑅 (ParamConst+)

Fig. 12. Additional constant rules for 𝐶𝐶+𝜔 and stratified parametricity

5 IMPLEMENTATION IN COQ-ELPI
We chose the Coq-Elpi meta-language to implement a prototype for Trocq. In this section, we first

introduce Coq-Elpi (§ 5.1), then we show how we setup the plugin and automatically generate

Coq definitions (§ 5.2), before explaining how we encode and solve the inference problem (§ 5.3).

Finally, we conclude with the advantages of the logic programming paradigm in our formulation of

parametricity translation (§ 5.4).

5.1 Introducing Coq-Elpi
Coq-Elpi is one of the major meta-languages available for Coq, amongstMetaCoq [Sozeau et al.

2020], Ltac 2 [The Coq Development Team 2022], Mtac [Kaiser et al. 2018], etc. At its heart lies the
Elpi language, an implementation of _Prolog, a functional logic programming language well suited

to handle abstract syntax trees containing binders and unification variables [Dunchev et al. 2015].

Indeed, as we shall see later in this section, Coq terms are encoded in Higher Order Abstract Syntax
(HOAS) in Coq-Elpi, and Elpi features the introduction of both locally bound variables, called

universal constants, and local information about them through the logical implication of Prolog,
allowing to traverse terms with binders having full typing information on the bound variables, and

forging terms without ever having to manage De Bruijn indices or worry about well-formedness of

a subterm.

Coq-Elpi is an extension around Elpi to turn it into a full-fledged plugin for Coq. It features
built-in predicates to interact with the proof assistant, e.g., searching for existing definitions, calling
the typechecker or elaborator, or creating new definitions. It also allows declaring commands taking

arbitrary arguments, and tactics receiving the proof state as input and being able to make proof

steps.

Another feature, particularly interesting in our context, is the possibility to create databases

represented as banks of predicate instances. The user can fill a database by calling Elpi code or
commands designed to perform updates on this database. The content of a database can be accessed

during execution of commands or tactics linked to this database, thus enabling a plugin architecture

that is relevant for our use case: creating commands to store information given by the Coq user,

and tactics to perform a specific task in light of this information.

5.2 Setting up the plugin
Before actually implementing the core translation and inference algorithms at the meta-level, we

need to make various definitions in Coq to represent concepts used in the parametricity rules.

First, we represent parametricity classes with two values in a map_class inductive type with

values ranging from map0 to map4, representing the values in 𝒜. Annotated types can therefore

be represented as standard Coq types where all occurrences of Type have been replaced with an

application PType m1 m2 where the arguments are phantom values whose single purpose is that

we can match them syntactically, i.e., this application is definitionally equal to the previous term,

and the annotation can be erased in a step of 𝛿-reduction. Annotated terms being valid Coq terms

will allow calling the Coq typechecker at various places during the translation.

111:20 Cyril Cohen, Enzo Crance, and Assia Mahboubi

Second, all the families of proofs indexed with parametricity classes (e.g., 𝑝Π) are entirely gener-

ated when the plugin is compiled. Proofs for each possible field of the record are written by hand,

and an Elpi program makes all possible combinationsM𝑖 of these fields (see Definition 3.7) in order

to make proofs for all parametricity classes.

5.3 Encoding and solving the parametricity class inference problem
The stratified parametricity translation does not assign the various parametricity classes found in

the annotated types, but only constrains them, almost always leaving multiple valid solutions at the

end of the term traversal. The most interesting solution is the one minimizing all the parametricity

classes, as it will also minimize the amount of information required from the user, and in particular,

determine whether axioms are really needed to translate a term.

5.3.1 A finite domain constraint solving problem. An encoding of this problem can be made where

every unknown parametricity class is a variable, with an initial domain ranging from (0, 0) to(4, 4). The constraints found in the inference rules reduce this domain, leaving only the valid

solutions. In the end of the translation, the valid solution is an association from each variable to the

lowest remaining class in its domain. This very much resembles finite domain constraint solving

problems, and as such could be solved elegantly by implementing an ad hoc constraint solver in
the style of constraint logic programming [Jaffar and Lassez 1987], which is idiomatic in Prolog-
based languages like Elpi. One of the most well-known methods to express complex algorithms

involving constraint generation and handling with reduction rules is the Constraint Handling Rules
(CHR) language [Frühwirth and Raiser 2011], available in Elpi. It allows suspending goals and

turning them into syntactic constraints, to be reduced with meta-level rules or resumed when

some variables are instantiated. The CHR language is well suited to prototype constraint solvers

because the core ingredient of such solvers, constraint propagation and consistency checking, can be

implemented as CHR reduction rules. The full constraint solver can be obtained by combining these

rules with a search procedure, testing values in the domains remaining after propagation. In our

case, the reduction rules are there to simplify the complex constraints and reduce them to ordering

constraints on the variable classes. Indeed, once a class 𝐶 is known, a constraint (𝐶,𝐶𝑅) ∈ 𝒟◻ can

be turned into 𝐶𝑅 ≥ (4, 4) or no constraint at all, and values 𝒟Π(𝐶) or 𝒟→(𝐶) can be computed

and turned into new constraints for subterms.

However, the elegance of such a solution comes at the cost of trackability of the control flow

in the reduction process. In constraint solvers, when constraints are declared, after an initial

propagation phase, they actually remain in the constraint store in an asleep state, watching the

variables they bound together, to be awaken every time one of their domains is updated. This

behaviour is necessary to ensure global consistency between the remaining domains of the variables

and all the constraints declared in the store, but it makes control flow very complex as it is difficult

to know when propagation will happen just by reading the code, thus making debugging phases

harder.

5.3.2 Accumulation of constraints and graph reduction. Instead, we present an inference algorithm

in a more pragmatic style, first accumulating constraints in a global constraint graph, then reducing

it and instantiating the variables after the translation. In this constraint graph, nodes are either

variable or constant parametricity classes, and different types of edges exist, based on the constraints

involved in the translation. An example of constraint graph is available in Figure 13. For instance,

the edges from 𝑋1 to 𝑋2 and 𝑋3 represent the constraint 𝒟Π(𝑋1) = (𝑋2, 𝑋3), and the edge from 𝑋6

to the constant class (3, 2b) represents the constraint (3, 2b) ≥ 𝑋6.

Because of the fact that complex constraints can only be reduced to ordering constraints once

their first variable is instantiated, not all the ordering constraints are known in the fully accumulated

Trocq: Proof Transfer for Free, With or Without Univalence 111:21

X1

(2a, 1)

(3, 2b)X2 X6

X3

X5

X4
<latexit sha1_base64="+AMdfKUHG/j4/rQLLZafa6HAhZE=">AAADa3icjVLLbtNAFD2JeZTy6mMHLCyiSlRClh3S0O4qsWGDVNSmrdRWyHamYVTbY8ZjUBT1E7qFb+MPYME/cGY6qWDRwlhO7pxzz5l7ryerC9mYOP7e6Qa3bt+5u3Bv8f6Dh48eLy2v7Deq1bkY5apQ+jBLG1HISoyMNIU4rLVIy6wQB9nZG8sffBa6karaM9NanJTppJKnMk8Nod1joz4s9eIodiuMo/5W8mowZLCx1R8O+mHiqR782lHLnXUcYwyFHC1KCFQwjAukaPgcIUGMmtgJZsQ0I+l4gXMsUtsySzAjJXrG3wl3Rx6tuLeejVPnPKXgq6kMsUaNYp5mbE8LHd86Z4te5z1znra2Kf8z71USNfhI9F+6eeb/6mwvBqfYdD1I9lQ7xHaXe5fWTcVWHv7RlaFDTczGY/Kace6U8zmHTtO43u1sU8f/cJkWtfvc57b4eWN3DXNK5zLlO77h68zwjo67fn72m1x2EV5NI7yarmVtJS+oi6iO8NKxn+gsuZ+Qn7pKNR+FL+TWeQvnVy28PtjvR8kw2ng/6G3v+fu4gKd4zrMSvMY23mIHI9Y9wQW+4lv3V7AaPAmeXaZ2O16zir9WsPYb3ymuFQ==</latexit>→<latexit sha1_base64="cTbL02ovtnuRjskPAPASRu+OJcU=">AAADa3icjVLLThRBFD0z7QPwBbJTFx0nJJKYTjdBxB2JGzcmY2CABIjp7inGCv2yulozmfgJbvXb/ANd8A+euhT4imh1eubWOfecuvd2ZU2hWxvHX3r94MrVa9fn5hdu3Lx1+87i0t3dtu5MrkZ5XdRmP0tbVehKjay2hdpvjErLrFB72clzx++9U6bVdbVjp406KtNJpY91nlpC24dD/XpxEEcbz9bXNuMwjmJZP4LEBwP4NayXeqs4xBg1cnQooVDBMi6QouVzgAQxGmJHmBEzjLTwCh+wQG3HLMWMlOgJfyfcHXi04t55tqLOeUrB11AZYoWamnmGsTstFL4TZ4f+zXsmnq62Kf8z71UStXhD9F+688z/1bleLI6xKT1o9tQI4rrLvUsnU3GVhz91ZenQEHPxmLxhnIvyfM6haFrp3c02Ff6rZDrU7XOf2+Hbpd21zCnFZcp3fMnXmeElHbf9/Nw3OesivJhGeDFdx7pKHlEXUR3hsbBv6ay5n5CfSqWGT4335FZ5C5Pf79yfwe5alGxET16tD7Z2/H2cw3085FkJnmILLzDEiHVP8BGf8Ll/GiwH94IHZ6n9ntcs45cVrHwHG2it0w==</latexit>

⇧
<latexit sha1_base64="/+mfRZWVlLyaMyRKsensqbTASbQ=">AAADbHicjVJdT9RAFD279QPxC9Q3YjJxo5HENO2ysMsb0RdfTDCyQALEtN1hmdB26rQFNxv+Aq/41/wH+uJv8MzQJfoAOk1375xzz5l7bycuUlVWQfC91fZu3b5zd+7e/P0HDx89Xlh8sl3q2iRymOhUm904KmWqcjmsVJXK3cLIKItTuRMfv7P8zok0pdL5VjUp5EEWjXN1qJKostD+W/3180In8IN+by3si8BfWQ9XBwMG3ZVuL+yJ0A/c6qBZm3qxtYx9jKCRoEYGiRwV4xQRSj57CBGgIHaAKTHDSDle4gzz1NbMksyIiB7zd8zdXoPm3FvP0qkTnpLyNVQKvKRGM88wtqcJx9fO2aLXeU+dp61twv+48cqIVjgi+i/dLPN/dbaXCocYuB4UeyocYrtLGpfaTcVWLv7oqqJDQczGI/KGceKUszkLpyld73a2keN/uEyL2n3S5Nb4eWN3JXMy5zLhO7rh60zxgY6fmvnZb3LZhbiahriarmVtJa+p86n28caxX+isuB+Tn7hKDR+NU3LLvIWzqyauD7a7frjmr37sdTa2mvs4hyW84Fkh+tjAe2xiyLqPcI4LfGv/8p55S97zy9R2q9E8xV/Le/UbHACuew==</latexit>�

<latexit sha1_base64="cTbL02ovtnuRjskPAPASRu+OJcU=">AAADa3icjVLLThRBFD0z7QPwBbJTFx0nJJKYTjdBxB2JGzcmY2CABIjp7inGCv2yulozmfgJbvXb/ANd8A+euhT4imh1eubWOfecuvd2ZU2hWxvHX3r94MrVa9fn5hdu3Lx1+87i0t3dtu5MrkZ5XdRmP0tbVehKjay2hdpvjErLrFB72clzx++9U6bVdbVjp406KtNJpY91nlpC24dD/XpxEEcbz9bXNuMwjmJZP4LEBwP4NayXeqs4xBg1cnQooVDBMi6QouVzgAQxGmJHmBEzjLTwCh+wQG3HLMWMlOgJfyfcHXi04t55tqLOeUrB11AZYoWamnmGsTstFL4TZ4f+zXsmnq62Kf8z71UStXhD9F+688z/1bleLI6xKT1o9tQI4rrLvUsnU3GVhz91ZenQEHPxmLxhnIvyfM6haFrp3c02Ff6rZDrU7XOf2+Hbpd21zCnFZcp3fMnXmeElHbf9/Nw3OesivJhGeDFdx7pKHlEXUR3hsbBv6ay5n5CfSqWGT4335FZ5C5Pf79yfwe5alGxET16tD7Z2/H2cw3085FkJnmILLzDEiHVP8BGf8Ll/GiwH94IHZ6n9ntcs45cVrHwHG2it0w==</latexit>

⇧

<latexit sha1_base64="+AMdfKUHG/j4/rQLLZafa6HAhZE=">AAADa3icjVLLbtNAFD2JeZTy6mMHLCyiSlRClh3S0O4qsWGDVNSmrdRWyHamYVTbY8ZjUBT1E7qFb+MPYME/cGY6qWDRwlhO7pxzz5l7ryerC9mYOP7e6Qa3bt+5u3Bv8f6Dh48eLy2v7Deq1bkY5apQ+jBLG1HISoyMNIU4rLVIy6wQB9nZG8sffBa6karaM9NanJTppJKnMk8Nod1joz4s9eIodiuMo/5W8mowZLCx1R8O+mHiqR782lHLnXUcYwyFHC1KCFQwjAukaPgcIUGMmtgJZsQ0I+l4gXMsUtsySzAjJXrG3wl3Rx6tuLeejVPnPKXgq6kMsUaNYp5mbE8LHd86Z4te5z1znra2Kf8z71USNfhI9F+6eeb/6mwvBqfYdD1I9lQ7xHaXe5fWTcVWHv7RlaFDTczGY/Kace6U8zmHTtO43u1sU8f/cJkWtfvc57b4eWN3DXNK5zLlO77h68zwjo67fn72m1x2EV5NI7yarmVtJS+oi6iO8NKxn+gsuZ+Qn7pKNR+FL+TWeQvnVy28PtjvR8kw2ng/6G3v+fu4gKd4zrMSvMY23mIHI9Y9wQW+4lv3V7AaPAmeXaZ2O16zir9WsPYb3ymuFQ==</latexit>→
Fig. 13. Example of constraint graph

constraint graph at the end of the translation. Yet, all the ordering constraints linked to a variable

must be known in order to choose the minimal class for this variable. As a result, we need to process

the variables in a precise order, i.e., reduce the graph at each instantiation by removing the node of

the freshly instantiated variable and computing new constraints on the other variables, so as to

know all the ordering constraints applying to a variable at the time of its instantiation. To that end,

we can define an order of dependency:

● (𝛼, 𝛽) ∈ 𝒟◻ forces 𝛼 to be instantiated before 𝛽 ;● 𝒟Π(𝛾) = (𝛼, 𝛽) or 𝒟→(𝛾) = (𝛼, 𝛽) force 𝛾 to be instantiated before 𝛼 and 𝛽 ;● a 𝛼 ≥ 𝛽 constraint forces 𝛽 to be instantiated before 𝛼 , as the lower bound of the domain is

the one that matters, and the instantiation of 𝛽 can update the lower bound for 𝛼 .

The direction of the edges in the constraint graph is already consistent with this ordering, meaning

that we can build a precedence graph from the constraint graph, where there is an edge from 𝑋 to

𝑌 if there is a constraint of any type from 𝑋 to 𝑌 in the constraint graph. The final instantiation

order can then be obtained by performing a topological sort on this precedence graph.

When instantiating a variable, all the edges pointing to this variable (i.e., all the lower nodes)
form a set of constant classes. The minimal acceptable class is the least upper bound of all these

constant classes. Once it is known, all the constraints represented by the edges starting from the

current variable can be removed from the graph, simplified as ordering constraints which are

re-added to the graph, so that the next variable is always ready to be instantiated.

5.4 Logic programming to the rescue
The logic programming paradigm on which Elpi is based, is ideal to implement algorithms expressed

as inference rules, as each inference rule can be associated to an instance of a predicate. In our

case, the translation comes in the form of a param predicate of arity 4, where param X T X' XR
represents the inference of 𝑥 @ 𝑇 ∼ 𝑥 ′ ∵ 𝑥𝑅 , where 𝑥 and 𝑇 are input values (initially, the source

goal and ◻(0,1)), and the translated term 𝑥 ′ and the witness 𝑥𝑅 are outputs. Several instances of the

predicate are defined to cover the various inference rules present in the theoretical presentation.

As an example, let us inspect the instance of the param predicate in charge of translating

dependent products in our implementation, and compare it with the corresponding case in the

inference rules, i.e., rule ParamPi+ in Figure 9. Note that for more readability, we give the code

in a compressed but equivalent version, without lines related to logs, pretty-printing, and fresh

universe instance generation, i.e., the parts that would not bring much information if included in

the article. First, let us see the head of the predicate:

param (prod N A B) (app [pglobal (const PType) _, M1, M2]) Prod' ProdR :-
param.db.ptype PType, !,
cstr.univ-link C M1 M2,

111:22 Cyril Cohen, Enzo Crance, and Assia Mahboubi

This matches an input term Π𝑥 ∶ 𝐴. 𝐵 and our Coq encoding of its annotated type ◻(𝑀1,𝑀2)
, calling

𝐶 = (𝑀1,𝑀2) the parametricity class. Then, following the hypotheses in the inference rule, the

predicate computes (𝐶𝐴,𝐶𝐵) = 𝒟Π(𝐶), then does two recursive calls on 𝐴 and 𝐵 with the classes

𝐶𝐴 and 𝐶𝐵 :

cstr.dep-pi C CA CB,
cstr.univ-link CA M1A M2A,
param A (app [pglobal (const PType) _, M1A, M2A]) A' AR,
cstr.univ-link CB M1B M2B,
TB = app [pglobal (const PType) _, M1B, M2B],
@annot-pi-decl N A a\ pi a' aR\ param.store a A a' aR =>
param (B a) TB (B' a') (BR a a' aR),

Another difference between the theoretical presentation and the implementation is the necessity to

track binders correctly, i.e., 𝐵 is not a valid term on its own, it must carry a context. Thankfully, in

Coq-Elpi, the HOAS encoding of Coq terms gives the variable B the type term -> term, which
means we never have to worry about a term with bound variables being ill-typed. In addition,

the context is implicit thanks to the functional logic programming paradigm, allowing to locally

add a new typed variable to the context with a pi operator and the implication (=>). The new
variables cannot escape their scope: as we can see, the return values of the recursive call on B are
also meta-functions B' and BR, abstracting the previously locally introduced variables that might

occur in their content.

The last step is to build the output proof 𝑝𝐶Π 𝐴𝑅 𝐵𝑅 , which is a bit more verbose in the code than

on paper. Indeed, as the axioms that might be involved in some proofs are not included globally,

which would make inference meaningless, they are used as an additional argument in the proofs

that require them. Therefore, we need to check the output parametricity class 𝐶 to know if it

requires the addition of an axiom to the list of arguments (in the case of the dependent product,

function extensionality):

Args =
[A, A', AR, fun N A B, fun _ A' B',

fun N A a\ fun _ A' a'\
fun _ (app [pglobal (const {param.db.r CA}) _, A, A', AR, a, a']) aR\
BR a a' aR],

util.if-suspend C (param-class.requires-axiom C)
(Args' = [pglobal (const {param.db.funext}) _|Args])
(Args' = Args),

Prod' = prod _ A' B',
ProdR = app [pglobal (const {param.db.param-forall C}) _|Args'].

If the user has not added any axiom at the time of calling param.db.funext, the code rightfully
fails because the translation is impossible. Otherwise, the body of the predicate terminates with a

success.

6 APPLICATIONS
In this section we will show how Trocq covers a series of examples. First we sketch the description

of a class of statments that we conjecture can be translated without univalence. We illustrate this

with Example 1.1, which performs a transfer by isomorphism, and Example 1.2 which transfers a

result to a subtype.

Trocq: Proof Transfer for Free, With or Without Univalence 111:23

The supplementary material also contains an example of transfer from Z to a quotient Z⇑𝑝Z4, as
well as examples in which we recover the behaviour of setoid rewriting

5
and generalized rewriting

6

at the price of a manual setup to perform pattern recognition.

6.1 A class of univalence-free transferable statements
Note that none of the above examples require the use of univalence, as the statements we transfer

fall in a fragment of formulas ℱ defined as follows.

Definition 6.1 (Univalence-free formulas ℱ⋅). We define the grammar of these formulæ using the

non terminal symbols ℱ𝑘 for 𝑘 ∈ {1, 2𝑎, 2𝑏, 4}
ℱ1 ∶= ◻ ⋃︀ Π(𝑥 ∶ ℱ2𝑎).ℱ1 ⋃︀ ℱ1 → ℱ1 ⋃︀ 𝑥�⃗� ⋃︀ ℱ2𝑎 ⋃︀ ℱ2𝑏ℱ2𝑎 ∶= ◻ ⋃︀ Π(𝑥 ∶ ℱ4).ℱ2𝑎 ⋃︀ ℱ2𝑏 → ℱ2𝑎 ⋃︀ 𝑥�⃗� ⋃︀ ℱ4

ℱ
2𝑏 ∶= Π(𝑥 ∶ ℱ2𝑎).ℱ2𝑏 ⋃︀ ℱ2𝑏ℱ2𝑏 ⋃︀ 𝑥�⃗� ⋃︀ ℱ4

ℱ4 ∶= Π(𝑥 ∶ ℱ4).ℱ4 ⋃︀ 𝑥�⃗�
Conjecture 6.2 (Univalence-free transfer). For all 𝐴, such that ⋃︀𝐴 ⋃︀− ∈ ℱ𝑘 , Γ ⊢ 𝐴 ∶ ◻ and(Γ,Ξ) ⊢ 𝐴@ ◻(𝑘,𝑘) ∼ 𝐴′ ∵ 𝐴𝑅 , there exists a translation (Γ,Ξ) ⊢ 𝐴@ ◻(𝑘,𝑘) ∼ 𝐵′ ∵ 𝐵𝑅 such that

𝐵𝑅 does not use the axiom of univalence.

Additionally, we can add some constants, such as base types likeN, and containers (like option ,

list , etc) to the syntax of ℱ𝑘 for all 𝑘 .

6.2 Example 1.1: transferring induction principles
With notations from the introduction

7
, we recall that we need to prove

N_ind : ∀ P : N → ◻, P ON → (∀ n : N, P n → P (SN n)) → ∀ n : N, P n.

A quick analysis shows that this statement is indeed in ℱ1.

In addition to the notions already described in the introduction, we need to inform Trocq of

three facts:

NR : Param2a3.Rel N N
OR : rel NR ON ON
SR : ∀ m n, rel NR m n → rel NR (SN m) (SN n).

The first fact is that there is a split injection from N to N , the second that the zeros are related,

and the third that the sucessors are related.

And this is enough for Trocq to generate and apply the implication:

(∀ P : N → ◻, P ON → (∀ n : N, P n → P (SN n)) → ∀ n : N, P n)→ ∀ P : N → ◻, P ON → (∀ n : N, P n → P (SN n)) → ∀ n : N, P n

4
File int_to_Zp.v

5
File trocq_setoid_rewrite.v

6
File trocq_gen_rewrite.v

7
See file peano_bin_nat.v in the supplementary material.

111:24 Cyril Cohen, Enzo Crance, and Assia Mahboubi

6.3 Example 1.2: transferring results to a subtype
We setup an axiomatic context in Appendix 7 so as to state the goal on the typeR≥0 of positive reals.8
We prove the relation between this type and its extended R≥0, their respective binary additions,

infinite sums, declare them to Trocq. We can then prove:

Lemma ΣR≥0_add : forall u v : summable, ΣR≥0 (u + v) = ΣR≥0 u + ΣR≥0 v.
Proof. trocq; exact: ΣR≥0_add. Qed.

7 RELATEDWORK AND PERSPECTIVES
The functionalities of the prototype plugin presented in § 5 can be extended in several directions. It

would be particularly fruitful to connect it with tools able to automate the generation of equivalence

proofs, such as Pumpkin Pi [Ringer et al. 2021]. Other improvements, e.g., addressing the case of
Coq’s impredicative sort, involve non-trivial implementation issues, related to Coq’s management

of universe polymorphism. We now discuss how the current state of this prototype compares

with other implemented approaches to proof transfer in interactive theorem proving, listed in

chronological order in the summary Table 1. For each such tool, the table indicates whether a given

feature is available (✓), not available (✗) or only partially available (✐ and ➡).

In the context of type theory, the idea that the computational content of type isomorphisms can be

used for proof transfer already appears in [Barthe and Pons 2001]. The first implementation report

of a tool based on this idea appeared soon after [Magaud 2003]. Implemented in a meta-language

and based on proof rewriting, this heuristic translation was producing a candidate proof term from

a given proof term, with no formal guarantee, not even that of being well-typed. As mentioned in

§ 2.1, generalized rewriting [Sozeau 2009], which generalizes setoid rewriting to preorders, is also

a variant of proof transfer, albeit within the same type. As such, it allows in particular rewriting

under binders. The restriction to homogeneous relations however excludes applications to quasi

equivalence relations [Krishnaswami and Dreyer 2013], or to datatype representation change.

The other proof transfer methods we are aware of all address the case of heterogeneous relations.

Incidentally, they can thus also be used for the homogeneous case, as illustrated in § 2.1, although

this special case is seldom emphasized. The Coq Effective Algebra Library (CoqEAL) [Cohen et al.

2013; Dénès et al. 2012] and the Isabelle/HOL transfer package [Haftmann et al. 2013; Huffman and

Kunčar 2013; Lammich 2013; Lammich and Lochbihler 2019], pioneered the use of parametricity-

based methods for proof transfer, motivated by the refinement of proof-oriented data-structures

to computation-oriented counterparts. Together with a subsequent generalization of the CoqEAL
approach [Zimmermann and Herbelin 2015] these tools address the case of a transfer between a

subtype of a certain type 𝐴 and a quotient of a certain type 𝐵, i.e., the case of trivial QPER in which

the zig-zag morphism is a partial surjection from 𝐴 to 𝐵.

The next two columns of the table concern proof transfer in presence of the univalence principle,

either axiomatic, in the case of univalent parametricity [Tabareau et al. 2021] or computational,

in the case of [Angiuli et al. 2021]. Key ingredients of the univalent parametricity were already

present in earlier seemingly unpublished work [Anand and Morrisett 2017], implemented using an

outdated ancestor of the MetaCoq library [Sozeau et al. 2020].

Table 1 indicates which tools can transfer along heterogeneous relations, as this is a prerequisite
to changing type representation, and which ones operate by proving an internal implication lemma,

as opposed to a monolithic translation of an input proof term. We borrow the terminology used

in [Tabareau et al. 2021], in which anticipation refers to the need to define a dedicated structure for

8
Also see file summable.v

Trocq: Proof Transfer for Free, With or Without Univalence 111:25

the signature to be transported. Binders can prevent transfer, as well as dependent types. The latter
are recovered in presence of univalence. The first published publication [Tabareau et al. 2018] on

the univalent parametricity translation suggested that the translation does not pull the axiom in

when translating terms in the 𝐹𝜔 fragment. However, we identified a strictly larger class of terms

for which the stratified approach can get rid of it. Finally, the table indicates which approaches can

deal with quasi-equivalence relations (QER), and with (explicit) subtyping relations.

[
M

a
g
a
u
d
2
0
0
3
]

S
e
to
id
r
e
w
r
it
e
[
S
o
z
e
a
u
2
0
0
9
]

Co
qE
AL
[
C
o
h
e
n
e
t
a
l.
2
0
1
3
]

Is
a
b
e
ll
e
/H
O
L
T
r
a
n
s
fe
r
(2
0
1
3
)

[
Z
im
m
e
r
m
a
n
n
a
n
d
H
e
r
b
e
li
n
2
0
1
5
]

[
T
a
b
a
r
e
a
u
e
t
a
l.
2
0
2
1
]

[
A
n
g
iu
li
e
t
a
l.
2
0
2
1
]

T
r
a
c
k
t
[
B
lo
t
e
t
a
l.
2
0
2
3
]

Tr
oc
q (
2
0
2
3
)

Heterogeneous relations ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Internal ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

No anticipation ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓

Substitution under ∀ ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓

Substitution in dep. types ✓ ✗ ✗ ✗ ✗ ✓ ✓ ✗ ✓

No univalence for ? ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✓ ✓

Preorder relations ✗ ✓ ? ? ? ✗ ? ? ✐

Subrelations ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✐

QERs ✗ ✐ ➡ ➡ ➡ ✗ ✓ ✗ ➡

Subtyping relations ✗ ✗ ➡ ➡ ➡ ✗ ✗ ➡ ➡

System Coq
Coq

Coq
Isabelle/HOL

Coq
Coq/HoTT

(Cubical) Agda

Coq
Coq

o
r Coq/HoTT

Table 1. Comparison of proof transfer automation devices

In its current state, the Trocq plugin can already address the proof transfer bureaucracy of state-of-
the-art formal proofs of computational mathematics, such as the one described in [Allamigeon et al.

2023]. However this framework opens the way to perform unification modulo both generalized

rewriting and heterogeneous transfer relations, potentially solving the problem coined by the

community as concept alignment. We expect that our work, once put in production makes it possible

to have the same lemma applicable to a wide variety of different types: isomorphic types, subtypes,

and quotient types. A particular pervasive problem we expect to solve is the identification of

the canonical natural number with the canonical natural number object in several types, e.g.,{𝑥 ∶ R ⋃︀ ∃𝑛 ∶ N, 𝑥 =](𝑛)}, etc. Another one is the identification of objects constructed in different

ways, which happen to be the same on a subset of their arguments, e.g., the ring Z⇑𝑞Z, defined for

all 𝑞 > 0 and the Galois Field F𝑞 , defined when 𝑞 = 𝑝𝑘 , which happen to be canonically isomorphic

if and only if 𝑞 is prime.

111:26 Cyril Cohen, Enzo Crance, and Assia Mahboubi

REFERENCES
2020. The lean mathematical library. In Proceedings of the 9th ACM SIGPLAN International Conference on Certified Programs

and Proofs, CPP 2020, New Orleans, LA, USA, January 20-21, 2020, Jasmin Blanchette and Catalin Hritcu (Eds.). ACM,

367–381. https://doi.org/10.1145/3372885.3373824

Reynald Affeldt and Cyril Cohen. 2023. Measure Construction by Extension in Dependent Type Theory with Application to

Integration. arXiv:2209.02345 [cs.LO] accepted for publication in JAR.

Xavier Allamigeon, Quentin Canu, and Pierre-Yves Strub. 2023. A Formal Disproof of Hirsch Conjecture. In Proceedings of
the 12th ACM SIGPLAN International Conference on Certified Programs and Proofs, CPP 2023, Boston, MA, USA, January
16-17, 2023, Robbert Krebbers, Dmitriy Traytel, Brigitte Pientka, and Steve Zdancewic (Eds.). ACM, 17–29. https:

//doi.org/10.1145/3573105.3575678

Abhishek Anand and Greg Morrisett. 2017. Revisiting Parametricity: Inductives and Uniformity of Propositions.

arXiv:1705.01163 [cs.LO]

Carlo Angiuli, Evan Cavallo, Anders Mörtberg, and Max Zeuner. 2021. Internalizing representation independence with

univalence. Proc. ACM Program. Lang. 5, POPL (2021), 1–30. https://doi.org/10.1145/3434293

David Aspinall and Adriana B. Compagnoni. 2001. Subtyping dependent types. Theor. Comput. Sci. 266, 1-2 (2001), 273–309.
https://doi.org/10.1016/S0304-3975(00)00175-4

Gilles Barthe, Venanzio Capretta, and Olivier Pons. 2003. Setoids in type theory. J. Funct. Program. 13, 2 (2003), 261–293.
https://doi.org/10.1017/S0956796802004501

Gilles Barthe and Olivier Pons. 2001. Type Isomorphisms and Proof Reuse in Dependent Type Theory. In Foundations of
Software Science and Computation Structures, Furio Honsell and Marino Miculan (Eds.). Springer Berlin Heidelberg, Berlin,

Heidelberg, 57–71.

Andrej Bauer, Jason Gross, Peter LeFanu Lumsdaine, Michael Shulman, Matthieu Sozeau, and Bas Spitters. 2017. The HoTT

library: a formalization of homotopy type theory in Coq. In Proceedings of the 6th ACM SIGPLAN Conference on Certified
Programs and Proofs, CPP 2017, Paris, France, January 16-17, 2017, Yves Bertot and Viktor Vafeiadis (Eds.). ACM, 164–172.

https://doi.org/10.1145/3018610.3018615

Jean-Philippe Bernardy, Patrik Jansson, and Ross Paterson. 2012. Proofs for free - Parametricity for dependent types. J.
Funct. Program. 22, 2 (2012), 107–152. https://doi.org/10.1017/S0956796812000056

Jean-Philippe Bernardy and Marc Lasson. 2011. Realizability and Parametricity in Pure Type Systems. In Foundations
of Software Science and Computational Structures - 14th International Conference, FOSSACS 2011, Held as Part of the
Joint European Conferences on Theory and Practice of Software, ETAPS 2011, Saarbrücken, Germany, March 26-April
3, 2011. Proceedings (Lecture Notes in Computer Science, Vol. 6604), Martin Hofmann (Ed.). Springer, 108–122. https:

//doi.org/10.1007/978-3-642-19805-2_8

Valentin Blot, Denis Cousineau, Enzo Crance, Louise Dubois de Prisque, Chantal Keller, Assia Mahboubi, and Pierre

Vial. 2023. Compositional Pre-processing for Automated Reasoning in Dependent Type Theory. In Proceedings of the
12th ACM SIGPLAN International Conference on Certified Programs and Proofs, CPP 2023, Boston, MA, USA, January
16-17, 2023, Robbert Krebbers, Dmitriy Traytel, Brigitte Pientka, and Steve Zdancewic (Eds.). ACM, 63–77. https:

//doi.org/10.1145/3573105.3575676

Simon Boulier, Pierre-Marie Pédrot, and Nicolas Tabareau. 2017. The next 700 syntactical models of type theory. In

Proceedings of the 6th ACM SIGPLAN Conference on Certified Programs and Proofs, CPP 2017, Paris, France, January 16-17,
2017, Yves Bertot and Viktor Vafeiadis (Eds.). ACM, 182–194. https://doi.org/10.1145/3018610.3018620

Cyril Cohen, Thierry Coquand, Simon Huber, and Anders Mörtberg. 2017. Cubical Type Theory: A Constructive Interpreta-

tion of the Univalence Axiom. FLAP 4, 10 (2017), 3127–3170. http://collegepublications.co.uk/ifcolog/?00019

Cyril Cohen, Maxime Dénès, and Anders Mörtberg. 2013. Refinements for Free!. In Certified Programs and Proofs - Third
International Conference, CPP 2013, Melbourne, VIC, Australia, December 11-13, 2013, Proceedings (Lecture Notes in Computer
Science, Vol. 8307), Georges Gonthier and Michael Norrish (Eds.). Springer, 147–162. https://doi.org/10.1007/978-3-319-

03545-1_10

Thierry Coquand and Gérard P. Huet. 1988. The Calculus of Constructions. Inf. Comput. 76, 2/3 (1988), 95–120. https:

//doi.org/10.1016/0890-5401(88)90005-3

Leonardo de Moura and Sebastian Ullrich. 2021. The Lean 4 Theorem Prover and Programming Language. In Automated
Deduction - CADE 28 - 28th International Conference on Automated Deduction, Virtual Event, July 12-15, 2021, Proceedings
(Lecture Notes in Computer Science, Vol. 12699), André Platzer and Geoff Sutcliffe (Eds.). Springer, 625–635. https:

//doi.org/10.1007/978-3-030-79876-5_37

Maxime Dénès, Anders Mörtberg, and Vincent Siles. 2012. A Refinement-Based Approach to Computational Algebra in Coq.

In Interactive Theorem Proving, Lennart Beringer and Amy Felty (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg,

83–98.

Cvetan Dunchev, Ferruccio Guidi, Claudio Sacerdoti Coen, and Enrico Tassi. 2015. ELPI: Fast, Embeddable, _Prolog

Interpreter. In Logic for Programming, Artificial Intelligence, and Reasoning - 20th International Conference, LPAR-20 2015,

https://doi.org/10.1145/3372885.3373824
https://arxiv.org/abs/2209.02345
https://doi.org/10.1145/3573105.3575678
https://doi.org/10.1145/3573105.3575678
https://arxiv.org/abs/1705.01163
https://doi.org/10.1145/3434293
https://doi.org/10.1016/S0304-3975(00)00175-4
https://doi.org/10.1017/S0956796802004501
https://doi.org/10.1145/3018610.3018615
https://doi.org/10.1017/S0956796812000056
https://doi.org/10.1007/978-3-642-19805-2_8
https://doi.org/10.1007/978-3-642-19805-2_8
https://doi.org/10.1145/3573105.3575676
https://doi.org/10.1145/3573105.3575676
https://doi.org/10.1145/3018610.3018620
http://collegepublications.co.uk/ifcolog/?00019
https://doi.org/10.1007/978-3-319-03545-1_10
https://doi.org/10.1007/978-3-319-03545-1_10
https://doi.org/10.1016/0890-5401(88)90005-3
https://doi.org/10.1016/0890-5401(88)90005-3
https://doi.org/10.1007/978-3-030-79876-5_37
https://doi.org/10.1007/978-3-030-79876-5_37

Trocq: Proof Transfer for Free, With or Without Univalence 111:27

Suva, Fiji, November 24-28, 2015, Proceedings (Lecture Notes in Computer Science, Vol. 9450), Martin Davis, Ansgar Fehnker,

Annabelle McIver, and Andrei Voronkov (Eds.). Springer, 460–468. https://doi.org/10.1007/978-3-662-48899-7_32

Thom Frühwirth and Frank Raiser. 2011. Constraint Handling Rules: Compilation, Execution, and Analysis.

Sébastien Gouëzel. 2021. Vitali-Carathéodory theorem in mathlib. https://leanprover-community.github.io/mathlib_docs/

measure_theory/integral/vitali_caratheodory.html.

Florian Haftmann, Alexander Krauss, Ondřej Kunčar, and Tobias Nipkow. 2013. Data Refinement in Isabelle/HOL. In

Interactive Theorem Proving, Sandrine Blazy, Christine Paulin-Mohring, and David Pichardie (Eds.). Springer Berlin

Heidelberg, Berlin, Heidelberg, 100–115.

Brian Huffman and Ondřej Kunčar. 2013. Lifting and Transfer: A Modular Design for Quotients in Isabelle/HOL. In Certified
Programs and Proofs, Georges Gonthier and Michael Norrish (Eds.). Springer International Publishing, Cham, 131–146.

Joxan Jaffar and J-L Lassez. 1987. Constraint logic programming. In Proceedings of the 14th ACM SIGACT-SIGPLAN symposium
on Principles of programming languages. 111–119.

Jan-Oliver Kaiser, Beta Ziliani, Robbert Krebbers, Yann Régis-Gianas, and Derek Dreyer. 2018. Mtac2: typed tactics for

backward reasoning in Coq. Proc. ACM Program. Lang. 2, ICFP (2018), 78:1–78:31. https://doi.org/10.1145/3236773

Chantal Keller and Marc Lasson. 2012. Parametricity in an Impredicative Sort. In Computer Science Logic (CSL’12) - 26th
International Workshop/21st Annual Conference of the EACSL, CSL 2012, September 3-6, 2012, Fontainebleau, France (LIPIcs,
Vol. 16), Patrick Cégielski and Arnaud Durand (Eds.). Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 381–395.

https://doi.org/10.4230/LIPIcs.CSL.2012.381

Neelakantan R. Krishnaswami and Derek Dreyer. 2013. Internalizing Relational Parametricity in the Extensional Calculus of

Constructions. In Computer Science Logic 2013 (CSL 2013) (Leibniz International Proceedings in Informatics (LIPIcs), Vol. 23),
Simona Ronchi Della Rocca (Ed.). Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 432–451.

https://doi.org/10.4230/LIPIcs.CSL.2013.432

Peter Lammich. 2013. Automatic Data Refinement. In Interactive Theorem Proving, Sandrine Blazy, Christine Paulin-Mohring,

and David Pichardie (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 84–99.

Peter Lammich and Andreas Lochbihler. 2019. Automatic Refinement to Efficient Data Structures: A Comparison of Two

Approaches. J. Autom. Reason. 63, 1 (2019), 53–94. https://doi.org/10.1007/s10817-018-9461-9

Nicolas Magaud. 2003. Changing Data Representation within the Coq System. In TPHOLs’2003, Vol. 2758. LNCS, Springer-
Verlag. http://www.springerlink.com/openurl.asp?genre=article&issn=0302-9743&volume=2758&spage=87 © Springer-

Verlag.

Érik Martin-Dorel and Guillaume Melquiond. 2016. Proving Tight Bounds on Univariate Expressions with Elementary

Functions in Coq. J. Autom. Reason. 57, 3 (2016), 187–217. https://doi.org/10.1007/s10817-015-9350-4

John C. Mitchell. 1986. Representation Independence and Data Abstraction. In Conference Record of the Thirteenth Annual
ACM Symposium on Principles of Programming Languages, St. Petersburg Beach, Florida, USA, January 1986. ACM Press,

263–276. https://doi.org/10.1145/512644.512669

Rob Nederpelt and Herman Geuvers. 2014. Type Theory and Formal Proof: An Introduction. Cambridge University Press.

https://doi.org/10.1017/CBO9781139567725

Ulf Norell. 2008. Dependently Typed Programming in Agda. In Advanced Functional Programming, 6th International School,
AFP 2008, Heijen, The Netherlands, May 2008, Revised Lectures (Lecture Notes in Computer Science, Vol. 5832), Pieter W. M.

Koopman, Rinus Plasmeijer, and S. Doaitse Swierstra (Eds.). Springer, 230–266. https://doi.org/10.1007/978-3-642-04652-

0_5

John C. Reynolds. 1983. Types, Abstraction and Parametric Polymorphism. In Information Processing 83, Proceedings of the
IFIP 9th World Computer Congress, Paris, France, September 19-23, 1983, R. E. A. Mason (Ed.). North-Holland/IFIP, 513–523.

Talia Ringer, RanDair Porter, Nathaniel Yazdani, John Leo, and Dan Grossman. 2021. Proof repair across type equivalences.

In PLDI ’21: 42nd ACM SIGPLAN International Conference on Programming Language Design and Implementation, Virtual
Event, Canada, June 20-25, 2021, Stephen N. Freund and Eran Yahav (Eds.). ACM, 112–127. https://doi.org/10.1145/

3453483.3454033

Matthieu Sozeau. 2009. A New Look at Generalized Rewriting in Type Theory. J. Formaliz. Reason. 2, 1 (2009), 41–62.

https://doi.org/10.6092/issn.1972-5787/1574

Matthieu Sozeau, Abhishek Anand, Simon Boulier, Cyril Cohen, Yannick Forster, Fabian Kunze, Gregory Malecha, Nicolas

Tabareau, and Théo Winterhalter. 2020. The MetaCoq Project. J. Autom. Reason. 64, 5 (2020), 947–999. https://doi.org/10.

1007/s10817-019-09540-0

Nicolas Tabareau, Éric Tanter, and Matthieu Sozeau. 2018. Equivalences for free: univalent parametricity for effective

transport. Proceedings of the ACM on Programming Languages 2, ICFP (2018), 1–29.

Nicolas Tabareau, Éric Tanter, and Matthieu Sozeau. 2021. The marriage of univalence and parametricity. Journal of the
ACM (JACM) 68, 1 (2021), 1–44.

Enrico Tassi. 2019. Deriving proved equality tests in Coq-elpi: Stronger induction principles for containers in Coq. In ITP
2019 - 10th International Conference on Interactive Theorem Proving. Portland, United States. https://doi.org/10.4230/

https://doi.org/10.1007/978-3-662-48899-7_32
https://leanprover-community.github.io/mathlib_docs/measure_theory/integral/vitali_caratheodory.html
https://leanprover-community.github.io/mathlib_docs/measure_theory/integral/vitali_caratheodory.html
https://doi.org/10.1145/3236773
https://doi.org/10.4230/LIPIcs.CSL.2012.381
https://doi.org/10.4230/LIPIcs.CSL.2013.432
https://doi.org/10.1007/s10817-018-9461-9
http://www.springerlink.com/openurl.asp?genre=article&issn=0302-9743&volume=2758&spage=87
https://doi.org/10.1007/s10817-015-9350-4
https://doi.org/10.1145/512644.512669
https://doi.org/10.1017/CBO9781139567725
https://doi.org/10.1007/978-3-642-04652-0_5
https://doi.org/10.1007/978-3-642-04652-0_5
https://doi.org/10.1145/3453483.3454033
https://doi.org/10.1145/3453483.3454033
https://doi.org/10.6092/issn.1972-5787/1574
https://doi.org/10.1007/s10817-019-09540-0
https://doi.org/10.1007/s10817-019-09540-0
https://doi.org/10.4230/LIPIcs.CVIT.2016.23
https://doi.org/10.4230/LIPIcs.CVIT.2016.23

111:28 Cyril Cohen, Enzo Crance, and Assia Mahboubi

LIPIcs.CVIT.2016.23

The Coq Development Team. 2022. The Coq Proof Assistant. https://doi.org/10.5281/zenodo.7313584

The Univalent Foundations Program. 2013. Homotopy Type Theory: Univalent Foundations of Mathematics. https:

//homotopytypetheory.org/book, Institute for Advanced Study.

Andrea Vezzosi, Anders Mörtberg, and Andreas Abel. 2019. Cubical agda: a dependently typed programming language with

univalence and higher inductive types. Proc. ACM Program. Lang. 3, ICFP (2019), 87:1–87:29. https://doi.org/10.1145/

3341691

Philip Wadler. 1989. Theorems for Free!. In Proceedings of the fourth international conference on Functional programming
languages and computer architecture, FPCA 1989, London, UK, September 11-13, 1989, Joseph E. Stoy (Ed.). ACM, 347–359.

https://doi.org/10.1145/99370.99404

Théo Zimmermann and Hugo Herbelin. 2015. Automatic and Transparent Transfer of Theorems along Isomorphisms in

the Coq Proof Assistant. In Conference on Intelligent Computer Mathematics. Washington, D.C., United States. https:

//hal.science/hal-01152588

APPENDIX

(* We postulate the bare minimum about non-negative reals *)
Axioms (R≥0 : Type) (OR≥0 : R≥0) (+R≥0 : R≥0 → R≥0 → R≥0).
(* Non-negative extended reals are a trivial extension *)
Inductive R≥0 : Type := Fin : R≥0 → R≥0 | Inf : R≥0.
(* We define the notions of sequences of numbers *)
Definition seqR≥0 := nat → R≥0.
Definition seqR≥0 := nat → R≥0.
(* Addition on the extended non-negative reals is definable *)
Definition a +R≥0 b : R≥0 := match a, b with
Fin x, Fin y ⇒ Fin (r1 +R≥0 r2) | _, _ ⇒ Inf end.

(* We can derive the addition on sequences *)
Definition u +seq

R≥0
v : seqR≥0 := fun n ⇒ u n +R≥0 v n.

(* We now postulate the unconditional infinite summation
on extended non-negative reals and its linearity *)

Axiom ΣR≥0 : seqR≥0 → R≥0.
Axiom ΣR≥0_add : forall u v : seqR≥0, ΣR≥0 (u + v) = ΣR≥0 u + ΣR≥0 v.

(* We define the notion of summable sequence *)
Definition isFin (a : R≥0) := match a with Fin _ ⇒ true | _ ⇒ false end.
Definition truncate (a : R≥0) := match a with Fin x ⇒ x | _ => OR≥0 end.
Definition isSummable (u : seqR≥0) := isFin (ΣR≥0 (Fin ○ u)).

(* We define the type of summable sequences *)
Record summable := {to_seq :> seqR≥0; _ : isSummable to_seq}.

(* we postulate that summability is preserved by binary addition *)
Axiom summable_add :

forall u v : summable, isSummable (fun n ⇒ u n +R≥0 v n) = true.
Definition u +summable v : summable := Build_summable _ (ΣR≥0_add u v).

(* Finally, we define infinite sums on summable sequences *)
Definition ΣR≥0 (u : summable) : R≥0 := truncate (ΣR≥0 (Fin ○ u)).

https://doi.org/10.4230/LIPIcs.CVIT.2016.23
https://doi.org/10.4230/LIPIcs.CVIT.2016.23
https://doi.org/10.4230/LIPIcs.CVIT.2016.23
https://doi.org/10.5281/zenodo.7313584
https://homotopytypetheory.org/book
https://homotopytypetheory.org/book
https://doi.org/10.1145/3341691
https://doi.org/10.1145/3341691
https://doi.org/10.1145/99370.99404
https://hal.science/hal-01152588
https://hal.science/hal-01152588

Trocq: Proof Transfer for Free, With or Without Univalence 111:29

	Abstract
	1 Introduction
	2 Strengths and limits of univalent parametricity
	2.1 Proof transfer in type theory, in practice
	2.2 Type equivalences, univalence
	2.3 Parametricity translations

	3 Type equivalence in kit
	3.1 Disassembling type equivalence
	3.2 Reassembling type equivalence
	3.3 The proofs of
	3.4 Translation of dependent products
	3.5 The case of non-dependent products

	4 Parametricity translations as logical programs
	4.1 Raw parametricity sequents
	4.2 Univalent parametricity triples
	4.3 Annotated type theory
	4.4 Stratified parametricity relation
	4.5 Handling constants on top of CC+

	5 Implementation in Coq-Elpi
	5.1 Introducing Coq-Elpi
	5.2 Setting up the plugin
	5.3 Encoding and solving the parametricity class inference problem
	5.4 Logic programming to the rescue

	6 Applications
	6.1 A class of univalence-free transferable statements
	6.2 Example 1.1: transferring induction principles
	6.3 Example 1.2: transferring results to a subtype

	7 Related work and perspectives
	References

